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Indoor Vaccine Mandates in US Cities, Vaccination Behavior,
and COVID-19 Outcomes

1 Introduction

Various measures, campaigns, and behavioral nudges were implemented during the pandemic to

incentivize citizens to get vaccinated and reduce the spread of COVID-19 (Acemoglu et al., 2021;

Alvarez et al., 2021; Dai et al., 2021; Fang et al., 2020; Karaivanov et al., 2021). Indoor vac-

cine mandates were among these measures, and were arguably among the most restrictive and

polarizing regulations enacted in the United States. Millions of people were prevented from en-

tering restaurants, bars, gyms, theaters, sports arenas, and other public indoor areas without proof

of COVID-19 vaccination. Many of the largest US cities—including New York City, San Fran-

cisco, Los Angeles, Seattle, Philadelphia, and Boston—implemented this mandate with the goal

of increasing vaccine uptake, thereby reducing COVID-19 cases and deaths. The press release

announcing Boston’s indoor vaccine mandate stated that the decision was made to “increase vac-

cination rates among residents and slow the spread of COVID-19 and the new Omicron variant”

(Boston Public Health Commission, 2021). In Philadelphia, the mayor claimed, “[Indoor vaccina-

tion mandates] are critical to slowing the spread of the Delta variant of COVID-19, which is more

dangerous and transmissible than earlier forms of the virus. The science is clear: these measures

will protect Philadelphians and save lives” (Philadelphia Board of Health, 2021). This paper offers

the first analysis of the effects of indoor vaccine mandates on vaccine uptake, COVID-19 cases,

and COVID-19 deaths in US cities.

Research has shown that country-level and province-level indoor vaccine mandates imple-

mented in Europe and Canada led to an increase in vaccine uptake (Karaivanov et al., 2022; Mills

& Rüttenauer, 2022). Yet, little is known about the effects of city-level vaccine mandates, which

is the jurisdictional level at which indoor mandates were implemented in the United States. This

distinction between country-level and city-level is important because the cost that a country-level
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mandate imposes on unvaccinated residents is likely higher than a city-level mandate. Unvacci-

nated people who live or commute to cities that implement the mandate are prevented from going

to indoor public facilities in the affected city, but they could still go to indoor facilities in neigh-

boring cities without the mandate. By contrast, it is difficult for unvaccinated people in countries

or provinces that implement similar mandates to go to places not affected by the mandate. Thus,

the effect of city-level mandates on vaccine uptake, and consequently COVID-19 cases and deaths,

may be smaller than the country-level mandates.

The relationship between COVID-19 vaccination rates and COVID-19 cases and deaths is com-

plex and mediated by many factors, such as population density, demographics, and risk-mitigating

behaviors. If vaccination reduces peoples’ willingness to socially distance, wear masks, or adhere

to hygiene guidelines, then the effects of vaccine uptake on COVID-19 cases and deaths would be

smaller than anticipated. Andersson et al. (2021), for example, offer experimental evidence that

vaccine availability can result in lower adherence to public health recommendations. Thus, it is

important to analyze the effects of vaccine mandates on COVID-19 cases and deaths to understand

the health impact of these policies.

We use the synthetic difference-in-differences method introduced by Arkhangelsky et al. (2021)

to explore the effects of adopting indoor vaccine mandates in Boston, Chicago, Los Angeles, New

Orleans, New York, Philadelphia, San Francisco, Seattle, and Washington DC.1 The synthetic

difference-in-differences estimator combines features of the widely used difference-in-differences

and synthetic control methods, and it is argued by Arkhangelsky et al. (2021) to have desirable ro-

bustness properties, both theoretically and empirically, relative to conventional estimators. Similar

to the difference-in-differences method, the synthetic difference-in-differences estimator is invari-

ant to additive unit-level shifts, and, like the synthetic control method, the synthetic difference-in-

differences estimator reweighs and matches pre-treatment trends to weaken the reliance on parallel

trend type assumptions. Therefore, for each city that adopted an indoor vaccine mandate, we find

a corresponding weighted average of non-adopting cities whose average outcome is approximately

1Minneapolis and St. Paul implemented an indoor vaccine mandate only for a couple of weeks, so we do not
analyze or report the effect of the mandates in these cities.
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parallel to that of the adopting city prior to the announcement of the mandate. This weighted

average of non-adopting cities serves as a counterfactual measure to which the outcome in the

corresponding adopting city is compared.

We find no evidence that the announcement or implementation of indoor vaccine mandate in the

cities listed had any significant effect on vaccine uptake, COVID-19 cases, or COVID-19 deaths,

and this is largely consistent for all US cities that implemented the mandate. Our findings are

robust to the synthetic control and the difference-in-differences methods. These findings suggest

that if the mandate had any effect at all, it is likely smaller or at least less statistically noticeable

than the effects of country-level mandates previously studied by Karaivanov et al. (2022) and Mills

and Rüttenauer (2022). Our findings also support the claim that city-level vaccine mandates are

likely to have a smaller effect on vaccine uptake, and consequently a smaller effect on COVID-19

cases and deaths, than country-level and province-level mandates. Therefore, the effects of vaccine

mandates in European countries are not likely to take place in US cities and should be treated as

different policies.

Our findings put into question the efficacy of city-level vaccine mandates. Indoor vaccine man-

dates caused large disruptions for many individuals and businesses. New York City, for example,

fired 1,430 city workers for failing to comply with its vaccine mandate (Fitzsimmons, 2022). A

survey found that over 90% of NYC restaurants reported having customer-related challenges, such

as losing customers who objected to the mandate, and 75% having staff-related challenges (New

York State Restaurant Association, 2021). Those are just a small fraction of the disruptions caused

by the mandates. Most supporters of the mandates claim that the associated increase in vaccination

rates, and its implied reduction in the spread of COVID-19, outweigh the cost of the disruptions.

