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We are AI and technology policy researchers at the Mercatus Center at George Mason University. As 

part of its mission, Mercatus Center scholars conduct independent analyses to assess agency 

rulemakings and proposals from the perspective of consumers and the public.  

Attached is “Artificial Intelligence: An Introduction for Policymakers,” authored by one of us. 

It is responsive to several FTC queries about AI uses in cloud computing.1 

In our view, FTC scrutiny of AI in cloud computing should examine specific AI uses, not AI 

generally. Under this approach, pro-competition AI policies are everywhere—in product liability 

law, in federal and state antitrust law, in common law, and various other regulatory policies 

besides. A more horizontal approach, which disregards the potential to apply existing law to AI uses 

in cloud computing, we fear, will lead to policy blind spots, technology stagnation, and regulatory 

dead-ends. 

We urge that AI technology should be unbundled and analyzed by its specific applications, not 

as a technology category. For one, AI is a contested, constantly changing concept. Regulating AI qua 

AI will create endless disputes about definition and scope. Consider, for instance, a 2008 

Computerworld story about AI.2 At that time, AI tech included Roombas, Vista OS, Mars rovers, loan 

qualification software, and Marriott hotel booking software. Most technologists would not consider 

this AI today, and these do not seem to be the technology contemplated by your inquiry. If trends 

 
1 Federal Trade Commission, Solicitation for Public Comments on the Business Practices of Cloud Computing 

Providers at 2 (March 22, 2023). 
2 James E. Gaskin, “What ever happened to artificial intelligence?” Computerworld, June 24, 2008,  
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persist, it seems doubtful we will consider today’s ChatGPT or facial recognition AI in ten years. As 

John McCarthy, who coined the term AI, once remarked, “As soon as it works, no one calls it AI 

anymore.”  

For another, AI tech doesn't lend itself to a discrete, new horizontal body of regulation or  

accountability policies. As the attached study points out, “All policy areas will be touched and even 

transformed by artificial intelligence.”3 A sectoral or application-based approach is preferable 

because many specific uses, whether screening résumés by job applications or network analysis by 

intelligence agencies, require oversight tailored to the specific circumstances and that conform to 

existing law. Even challenges that uniformly exist within all AI systems, such as bias, differ in form, 

criticality, and impact depending on application. For TSA facial recognition, racial bias is high-

impact and a critical challenge; for power grid load balancing AI, it’s irrelevant. A sectoral approach 

encourages application-relevant scrutiny and expertise where needed and allows low-risk AI 

uses—like robot vacuum cleaners—significant freedom to iterate and improve. 

Thank you for the opportunity to comment. We are happy to speak with agency staff as they 

approach these important AI governance issues. 

 

 

Attachment: Matt Mittelsteadt, “Artificial Intelligence: Introduction for Policymakers,” Mercatus 

Center at George Mason University, Special Study (2023). 
 
 

 

 

 

 
3 Matt Mittelsteadt, “Artificial Intelligence: Introduction for Policymakers” (Mercatus Special Study, Mercatus Center at 

George Mason University, February 16, 2023), 6. 
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ABSTRACT

This introduction seeks to equip a diversity of policymakers with the core con-
cepts needed to identify, understand, and solve artificial intelligence (AI) policy 
challenges. AI is best conceived as an often ill-defined goal, not a monolithic 
general-purpose technology, driven by a diverse and ever evolving constellation 
of input technologies. The document first introduces a sample of AI-related chal-
lenges to ground the importance of understanding this technology, the diver-
sity of issues it will create, and its potential to transform law and policy. Next it 
introduces AI, key terms such as machine learning, and ways that AI progress 
can be assessed. Finally, it introduces and explains how three key input technolo-
gies—data, microchips, and algorithms—work and make AI possible. These core 
technologies are known as the AI triad. Intended to serve a variety of audiences, 
these explanations are presented with multiple levels of depth. Technical con-
cepts are tied to relevant policy questions, thereby guiding the application of this 
knowledge while illustrating the value of understanding this emerging technol-
ogy beyond a surface level. This introduction to AI appears both in written form 
and as an ever evolving website supported by the Mercatus Center.

JEL codes: O38, O30, O31, O32, O33, C63

Keywords: Artificial intelligence, AI, machine learning, ML, neural network, 
technology, science, deep learning, intelligence, reinforcement learning, AI pol-
icy, emerging technology, algorithms, data, big data, semiconductors, microchips, 
chips, policy, law, autonomous systems, autonomy, LLMs, models, technology 
policy, primer, computer science, computation, prediction, engineering, robotics, 
computation, general purpose technology, GPT, public administration

Matthew Mittelsteadt, “Artificial Intelligence: An Introduction for Policymakers,”  
Mercatus Special Study, Mercatus Center at George Mason University, Arlington, VA, 
February 2023.
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1. INTRODUCTION

Over the past decade, real-world artificial 
intelligence (AI) has evoked electronic 
assistants—such as Alexa from Amazon 

or Siri from Apple—in the public’s mind. But 
today, society is at an inflection point. In 2021, 
Stanford University’s Human-Centered Arti-
ficial Intelligence Institute wrote about an AI 
“paradigm shift.”1 Its report identified the rise of 
what it termed foundation models, large-scale 
systems trained on broad sets of data that can be 
easily adapted to a wide range of downstream 
tasks.2 Armed with computational heft and flex-
ibility, this new class of models could offer many 
of the tools needed for AI to step beyond a mere 
curiosity. Even if one reserves a measure of skep-
ticism toward AI hype, many applications that 
debuted in 2022 promise new possibilities in 
several domains of application:

 • Midjourney’s art generator produced near-
human-quality works. 

 • AlphaFold predicts the structure of nearly 
every known protein, a critical new tool in 
biological and medical research. 

 • AlphaTensor discovered a more efficient 
approach to matrix multiplication than pre-
viously known, and this could soon speed up 
a wide range of applications.

 • MūtCompute discovered an enzyme that 
breaks down polyethylene terephthalate, a 
common plastic that represents 12 percent 
of global waste.

 • AlphaCode ranked within the top 54 percent 
of participants in competitive coding com-
petitions with its increasingly efficient self-
generated algorithms.

https://arstechnica.com/information-technology/2022/08/ai-wins-state-fair-art-contest-annoys-humans/
https://www.newscientist.com/article/2330866-deepminds-protein-folding-ai-cracks-biologys-biggest-problem/
https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor
https://news.utexas.edu/2022/04/27/plastic-eating-enzyme-could-eliminate-billions-of-tons-of-landfill-waste/
https://www.deepmind.com/blog/competitive-programming-with-alphacode
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 • Codex translates natural language into code, 
potentially opening engineering to a wider 
audience.

 • OpenAI’s ChatGPT produces medium-
length, logically complete responses to com-
plex text prompts.

The breadth of fields of applications is worth 
noting. AI is being applied everywhere from the 
arts and linguistics to chemistry and pure math-
ematics. It is flexible. The tools that make AI pos-
sible represent a new class of general-purpose 
technologies, innovations that “[have] the 
potential to affect the entire economic system.”3,4 

Just as previous general-purpose technologies 
such as electricity transformed society, AI sys-
tems are changing many domains—from science 
to entertainment, from education to health, from 
national defense to the financial system—and 
could even radically transform them.

Critics claim that these advances in AI are 
skin deep, mere “stochastic parrots” that ran-
domly rearrange and regurgitate data.5 They 
may look effective, critics argue, but lack any 
true understanding, common sense, or ability to 
explain their decisions. The critics could very 
well be correct about artificial intelligence lack-
ing intelligence, but the critics will err dramati-
cally if they dismiss AI outright as unimportant.

Yet, policymakers are not keeping up with 
all these developments. Knowledge is neces-
sary but not sufficient for good governance. Even 
if lawmakers were to grasp basic notions of AI 
engineering and acquire a sense of the depth 
and breadth of AI’s effect, it is an open question 
whether they would be able to translate that 
knowledge into a consensus for AI governance. 
After all, Silicon Valley, as a collective of entre-
preneurs and innovators who better understand 
the mechanics and effects of AI, has not arrived 
at a consensus on the governance of AI either. In 

this work, we hope to impart some basic knowl-
edge on AI design, application, and policy chal-
lenges to inform policy-minded readers. We 
do this without naivete, because we are deeply 
aware that the politics of policy design could be a 
problem more complex than an understanding of 
some of the most sophisticated AI systems.

THE TIP OF THE AI POLICY ICEBERG
“However brilliant computer engineers may be 

when facing down technological challenges, they 
rarely have real insight into what’s happening out-

side the digital bubble.”6

—Jacob Helberg, former Google news policy lead; 
commissioner, US China Commission

What do we lose without a diversity of experts 
engaging with AI in depth?

In summer 2022, AI art generation seemed 
to appear out of nowhere. With the release of 
DALL.E mini, an open-source approximation 
of OpenAI’s DALL.E 2 art generator, AI art was 
suddenly accessible to everyone. Delighted by 
the often strange yet sometimes human-quality 
works, consumers flocked to the application and 
flooded social media with bizarre AI creations. 
Powerful enough to wow yet amusingly inaccu-
rate, DALL.E mini introduced many to a glimpse 
of the possibilities with art so generated, while 
comforting others with the understanding that 
generative AI was still out of immediate reach. 
Yet, in just a matter of weeks, things changed. 
As OpenAI broadened access to the full version 
of DALL.E 2, Midjourney’s beta app generated 
covers for The Economist,7 and Hugging Face 
released the powerful Stable Diffusion, these 
wonky generators suddenly proved capable. 
Often, their outputs were professional quality 
and, in one instance, even “skilled” enough to 

https://openai.com/blog/openai-codex/
https://openai.com/blog/chatgpt/
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win a state art competition.8 The progress of this 
technology moved at an astounding pace.

This sudden burst of innovation likely took 
those working in arts policy off guard. In a mat-
ter of weeks, policymakers had to shift gears 
toward confronting a slew of novel AI-based 
issues that they perhaps wouldn’t have consid-
ered just months earlier. One such controversy 
is artistic rights. It was found that the engineers 
had built these systems by “training” the AI to 
produce art based on preexisting human-crafted 
works scraped from the web. Often, this process 
was undertaken without artistic consent. As a 
result, prominent digital artists found this soft-
ware could produce near-perfect renditions of 
their works, allowing anyone to appropriate their 
signature styles if in possession of the necessary 
know-how and the computational capacity.9 This 
situation raised questions of usage rights, privacy, 
personal autonomy, and copyright infringement.

Many affected artists view this situation as 
potentially existential. To those working at the 
top levels of AI policy, it remains off-radar. When 
interviewed on the effect of AI art generators, 
one member of the National Artificial Intelli-
gence Research Resource Task Force, the nation’s 
top AI policy advisory panel, had not even heard 
of the issue.10 One is tempted to believe that such 
an important question was never discussed by 
the broader task force.

The reason? AI has been treated as a spe-
cialty. Because the task force is composed almost 
exclusively of computer scientists, one is hardly 
surprised that it was not thinking about artistic 
rights questions. Had AI been viewed as having 
general-purpose effects, perhaps those in the arts 
would have been engaged and their voices heard in 
the design of solutions to those problems. Breadth 
of expertise, however, cannot sacrifice depth of 
technical knowledge. Only by understanding the 

scientific progress of art generators—how data 
are scraped and used to train AI, what type of data 
is needed—could those concerned about artistic 
rights have predicted this issue and have begun 
to consider appropriate action. Many of these art 
generators have now been open sourced, mean-
ing their code is no longer controlled by a single 
entity, and affected artists may have little recourse. 
Appropriate policy would have required engaging 
the specific art-generator application. Specificity 
is currently missing from AI policy design.

THE IMPORTANCE OF DEEPER 
UNDERSTANDING 

The National Security Commission on Artificial 
Intelligence recently wrote that “AI … promise[s] 
to be the most powerful tools in generations for 
expanding knowledge, increasing prosperity, and 
enriching the human experience.”11 All policy 
areas will be touched and even transformed by 
artificial intelligence (see box 1.1). The sudden 
explosion in AI progress demands a new class 
of policymakers who not only understand AI, 
but also understand it in depth. Just as all policy 
experts need a working knowledge of economics, 
all will need a working understanding of AI. 

Traditionally, those who have engaged with 
AI outside the computer scientists have done so 
only at a high level, a so-called Level 1 under-
standing. They can engage with the concept, and 
perhaps entertain abstract effects, but cannot dig 
into problems nor imagine specific solutions to 
them. AI is maturing, and policymakers should 
go deeper. The goal is a Level 2 understanding, 
in which policymakers understand conceptually 
how AI works and the array of core concepts and 
technologies on which it is built. Although they 
might not be able to code an AI chat bot, they 
know how one functions. Although they have not 



BOX 1.1: AI TOUCHES ALL FEDERAL DEPARTMENTS

Artificial intelligence (AI) has a broad effect. One can see how it is actively affecting policy in each federal depart-
ment and across its disparate policy areas:

 • Agriculture: The US Department of Agriculture is researching the use of AI to promote food safety.a

 • Commerce: The Commerce Department is developing an AI risk management framework for the marketplace 
to provide unbiased and trustworthy AI.b

 • Defense: The Department of Defense has used AI for targeting exercises and flying autonomous, unmanned 
aerial vehicles.c

 • Education: The Education Department is seeking to engage education professionals on how AI will affect their 
classrooms.d

 • Energy: The Department of Energy’s National Laboratories researches and develops AI capabilities for many 
industries.e

 • Health and Human Services: The Department of Health and Human Services identifies areas in the health indus-
try that could benefit from AI, funds research to develop AI solutions, and monitors and regulates AI use in the 
health industry.f

 • Homeland Security: The Department of Homeland Security uses AI in customs and border protection and 
investigations.g

 • Housing and Urban Development: The Department of Housing and Urban Develpment is researching AI risk 
assessments to promote fairness and equity.h

 • Interior: The Department of the Interior is using AI tools to analyze wildlife, landscape, and energy information.i

 • Justice: The Justice Department employs AI to analyze evidence, forecast crime, and enable rehabilitation.j

 • Labor: The Department of Labor researches the possible effects of widespread AI adoption, including AI bias’s 
effect on hiring and employment.k

 • State: The State Department has developed and used AI to fight global disinformation.l

 • Treasury: The Department of the Treasury is using AI programs to combat illicit finance operations.m

 • Transportation: The Department of Transportation governs the integration of AI into automated driving systems, 
unmanned aircraft systems, and traffic management operations.n

 • Veterans Affairs: The Department of Veterans Affairs has used AI to predict COVID-19 outcomes and reduce 
wait times.o

a. Scott Elliott, “Artificial Intelligence Improves America’s Food System,” US Department of Agriculture Blog, July 29, 2021, https://www.usda 
.gov/media/blog/2020/12/10/artificial-intelligence-improves-americas-food-system.
b. Don Graves, “Remarks by U.S. Deputy Secretary of Commerce Don Graves at the Artificial Intelligence Symposium,” April 27, 2022, https://
www.commerce.gov/news/speeches/2022/04/remarks-us-deputy-secretary-commerce-don-graves-artificial-intelligence.
c. US Department of Defense, “Artificial Intelligence, Autonomy Will Play Crucial Role in Warfare, General Says,” press release, February 8, 2023, 
https://www.defense.gov/News/News-Stories/Article/Article/2928194/artificial-intelligence-autonomy-will-play-crucial-role-in-warfare 
-general-says/https%3A%2F%2Fwww.defense.gov%2FNews%2FNews-Stories%2FArticle%2FArticle%2F2928194%2Fartific
ial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says%2F.
d. Office of Educational Technology, “Artificial Intelligence,” accessed February 8, 2023, https://tech.ed.gov/ai/.
e. Argonne National Laboratory, “Artificial Intelligence: Accelerating Science, Driving Innovation,” accessed February 9, 2023. https://www.anl 
.gov/ai.
f. US Department of Health and Human Services, “HHS Artificial Intelligence (AI) Strategy,” December 22, 2021, https://www.hhs.gov/about 
/agencies/asa/ocio/ai/strategy/.
g. John Hewitt Jones, “DHS Launches Public Survey on Use of AI,” FedScoop, November 10, 2021, https://fedscoop.com/dhs-launches-public 
-survey-on-use-of-ai/.
h. “Using Artificial Intelligence to Promote Equity in Home Mortgage Access,” Edge PD&R, November 9, 2021, https://www.huduser.gov/portal 
/pdredge/pdr-edge-featd-article-110921.html.
i. Bureau of Safety and Environmental Enforcement, “Safety Performance Enhanced by Analytical Review,” accessed February 9, 2023, https://
www.bsee.gov/what-we-do/offshore-regulatory-programs/safety-performance-enhanced-by-analytical-review-spear.
j. National Institute of Justice, “Artificial Intelligence: Applying AI to Criminal Justice Purposes,” accessed February 8, 2023, https://nij.ojp.gov 
/topics/artificial-intelligence.
k. Nathan Cunningham, “How Artificial Intelligence Affects Workers with Disabilities: A New Toolkit for Businesses,” US Department of Labor Blog, 
November 1, 2021, https://blog.dol.gov/2021/11/01/how-artificial-intelligence-affects-workers-with-disabilities-a-new-toolkit-for-businesses.
l. US Department of State, “Artificial Intelligence (AI),” accessed February 8, 2023, https://www.state.gov/artificial-intelligence/.
m. Perkins Coie, “US Treasury Highlights Anti-Money Laundering Priorities in 2022 Illicit Finance Strategy,” May 26, 2022, https://www.perkinscoie 
.com/en/news-insights/us-treasury-highlights-anti-money-laundering-priorities-in-2022-illicit-finance-strategy.html.
n. US Department of Transportation, “U.S. DOT Artificial Intelligence Activities,” September 23, 2019, https://www.transportation.gov/AI.
o. Mike Richman, “New VA Tool Uses Artificial Intelligence to Predict COVID-19 Patient Mortality,” VA Research Currents, June 28, 2021, https://
www.research.va.gov/currents/0621-New-VA-tool-uses-artificial-intelligence-to-predict-COVID-19-patient-mortality.cfm.

https://www.commerce.gov/news/speeches/2022/04/remarks-us-deputy-secretary-commerce-don-graves-artificial-intelligence
https://www.commerce.gov/news/speeches/2022/04/remarks-us-deputy-secretary-commerce-don-graves-artificial-intelligence
https://www.defense.gov/News/News-Stories/Article/Article/2928194/artificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says/https%3A%2F%2Fwww.defense.gov%2FNews%2FNews-Stories%2FArticle%2FArticle%2F2928194%2Fartificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says%2F
https://www.defense.gov/News/News-Stories/Article/Article/2928194/artificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says/https%3A%2F%2Fwww.defense.gov%2FNews%2FNews-Stories%2FArticle%2FArticle%2F2928194%2Fartificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says%2F
https://www.defense.gov/News/News-Stories/Article/Article/2928194/artificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says/https%3A%2F%2Fwww.defense.gov%2FNews%2FNews-Stories%2FArticle%2FArticle%2F2928194%2Fartificial-intelligence-autonomy-will-play-crucial-role-in-warfare-general-says%2F
https://tech.ed.gov/ai/
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.html
https://www.hhs.gov/about/agencies/asa/ocio/ai/strategy/index.html
https://fedscoop.com/dhs-launches-public-survey-on-use-of-ai/
https://fedscoop.com/dhs-launches-public-survey-on-use-of-ai/
https://www.huduser.gov/portal/pdredge/pdr-edge-featd-article-110921.html
https://www.huduser.gov/portal/pdredge/pdr-edge-featd-article-110921.html
https://nij.ojp.gov/topics/artificial-intelligence
https://nij.ojp.gov/topics/artificial-intelligence
https://blog.dol.gov/2021/11/01/how-artificial-intelligence-affects-workers-with-disabilities-a-new-toolkit-for-businesses
https://www.state.gov/artificial-intelligence/
https://www.perkinscoie.com/en/news-insights/us-treasury-highlights-anti-money-laundering-priorities-in-2022-illicit-finance-strategy.html
https://www.perkinscoie.com/en/news-insights/us-treasury-highlights-anti-money-laundering-priorities-in-2022-illicit-finance-strategy.html
https://www.transportation.gov/AI
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studied electrical engineering, they understand 
the AI chip deck. 

With a Level 2 understanding, this new class 
of policymakers can meet engineers halfway. 
More specifically, they will have the confidence to 
ask the right questions; the ability to understand 
engineers’ explanations; and, crucially, the capa-
bility to question technical experts. This level of 
understanding brings AI down to earth, allowing 
policymakers to see the breadth of AI’s effect and 
the many technical tools on which it is built.

HOW TO USE THIS WORK 
The goal of this work is to equip a diversity of 
policymakers with the core concepts needed to 

acquire a degree of understanding. In each sec-
tion we offer two levels of depth to support both 
readers who want only a basic understanding and 
those reading for greater depth. 

Note that AI is enabled not by one tech-
nology, but by a diverse “constellation of 
technologies.”12 AI comes in many forms and 
uses a range of concepts and devices. To under-
stand and solve diverse AI issues, readers must 
grasp the AI space. Primarily, this work seeks to 
explain how AI works through illustration. Along 
the way, it equips readers with key terms, funda-
mental concepts, and core technologies in a tool-
box of knowledge that can be supplemented with 
application-specific expertise.
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2. WHAT IS AI?

Artificial intelligence (AI) is characterized by the 
following:

 • The intellectual forefathers of AI framed 
AI as the goal of manufacturing systems 
that resemble the human mind. In this nor-
mative sense, AI is a goal or aspiration that 
guides system design. In a descriptive sense, 
AI is commonly referred to as a technology, 
a catch-all for the many technologies and 
designs that make AI possible.

 • AI systems generally aim to automate 
intellectual tasks normally performed by 
humans.

 • AI uses technologies such as machine 
learning.

 • Most AI systems are best conceived of as 
advanced inference engines. These infer-
ences are used to produce predictions, 

inform decisions, and take automated 
actions.

 • AI is the result of a triad of essential inputs: 
software (algorithms), hardware (micro-
chips), and data.

 • The core advantages of AI systems are 
advanced automation, analytical speed, and 
greater scale of action.

 • All AI systems currently in use are focused 
on specific applications. The pursuit of a 
more generalized AI is the goal of a sliver of 
ongoing AI research.

 • An algorithm is simply a logical sequence of 
steps needed to perform a task. In computer 
science, algorithms are written in code.

 • Machine learning algorithms are trained 
with data stored in a databank or collected 
in real time.
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LEVEL 1 UNDERSTANDING
“A fundamental problem in artificial intelligence is 

that nobody really knows what intelligence is.”13

—Shane Legg and Marcus Hutter

This section discusses the basics of AI, its ben-
efits, system flexibility, and the way it works. 

Basics of AI
There is no one accepted definition of AI; there 
are, in fact, hundreds. For policy experts, Con-
gress thankfully simplified definitional selection 
by hard coding an AI definition into law through 
the National Artificial Intelligence Initiative Act 
of 2020. Legally, AI is defined as follows:

“Machine-based system that can, for a 
given set of human-defined objectives, 
make predictions, recommendations 
or decisions influencing real or virtual 
environments. Artificial intelligence 
systems use machine and human-based 
inputs to—(A) perceive real and virtual 
environments; (B) abstract such per-
ceptions into models through analysis 
in an automated manner; and (C) use 
model inference to formulate options 
for information or action.”14

This definition is quite wordy, but a few core con-
cepts stand out.

Intelligence. First, note that this definition does 
not explain the goal of this technology. The rea-
son: the goal is in the name. As observed earlier, 
AI is normatively a goal enabled by a set of tech-
nologies. The bounds and aims of this goal are 
naturally murky because there is little consen-

sus on what constitutes “intelligence.” Although 
a small slice of the field is seeking to produce 
human-level intelligent systems, most engineers 
are simply trying to automate complex tasks. 
Some in the field believe serious research should 
ignore or downplay efforts to mimic human 
intelligence or describe AI systems. Mimicking 
human intelligence nevertheless has been the 
goal of AI’s founding fathers, and most water-
shed moments in AI history such as AlphaGo’s 
mastery of Go involve outmatching human intel-
ligence. Although defining intelligence is murky, 
there is no question that many AI engineers (for 
better or for worse) will keep some notion of 
human intelligence as their ultimate goal. Read-
ers should take this approach with a grain of salt. 
Focusing too intently on efforts to mimic human 
thought can distract from the real progress and 
pitfalls of most systems being engineered today 
that do not aim to match humans. These systems 
are designed for a variety of tasks and applica-
tions, both big and small. Tweet Hunter’s tweet 
generator, for instance, has a narrow use case. 
It is not trying to create human intelligence; it 
is trying to generate human-quality tweets.15 
Regardless of their aims or applications, mod-
ern AI systems are united by a general effort to 
“automate intellectual tasks normally performed 
by humans,”16 an effort naturally shaped by the 
application at hand and the personal views of its 
engineers. 

Inference. A second highlight from this defini-
tion is that machine-based systems “make pre-
dictions, recommendations or decisions.” In the 
field, this is referred to as inference. Inference is 
at the core of most if not all AI systems, and the 
goal of AI systems can be generalized as the goal 
of making good inferences. When one asks Alexa 
to play a song, it infers a song title based on the 
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sound of your words converted into code such 
that it can compare that title against coded titles 
in its database, and then it picks the most likely 
match.17 Similarly,

 • identifying a picture means inferring the 
correct match between the input picture and 
a given label, and

 • operating a car requires thousands of near 
instant inferences about which actions to 
take in the near future, that is, predictions 
based on the position of the vehicle and sur-
rounding objects. 

When these inferences trigger machine action 
(such as playing a song or steering a car), AI 
achieves the goal of automation. 

The AI Triad. A third highlight is the phrase 
“machine-based systems.” AI scholar Ben 
Buchanan explains that “machine learning sys-
tems use computing power to execute algorithms 
that learn from data.”18 This is the AI triad:19 
algorithms, data, and microchips. These are the 
core input technologies that together enable AI. 
An essential theme of this introduction to AI is 
that each of these technologies is equally neces-
sary because they are interdependent. Under-
standing this interdependence is key to designing 
AI policy. 