However, we find that the effects of the mandates on their intended outcomes are not statistically

noticeable in any of the cities they were implemented in all empirical strategies used.
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2 Background and Literature Review

Governments at all levels responded to the pandemic with sweeping restrictions to curb COVID-

19 morbidity and mortality, including shelter-in-place orders, mask mandates, closure of certain

businesses, limits on large gatherings, and indoor vaccine mandates. A substantial empirical liter-

ature has explored the effects of these policies. Alfano and Ercolano (2020) and Fang et al. (2020)

find that lockdown policies slowed COVID-19 transmission and reduced new cases, while a meta-

analysis by Herby et al. (2022) concludes that lockdowns in spring 2020 had little to no effect on

COVID-19 mortality. Based on risk modeling, Acemoglu et al. (2021) and Alvarez et al. (2021)

suggest that adjustments to the structure, intensity, and duration of US lockdowns could have

generated significant welfare gains. Exploiting temporal variation in the implementation of mask

mandates in different jurisdictions, Joo et al. (2021), Karaivanov et al. (2021), and Krishnamachari

et al. (2021) estimate that the mandates significantly reduced COVID-19 cases and hospitaliza-

tions. Similarly, Schnake-Mahl et al. (2021) find that closing indoor dining was associated with a

sharp decline in new COVID-19 cases. The differences in compliance with pandemic-related rules

and recommendations may explain some of the heterogeneity observed in the literature (Barrios et

al., 2021; Cherry et al., 2021; Painter & Qiu, 2021; Wright et al., 2020).

Some papers have examined unintended health consequences of COVID-19 policies. Bullinger

et al. (2021) suggest that Chicago’s stay-at-home order may have led to an increase in domestic vi-

olence–related calls to the police. Di Novi et al. (2022) document a drastic reduction in drug adher-

ence during the pandemic, especially among older and less-educated individuals. Serrano-Alarcón

et al. (2022) offer evidence that lockdown measures worsened mental health. Melo (2022a) shows

that isolation measures in nursing homes were associated with an increase in overall deaths. Melo

(2022b) finds that decisions regarding nursing home isolation measures were largely affected by

ownership structure, and that facilities with more restrictive isolation measures also had much

higher rates of non-COVID deaths in the second year of the pandemic.

Since the start of the pandemic, public health experts viewed the development of COVID-

19 vaccines as a decisive step toward controlling the virus and returning to normalcy. Yet, it soon
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Table 1: Timing of Indoor Vaccine Mandates

Date Date Date
City Announced Implemented Repealed

New York 8/3/21 8/16/21 3/7/22
San Francisco 8/12/21 8/20/21 3/11/22
New Orleans 8/12/21 8/16/21 3/21/22
Seattle 9/16/21 10/25/21 3/1/22
Los Angeles 11/8/21 11/29/21 3/30/22
Philadelphia 12/13/21 1/3/22 2/16/22
Boston 12/20/21 1/1522 2/18/22
Chicago 12/21/21 1/3/22 2/28/22
Washington DC 12/22/21 1/15/22 2/15/22

Notes: We omit Minneapolis and St. Paul from our analysis
because they implemented indoor vaccine mandates for only a
couple of weeks in early 2022.

became clear that a substantial number of Americans were unwilling to be immunized. In February

2021, 30% of adults said they would ”probably” or ”definitely” not be vaccinated (Funk & Tyson,

2021). By early May 2021, despite experimental evidence that simple behavioral nudges could

boost COVID-19 vaccination rates (Dai et al., 2021), just 57% of US adults had received at least

one dose (Diesel et al., 2021)—far below the threshold needed to achieve robust herd immunity.

In the spring and summer 2021, many jurisdictions began to implement measures to increase

COVID-19 vaccine uptake. The federal government moved to force large employers to mandate

vaccination or weekly testing; several states established lottery incentive programs to encourage

vaccination (Acharya & Dhakal, 2021); and many cities required municipal workers to be vac-

cinated as a condition of employment. On August 3, 2021, amid concerns about the spread of

the Delta variant, New York City became the first city in the United States to require proof of

vaccination to enter restaurants, concerts, stadiums, gyms, and other venues (Fitzsimmons, 2022).

Similar policies were adopted by other major US cities soon after, including San Francisco, New

Orleans, Seattle, Los Angeles, Philadelphia, Boston, Chicago, and Washington DC. Table 1 shows

the timing of the announcement, implementation, and repeal of these policies in each city.

The literature on vaccine mandates primarily focuses on their effects on vaccine uptake. Abre-
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vaya and Mulligan (2011), Lawler (2017), and Carpenter and Lawler (2019) find that mandates

requiring children to receive certain immunizations such as MMR and polio prior to childcare or

school attendance, which were broadly adopted by states in the 1970s, boost vaccination rates by

10–30%. Pitts et al. (2014) report that implementing influenza vaccine mandates for healthcare

personnel significantly increases uptake. Yet, the applicability of these results in predicting the

impact of indoor vaccine mandates during the pandemic is uncertain. Attwell et al. (2018) argue

that the effects of vaccine mandates on behavior depend crucially on their sociocultural context and

the structure, exemptions, target populations, consequences, and enforcement of the specific poli-

cies. Furthermore, indoor vaccine mandates affect a different population (mainly adult members

of the public vs. children or workers in the healthcare industry), establish different contingencies

(engaging in indoor recreational activities vs. attending day care/school or remaining employed),

and are implemented at a different geographic scale (cities vs. states or organizations) than most

previously studied vaccine mandates.

Recent research has investigated the effects of COVID-19 vaccine mandates, primarily outside

the United States. Karaivanov et al. (2022) estimate the effect of indoor vaccination mandates

in Canada. The authors apply a difference-in-differences approach and compare provinces that

implemented the mandate to provinces that did not. They also perform a time-series analysis to es-

timate the effects of the mandate in France, Italy, and Germany, and find that the announcement of

the mandate was associated with a significant increase in vaccine uptake in those countries. Mills

and Rüttenauer (2022) estimate the effects of mandatory COVID-19 certification (e.g., showing

vaccination, recent negative test, or proof of recovery) on vaccine uptake in five European coun-

tries (Denmark, Italy, France, Germany, and Switzerland) and Israel, and find that the mandate

significantly increased vaccine uptake. Oliu-Barton et al. (2022) estimate the effects of requiring

COVID-19 certificate, recent negative test, or proof of vaccination on vaccine uptake in Germany,

France, and Italy. The authors use counterfactuals that are constructed using innovation diffusion

theory, and find that the requirement was associated with an increase in vaccine uptake in those

countries. Kuznetsova et al. (2022) study the effects of various interventions, such as incentive
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programs, introduction of fines, and COVID-19 certificates, on vaccine uptake in eight European

countries, and find that the interventions were associated with an immediate and significant in-

crease in vaccine uptake. Cohn et al. (2022) find that the use of an assortment of policies in New

York City, including vaccine mandates, incentive payments, and proof of vaccine requirement, led

to an increased vaccination uptake. We contribute to this literature by offering the first analysis

of the effects of indoor vaccine mandates on COVID-19 vaccine uptake. Moreover, we extend the

existing literature by offering the first analysis of the effects of city-level indoor vaccine mandates

on COVID-19 cases and deaths.