Benefits of AI 
Before diving into how AI works, one must form 
an idea of what AI systems offer:

1. Automation. AI can automate new types 
of tasks that previously required human 
input. Before AI, automation was reserved 
for the consistent, predictable, and repeti-
tive.20 AI expands automation into “fuzzy” 
tasks that deal with complex problems and 

uncertainty. With AI, automation can extend 
to imprecise tasks, including image recogni-
tion, speech translation, and writing. 

2. Speed. AI can resolve complex problems 
nearly instantly. Driverless cars face no 
cognitive lag when responding to hazards. 
In other cases, speed can also be a hazard 
of its own. An extreme example lies in mili-
tary systems that once granted autonomy 
over target engagement, allowing action 
before a human commander authorizes 
engagement. 

3. Scale. AI can effectively perform certain 
tasks better than an army of humans hired 
for that purpose, for instance, identifying the 
individual preferences of millions of music 
listeners or TV viewers.

System Flexibility 
Today, nearly all AI systems could be categorized 
as artificial narrow intelligence,21 designed to 
perform a specific, limited function.22 These AI 
systems can perform one or a few tasks with high 
quality but cannot perform tasks outside their 
discrete training. 

AI applications range from single purpose 
systems, such as OpenAI’s DALL.E image gen-
erator, to complex, albeit still limited, systems, 
such as driverless cars. Even within these nar-
row domains, AI can still suffer inflexibility. The 
more a system can deal with the unexpected 
corner cases in its domain, the higher its quality. 
Imagine a driverless car that is highly accurate, 
but only when road conditions are good. A driv-
erless car could perform perfectly in most condi-
tions, yet when it meets the rare and unexpected 
situation, say a tornado, it may not know the best 
course of action to protect the driver. 
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Although today’s AI systems are all nar-
row in scope, efforts are underway to develop 
so-called artificial general intelligence (AGI), 
with “the ability to achieve a variety of goals, and 
carry out a variety of tasks, in a variety of differ-
ent contexts and environments.”23 This category 
represents the science fiction vision that many 
readers hold of AI. Note that generality does not 
imply quality. Just as a lion and a human vary 
wildly in intelligence, it is possible for AGI sys-
tems to perform general tasks at varying levels 
of proficiency.24 Also note that AGI does not 
imply human-like AI; AGI can be as advanced 
as humans without necessarily mimicking our 
cognition.25 A chess-playing AI, for instance, 
might win by mere exhaustive calculation of 
every combination of possible moves. Contrast 
this thought process with the strategic reason-
ing of human cognition. AGI also does not mean 
superintelligence, an AI system that is smarter 
than humans in almost every domain.26 These 
variations on advanced AI systems do not yet 
exist, and they represent only a fraction of AI 
R&D. To reiterate, most AI in use and develop-
ment today does not hold these aims. Still, AGI 
investment is growing; a 2020 survey identified 
72 active AGI R&D projects spread across 37 
countries.27 Policymakers should take these con-
cepts seriously even if they consider true AGI far 
off or impossible. Even an AI that can convinc-
ingly mimic AGI or superintelligence ought to be 
a matter of policy concern.

How AI Works: Prerequisites
The following sections discuss the various ele-
ments of the AI triad and the way AI works. First, 
several basic terms and concepts are as follows:

 • Algorithm. “A logical sequence of steps 
to solve a problem or accomplish a task.”28 

Although this term sounds like techni-
cal jargon, algorithms are everywhere. For 
instance, Grandma’s pot roast recipe is a type 
of algorithm, a list of steps that, if followed, 
can produce the delicious Sunday dinner. 
In computer science, this term is more spe-
cific, referring to the list of instructions, or 
code, that a computer follows. The essence 
is still the same; the computer follows lines 
of code to perform its tasks just as one might 
follow a recipe. The term is often used inter-
changeably with computer program and 
software. 

Although this study defines algorithm 
in its most general sense, in the context of 
AI, “algorithm” is often used as shorthand 
to refer more specifically to machine learn-
ing algorithms, the processes that a com-
puter follows to create artificially intelligent 
software. 

 • Model. Unlike the machine learning algo-
rithm, the model is the software configura-
tion that, once fed new data, can produce 
inferences, make predictions, and make 
decisions. The model is the inference algo-
rithm, which is iteratively refined through 
machine learning, and thus continuously 
updates its configuration after processing 
new data.29 When one runs an AI system, 
one is running the model. 

 • Machine learning. Most AI systems today 
are the result of a process called machine 
learning. Machine learning is a method 
for iteratively refining the process a model 
uses to form inferences by feeding it stored 
or real-time data. This learning process 
is called training and is a necessary step 
to build artificially intelligent systems. In 
chapter 6, “Algorithms,” the way this process 
works is explained in greater detail.
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LEVEL 2 UNDERSTANDING
This section discusses the assessment of AI qual-
ity, assessment accuracy, and benchmarks.

In addition to understanding what AI is and 
how it works, many policymakers must know 
how to assess it. Unfortunately, there is no one 
performance metric for AI models, and measure-
ment criteria used are highly specific to each 
application. This study offers a starting point, 
describing several common metrics and the way 
to approach these figures with a critical eye.

Accuracy Assessments
A natural starting point for quality assessment is 
accuracy, which measures how a system’s infer-
ences and actions match expectations. Accuracy 
is broadly useful, understandable, and often suf-
ficient. Note, however, that perfect accuracy will 
rarely be possible. When deploying AI appli-
cations, engineers must actively decide upon 
an acceptable rate of failure, a choice based on 
their own reasoning, application requirements, 
and perhaps regulatory prescriptions. Alexa, for 
instance, answers incorrectly around 20 percent 
of the time.30 In Amazon’s estimation, this rate 
of failure is acceptable. This estimation illus-
trates that accuracy need not be perfect when 
the stakes are low.

Contrast this example with safety modules 
in a driverless car. In this case, many argue the 
acceptable level of accuracy must be higher given 
the danger.31 Safety still must balance practical 
considerations. Projections show that deploy-
ing a driverless car that is only 10 percent safer 
than one with human drivers could still save 
many lives; perhaps a seemingly high rate of 
failure might be acceptable if it still minimizes 
comparative risk.32 Other AI benefits must also 
be weighed against accuracy. Perhaps driverless 

cars could more efficiently clear traffic in the 
presence of ambulances, potentially saving lives. 
Perhaps such a benefit would justify a lower rate 
of overall accuracy. 

Accuracy Is Not Everything 
Accuracy, although an important metric, can-
not fully assess system quality in all cases. For 
instance, if a deadly virus appears only once in 
a sample of 100 patients, a disease-spotting AI 
coded to always predict a negative result would 
still be 99 percent accurate. Although highly 
accurate, this system would fail its basic purpose, 
and the sick would go untreated. For policymak-
ers, a critical eye is needed to ensure the numbers 
provide proper nuance. To gain a better sense of 
the quality of a system, one may need additional 
evaluation metrics. 

It is important to emphasize the fact that any 
metric used to evaluate a system will carry trade-
offs. As an illustration, there is often a tradeoff 
between measuring false positives and false neg-
atives.33 Choosing which to prioritize in evalua-
tion depends on context and systems goals. 

Returning to the disease-detecting AI exam-
ple, suppose one is doing United States Agency 
for International Development aid work, and 
the chief concern is treating disease and there is 
no cost to treating a healthy patient. In this case, 
one might prioritize minimizing false negatives 
so one can ensure that those with the disease get 
treatment. Also, one might measure quality using 
recall, a metric that states the percentage of the 
model’s negative results that are true negatives.34 
This metric would allow one to see the likelihood 
of a false negative, and if that probability is low, 
the model is effective for our purposes. 

Now imagine the reverse: suppose one is an 
official at the Centers for Disease Control and 
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Prevention, and the chief concern is correctly 
analyzing disease transmission. In this scenario, 
perhaps one would want to minimize false posi-
tives by measuring with precision, a metric that 
evaluates how many positive results of the sys-
tem are indeed positives.35 If precision is high, 
then one can be certain that one is correctly 
identifying positive results and can better track 
transmission. 

If one finds both false positives and false neg-
atives undesirable, perhaps one wants a model 
that minimizes both. In this case, one would try 
to maximize the F1 score, which assesses how 
well the model minimizes both false negatives 
and false positives.36 

These example metrics are widely used to 
assess AI that seeks to classify data, however, that 
is only one slice of evaluation and not necessarily 
ideal for all applications. Consider, for instance, 
how one might assess the quality of art genera-
tion software. Such a task is naturally fuzzy and, 
in many cases, might depend on the priorities or 
tastes of individuals; this is not something that 
can be easily captured in statistical metrics. A 
2019 study found that for generative adversarial 
networks—an AI model that can serve as an AI 
art generator—there were at least 29 different 
evaluation metrics that could be used to assess 
the overall quality of these systems.37 AI evalua-
tion metrics, like AI itself, are meaningless with-
out application. 

Benchmarks
Although evaluation metrics can usefully describe 
an individual model’s effectiveness, they are not 
suited for comparing models or tracking progress 
toward certain goals. As such, AI researchers have 
adopted a variety of benchmarks, common data-
sets paired with evaluation metrics that can allow 
researchers to compare and track results of mod-
els and determine state-of-the-art performance 
on a specific goal or task.38 These benchmarks 
are often tailored to specific tasks. For instance, 
ImageNet is a popular benchmark for assessing 
image detection and classification.39

Although useful for tracking improvements in 
AI systems and the state of the art, these bench-
marks can be limited in their descriptive abilities. 
Researchers have noted that while benchmarks are 
often seen as describing general AI abilities, what 
they actually represent is more limited in scope, 
measuring only a system’s ability at the tightly 
constrained benchmarking task.40 The implica-
tion is that even if an AI system is able to accurately 
identify most images in ImageNet’s database, that 
action does not necessarily mean those abilities 
will translate to real-time, real-world image rec-
ognition. The complexity and noise of real-world 
analysis can be a far cry from the limited frame of 
benchmarking tests. Further, it has been noted that 
benchmarks often fail to test necessary character-
istics, such as a model’s resistance to adversarial 
attacks, bias, and causal reasoning.41
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3. AI POLICY CHALLENGES 

Before digging into the technology that 
makes AI possible, we must first establish 
what AI policy looks like today and what 

issues are at stake. Currently, there is little in the 
way of artificial intelligence (AI) law and policy. 
Only a handful of federal laws relate to AI, and 
those that do, such as the National Artificial 
Intelligence Initiative Act of 2020, cover basic 
study and coordination rather than explicit reg-
ulation.42 Further, existing laws treat AI in a gen-
eral sense rather than any application’s specific 
issues. Executive action on AI is also in introduc-
tory stages. A 2019 executive order, Maintaining 
American Leadership in Artificial Intelligence, 
acts as the guiding document of American AI 
strategy, focusing on high-level policy, including 
international cooperation, technical standards, 
economic growth, R&D, and talent.43 Building on 
this is a 2020 executive order, Promoting the Use 
of Trustworthy Artificial Intelligence in the Fed-
eral Government,44 and a 2022 policy announce-
ment from the White House, Blueprint for an AI 

Bill of Rights.45 Both of these documents work 
to define broad guiding principles for the use 
of AI and AI policy. Beyond these initial policy 
salvos, however, there are few federal regula-
tions of deeper substance or application-specific 
nuance. 

At the state and local levels, policy is var-
ied and often more application specific. In 
many states, there has been some limited move-
ment, though action has largely been targeted at 
limited-scope and well-publicized AI applica-
tions. These applications include deepfakes,46 
autonomous vehicles,47 and AI-assisted hiring 
legislation.48 At the state and local levels, there 
is clearly a desire to implement regulation and 
manage some of the negative effects of AI, but 
action has targeted only issues that have been 
around for years. The issues that AI creates will 
not always be well publicized and as limited in 
scope.

The design of AI law and policy is and will 
be a complex task because of the importance 
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and wide reach of this technology. The follow-
ing sections offer a few questions that policy-
makers should consider when designing AI 
policy.

CRITICAL QUESTIONS FOR 
POLICYMAKERS

Policymakers face many important decisions in 
the areas of research, development, and manu-
facturing; inputs and resources; quality control; 
externalities; and security and safety. This sec-
tion discusses each in turn. 

Research, Development, and 
Manufacturing
Chip development. Historically, the US gov-
ernment has sponsored and supported AI chip 
development. The recent Chips and Science Act 
illustrates the support of the semiconductor 
industry by policymakers of both parties.49 This 
bill follows a long history of public engagement 
with this sector. While this issue has enjoyed 
congressional support, the utility of AI indus-
trial policy has been the subject of considerable 
debate, including the following questions:

1. Is there certain fundamental AI chip 
research that might not exist without gov-
ernment support?

2. Does government support and subsidization 
risk crowding out certain innovations and 
alternative designs?

3. How can policy play a role in ensuring that 
American industry competes with China’s 
considerable state-led AI investments?

Algorithm development. Algorithm develop-
ment and deployment has long been inter-

twined with public research support and 
policy. Early neural networks, for instance, 
were first introduced by the Office of Naval 
Research.50 The Defense Advanced Research 
Projects Agency’s (DARPA) Grand Challenge, a 
military-sponsored desert race, sought to incen-
tivize autonomous vehicle progress through a 
competition and cash prize.51 Some argue that 
this race supercharged autonomous vehicle 
breakthroughs. Although this public history of 
AI algorithm development is perhaps impres-
sive, one should note that all industrial policy 
involves tradeoffs and risks. Policymakers 
should consider the following:

1. How will public investments crowd out pri-
vate funding or distort research outcomes?

2. How can one best incentivize development 
while minimizing market distortions?

3. How can one ensure continued American AI 
leadership in algorithm development writ 
large?

4. How can algorithms be developed and 
designed to support democracy, freedom, 
and fairness?

5. What types of AI and applications should 
the public support? Should industrial policy 
focus on foundational or applied research? 
For military research, how does one ensure 
that innovations are designed for dual use? 

Overfitting and underfitting. Overfitting is the 
problem of fitting a prediction algorithm too 
tightly to training data, so much so that it under-
performs with new data. Underfitting, in turn, is 
the failure to adequately fit an algorithm to the 
training data, rendering predictions with new 
data altogether unreliable. For policy-sensitive 
applications, AI models must be able to demon-
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strate that they are neither over- nor underfit for 
the task at hand. At present, there is no easy solu-
tion to this challenge. For policymakers, the best 
approach is vigilance. The following are exam-
ples of issues that this could create:

1. Economic data have a relatively short his-
tory. Treasury models therefore run an 
underfitting risk that could lead to faulty 
algorithms when trying to predict inflation, 
employment, and other key metrics. 

2. Court sentencing algorithms can run the 
risk of overfitting. If a case used in a model’s 
training set is sufficiently unique, the model 
could carve out a prefabricated decision 
path that is not generalized but instead is 
tailored specifically to that set. Of course, an 
entirely different question is whether this 
sort of model, regardless of fitness, should 
ever be used by courts. 

Inputs and Resources 
Supply chain robustness. AI chips and hardware 
require a diverse range of materials and compo-
nents to support processing needs. A robust AI 
ecosystem requires supply chains that can reli-
ably source and provision the resources needed 
by the AI economy. Toward these ends, policy-
makers should consider the following:

1. How can the United States open trade with 
new markets to ensure access to these goods?

2. How can the United States liberalize global 
trade to ensure an efficient and balanced 
supply chain?

3. Can domestic resources help supply the 
needed materials? How can the United States 
balance the benefits of domestic resource 
extraction with environmental costs?

4. How can the United States counter China’s 
market takeover of required rare earth metal 
deposits? 

Talent and immigration. AI development requires 
a range of highly technical and highly special-
ized skills. Supporting manufacturing, research, 
design, and deployment will require a deep talent 
pool and expensive labor. Education, grants, 
apprenticeships, and immigration can help fill this 
gulf. Policymakers should consider the following:

1. What education policies can incentivize 
specialization in AI-related fields? What are 
their tradeoffs?

2. Can corporations be incentivized to provide 
training and apprenticeship programs to 
reduce educational burdens?

3. How can immigration policy be reformed to 
attract and retain global talent?

4. How can AI education balance techni-
cal skills with a need for free and creative 
thinking?

5. How can nontechnical fields be upskilled 
with AI knowledge to prepare those fields 
for the potential effect of AI? 

Data resources and privacy. Policymakers should 
understand the scale of data used in AI, because 
many AI policy concerns revolve around big 
data. The scale of these data belies several impor-
tant policy questions and challenges, including 
the following: 

1. How can the United States ensure that gov-
ernments and companies adequately protect 
the vast and sensitive data used to create 
their AI systems?

2. How can the United States mitigate con-
cerns that it will lose an “AI race” to China 
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because authoritarian tools allow for more 
extensive and detailed data collection? 

3. There is concern that new market entrants 
with limited data stores and scraping capa-
bilities cannot compete against the vast 
stores of user data amassed by big tech firms. 
How can the United States ensure a level 
playing field and a competitive market? 

Data standards and interoperability. Data stan-
dards can affect the nature and usability of data. 
Healthcare AI, for instance, has been slow to 
develop because of highly siloed data, disparate 
technology practices, and record-keeping dif-
ferences across systems.52 A key to this problem 
is interoperability and standardization. If tech-
nology can easily communicate and share data, 
and if data are standardized and easy to use, this 
could aid the development of AI systems. Toward 
these ends, policymakers should consider the 
following:

1. How should the government design and for-
mat data standards to best serve AI? What 
information should the data capture? How 
do these decisions affect the ability to share 
data, develop AI systems, and promote inno-
vation? Conversely, how might standardiza-
tion hinder innovation? 

2. How can the government reduce data bal-
kanization to ensure that AI has the tools it 
needs to grow? How might this be balanced 
with privacy and security concerns?

Quality Control
Explainability. Because AI systems focus on pre-
diction rather than explanation, the reasoning 
behind their actions can be opaque. Law and pol-
icy often require clear reasoning and decision-

making. This requirement can raise questions 
and concerns such as the following: 

1. Should the government risk using autono-
mous weapons if we do not understand how 
they select, and possibly kill, targets?

2. Should the government use AI sentencing 
algorithms if we do not know if their final 
decisions are affected by racial biases?

3. How does the government know that an AI’s 
decision-making process has not been com-
promised by a malicious actor?

4. How does the government know if autono-
mous vehicles are safe?

5. How does the government know that statis-
tical AI models are producing high-quality 
predictions and results? 

Bias and auditing. The data used and the bias 
embedded in AI algorithms can lead to incorrect 
or harmful results. AI-powered pulse oximeters 
have been found significantly more inaccurate 
for dark-skinned patients.53 This issue can cause 
harm. In another case, Amazon found uninten-
tional bias embedded in its hiring algorithm, 
which favored male applicants far more than 
female ones.54 One path forward would be AI 
audits that could be used to assess algorithmic 
weaknesses, security, and bias. Regarding bias 
and auditing, policymakers should consider the 
following questions to address these issues:

1. What algorithmic design best practices and 
industry standards can help spot and miti-
gate bias?

2. What data-sourcing, cleaning, and process-
ing standards can help minimize bias and 
ensure robust algorithms? What tradeoffs, 
unintended consequences, or concerns 
could such standards create?
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3. Is there an acceptable level of bias? What 
biases are unacceptable? How does the law 
deal with AI bias?

4. Can intentional bias be used to mitigate 
negative biases? What risks or unintended 
consequences could this pose?

5. Should AI audits be required? If so, when 
and what processes should they include 
to ensure strong results? Further, would 
requiring audits place an undue burden on 
innovation?

Externalities
Energy use, emissions, and environmental 
impact. Supporting AI requires significant 
energy use. Chip fabrication requires exten-
sive energy resources,55 as does the compute-
intensive training process. Energy requirements 
expand as AI algorithms and market demand 
grow. As a result, intensive computing can leave a 
high carbon footprint. Cloud computing centers 
also constrain local energy supplies, potentially 
increasing local energy prices to support often 
nonlocal demand. Finally, fabrication produces 
wastewater and toxic byproducts, while cloud 
computing centers burn through difficult-to-
recycle semiconductors. Policymakers should 
consider the following:

1. How can the government and private actors 
balance the energy use and emissions costs 
of AI systems against the benefits of AI 
innovation? 

2. Can AI system innovation in energy manage-
ment and climate research be used to help 
reduce costs and fight climate change?

3. Is there a Coasian approach to managing AI 
externalities? Or is it just a matter of mini-
mizing the regulatory burden of controlling 

emissions and other externalities of data 
centers?

4. What waste and recycling standards and 
policies can ensure that waste is properly 
managed?

Labor disruptions. The advances in automation 
that flow from AI may disrupt the workforce 
and displace certain professions. For instance, in 
the United States, there are more than 3 million 
truckers, a generally low-education profession 
that could be eliminated by driverless vehicles.56 
Other industries may feel similar strains. 
Although there is no guarantee that AI will lead 
to fewer jobs, some will likely have to find new 
employment. As such, policymakers should con-
sider the following:

1. How can education policy be used to upskill 
or reskill displaced workers? 

2. How can policy ease workforce transitions 
and ensure that older workers are not left 
behind?

3. How can agencies update or remove 
regulations that might entrench cer-
tain labor classes despite AI automation 
improvements?

4. How can the government or private actors 
ensure redundant human skills in fields 
automated by AI?

Security and Safety
Cybersecurity. The interdiction of AI naturally 
comes with a transformation of the cyber-threat 
landscape. New threats can be found in AI. The 
massive depth and width of modern neural nets 
can make it difficult to spot vulnerabilities or bad 
actors. Further, data can act as a new attack sur-
face. Data-poisoning attacks seek to inject vulner-
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abilities into a system through bad data or use data 
inputs to cause a trained system to malfunction. AI 
will also be used as a tool of cybersecurity. Further, 
it can be used to hunt and exploit vulnerabilities 
without human involvement. Conversely, AI can 
be used to detect intrusions and stop bad actors. 
Policymakers should consider the following:

1. What processes can be used to detect vulner-
abilities not only in algorithms, but also in the 
data and processors that drive these systems? 

2. What standards and best practices can be 
passed to the private sector to mitigate and 
minimize AI cyber risks? 

3. How can the government detect and alert the 
public to systemic AI cyberattacks and risks? 

4. How can the government encourage effec-
tive prosocial cybersecurity research and 
hacking? 

Supply chain security. The supply chain that sup-
ports semiconductors is long, complex, and brit-
tle. Chips are often manufactured abroad, leaving 
them vulnerable to foreign influence. This cre-
ates novel threats to American systems. Policy-
makers should consider the following: 

1. How can the government or private actors 
gather intelligence about supply chain–
based vulnerabilities and threats?

2. How can the government or private actors 
detect compromised or counterfeit chips?

3. How does the government hedge against 
security threats to its supply chain, such as 
China’s threat to Taiwan—its primary semi-
conductor trading partner?

4. How does the government or private actors 
balance the need for plentiful resources with 
the need to minimize the influence of bad 
actors?

5. How can the government collaboratively 
work with its allies to ensure access to safe 
components? 

Lethal autonomous weapons systems. AI algo-
rithms make robotic weaponry that can select 
and engage targets without humans in the loop 
a reality. This is no longer science fiction; such 
systems are already in use on the battlefield.57 
Policymakers must actively engage in the many 
now-practical ethical and legal implications of 
these systems. Questions that policymakers must 
answer include the following:

1. How do autonomous weapons conform to 
international law and the laws of war?

2. How might arms control law apply to auton-
omous weapons, and how might the govern-
ment technically verify a potential arms con-
trol agreement?

3. What role do humans play in controlling or 
mitigating the potential harms of autono-
mous weapons?

4. How can autonomous weapons justify their 
actions or explain life-or-death decisions?

INCOMPLETE AND  
EVER EVOLVING LIST

This list is not comprehensive but a small selec-
tion of the issues at stake. The hope is that this 
starting point can help readers understand the 
importance of this technology and its relation-
ship to a broad array of policy domains. As they 
proceed to dig into the technology that makes 
AI possible, readers are encouraged to imagine 
further unanswered questions and connect these 
concepts to issues in their given fields.
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4. DATA

Data serve two high-level purposes in arti-
ficial intelligence (AI) systems. First is 
the input. Data are the digital raw mate-

rial used to train models during the machine 
learning process as well as the input on which 
trained models make inferences. Second is the 
output of inference that serves the practical pur-
poses of users and output that can be recycled as 
input for further refining model performance.58 

Several design choices of the dataset—such 
as volume, data selection, and the removal of out-
liers—shape the nature of AI systems. The tech-
nical form of digital data files also matters. The 
resolution of a photo, the compression of digital 
music, and unseen metadata all shape what infor-
mation an AI system can process during learning 
or inference. To understand how microchips and 
algorithms shape AI, policymakers must first 
grasp the fundamental importance of data.  

Data have many important aspects:

 • Through the training process, machine learn-
ing models use data to refine their inferences.

 • When deployed, trained models use input 
data to make inferences, which can be trans-
lated into predictions and decisions.  

 • Many machine learning approaches require 
large volumes of data to train AI models.

 • Machine learning approaches with small 
data are emerging to enable success without 
big data. 

 • The variety of data can be just as important 
as the volume. With diverse and represen-
tative data, systems can better account for 
real-world diversity and complexity. 

 • A diversity of data storage, warehousing, and 
collection systems is an important consider-
ation in understanding AI systems and their 
governance. 

 • The data used to train and operate systems 
are the result of human curation, labeling, 
and cleaning. 

 • Human curation of data can lead systems to 
reflect biases. Some systems may perpetu-
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ate negative biases, whereas some might be 
more objective. 

LEVEL 1 UNDERSTANDING
Whether an AI system is in development or in 
use, the quality of its data is paramount to suc-
cess. Selecting high-quality AI data is challeng-
ing, a function of multiple competing factors 
including volume, variety, and velocity. These 
qualities together are sometimes referred to as 
the 3-Vs.59, 60 

Data Volume 
“We don’t have better algorithms. We have more data.”

—Peter Norvig, Director of Research at Google

Determining the ideal data volume, or the quan-
tity of data relative to the model’s needs, has 
become a central question of machine learn-
ing. To train AI systems, there are two emerging 
approaches: big data and small data.

The big-data approach is likely the most 
familiar. To train an AI system, vast stores of data 
are funneled into the model, which learns from 
that data and refines itself over time. Although 
this process does not always work in practice, the 
hope is that with enough data the model even-
tually arrives at an optimal form with powerful 
predictive capabilities. 