3 Data

Data on daily county COVID-19 vaccinations, cases, and deaths come from the Centers for Disease

Control and Prevention (CDC). Similar to Karaivanov et al. (2022), we focus on the number of first

doses of COVID-19 vaccinations, because new vaccinations most directly reflect an individual’s

intent to be immunized following a proof of vaccination mandate.2 We aggregate each of these

variables to the Metro/Micropolitan Statistical Area (MSA) by week level, and then scale each

measure by US Census population estimates (also aggregated to the MSA level). More specifically,

our main outcome variables consist of weekly measures of administered first doses of COVID-19

vaccines, cases, and deaths per 100,000 residents. We aggregate the data to the MSA level, because

MSAs consist of a city and surrounding areas that are linked by economic factors as established by

the US Office of Management and Budget. One of the primary economic factors considered is the

labor market. Thus, a vaccine mandate implemented in a city will affect people who live outside

the city but work in the city.

Our sample period spans from the week of December 21, 2020, to the week of April 18, 2022,

and initially our sample consisted of 916 MSAs. For reasons unknown to us, counties in 92 MSAs

2We also consider the total number of people fully vaccinated per 100,000 as an alternative vaccine uptake out-
come variable. Similar to first doses, we find no statistically significant effect on full vaccine uptake following the
announcement of a mandate in any of the cities that implemented a mandate.
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reported either negative values of first doses several weeks in a row or negative values in a given

week followed by a range of weeks with zero reported doses. So we dropped these 92 MSAs from

the analysis. There were other MSAs that had reported negative first doses for one or two weeks

over the sample period. But because these negative values only occurred once or twice over the

sample period in these MSAs and accounted for only 0.56% of our sample (but about 27% of the

MSAs in our sample), we replaced these negative values with an average number of first doses in

the week preceding and the week following the negative value. Many counties also appeared to

delay their reporting of first doses. In the first week of reporting, they reported the cumulative total

of all first doses administered since the vaccines became available. We therefore omitted the first

week that each MSA reported positive first dose numbers. Finally, we dropped three other MSAs

from the analysis, because their reported number of vaccinations exceeded the number of people

in the population. Consequently, our final data set consists of a balanced panel of 821 MSAs,

with weekly values of first doses, COVID-19 cases, and COVID-19 deaths per 100,000—a total of

57,470 observations.

Table 2 shows descriptive statistics of outcome variables for all MSAs in our sample, broken

down by treatment status. In an average week, over the sample period, there were about 817.47,

273.75, and 3.56 first doses, cases, and deaths per 100,000, respectively. Average first doses per

100,000 were higher among the treated MSAs compared to untreated MSAs (1,253.50 vs. 812.66),

and both cases and deaths per 100,000 were on average relatively lower (247.47 and 2.03 vs.

274.04 and 3.58).
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Table 2: Descriptive Statistics

All MSAs Treated MSAs Untreated MSAs

Variable Mean SD Median Mean SD Median Mean SD Median

First Doses per 100,000 817.47 1,344.30 458.98 1,253.50 1,237.18 827.71 812.66 1,344.65 455.01
Cases per 100,000 273.75 373.61 147.73 247.47 394.75 121.95 274.04 373.37 148.16
Deaths per 100,000 3.56 5.87 1.90 2.03 2.31 1.17 3.58 5.90 1.91
Number of Observations 57,470 630 56,840

Notes: The unit of observation is MSA week. Our sample consists of 821 MSAs, 9 of which are treated, and the

period spans 70 weeks from December 21, 2020, to April 18, 2022.

4 Empirical Strategy

Our aim is to estimate the causal effects of indoor vaccine mandates on COVID-19 vaccine up-

take, cases, and deaths in nine US cities. These policy changes were arguably not random and,

absent exogenous variation, we rely on statistical models that connect observed data to unobserved

counterfactuals. While many approaches have been developed for such settings, the difference-

in-differences method has been widely used over the last three decades, and more recently the

synthetic control method has emerged as an alternative for comparative case studies. Arkhangel-

sky et al. (2021) propose a new method: synthetic difference-in-differences (SDID), which com-

bines attractive features of both the difference-in-differences and the synthetic control methods.

The authors show that empirically, the SDID estimator is competitive with (or dominates) the

difference-in-differences estimator, where the difference-in-differences method has been used in

the past. Likewise, the SDID estimator is competitive with (or dominates) the synthetic control

estimator in applications where the synthetic control method has been used in the past. Our main

analysis, therefore, relies on the more robust SDID estimator, both theoretically and empirically.

To introduce the main ideas behind the SDID estimator, we closely follow the explanation and

notation of Arkhangelsky et al. (2021). Consider a balanced panel with N units and T time periods,

where the outcome for unit i in period t is denoted by Yit and exposure to a binary treatment (the
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implementation of an indoor vaccine mandate) is denoted by Wit ∈ {0,1}. Suppose further that

the first Nco (control) units are never exposed to the treatment, whereas the last Ntr = N −Nco

(treated) units are exposed after time Tpre. We analyze the effects of the indoor vaccine mandates

in each of the nine MSAs separately. Therefore, in our context, N = 813 MSAs, Ntr = 1 (the

MSA that implemented the mandate), and Nco = 812 (the rest of the MSAs in our sample that

did not implement the mandate). While T is the same in each of the nine analyses, Tpre will vary

depending on when the treated MSA implemented the mandate.