The famed ImageNet database illustrates 
the power that large and diverse datasets can 
provide. Introduced in 2009, ImageNet included 
more than 14 million images, conceived on the 
premise that progress in AI image recognition 
was a matter of more data, not improved algo-
rithmic design.61 This approach proved success-
ful. Massive data accelerated the improvements 
in computer image recognition; the accuracy of 

models using ImageNet jumped from a modest 
72 percent success rate in 2010 to 96 percent in 
2015, an accuracy rate exceeding average human 
success, in just five years.62 These results are 
rooted in the volume of this database. 

Although the ImageNet approach to image 
recognition benefited from millions of data 
points, the exact volume required for machine 
learning training is not standardized. Note that 
image recognition is a narrow, single-purpose 
application of this technology, yet it still required 
vast troves of data. For more complex systems, 
such as driverless vehicles, the volume of data 
is likely orders of magnitude larger. Estimating 
how much data is enough is a moving target and 
heavily depends on the application complexity,63 
model size,64 accuracy requirements, and other 
goals. Progress has been made toward defining 
the relationship between algorithms and data 
requirements;65 however, current models are 
still speculative.66 In practice, engineers often 
depend on soft rules of thumb rather than empir-
ically tested processes.67 Today’s AI engineering 
is more an art than a science. 

Trending against big-data approaches are 
the increasingly common small-data strate-
gies.68 These can be used in scenarios where data 
are limited, spotty, or even unavailable. Small 
data strategies use a variety of techniques to over-
come data limitations, including transfer learn-
ing, where a model “inherits” learned informa-
tion from previously trained models; artificial 
data, where representative yet fake data are 
synthetically created;69 and Bayesian methods, 
where models are coded with prior information 
that provides problem context before learning 
begins, thereby shrinking the overall learning 
challenge.70

In 2018, DeepMind’s AlphaZero demon-
strated how an AI system could master Chess, 
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Shogi, and Go through self-play—learning with-
out any input data apart from the game rules.71 
The system bested all existing big-data-trained 
systems, challenging the assumption that more 
data is always better. Although AlphaZero’s 
design is not universally applicable, it demon-
strates the potential of small-data AI to trans-
form future AI development.

Variety 
Variety is just as important as volume. The prob-
lems that AI systems face are often complex, and 
in theory, a great variety of data can help models 
account for the unique wrinkles and corner cases 
that complexity brings. Flexibility is essential to 
AI quality and ensures that systems are robust 
in the face of the unexpected. A classic example 
illustrating the importance of variety are the facial 
images used to train facial recognition algorithms. 
Human faces come in many varieties, and to per-
form accurately, an algorithm should be trained 
on data containing a full variety of races, genders, 
hair colors, and so forth. Without full variety, these 
systems have been shown to misidentify nonwhite 
faces at significantly higher rates.72

The maps, visual images, and proximity sen-
sor data needed to train a driverless car will be 
vastly different from the data required to train 
a stock-trading AI. Data must also be timely. 
Adding stale data—that is, old data that are not 
quite pertinent to the current problem—just for 
the sake of greater volume can reduce the over-
all quality of an AI system.73 As an illustration, 
inflation data taken before 1971, when the US 
government promised a fixed rate for gold coins 
(and gold bullion), may contain more noise than 
signal for inflation data since 1971. Perhaps such 
data should be excluded when training economic 
modeling systems. 

Velocity 
Velocity refers to the speed “in which data is gen-
erated, distributed, and collected.”74 In general, 
this speaks to an AI system’s ability to manage 
the data it needs for optimal performance. 

Data generation and collection depends on 
the design of a system and the way it interfaces 
with the world. Web applications are well known 
for their ability to amass diverse and incisive data 
from their users. Companies such as Facebook 
and Google use digital platforms, social media, 
and adware to track users and collect personal 
data. Mass data collection is also widespread 
outside of the internet. In healthcare, electronic 
health records have enabled the collection, digi-
tization, and aggregation of bulky tranches of 
data. These data include physician documenta-
tion, patient inputs, external medical facilities 
transmissions, and direct transmissions of medi-
cal data from hospital instruments. As in social 
media, aggregated healthcare data can be truly 
massive.75

As AI models are embedded into physical 
systems such as cars and drones, an “AI system” 
has broadened to include the visual, audio, and 
signal arrays that capture real-time informa-
tion to function adequately. Some refer to this as 
the broader “AI constellation.”76 AI increasingly 
takes advantage of the internet of things (IoT), 
a network that connects uniquely identifiable 
“things” to the internet, where the “things” are 
devices that can sense and interact according to 
their hardware and software capabilities. IoT 
devices can prove rich data sources and give AI 
additional eyes and ears into a problem. Recall 
that one of the primary benefits of AI is its sen-
sory scale and scope. IoT is a relatively new phe-
nomenon, and these devices may grow in impor-
tance to AI as they are able to collect a wide 
variety of previously inaccessible data.77
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Success can be contingent on distribution, 
a function of a web of storage and networking 
technologies, which are important components 
of many AI systems. These devices include 
not only data warehouses—large, centralized 
warehouses holding hundreds of servers on 
which vast lakes of data are stored78—but also 
smaller caches of data physically closer to where 
the program is running to allow for quick data 
access. For an AI to learn quickly, and function 
efficiently during inference, data must be easy to 
collect, store, and access.79 

Data Management 
Data management dominates AI design. In fact, 
engineers frequently cite that data preprocessing 
accounts for 80 percent of engineering time.80 
The reason for this is that data are often dis-
jointed, messy, and incomplete. Before a model 
can be trained, data cleaning, often by hand, is 
required to ensure that it will be usable.81 To pre-
pare data, engineers must often decide whether 
to remove outliers, weed out irrelevant informa-
tion, add labels, and ensure that the data are well 
organized. Various methods and rules of thumb 
have also been developed to help fill in data gaps 
as needed.82 Further, data must often be labeled. 
AI cannot naturally know the labels and symbols 
that humans apply to objects. An image of a red, 
shiny fruit can be labeled “apple” only if an AI 
knows that term. All these labels must be affixed 
by hand.83 

Bias
A common concern in AI is bias, defined gen-
erally as the difference between desired out-
comes and measured outcomes. Data are a major 
source of AI bias. When a model learns from 

human-curated data, the model takes on a lens 
that reflects the viewpoint of the humans who 
selected and shaped those data. For instance, 
language-processing AI trained on news articles 
may take on and perpetuate the societal stereo-
types embedded in the language and viewpoint 
of those articles.84 Even after training, the data 
input used during model inference can bias its 
output. Input data that ask an AI chatbot to write 
a “positive poem,” versus just a poem, will bias 
results in a positive direction. 

The National Institute for Standards and 
Technology notes that AI bias has many roots. In 
many cases, bias simply stems from the natural 
blind spots in human cognition and judgment 
and the consequent choices that engineers make 
about what data are more or less important.85 
As humans collect data, all data will be biased in 
some way. In other cases, bias is rooted in struc-
tural constraints. Perhaps the dataset an engi-
neer uses is selected merely because it was easy 
or cheap to access, not because of its superior 
quality. The resulting AI system will then take on 
the qualities of that set, whatever they may be.86 
Historical data trends can also bias present data 
AI systems. For instance, if an algorithm used to 
judge recidivism was trained on data marred by 
historical racism, its decisions could incorporate 
those historical prejudices moving forward.87 
Beyond these examples, there are many addi-
tional sources of bias, all of which must be bal-
anced when selecting data.

Bias, although unavoidable, is not necessar-
ily harmful. Often, the intensity of a given bias 
may be negligible or irrelevant to the goals of a 
system. A chatbot that is biased toward using 
an overly academic tone might be useful as a 
research reference tool despite occasionally 
sounding pompous. In other cases, biases may 
exist yet have little effect on system performance 
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because they are exceedingly rare. Identity-based 
biases may be considered negligible in a system 
if they occurred only once every trillion queries. 
In all cases, engineers decide, consciously or 
not, what constitutes an acceptable level of bias 
before they deploy these systems. Today, these 
decisions are increasingly shaped by various AI 
bias correctives. Developing these fixes is inher-
ently challenging, however, and has become a 
prominent focus of recent AI research and policy 
discussion.88 

LEVEL 2 UNDERSTANDING
Beneath the stored information lies a wealth of 
technical decisions that decide what information 
is contained in the dataset, how it is to be used, 
and how it interacts with the AI model. A deeper 
understanding of the choices behind data design 
can reveal the lens through which AI “sees” the 
world. These choices can matter for policy, not 
only because many data standards are mandated 
by law, but also because they can influence or 
even dramatically change outcomes. The follow-
ing sections introduce several concepts pertinent 
to the governance of data.

Adversarial Machine Learning
Data affect not only AI system design, but also 
system security. Adversarial machine learn-
ing refers generally to the study and design of 
machine learning cyberattacks and defenses. Of 
central importance to many attacks are data.89 
The design of these systems is often driven by 
training data, and training data alterations made 
by malicious actors have been demonstrated 
to both degrade model performance and pur-
posefully misdirect it. So-called data poison-
ing attacks can be implemented in some cases 

with only minor alterations to data. One study 
found that a single alerted image in a training 
dataset caused a classification system to misclas-
sify thousands of images.90 As a result, poisoned 
data can be difficult to spot, lowering the bar for 
attacks.

Data can also be used to attack systems 
after training is complete. For instance, adver-
sarial examples, data inputs designed to trick 
AI systems during inference, can cause models 
to produce incorrect predictions.91 In a classic 
example, the addition of only a few stickers to a 
stop sign caused a visual classification system to 
classify it as a 45-mile-per-hour sign.92 Similar 
attacks have been developed for a range of other 
AI applications. 

Note that beyond these prominent exam-
ples there are many attacks, and this new field of 
study is constantly changing. Mitigating and pre-
venting these vulnerabilities will prove a major 
challenge as AI capabilities improve and grow 
widespread. 

Data Standards and Data Capture
Much of the data that are collected and used are 
constrained or guided by data standards set by 
industry or government.93 For instance, account-
ing data standards in the United States are set by 
the Financial Accounting Standards Board, which 
dictates how financial statements are structured 
and recorded.94 Standards can deeply shape what 
data are available for any particular AI applica-
tion. Under the board’s rules, companies can pick 
one of three methods to account for inventory, 
whereas entities regulated under International 
Financial Reporting Standards have only two 
permitted methods.95 As a result of these policy 
choices, the inventory data that are recorded 
can vary substantially.96 If applied to AI, these 
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data differences can ultimately alter analysis 
and results. As with all concepts in AI, applica-
tion matters. The effect of some standards may 
be minor in certain cases and dramatic in others.

Standards dictate not only the content of 
data, but also the structure of their digital rep-
resentation. MP3, PDF, and others will be famil-
iar. Each of these file formats is a standard that 
dictates how to arrange 1s and 0s to properly 
represent a given piece of data—in the case of 
PDF, a document, or in the case of MP3, an audio 
file. These formats can affect the quality of data 
and, by extension, AI. For instance, some for-
mats such as JPEG allow for image compression, 
a technique that seeks to reduce the file size by 
removing data from an image. This approach can 

have significant implications. In mammography 
image analysis, results have been found to vary 
significantly when AI systems are trained on 
images of differing compression levels. In cer-
tain cases, compression even caused complete 
misinterpretation of mammograms.97 It is worth 
repeating: data standards are design choices that 
are critical to AI applications.

Furthermore, note that, increasingly, cap-
tured data are not necessarily free from AI influ-
ence. Many cameras, including the cameras in 
the Apple iPhone, employ AI techniques to sub-
tly alter images during capture.98 Although the 
effect of these alterations remains to be seen, 
what is captured in data does not necessarily 
represent the unaltered ground truth of reality.
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5. MICROCHIPS

In 1997, the addition of a tailormade “chess chip” 
allowed IBM’s Deep Blue artificial intelligence 
(AI) system to defeat world champion Gary 
Kasparov in chess.99 This defining moment in 
AI history was enabled by improvements in the 
engineering of semiconductors and the manufac-
ture of microchips (or simply chips). Since then, 
a recurring theme in AI innovation has been the 
importance of ever more efficient chips. With-
out the significant improvements in microchip 
capabilities since 1997, none of the big-data or 
machine learning strategies that have sup-
planted the more primitive AI methods used by 
Deep Blue would have been possible. 

Microchips serve two primary purposes in 
AI: providing processing power and storing data. 
Perhaps their most important quality, however, is 
their speed that enables quick computation and, by 
extension, intelligence. This chapter discusses how 
microchips function and addresses the increasing 
importance of this element to AI innovation. 

Microchips have many important aspects:

 • AI systems depend on microchips to run AI 
algorithms and store data. 

 • Variations in chip design can offer unique 
functions, speeds, and storage properties to 
AI systems. 

 • Chips are increasingly AI specific. Popular 
AI-specific designs include graphics pro-
cessing units and application-specific inte-
grated circuits. 

 • Over the past four decades, microchips 
have improved exceedingly fast, doubling 
their processing speed roughly every two 
years. This geometrical pace is, however, 
not sustainable in time, and chips are reach-
ing their physical limits. Future AI models 
will depend on existing semiconductor-
based chips unless an alternative technology 
emerges to provide faster hardware.

 • Microchip design and manufacturing is 
complex and is supported by a wide range 
of disciplines, technologies, and companies. 
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LEVEL 1 UNDERSTANDING
This section discusses microchip basics and AI 
chips.

Microchip Basics
Although separate concepts, microchips are often 
refered to as semiconductors. The name “semi-
conductor” comes from semiconductor materi-
als, such as silicon or germanium, the key ingredi-
ent in chips.100 Chips contain many components, 
but their power and speed are owed to their tran-
sistors, the semiconductor switching device that 
performs computation. As a rule, chip power and 
speed increase as the transistors on a chip both 
shrink in size and grow in density, that is, more 
transistors fitted in the same space. Historically, 
chip innovation has been linked to transistor inno-
vation, specifically, transistor size reductions. For 
decades, consistent transistor improvements have 
unleashed the ever-growing processing speeds 
that, in the 1990s, enabled systems such as Deep 
Blue and, in the modern era, machine learning. 

Chip innovation has long followed a pat-
tern, known as Moore’s Law, in which the 
number of transistors per chip doubles roughly 
every two years.101 Moore made a speculative 
prediction that nevertheless became an organiz-
ing principle for the semiconductor industry; as 
a consequence, his law became a self-fulfilling 
prophecy. The resulting pace of chip improve-
ment has allowed for predictable improvements 
in the design of AI systems. For algorithms, this 
improvement has enabled greater processing 
speeds and therefore quicker “AI thinking.”102 For 
data, this has built the storage capacity needed 
to support big data.103 Transistors, however, are 
shrinking to their physical limits, and their per-
formance no longer will advance as fast, if at all. 
Future improvements in chip function, and by 

extension AI, will require innovation beyond 
shrinking the transistors inside microchips.104 

AI Chips
The past stability in the rate of growth of pro-
cessing power meant that AI research focused on 
algorithms, sidelining discussion of hardware. To 
meet processing demands, researchers are turn-
ing to AI chips (also called AI accelerators), a 
range of chips that are designed not for a general 
purpose, but specifically for the unique process-
ing needs of AI.105

The core advantage of AI chips is rooted 
in speed. Central processing units (CPUs), 
the general-purpose chip used for AI before 
the emergence of AI chips, are flexible but less 
efficient when processing AI-specific calcula-
tions than AI-dedicated chips.106 CPUs preform 
inefficiently when operations are repeated in 
bulk and when memory is frequently accessed, 
requirements of most AI algorithms.107 AI chips 
can solve these problems.

In brief, in addition to CPUs, there are cur-
rently three types of AI chips that policymakers 
should understand: graphics processing units 
(GPUs), field-programmable gate arrays 
(FPGAs), and application-specific integrated 
circuits (ASICs). GPUs, FPGAs, and ASICs can 
be conceived of as standing on a spectrum span-
ning greater design flexibility at the GPU end 
and greater speed at the ASIC end, with FPGAs 
standing in the middle (figure 5.1).108 

GPUs are limited-purpose chips originally 
designed for graphics processing but have been 
appropriated for AI.109 Running a neural network, 
perhaps the most common AI model, requires 
large-scale and frequent matrix multiplication, a 
simple yet time-consuming mathematical oper-
ation.110 GPUs are designed with many matrix 
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multiplication units that can execute multiple 
operations simultaneously, a quality known as 
parallelism.111 

FPGAs and ASICs are single-purpose chips 
custom built for each application. In both, the AI 
software is hard-coded directly into the chip’s 
silicon base. Application specificity increases 
speed by removing unneeded features and 
streamlining computation. The core difference 
between the two is programmability; the circuits 
baked into FPGAs both are custom built and can 
be updated as needed. Meanwhile, ASICs are 
custom built but cannot be updated.112 FPGAs, 
owing to their programmability, carry certain 
efficiency costs. ASICs are perfectly tailored to an 
application’s specific needs, giving them greater 
speed.113 Although GPUs command a large share 
of the training market given their more flexible 
functionality,114 a growing trend in AI inference 
chips is a steady gain of market share by ASICs.115

LEVEL 2 UNDERSTANDING
This section discusses microchips in detail and 
chip design and manufacturing. 

Microchips in Detail 
What makes silicon and the other semiconductor 
materials that power computing unique is their 
ability to act as both insulators and conductors 
depending on certain conditions.116 This quality is 

significant because it allows engineers to program 
exactly when these materials will conduct elec-
tricity. The working part of chips made of semi-
conductor material is the transistor. Functionally, 
a transistor is an electronic switch that alternates 
from allowing current to flow to blocking current. 
When current flows, this is represented as a 1, and 
when it is blocked, it is represented as a 0. This 
core function forms the basis of data representa-
tion and computation. 

Transistors are built from a combination of 
silicon and dopants, impurities that alter the 
properties of conductivity to enable engineers’ 
discrete control over electric currents.117 Without 
dopants, engineers could not control when and 
why a transistor switches on or off. 

To manipulate and store electrical currents, 
one can link transistors together in circuits that 
enable them to perform basic computation. For 
instance, an adder is a common circuit that takes 
in two numbers and adds them together. Tran-
sistor circuits can also form memory units. For 
instance, SRAM (static random-access memory), 
a type of computer memory, uses a small collec-
tion of linked transistors to trap energy, thereby 
storing the data that energy represents.118

Integrated circuits (ICs) are devices that 
string together many of these circuits, memory 
units, and other peripheral components to cre-
ate a toolbox of basic operations that software 
engineers can use when running algorithms. ICs 
often include execution units, subsystems that 

FIGURE 5.1: THE SEMICONDUCTOR SPEED-FLEXIBILITY TRADEOFF
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package related circuits together with memory 
and other tools to enable basic functions. These 
execution units come in many forms, each with 
a specifically designed purpose. An arithmetic 
logic unit, for instance, may include an adder 
to perform addition, as well as all other circuits 
required for basic arithmetic.119 The toolset pro-
vided in a chip can vary widely, and supporting 
AI often means choosing chips with the ideal set 
of capabilities.

Chip Design and Manufacturing 
Central to many related policy questions are 
issues related to the design, manufacture, and 
supply chain of microchips. These systems are 
highly complex, and they are supported by a wide 
web of technologies and engineering disciplines. 
Ensuring AI innovation naturally involves ensur-
ing a robust, and secure, supply chain. 

Talent. The skills required to develop AI chips 
are fundamentally different from AI algorithms 
and data management. The scientists who design 
these AI chips tend to be electrical engineers 
by trade; algorithms and data are the specialty 
of software engineers.120 Further, manufactur-
ing requires an even more distinct skill set to 
develop the physical processes, machines, and 
production foundries. This requirement expands 
the necessary AI talent pool to include an array 
of disciplines, including chemical engineering, 
materials science, and mechanical engineering.121 
AI innovation is not the domain of just computer 
science. 

Development and Fabrication
Development and fabrication. Microchip devel-
opment goes through several core phases. To 

design a chip, engineers wield electronic design 
automation software that allows them to map a 
chip’s execution units and arrange transistors.122 

Once designed, chips are then fabricated 
in foundries where chips are not assembled but 
printed. In brief, the process starts with a wafer, 
a raw chip base, usually made of silicon. Next, a 
variety of materials are printed onto the chip to 
enable photolithography, a process by which 
light is shined through a circuit stencil known as 
a photomask, printing the design onto the chip. 
Additional elements are added through etching, 
using chemicals to remove unwanted material 
and shape the design, and deposition, blanket-
ing the chip with materials to add components.123 
The long list of materials required spans a large 
portion of the periodic table. Therefore, manu-
facturing requires an extensive supply chain, 
materials stock, and chemistry knowledge base 
to support manufacturing operations.124 After 
chips are printed, they are packaged in a protec-
tive casing and shipped. 

Material science innovations are an often-
overlooked source of greater AI processing 
power. For instance, engineers have found that 
using thinner UV (ultraviolet) rays, rather than 
visible light, in photo lithography can embed 
chips with thinner components, decreasing chip 
size and increasing chip speed.125 To reiterate, AI 
innovation is not the domain of only computer 
science.

As a generality, the equipment used in devel-
opment and manufacturing is highly specialized 
and, as a result, highly expensive. Photolithog-
raphy scanners, for instance, can cost more than 
$100 million per unit.126 Specialization has also 
led to concentration. In some cases, this con-
centration is geographical; for example, 85 per-
cent of leading-edge chips are manufactured in 
Taiwan and the remaining 15 percent in South 



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

31

Korea.127 The Dutch firm ASML Holdings is the 
only manufacturer of the extreme UV lithogra-
phy machines needed to make all state-of-the-art 
chips in use today.128 All of these factors compli-
cate the robustness and security of the AI sup-
ply chain and have recently received significant 
policy scrutiny.129 

Hardware infrastructure. Once these chips are 
produced, their specific arrangement and use in 
AI systems are also essential to the power they 
unleash. Not all these hardware capabilities will 
be housed locally. Cloud computing, a general 
concept in which computing resources are stored 
remotely and can be accessed for a fee, helps 
provision resources. The cloud cheapens com-
putational cost through economies of scale and 

lowers the barrier to entry for AI. This approach 
can allow researchers to access the resources 
they need without buying physical semiconduc-
tors.130 Naturally, this framework renders both 
the AI supply chain and the AI regulatory puzzle 
ever more complex. Pieces of an AI system can 
exist in multiple locations that collectively pro-
vide needed resources. Decentralized computing 
techniques such as federated learning further 
muddy the waters by eliminating centralized 
computing and data storage. This technique 
trains AI systems on a web of disconnected serv-
ers, rather than a centralized server, to eliminate 
data aggregation and preserve privacy.131 Such 
techniques could add regulatory complexity by 
eliminating the ownership link between AI engi-
neers and the data they use.
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6. ALGORITHMS

Artificial intelligence (AI) algorithms serve two 
main functions: inference and learning. The 
goal of models is to produce statistical inference 
based on data—data for training the model and 
new data. For instance, a chess-playing AI system 
must infer the chess move that, from all available 
moves, is most likely to lead to victory. Through 
learning, models improve their performance 
through iterative data analysis; this function is 
known as “training the model” or, more narrowly, 
“machine learning.”

This section introduces algorithms. It dis-
cusses varieties of models, the way they learn, 
the way they perform inference, and the key chal-
lenges inherent in their application and design. 

Algorithms have the following characteristics:

 • Most AI algorithms are varieties of machine 
learning, a technique that produces intelli-
gent systems through learning from input 
data or direct experience. 

 • There are several variations of and approaches 
to machine learning. 

 • Neural networks are perhaps the most com-
mon technique used in designing AI models, 
including current cutting-edge applications. 

 • As with the choice of data, the choice of 
algorithmic technology can both influence 
and bias results. 

 • Many AI systems are opaque, and the pro-
cess that leads to their predictions and deci-
sions is often difficult to explain. AI explain-
ability efforts are underway to render these 
processes transparent and understandable. 

 • To promote AI quality and safety, many pro-
pose AI audits that would assess the biases, 
accuracies, and strengths of systems before 
and while they are deployed. 
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LEVEL 1 UNDERSTANDING
This section addresses the basics of AI algorithms, 
machine learning, and associated technology and 
policy.

Varieties of Machine Learning
Machine learning is a method for iteratively 
refining the process a model uses to form infer-
ences by feeding it additional stored or real-time 
data. As a model takes in more data, the infer-
ences should become more accurate, thus giving 
the impression that the machine is learning. Once 
inferences reach performance goals, the machine 
can be put to practical use, inferring on new data. 
Notably, models are not fixed; learning often con-
tinues after an AI model is put to practical use. 

This section focuses on this dominant algo-
rithmic technique for developing AI models—
machine learning. Although other tools are 
used to create AI models, machine learning is the 
basis for most, if not all, modern systems. This 
technique is so dominant, in fact, that the term 
is largely synonymous with artificial intelligence. 

To create an AI system, engineers must 
select a machine learning algorithm. The type 
of machine learning algorithm used must be tai-
lored to the task at hand. Although there is no 
one-size-fits-all strategy, most algorithms fall 
into one of the following categories: 

1. Supervised Learning. This approach fol-
lows a guess-and-check methodology. Data 
are fed into the model; the model forms a 
trial prediction (a guess) about those data; 
and, critically, that result is checked against 
engineer-provided labels, an answer key 
of sorts.132 If the model’s prediction dif-
fers from the correct label, the model then 
tweaks its processes to improve inference. 
Successive iterations thus improve perfor-
mance over time. This method is useful for 

well-defined objectives and for situations 
needing human terms and understanding. 
For example, supervised learning can teach 
algorithms to label images of fruit with their 
correct English name. Although useful for 
helping models understand data from a 
human perspective, this method’s challenge 
is that models cannot learn what they are 
not trained to do. Their abilities are driven, 
restricted, and biased by the data chosen 
during the training process.