Similar to the synthetic control method, the SDID starts by finding unit weights for all control

units, denoted by ω̂sdid , such that the outcome for the treated unit in the pre-treatment period

is approximately parallel to the weighted average outcome for control units over the same period.

The SDID also searches for time weights, denoted by λ̂ sdid , that balance pre-treatment time periods

with post-treatment time periods. These weights are then used in a two-way fixed effects regression

to estimate the average causal effect of exposure to the treatment, denoted by τ .

(
τ̂

sdid , µ̂ , α̂ , β̂
)
= argmin

τ ,µ ,α ,β

{
N

∑
i=1

T

∑
t=1

(Yit −µ −αi −βt −Witτ)
2

ω̂
sdid
i λ̂

sdid
t

}
(1)

By way of comparison, the difference-in-differences method often estimates the effect of a

treatment by solving the same two-way fixed effects regression, but without either unit or time

weights. (
τ̂

did , µ̂ , α̂ , β̂
)
= argmin

τ ,µ ,α ,β

{
N

∑
i=1

T

∑
t=1

(Yit −µ −αi −βt −Witτ)
2

}
(2)

The synthetic control estimator can be expressed in a similar way by omitting the unit fixed effects

and the time weights from the two-way fixed effects regression.

(
τ̂

sc, µ̂ , β̂
)
= argmin

τ ,µ ,β

{
N

∑
i=1

T

∑
t=1

(Yit −µ −βt −Witτ)
2

ω̂
sc
i

}
(3)

The use of unit weights in the SDID and the synthetic control methods is intuitively appealing in

that more weight is given to control units that are similar (in terms of pre-treatment characteristics)
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to the treated unit. If estimating the effect of the indoor vaccine mandate in New York City, for

example, it makes sense to emphasize MSAs that are similar to the MSA containing New York

City, especially prior to the mandate. Moreover, the use of unit weights in the SDID and the

synthetic control methods weakens the reliance on parallel-trends type assumptions inherent in the

difference-in-differences method. This is because the weights by design are chosen such that the

weighted average outcome of the control group matches (in the case of synthetic control) or is

parallel to (in the case of the SDID) the trend in the outcome of the treated unit. The inclusion

of the unit fixed effects in the SDID estimator is what facilitates this added flexibility relative to

the synthetic control estimator. Arkhangelsky et al. (2021) argue that, in general, the inclusion

of weights and unit fixed effects in the SDID estimator makes it more flexible and robust, in

addition to potentially being more precise, relative to the conventional difference-in-differences

and synthetic control estimators.

4.1 Synthetic Difference-in-Differences Weights

Arkhangelsky et al. (2021) provide an R package—synthdid—for implementing the methods de-

veloped in their paper. We use this package to find the unit and time weights as well as to run the

weighted two-way fixed effects regression in equation (1). The unit weights, ω̂sdid , are chosen by

solving the optimization problem

(
ω̂0, ω̂sdid

)
= argmin

ω0∈R,ω∈Ω
ℓunit (ω0,ω) , (4)

where

ℓunit (ω0,ω) =
Tpre

∑
t=1

(
ω0 +

Nco

∑
i=1

ωiYit −
1

Ntr

N

∑
i=Nco+1

Yit

)2

+ ζ
2Tpre∥ω∥2

2,

Ω =

{
ω ∈ RN

+ :
Nco

∑
i=1

ωi = 1,ωi = N−1
tr for all i = Nco + 1, . . . ,N

}
,

and R+ denotes the positive real line.
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The regularization parameter ζ is defined as

ζ = (NtrTpost)
1/4

σ̂ with σ̂
2 =

1
Nco(Tpre −1)

Nco

∑
i=1

Tpre−1

∑
t=1

(∆it − ∆̄)2 , (5)

where

∆it = Yi(t+1)−Yit and ∆̄ =
1

Nco(Tpre −1)

Nco

∑
i=1

Tpre−1

∑
t=1

∆it .

Arkhangelsky et al. (2021) provide a more in depth explanation for and justification of this

approach. The basic idea is that the unit weights are chosen to find a convex combination of

potential control states whose treatment trend in the outcome variable of interest is most parallel

to that of the treated state. The inclusion of the intercept term ω0 (made possible because of the

inclusion of the unit fixed effects) is one way in which the SDID unit weights differ from those of

the synthetic control weights. Instead of the weights needing to make the pre-trend control unit

perfectly match that of the treated unit, as is the case with the synthetic control estimator, allowing

for this intercept makes it sufficient for the weights to just make the trends parallel.

The other main way that the two sets of weights differ is that the SDID incorporates the reg-

ularization parameter ζ , which is chosen to match the size of a typical one-period change in the

outcome variable (∆it) for control states in the pre-period, multiplied by a theoretically motivated

scaling (NtrTpost)1/4. This is included to ensure the uniqueness, and to increase the dispersion, of

the weights.

Similarly, the time weights, λ̂ sdid , are chosen by solving the optimization problem

(
λ̂0, λ̂ sdid

)
= argmin

λ0∈R,λ∈Λ
ℓtime (λ0,λ ) , (6)

where

ℓtime (λ0,λ ) =
Nco

∑
i=1

(
λ0 +

Tpre

∑
t=1

λtYit −
1

Tpost

T

∑
t=Tpre+1

Yit

)2

and

Λ =

{
λ ∈ RT

+ :
Tpre

∑
t=1

λt = 1,λt = T−1
post for all t = Tpre + 1, . . . ,T

}
.
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The main difference between (4) and (6) is that regularization is used for the former but not the

latter, as explained and justified in Arkhangelsky et al. (2021).

To summarize, the procedure for estimating τ̂sdid separately for each of the nine treated MSAs

consists of computing the regularization parameter ζ using (5); calculating the unit and time

weights ω̂sdid and λ̂ sdid via (4) and (6); and then estimating the weighted two-way fixed effects

with difference-in-differences regression in (1).

4.2 Inference

We implement the placebo variance estimation approach used in Arkhangelsky et al. (2021) to

conduct statistical inference. This approach is similar to the placebo evaluations often used in the

synthetic control applications, where there is only one treated unit. The main idea of this approach

is to consider the behavior of the SDID estimator when replacing the MSAs that were treated

with MSAs that were not treated. Because these MSAs did not actually experience the treatment,

“placebo” estimates of τ̂sdid provide a way of estimating the noise level, which can then be used to

estimate the asymptotic variance.