2. Unsupervised Learning. Unsupervised 
learning algorithms are used when desired 
outcomes are unclear. Unlike supervised 
learning, which learns to perform dis-
crete and human-defined tasks, unsuper-
vised learning takes in unlabeled data, sifts 
through them, learns what hidden patterns 
and features they contain, and then clusters 
this information according to found cat-
egories.133 This approach is useful in data 
analysis where humans are prone to miss-
ing important data features and overlook-
ing unobvious correlations. Unsupervised 
learning benefits include looking at data 
through a detailed lens, doing so without 
many human biases and blind spots, and 
analyzing data with greater speed. Operat-
ing without human-provided lenses, how-
ever, can be a challenge. Although an unsu-
pervised algorithm can categorize data, it 
might not understand how to define its dis-
coveries in human terms or match them to 
human objectives.

3. Semi-supervised Learning. Semi-supervised 
learning is a hybrid of supervised and unsu-
pervised learning that combines a portion 
of labeled data on top of a larger amount of 
unlabeled data.134 This approach provides a 
light touch of supervision that can be helpful 



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

34

DATA

ML
Algorithm

FIGURE 6.1: HOW ARTIFICIAL INTELLIGENCE SYSTEMS LEARN

when some guidance is needed to direct the 
algorithm toward useful conclusions. It can be 
useful, for instance, when categorizing writ-
ten text. The unsupervised half might first 
cluster the symbols by their shapes. Then to 
label these groupings, the AI can learn their 
names using a human-provided answer key.135 
The result is an AI model that can recognize 
the alphabet.

4. Reinforcement Learning. Reinforcement 
learning is driven by process rather than 
data analysis. These algorithms use trial 
and error, rather than big data, to figure out 
the process behind a given task. To learn, an 
AI agent is placed in an environment and 
tasked with either maximizing some value 
or achieving some goal.136 A driverless car 
might be tasked with minimizing travel dis-
tance between two points or maximizing 
fuel efficiency. The algorithm then learns 
through repetition and a reward signal. 
Through repeated trials, it tries a process 
and receives a reward signal if that process 
furthered its goal. It then adjusts its code 
accordingly to improve future trials.137 This 
gamified approach is useful when a general 
goal is known, such as maximizing distance 
traveled, but the precise means of achiev-
ing that goal are unknown. The challenge 
is that sometimes AI can cheat by follow-
ing strategies misaligned with human goals. 
For example, if the goal were to maximize 
fuel efficiency of navigating a group of 
naval vessels to a location, perhaps an AI 
might choose to destroy the slowest ships 
to increase total naval speed. Here the AI 
technically finds a more efficient process yet 
diverges from human intention.

In summary, supervised learning produces 
models that yield mappings between data, unsu-

pervised learning produces models that yield 
classes of data, and reinforcement learning pro-
duces models that yield actions to take on the 
basis of data.138 

Learning and Inference
The following are high level illustrations of how 
machine learning and model inference work. In 
the Level 2 section, each of these is presented in 
a more detailed yet still understandable manner. 

Learning. At a high level, how do AI systems 
learn? To illustrate this process, examine how 
a supervised learning algorithm builds its 
intelligence. 

Fundamentally, this process starts with two 
elements (figure 6.1), data and the model one 
wants to train. To kick off the process, the as-yet 
unintelligent model will take in one piece of data 
from the dataset. Although it has not yet been 
refined in any way at this point, the model will 
then attempt an initial prediction based on that 
data. It does so to assess how well it performs so 
that improvements can be made. 



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

35

Once this initial prediction is made, the model 
then needs a benchmark to score how well it per-
formed. There are many types of benchmarks, 
but in the case of supervised learning, one uses 
an answer key of sorts (figure 6.2). Specifically, 
each data point will be given a human-provided 
label that represents the intended correct result. 
Suppose that one’s model is an image recognition 
system. If the training data included an image 
of an apple, it would be labeled with the correct 
term: “apple.” If the model incorrectly produced 
the prediction “pear,” the label would signal to the 
model that a mistake was made.

When the label and prediction differ, this 
incongruity signals to the model that it must 
change. Guided by a mathematic process, the 
model then gently tweaks certain internal set-
tings and knobs called parameters, which are 
the values that shape its analytical processes. 
These tweaks ought to improve the model’s 
predictive abilities for future trials. Note that 
although guided by mathematics, these tweaks 
do not guarantee improvement.

Finally, the algorithm repeats this process 
on the next piece of data. With each iteration, 

the model tweaks its parameters with the hope 
that collectively, these small changes allow the 
model to converge on a state where it can con-
sistently and accurately make high-quality pre-
dictions. Recall that proper training can require 
millions of data points and, by extension, count-
less rounds of training to converge on somewhat-
reliable inferences.

Once the machine learning process is 
complete, the fully trained model can then be 
deployed and perform inference on real-world 
data that it has not seen before.

Inference. Once training is complete, how do 
these models perform inference on never-before-
seen data? As is often the case, there are many 
tools that can be used. As an illustration, however, 
examine the most popular: the artificial neu-
ral network (figure 6.3). This work uses neural 
networks to illustrate AI inference because they 
are behind most modern AI innovations, includ-
ing driverless cars, AI art, and AI-powered drug 
discovery. Just as machine learning has become 
synonymous with AI, many often treat neural 
networks as synonymous with machine learn-

FIGURE 6.2: BENCHMARK MODEL
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ing. Unlike the difference between machine 
learning and AI, however, other approaches are 
still widely used and very popular. Examples 
include regression models, which act to map the 
relationship between data variables; decision 
trees, which seek to establish branching pat-
terns of logic that input data can follow to reach 
a conclusion;139 and clustering algorithms, which 
seek to sort data into clusters based on various 
metrics of data similarity.140

As the name implies, a neural network is 
an attempt to simulate the cognitive processes 
of the brain in digital form. These networks are 
composed of smaller units (the circles in fig-

ure 6.3) called artificial neurons. During the 
training process, each neuron will be tuned to 
find a unique and highly specific pattern in the 
input data that is highly correlative with accurate 
predictions. For instance, a neuron in a network 
designed to identify a face might be tuned to look 
for the visual patterns that represent a mouth, a 
pattern well correlated with faces. These pat-
terns are the basis of the network’s decisions. 

To analyze a given piece of data, the net-
work will first pass that data into a set of neurons 
called the input layer. This is the far-left column 
in figure 6.3. Each neuron in this set will then 
examine the data for whichever patterns it has 

FIGURE 6.3: ARTIFICIAL NEURAL NETWORK

INPUT HIDDEN OUTPUT

Note: Each dot represents an artificial neuron, and each arrow represents a connection between these neurons.
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learned are significant. After this first round of 
analysis, these discovered patterns are then fired 
to downstream neurons. 

When one neuron communicates with 
another, the information it sends is given a 
weight, which tells its neighboring neurons 
the importance of the pattern it has discovered 
for determining the final prediction of the net-
work. Weighting certain patterns gives them 
an outsized influence on the final predictions. 
This approach is useful, because it allows the 
network to prioritize what information is worth 
attention. If a network were trying to determine 
if an image were a face, a freckle might receive 
a low weight because this feature is not highly 
indicative of a face; it could be on an arm, a leg, 
or anywhere else. An eye, however, would receive 
an exceedingly high weight because this feature 
almost perfectly correlates with the prediction 
that an image is a face.141 These weights are one 
of the tunable parameters mentioned previously 
that are used to guide network analysis. Subse-
quent neurons take these weighted patterns and 
use them to find more complex patterns within 
patterns, developing an ever more nuanced pic-
ture of what the data represent. If two neurons 
have each identified an eye, these two features 
can be combined by a downstream neuron into 
the more complex and perhaps descriptive fea-
ture “pair of eyes.”

At the end of this process, all of this informa-
tion will be passed to the output layer of neurons 
that is tasked with determining which prediction 
is best correlated with the total sum of discov-
ered patterns. That prediction will be the final 
output that can be used for further decisions, 
actions, or analyses.

Before moving on, note the advantages of 
this structure. First, this format allows the sys-
tem to divide and conquer. With hundreds, 

thousands, and sometimes millions of neurons 
deployed to look for specific, fine-grained pat-
terns, networks can capture the deep nuance 
and complexity of real-world data. Dividing and 
conquering gives networks both flexibility and 
greater accuracy.

Second, the connections between neurons 
allow for discoveries to be shared and combined, 
deepening analysis. Individual patterns, on their 
own, are often not enough to properly predict 
what data represent. By combining patterns 
through neuron-to-neuron communication, a 
neural network forms a more complete picture. 
To facilitate this, modern networks are often 
structured in layers of neurons, each of which 
takes in past patterns and recombines them in 
new and ever more complex ways. As a result, 
machine learning that uses neural networks is 
often referred to as deep learning,142 a term that 
describes the multiple layers of neurons that data 
must pass through before a final prediction can 
be made.143

KEY CHALLENGES
The key challenges of algorithms are model bias, 
explainability, and auditing of AI.

Model Bias
As mentioned earlier, AI systems are not free 
from human biases. Although data are usually 
the root of many biased outcomes, model design 
is an often-overlooked contributing factor. The 
frame of the problem that engineers are trying to 
solve with AI, for instance, naturally shapes how 
the model is coded. 

For example, trying to design an AI system 
to predict creditworthiness naturally involves a 
decision on what creditworthiness means and 
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what goal this decision will further.144 The mod-
el’s code will reflect this choice. If a firm simply 
wants to categorize data, perhaps a supervised 
learning algorithm can be used to bucket indi-
viduals. If the firm seeks to maximize profit, per-
haps a reinforcement learning algorithm could 
challenge the system to develop a process that 
maximizes returns. These differences in goals 
and model design decisions will naturally change 
outcomes and create qualitatively different AI 
systems. How a model is trained can also affect 
results. A model intended for multiple tasks has 
been found to show different outcomes when 
trained on each task separately, rather than all at 
once.145 Other such variations in design process 
can be expected to yield varying results. 

Mitigating this form of bias can be chal-
lenging and, like data bias, lacks a silver bullet 
solution. Best practices are still developing, but 
suggestions tend to focus on process, emphasiz-
ing team diversity, stakeholder engagement, and 
interdisciplinary design teams.146 

Explainability
Deep learning promotes large algorithms with 
opaque decision processes. Generally, as AI 

models balloon in size and complexity, explain-
ing their decision-making processes grows dif-
ficult. Decisions that cannot be easily explained 
are referred to as black box AI. Large neural 
networks, and their convoluted decision paths, 
tend to fall into this category. As a result, inter-
est has grown in explainable AI, a field that 
involves either designing inherently interpre-
table machine learning models whose decisions 
can be explained147 or building tools that can 
explain AI systems.148 

Some classes of inherently interpretable 
models exist today. For instance, decision trees, 
models that autonomously create “if–then” trees 
to categorize data, can be visually mapped for 
users (figure 6.4).149

Inherently interpretable models, however, 
are limited in accuracy and scale. For models that 
are not inherently interpretable, as are most neu-
ral networks, analytical tools exist. An example 
are tools that can determine what features in the 
input data were most significant in determining 
the model’s conclusions.150 The field is underde-
veloped, however, and cannot provide model-
wide explanations, explain correlations between 
features, or produce necessarily understandable 
explanations.151 

FIGURE 6.4: SAMPLE DECISION TREE

Note: Figure 6.4 is a simplified sample output of how a decision tree data algorithm might classify data by certain features it has learned during the 
training process.
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In many cases, applications of AI may 
require explainability. To abide by the law, an AI 
hiring system may need to prove that its deci-
sions are not based on protected class charac-
teristics. Explainability can also help maximize 
policy effect. Knowing how a geological analysis 
AI is producing decisions could allow officials to 
modify its code, pruning variables falsely corre-
lated with the outcome. 

Auditing of AI
Tangential to explainability is AI auditing. Given 
concerns over fairness, bias, correct design, and 
accuracy, there is significant interest in evaluat-
ing AI systems to ensure that they meet certain 
goals. Proposing AI audits, however, is easier said 
than done. Implementation naturally requires 
clarity of purpose. AI design challenges are 
rooted not only in technology, but also in data, 
the application of technology, and social forces 
imprinted in these systems via biases. Choosing 
which problems to solve and what benchmarks 
to hit is an inherently messy task. As discussed 
earlier in this work, evaluation metrics and 
benchmarks are diverse and application specific. 

At present, technical and ethical standards 
are fragmented with little broad-based con-
sensus. A 2021 Arizona State University study 
found an unwieldy 634 separate AI programs 
dedicated to developing soft law, that is, non-
governmental standards for AI development and 
governance.152 This finding demonstrates that 
consensus has not been reached on the exact 
benchmarks and principles that might be used 
to audit AI. 

Process is another challenge. As a relatively 
new concept, AI audits lack frameworks and 
best practices, and commentators have noted 
that research on testing, evaluation, verification, 

and validation of AI algorithms has not kept pace 
with other subdomains of AI innovation.153 Cur-
rent processes and technologies offer no single 
audit technique that can test for the full range of 
possible errors.

Existing audits use a variety of methods. The 
data used to train algorithms can be audited to 
ensure that they are representative and avoid 
biases that might lead to disparate effects or to 
simply eliminate data extraneous to engineer-
ing goals. Black box testing, where test data are 
fed into systems to analyze behavior, can help 
analyze general accuracy and stress test for cer-
tain undesirable biases. Model code can also be 
analyzed to better understand its process and 
its decision-making.154 This method, however, is 
challenging because code is often complex and 
unwieldy, and the results of that code inherently 
depend on the inputs that are used.