Specifically, we randomly select B of the Nco untreated MSAs, and for each of the randomly

selected untreated MSAs (indexed by b), we compute a placebo estimate of τ̂sdid , denoted by τ̂ (b),

using the same procedure outlined in the previous section.3 We then use this placebo distribution

to estimate the asymptotic variance V̂τ by finding the average sum of squared deviations from the

mean. Thus,

V̂τ =
1
B

B

∑
b=1

(
τ̂
(b)− 1

B

B

∑
b=1

τ̂
(b)

)2

. (7)

With V̂τ , we report confidence intervals defined conventionally by τ ∈ τ̂ ± zα/2

√
V̂τ . The

validity of this approach relies crucially on homoscedasticity across MSAs, because if the treated

and untreated MSAs have different noise distributions, then there is no way to estimate V̂τ from

only the untreated MSAs.

3We use the synthdid R package to implement this procedure, where the default value of B is 200.
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5 Results

Indoor COVID-19 vaccine mandates were announced and implemented in nine major US cities

between August 2021 and March 2022 with the intention of increasing vaccine uptake, thereby re-

ducing COVID-19 cases and deaths. Previous studies have shown that country-level and province-

level indoor vaccine mandates implemented in Europe and Canada were effective in increasing

first-dose vaccine uptake (Karaivanov et al., 2022; Mills & Rüttenauer, 2022). The descriptive

statistics in table 2 reveal that, in an average week over the sample period, first doses of the vac-

cines per 100,000 in the treated MSAs were considerably higher than in the untreated MSAs, and

cases and deaths per 100,00 were relatively lower. These statistics are consistent with past findings

suggesting that the indoor vaccine mandates in these US cities have been effective in fulfilling

their intended objective. However, it is possible—although not likely, given the politicization of

the COVID-19 vaccines and the political orientation of these cities at the time—that individuals in

the treated MSAs were more likely to be vaccinated than those in the untreated MSAs, independent

of the mandates.

As it relates to the previous studies on country-level and province-level mandates in Europe

and Canada, it is worth noting that the city-level mandates in the United States were implemented

toward the end of 2021 and beginning of 2022, after the majority of mandates were implemented

in other countries and a large proportion of the population in each adopting city had already re-

ceived the vaccine. Moreover, we expect the US city-level mandates, if they had any effect at all,

to be relatively less effective than country-level and province-level mandates because these man-

dates increase the cost of not being vaccinated more than city-level mandates. For example, an

unvaccinated person in France would have to travel to another country to legally eat at an indoor

restaurant, whereas the same unvaccinated person in New York City could simply drive to New

Jersey to do so.

Our results overwhelmingly support the conclusion that the city-level indoor vaccine mandates

in the United States had a statistically negligible effect on vaccine uptake, cases, and deaths, and

they were likely less effective when compared to country-level and province-level mandates pre-
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viously studied. Tables 3, 4, and 5 report the average estimated effects of the announcement of

each city-level mandate on weekly first doses, cases, and deaths per 100,000, respectively. The

SDID estimates, τ̂sdid from equation (1), are in column (3) of each table. For comparison, columns

(1) and (2) show estimates using the difference-in-differences and the synthetic control estimators

(τ̂did and τ̂sc from equations (2) and (3)).
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Table 3: Announcement of Indoor COVID-19 Vaccine Mandates and First-Dose Vaccine Uptake

Dependent Variable : Weekly First Doses per 100,000

Synthetic
Difference-in-Differences Control SDID

(1) (2) (3)

Panel A. Boston

Average Effect (τ̂) 319.04 –140.04 72.69
95% Confidence Interval (–1047.25, 1685.33) (–1211.06, 930.99) (–1160.96, 1306.33)

Panel B. Chicago

Average Effect (τ̂) –39.95 –28.4 –172.34
95% Confidence Interval (–1197.23, 1117.34) (–894.70, 837.91) (–1188.18, 843.50)

Panel C. Los Angeles

Average Effect (τ̂) –143.09 –242.61 –185.31
95% Confidence Interval (–1142.48, 856.31) (–740.82, 255.59) (–966.80, 596.19)

Panel D. New Orleans

Average Effect (τ̂) –341.38 –219.38 –209.07
95% Confidence Interval (–1642.73, 959.97) (–724.08, 285.32) (–721.84, 303.70)

Panel E. New York

Average Effect (τ̂) –575.97 123.77 –82.59
95% Confidence Interval (–1907.72, 755.79) (–398.14, 645.68) (–605.48, 440.30)

Panel F. Philadelphia

Average Effect (τ̂) 104.16 –295.41 –303.02
95% Confidence Interval (–1148.25, 1356.57) (–1252.58, 661.76) (–1401.35, 795.31)

Panel G. San Francisco

Average Effect (τ̂) −1197.67∗ –42.89 –195.37
95% Confidence Interval (–2504.92, 109.58) (–566.19, 480.41) (–726.44, 335.71)

Panel H. Seattle

Average Effect (τ̂) –736.58 –97.14 –207.02
95% Confidence Interval (–1978.53, 505.38) (–688.32, 494.03) (–840.35, 426.32)

Panel I. Washington DC

Average Effect (τ̂) –253.99 18.77 –76.53
95% Confidence Interval (–1620.28, 1112.31) (–1059.12, 1096.67) (–1309.86, 1156.80)

Notes: This table reports the average estimated effects of announcing an indoor COVID-19 vaccine mandate on
first-dose vaccine uptake as measured by weekly first doses per 100,000 residents using the difference-in-differences,
the synthetic control, and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence
intervals using the placebo variance estimation approach outlined in section 4.2. Significance levels are reported as
*** p<0.01, ** p<0.05, and * p<0.1.
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Table 4: Announcement of Indoor COVID-19 Vaccine Mandates and COVID-19 Cases

Dependent Variable : Weekly COV ID-19 Cases per 100,000

Synthetic
Difference-in-Differences Control SDID

(1) (2) (3)

Panel A. Boston

Average Effect (τ̂) 274.32 240.05 224.57
95% Confidence Interval (–252.03, 800.67) (–272.99, 753.09) (–267.13, 716.27)

Panel B. Chicago

Average Effect (τ̂) 139.6 184.48 121.14
95% Confidence Interval (–299.65, 578.84) (–245.53, 614.49) (–289.63, 531.91)

Panel C. Los Angeles

Average Effect (τ̂) 202.06 340.28∗∗∗ 176.49
95% Confidence Interval (–74.98, 479.09) (97.34, 583.22) (–58.08, 411.05)

Panel D. New Orleans

Average Effect (τ̂) –22.81 6.15 –27.28
95% Confidence Interval (–216.80, 171.19) (–182.99, 195.28) (–217.93, 163.36)

Panel E. New York

Average Effect (τ̂) –53.04 7.02 4.62
95% Confidence Interval (–251.54, 145.46) (–186.94, 200.98) (–190.87, 200.12)

Panel F. Philadelphia

Average Effect (τ̂) 110.41 290.62 114.41
95% Confidence Interval (–368.76, 589.58) (–180.84, 762.08) (–329.83, 558.66)

Panel G. San Francisco

Average Effect (τ̂) –107.37 65.71 –95.48
95% Confidence Interval (–311.98, 97.24) (–135.80, 267.22) (–297.46, 106.50)

Panel H. Seattle

Average Effect (τ̂) 19.85 20.72 –16.99
95% Confidence Interval (–239.41, 279.12) (–202.52, 243.95) (–247.34, 213.36)

Panel I. Washington DC

Average Effect (τ̂) 149.7 600.71 190.26
95% Confidence Interval (–376.66, 676.05) (86.71, 1114.72) (–301.70, 682.22)

Notes: This table reports the average estimated effects of announcing an indoor COVID-19 vaccine mandate on the
number of weekly COVID-19 cases per 100,000 residents using the difference-in-differences, the synthetic control,
and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence intervals using the
placebo variance estimation approach outlined in section 4.2. Significance levels are reported as *** p<0.01, **
p<0.05, and * p<0.1.
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Table 5: Announcement of Indoor COVID-19 Vaccine Mandates and COVID-19 Deaths

Dependent Variable : Weekly COV ID-19 Deaths per 100,000

Synthetic
Difference-in-Differences Control SDID

(1) (2) (3)

Panel A. Boston

Average Effect (τ̂) 2.32 1.65 1.38
95% Confidence Interval (–4.75, 9.39) (–5.97, 9.28) (–4.76, 7.53)

Panel B. Chicago

Average Effect (τ̂) 1.94 1.46 1.39
95% Confidence Interval (–4.21, 8.09) (–5.10, 8.03) (–4.06, 6.84)

Panel C. Los Angeles

Average Effect (τ̂) –0.2 0.67 –0.3
95% Confidence Interval (–5.26, 4.86) (–3.85, 5.19) (–4.52, 3.92)

Panel D. New Orleans

Average Effect (τ̂) –0.65 –2.5 –1.37
95% Confidence Interval (–4.48, 3.18) (–6.07, 1.07) (–4.96, 2.22)

Panel E. New York

Average Effect (τ̂) –2.37 –2.66 –1.91
95% Confidence Interval (–6.16, 1.43) (–6.09, 0.76) (–5.42, 1.60)

Panel F. Philadelphia

Average Effect (τ̂) 2.76 –2.16 2.21
95% Confidence Interval (–4.11, 9.63) (–9.35, 5.02) (–3.69, 8.11)

Panel G. San Francisco

Average Effect (τ̂) –2.19 −4.72∗∗ –2.66
95% Confidence Interval (–6.14, 1.76) (–8.51, –0.93) (–6.36, 1.04)

Panel H. Seattle

Average Effect (τ̂) –1.07 -1.08 –1.43
95% Confidence Interval (–5.04, 2.91) (–4.63, 2.47) (–5.09, 2.22)

Panel I. Washington DC

Average Effect (τ̂) 0.46 –0.92 0.2
95% Confidence Interval (–6.61, 7.53) (–8.55, 6.70) (–5.95, 6.35)

Notes: This table reports the average estimated effects of announcing an indoor COVID-19 vaccine mandate on the
number of weekly COVID-19 deaths per 100,000 residents using the difference-in-differences, the synthetic control,
and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence intervals using the
placebo variance estimation approach outlined in section 4.2. Significance levels are reported as *** p<0.01, **
p<0.05, and * p<0.1.
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Analogous to tables 3, 4, and 5, tables A1, A2, and A3 in the appendix report the average esti-

mated effects of the implementation of each city-level mandate (as opposed to the announcement

of the mandates). Regardless of the outcome, with few exceptions, and regardless of the estimator

used, we do not find any statistically significant evidence that the announcement or implementation

of an indoor vaccine mandate affected vaccine uptake, cases, or deaths within these cities.

The plots in figures 1, 2, and 3 show trends in weekly first doses, cases, and deaths per 100,000,

respectively, in each of the treated MSAs and their corresponding SDID synthetic controls. As

noted earlier, the SDID synthetic controls are weighted averages of all untreated MSAs, with the

unit and time weights chosen to solve the optimization problems in equations (4) and (6). There-

fore, they provide a counterfactual to which the corresponding treated MSA is compared. The

plots in the figures shed light on where the SDID point estimates in column (3) of tables 3, 4, and 5

are coming from. In the traditional difference-in-differences fashion, the curved arrow in the plots

show the magnitude of the difference between the average outcome in each treated MSA and their

synthetic control, both before and after the announcement of the mandate (indicated by the vertical

line).
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Figure 1: Trends in Weekly First Doses per 100,000 in Treated MSAs and
Their Respective Synthetic Controls
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Notes: Each plot shows trends in weekly first doses of COVID-19 vaccinations per 100,000 residents for each MSA
that adopted an indoor vaccine mandate and for their corresponding synthetic control. The weights used to average
pre-treatment time periods are shown at the bottom of the plots. The curved arrows indicate the estimated average
treatment effect (τ̂ from equation (1)) and the vertical lines represent the week each MSA announced their vaccine
mandate.
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Figure 2: Trends in Weekly COVID-19 Cases per 100,000 in Treated MSAs and
Their Respective Synthetic Controls
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Notes: Each plot shows trends in weekly COVID-19 cases per 100,000 residents for each MSA that adopted an
indoor vaccine mandate and for their corresponding synthetic control. The weights used to average pre-treatment
time periods are shown at the bottom of the plots. The curved arrows indicate the estimated average treatment effect
(τ̂ from equation (1)) and the vertical lines represent the week each MSA announced their vaccine mandate.
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Figure 3: Trends in Weekly COVID-19 Deaths per 100,000 in Treated MSAs and
Their Respective Synthetic Controls
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Notes: Each plot shows trends in weekly COVID-19 deaths per 100,000 residents for each MSA that adopted an
indoor vaccine mandate and for their corresponding synthetic control. The weights used to average pre-treatment
time periods are shown at the bottom of the plots. The curved arrows indicate the estimated average treatment effect
(τ̂ from equation (1)) and the vertical lines represent the week each MSA announced their vaccine mandate.
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In most instances, the estimated effect is quite small; even in instances where the estimated

effect appears large (e.g., San Francisco in figure 3), our placebo variance analysis suggests that

these estimates are not large when compared to the distribution of placebo estimates. This can

be most easily seen in figures A1, A2, and A3 in the appendix, which show the distribution of

all placebo estimates for each outcome and treated MSA, and where the corresponding actual

estimated effects for each treated MSA (denoted by the vertical lines) fall within each distribution.

Regardless of the outcome and MSA in consideration, these placebo estimates appear normally

distributed around zero, and in most cases the actual estimated effects do not approach the tails of

these distributions. Even for cases like San Francisco in figure A3, where the magnitude of the

estimated effect is relatively large, the corresponding distribution of placebo estimates suggest that

a nontrivial amount of control MSAs—which did not actually have an indoor vaccine mandate in

place—saw a relatively larger change in the outcome when compared to their SDID counterfactual.

The plots in figures 1, 2, and 3 also allow for a visual assessment of pre-trends. In each instance,

the chosen SDID weights perform well at finding a weighted average outcome of control MSAs

that is approximately parallel to that of the treated MSA in the pre-treatment period. This instills

confidence that the SDID synthetic controls provide valid counterfactual trajectories of the treated

MSAs throughout each treatment period.

While we cannot claim, based on our results, that the indoor vaccine mandates in these US

cities were not effective at all, our results do suggest that if they were effective, the effect was

likely smaller or at least less statistically noticeable than the effects of country-level and province-

level mandates studied previously.

6 Conclusion

Many of the largest cities in the United States introduced COVID-19 indoor vaccine mandates with

the goal of increasing vaccine uptake and thereby reducing COVID-19 cases and deaths. These

mandates were among the most stringent policies ever implemented in US cities, and they neg-
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atively affected thousands of citizens and businesses. This paper explores the efficacy of these

mandates. Using the synthetic difference-in-differences method, we find that indoor vaccine man-

dates had no significant impact on COVID-19 vaccine uptake, cases, or deaths across all nine cities

that implemented the policy. We also find that our results are robust to the synthetic control and

the difference-in-differences methods.

Our findings are important for at least two reasons. First, they highlight that policies imple-

mented at different jurisdictional levels have different outcomes. Karaivanov et al. (2022) and

Mills and Rüttenauer (2022) show that indoor vaccine mandates in European countries and Cana-

dian provinces significantly increased vaccine uptake. However, we find that in all US cities that

implemented the mandate, the effects are not statistically noticeable. If they had any effect on vac-

cine uptake, it was likely smaller than the mandates previously studied. Second, our findings bring

to question the efficacy of city-level indoor vaccine mandates. These mandates imposed severe

restrictions on the lives of many citizens and business owners. Yet, we find no evidence that the

mandates were effective in their intended goals of reducing COVID-19 cases and deaths.
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A Appendix

Table A1: Implementation of Indoor COVID-19 Vaccine Mandates
and First-Dose Vaccine Uptake

Dependent Variable : Weekly First Doses per 100,000
Synthetic

Difference-in-Differences Control SDID
(1) (2) (3)

Panel A. Boston
Average Effect (τ̂) 104.6 5.54 6.54

95% Confidence Interval (–1921.55, 2130.74) (–1553.05, 1564.13) (–1829.43, 1842.52)
Panel B. Chicago
Average Effect (τ̂) –89.83 –23.26 –24.5

95% Confidence Interval (–1448.17, 1268.51) (–1060.20, 1013.67) (–1257.66, 1208.66)
Panel C. Los Angeles
Average Effect (τ̂) –175.27 –92.06 –74.89

95% Confidence Interval (–1141.31, 790.78) (–636.63, 452.51) (–738.64, 588.86)
Panel D. New Orleans
Average Effect (τ̂) –402.42 –232.38 –225.67

95% Confidence Interval (–1707.03, 902.20) (–754.23, 289.47) (–751.98, 300.64)
Panel E. New York
Average Effect (τ̂) –506.26 112.43 –57.01

95% Confidence Interval (–1813.78, 801.26) (–422.51, 647.37) (–604.47, 490.46)
Panel F. Philadelphia
Average Effect (τ̂) –32.32 –229.56 –283.49

95% Confidence Interval (–1762.13, 1697.49) (–1610.46, 1151.34) (–1891.17, 1324.18)
Panel G. San Francisco
Average Effect (τ̂) −1135.58∗ –41.51 –197.08

95% Confidence Interval (–2447.93, 176.78) (–582.63, 499.61) (–743.45, 349.28)
Panel H. Seattle
Average Effect (τ̂) –592.98 –95.88 –72.6

95% Confidence Interval (–1897.90, 711.94) (–793.90, 602.14) (–829.01, 683.80)
Panel I. Washington DC
Average Effect (τ̂) –382.43 –157.05 –215.53

95% Confidence Interval (–2408.57, 1643.72) (–1721.07, 1406.97) (–2050.79, 1619.73)

Notes: This table reports the average estimated effects of implementing an indoor COVID-19 vaccine mandate on
first-dose vaccine uptake as measured by weekly first doses per 100,000 residents using the difference-in-differences,
the synthetic control, and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence
intervals using the placebo variance estimation approach outlined in section 4.2. Significance levels are reported as
*** p<0.01, ** p<0.05, and * p<0.1.
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Table A2: Implementation of Indoor COVID-19 Vaccine Mandates
and COVID-19 Cases

Dependent Variable : Weekly COV ID-19 Cases per 100,000
Synthetic

Difference-in-Differences Control SDID
(1) (2) (3)

Panel A. Boston
Average Effect (τ̂) 30.18 108.81 99.49

95% Confidence Interval (–654.89, 715.25) (–500.91, 718.53) (–510.82, 709.80)
Panel B. Chicago
Average Effect (τ̂) –9.85 19.38 –13.13

95% Confidence Interval (–521.82, 502.12) (–450.31, 489.07) (–487.93, 461.68)
Panel C. Los Angeles
Average Effect (τ̂) 251.14∗ 422.93∗∗∗ 260.33∗

95% Confidence Interval (–35.55, 537.83) (157.88, 687.97) (–3.42, 524.08)
Panel D. New Orleans
Average Effect (τ̂) –57.99 3.7 –24.09

95% Confidence Interval (–257.51, 141.54) (–188.31, 195.70) (–218.26, 170.08)
Panel E. New York
Average Effect (τ̂) –30.69 6.57 13.55

95% Confidence Interval (–240.62, 179.24) (–194.28, 207.42) (–191.10, 218.20)
Panel F. Philadelphia
Average Effect (τ̂) –6.79 115.69 23.6

95% Confidence Interval (–656.31, 642.74) (–478.57, 709.95) (–573.61, 620.80)
Panel G. San Francisco
Average Effect (τ̂) –105.8 34.63 –86.23

95% Confidence Interval (–316.27, 104.66) (–170.50, 239.76) (–291.99, 119.54)
Panel H. Seattle
Average Effect (τ̂) 70.29 79.29 74.47

95% Confidence Interval (–222.24, 362.82) (–161.65, 320.22) (–179.05, 327.98)
Panel I. Washington DC
Average Effect (τ̂) –270.02 15.23 –260.99

95% Confidence Interval (–955.10, 415.05) (–594.82, 625.29) (–871.55, 349.58)

Notes: This table reports the average estimated effects of implementing an indoor COVID-19 vaccine mandate on the
number of weekly COVID-19 cases per 100,000 residents using the difference-in-differences, the synthetic control,
and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence intervals using the
placebo variance estimation approach outlined in section 4.2. Significance levels are reported as *** p<0.01, **
p<0.05, and * p<0.1.
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Table A3: Implementation of Indoor COVID-19 Vaccine Mandates
and COVID-19 Deaths

Dependent Variable : Weekly COV ID-19 Deaths per 100,000
Synthetic

Difference-in-Differences Control SDID
(1) (2) (3)

Panel A. Boston
Average Effect (τ̂) 2.9 3.39 2.21

95% Confidence Interval (–2.76, 8.57) (–1.41, 8.19) (–2.76, 7.18)
Panel B. Chicago
Average Effect (τ̂) 2.28 3.13 1.88

95% Confidence Interval (–2.74, 7.31) (–1.63, 7.88) (–2.72, 6.48)
Panel C. Los Angeles
Average Effect (τ̂) 0.2 1.38 0.09

95% Confidence Interval (–4.90, 5.30) (–3.41, 6.17) (–4.47, 4.66)
Panel D. New Orleans
Average Effect (τ̂) –0.89 –2.13 –1.63

95% Confidence Interval (–4.72, 2.94) (–5.74, 1.48) (–5.21, 1.95)
Panel E. New York
Average Effect (τ̂) –2.36 –2.73 –1.86

95% Confidence Interval (–6.20, 1.48) (–6.40, 0.94) (–5.43, 1.70)
Panel F. Philadelphia
Average Effect (τ̂) 2.78 2.77 1.66

95% Confidence Interval (–2.88, 8.44) (–2.09, 7.64) (–3.31, 6.64)
Panel G. San Francisco
Average Effect (τ̂) –2.26 −4.63∗∗ –2.62

95% Confidence Interval (–6.22, 1.70) (–8.50, –0.76) (–6.33, 1.09)
Panel H. Seattle
Average Effect (τ̂) –0.57 –0.04 –0.94

95% Confidence Interval (–5.71, 4.56) (–3.95, 3.86) (–5.00, 3.12)
Panel I. Washington DC
Average Effect (τ̂) 0.95 1.88 0.69

95% Confidence Interval (–4.72, 6.61) (–2.92, 6.67) (–4.28, 5.67)

Notes: This table reports the average estimated effects of implementing an indoor COVID-19 vaccine mandate on the
number of weekly COVID-19 deaths per 100,000 residents using the difference-in-differences, the synthetic control,
and the SDID estimators (τ̂ from equations (2), (3), and (1)). Also reported are 95% confidence intervals using the
placebo variance estimation approach outlined in section 4.2. Significance levels are reported as *** p<0.01, **
p<0.05, and * p<0.1.
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Figure A1: Distribution of Placebo Estimates for
Weekly COVID-19 Vaccine First Doses per 100,000
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Notes: Each plot shows the distribution of all placebo estimates of announcing an indoor COVID-19 vaccine mandate
on the number of weekly COVID-19 first doses per 100,000 residents (denoted by τ̂ (b) and discussed in section 4.2).
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Figure A2: Distribution of Placebo Estimates for
Weekly COVID-19 Cases per 100,000
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Notes: Each plot shows the distribution of all placebo estimates of announcing an indoor COVID-19 vaccine mandate
on the number of weekly COVID-19 cases per 100,000 residents (denoted by τ̂ (b) and discussed in section 4.2).
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Figure A3: Distribution of Placebo Estimates for
Weekly COVID-19 Deaths per 100,000
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Notes: Each plot shows the distribution of all placebo estimates of announcing an indoor COVID-19 vaccine mandate
on the number of weekly COVID-19 deaths per 100,000 residents (denoted by τ̂ (b) and discussed in section 4.2).
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