As with all software, AI will be in a constant 
state of flux as updates are made and security 
patches released. Further, not all problems can 
be discovered through a single audit. Some chal-
lenges can be seen only once an AI is deployed in a 
complex human environment. To these ends, the 
National Institute of Standards and Technology 
(NIST) has proposed an iterative audit process 
that audits AI throughout its life cycle, during 
development, during testing, and continuously 
after deployment.155 Repeated scrutiny could 
help catch errors at each stage of the process and 
reinforce design principles to ensure that they 
are always top of mind. NIST’s proposed process, 
however, is still in development. Best practices 
will require time and iteration before broad pro-
cess agreement can be reached.

Each application naturally carries application-
specific performance expectations. The issues 
faced by a medical AI system will naturally differ 
from those of a music-generation AI.156 Deter-
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mining the questions that must be asked, the pro-
cesses to be followed, and the issues to be tested 
will therefore require diverse thought and sub-
ject matter expertise. As with the field, AI audits 
depend on application. 

LEVEL 2 UNDERSTANDING
The previous section discusses machine learn-
ing and AI inference at a high level. This section 
discusses how an individual neuron might take in 
data and spot patterns within those data to pro-
duce good predictions. The general principles 
are illustrated by use of the common supervised 
learning process and the perceptron, a simple yet 
powerful artificial neuron model (figure 6.5). 

Figure 6.5 is a diagram of an artificial neuron. 
On the left, the blue circles represent the input 
data for analysis. On the right, the black arrow 

represents the final prediction that the model 
will output for the user. The core magic of this 
model, however, is the center. There, one finds 
several elements that, while perhaps complex 
looking at first, are relatively simple in operation.

An example follows.

Input
Start at the far left with the blue data inputs. For 
this example, suppose one operates a bank and 
is trying to train an algorithm to categorize loan 
applicants as either prime or subprime borrow-
ers. Now suppose the applicants must submit 
four categories of data: 

1. Whether they hold a savings account, repre-
sented by a 1 (yes) or a 0 (no)

2. Their number of dependents 

FIGURE 6.5: MODEL OF A PERCEPTRON, A FORM OF ARTIFICIAL NEURON
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3. Their number of monthly bank deposits

4. Their income bracket, represented by 1–7, 
with 7 being the highest

For this illustration, suppose that the 
loan application for the neuron to analyze is as 
follows:

1. Savings account: 1

2. Number of dependents: 0

3. Number of monthly deposits: 2

4. Income bracket: 7

Data Adjustment and Activation
Detecting patterns in data is actually a process 
of transforming input data into an output that 
represents a meaningful pattern. This is done 
in two steps. First, the neuron manipulates the 
input data to amplify the most important infor-
mation and sums the data together. Next, it 
passes this sum to an activation function. In a 
realistic sense the activation function represents 
the rules that transform the input data into the 
output decision. In many cases, however, it can 
more or less be thought of as an algorithmic 
trigger that needs to be tripped for the neuron 
to activate.157 The activation function compares 
the manipulated data to certain criteria, which 
dictate the final output that the neuron will pro-
duce. In our simple prime-or-subprime case, 
this criterion is a threshold number: If the sum 
is higher than this threshold, the neuron sends 
a result indicating that this is a prime borrower. 
If not, it indicates subprime. Although in this 
case this result is the neuron’s final decision, 
note that in complex neural networks this result 
might just be one of many patterns identified in 
service of the final decision. 

Elements of an Artificial Neuron
Next, examine the tools that this neuron uses to 
adjust the data and calculate the final result. Sur-
prisingly, this can be quite simple. In many cases, 
the math involved uses only simple arithmetic. 

Once the data enter the neuron, they 
encounter the green squares in figure 6.5; these 
represent a weight. Using weights, the neuron 
can amplify a certain element of the input data 
through multiplication. For instance, it is likely 
that the income bracket data in this example is 
strongly correlated with prime borrowers; there-
fore, this feature of the data should be amplified 
in the final decision. To do so, one multiplies that 
value by a weight to make it bigger, giving it more 
significance. 

Weights are a useful tool because they allow 
the truly important elements of the data to have 
an outsized effect on the result. Crucially, weights 
are a parameter that can also be tuned. The 
more important the value, the bigger a weight 
multiplier it will receive. Conversely, unimport-
ant data can be eliminated by multiplying them 
by 0. Finding the correct weightings of data val-
ues can be seen as one of the core elements of a 
neuron’s intelligence. 

After the data have been weighted, they are 
added to a bias value. The bias acts as the thresh-
old, mentioned previously, that the weighted 
data must surpass for the neuron to activate. Put 
another way, the bias puts a thumb on the scale 
of the result by adjusting what causes the neu-
ron to trigger.158 For instance, if prime borrowers 
should be rare, one might subtract a bias value, 
making it harder for the summed weighted data 
to trip the activation function.

After the data have been adjusted, they are 
then fed to the activation function. In the exam-
ple neuron’s case, if the final value adds up to 1 or 
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greater, the neuron communicates a prime result; 
if not, it indicates subprime. 

Calculation of the Result
This section puts together each element to see 
how it affects the data. As mentioned earlier, to 
produce a result, the neuron will simply take the 
input data—the loan application—multiply each 
category by its weight, and add these results 
together with the bias value. 

In this case, start by weighting the data. The 
data values are in blue, their weights in green, the 
bias in purple, and their sum in red: 

Result = 2 * (savings account) + 10 * 
(number of dependents) + 3 * (number 
of monthly deposits) + 1 * (income 
bracket) – 15.

Each of data category is multiplied by a 
weight consistent with the importance of that 
data element in making final predictions. Run the 
data through this equation:

2 * (1) + 10 * (0) + 3 * (2) + 1 * (7)

The weighted data sum is 15.
Next, add the bias. Remember that the bias 

is essentially the threshold that the data need 
to surpass for the neuron to activate. Accord-
ing to the rules prescribed by the activation 
function, these values must be greater than or 
equal to 1 for the neuron to indicate a prime 
value. The result is in red, the weighted sum 
from the previous step is in black, and the bias 
is in purple: 

Result = 15 – 15

The result is 0. Therefore, the neuron 
chooses to categorize the data as subprime.

The Learning Process
For the sake of illustration, suppose that the 
model is currently in training and this result is 
not correct. The original data show that the indi-
vidual is in the highest tax bracket and likely a 
prime borrower, yet the model in its current form 
classified the person as subprime. Thankfully, 
machine learning algorithms can learn from their 
mistakes and revise their weights and biases to 
produce better predictive outcomes. 

How might this work? First, the algorithm 
must realize there was a mistake. In supervised 
learning, to train a model, engineers will use 
a dedicated set of training data159 paired with 
labels that act as an answer key. In this case, the 
model will compare its result to the key and find 
that it made a mistake. This result will prompt 
the algorithm to adjust its parameters. 

These changes are often made using edu-
cated guesses, guided by mathematics. There 
are a variety of methods, but usually the algo-
rithm will base its actions on how much its pre-
diction diverged from the correct answer. This 
is called the loss. That value is then used to 
adjust each of the weights up or down depend-
ing on whether they are causing the neuron 
to undershoot or overshoot the correct result. 
The goal is to minimize this loss value in future 
iterations.160 

For the sake of simplicity and sanity, the 
somewhat complicated linear algebra involved 
here is not discussed. The key takeaway is that to 
improve, the algorithm adjusts its weights based 
on how much it erred, nudging the model in the 
direction of the correct answer. Each adjustment 
is not perfect, but a mere educated guess. After 
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enough trials, however, the process helps mini-
mize loss and optimizes the algorithm. 

Back to the example, suppose the model has 
subsequently altered its weights to make better 
predictions: 

Result = 2 * (savings account) + 1 * 
(number of dependents) + 3 * (number 
of monthly deposits) + 10 * (income 
bracket) – 15

Using this equation, the data would produce 
a result of 63. This is obviously greater than 15, 
the threshold that the results must surpass for 
the activation function to signal a prime result. 
The model has now learned when to classify this 
individual as a prime borrower. 

Training Considerations
Once a network is properly trained, its results 
are tested using a dedicated set of test data. This 
test set includes unused data to assess accuracy 
and flexibility. Test data help avoid the problem 
of overfitting, a situation where a model is tuned 
so precisely to the training data that it cannot 
adequately account for unexpected variations in 
new data. The opposite problem is the challenge 
of underfitting, a situation where the model has 
not been properly tuned to the problem because 
of poor data or design, and accuracy suffers. Both 
can be detected using test data. When designing 
models, engineers must strike a balance between 
overfitting and underfitting.

Model Tuning
Recent research suggests that adding greater 
depth and more neurons does not exhibit dimin-
ishing returns on predictive performance.161 

That said, simply building increasingly massive 
models is not always feasible given limitations in 
computing power. Model designers must there-
fore size their models to fit the data and compu-
tational power at their disposal. For instance, 
a programmer with just a simple laptop CPU 
wouldn’t be able to design a model with hun-
dreds of thousands of neurons. Insufficient data 
also constrain model size. The bigger the model, 
the more data it will need to be well tuned. If an 
engineer does not have enough data, he or she 
would choose model alternatives that are smaller 
and differently resourced. 

Beyond the size and scope of models, engi-
neers also work to tune a model’s hyperparam-
eters, the settings that control the model’s func-
tion.162 An example of a hyperparameter is the 
learning rate. This rate dictates how large the 
tweaks to the model’s weights will be each time 
that it makes an adjustment. A higher learning 
rate increases training speed at the cost of accu-
racy, and a lower training rate decreases training 
speed, with accuracy gains. The chosen settings, 
as with model size, depend on the engineer’s spe-
cific resources and goals.

Finally, the engineer must also choose the 
correct model. Not all models are equal, and each 
comes with different strengths. The engineer 
must choose the best model for his or her goals. If 
a model for a given task does not exist, engineers 
can of course develop their own. That said, the 
majority of machine learning engineering relies 
on prefab models found in numerous librar-
ies, many of which are free and open source. 
For example, the scikit-learn library includes 
a multitude of models that can be freely used 
and implemented using the Python programing 
language.163

Note that most AI engineering is unscien-
tific. Rules of thumb have come to dominate AI. 
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There are no set rules that govern the specific 
number of neurons required, for instance. This 
adds further bias to AI. These algorithms, much 
like data, are reflections of the skill and goals of 
engineers. These systems are not perfect, nor are 
they scientific. They can, however, still produce 
highly accurate results. 

Model Variety
The neuron illustration presented specifically a 
feed-forward neural network, a classic form 
that takes in data and directly maps them to a 
specific output.164 For the prime-subprime cat-
egorization task, this process worked perfectly. 
However, not all tasks are quite so straightfor-
ward. Some data, such as text, depend on complex 
relationships. The placement of a given word 
in a sentence depends not only on the words 
before it, but also on those that follow. Ana-
lyzing a sentence requires a network that can 
both analyze each word sequentially and keep 
track of how each word fits into the context of 
the sentence. Even more complexity enters the 
picture when neural networks are applied to 
generative tasks, that is, when they are asked to 
produce text, paint pictures, write songs, and so 
forth. These complex tasks are not simple cat-
egorization exercises. As such, numerous tools 
and models have been developed to augment the 
basic neural network structure and account for 
the unique complexities that come with each 
type of task. 

The following is a short list of some of the 
dominant forms of neural networks and the tools 
used by these networks to produce high-quality 
results. Given the dynamism of the field, this list 
cannot detail all types and combinations of neu-
ral networks, nor can it predict which may fall 
out of favor. 

Generative adversarial neural networks (GANs). 
A GAN is a training model that uses two separate 
neural nets that compete against each other to 
learn and improve. One produces fake data trying 
to trick the other model into misclassifying them 
as real, while the other is competing to improve 
its abilities at distinguishing these fake data from 
the real data. This process creates an arms race 
of sorts, with both models adjusting themselves 
to improve their ability to produce fake data that 
look real and their ability to distinguish real from 
fake, respectively.165 Theoretically, both models 
improve, and this refinement results in the abil-
ity to produce high-quality artificial data. This 
method is widely useful in applications in which 
unique data must be generated, including AI-
created art, images, video, and deep fakes. 

Convolutional neural networks (CNNs). CNNs are 
neural networks used in image or video analysis. 
These models uniquely use convolutional lay-
ers, which act as data filters trained to spot and 
separate patterns that are highly correlated with 
a specific result. The result from these layers sim-
plifies data and accentuates the most important 
features.166 For example, if an algorithm is trained 
to recognize dogs in images, a convolutional layer 
may be trained to specifically find the pixel data 
patterns that form floppy ears. If this layer spots 
this pattern, there is a high likelihood that the 
image is indeed a dog. Overall, these layers act 
to break down images into their component pat-
terns and unlock greater predictive powers for 
neural nets.

Recurrent neural networks (RNNs). These 
networks are defined by their ability to 
“remember.”167 As data flow through an RNN, 
not only are they analyzed on their own merits, 
but also their qualities are knit together and com-
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pared to the data that came before, allowing the 
network to see patterns over time. This tem-
poral analysis quality has applications in time-
dependent data such as video or writing. 

Transformers. A model class that arrived in 2017, 
it has since been widely applied to complex tasks 
such as natural language processing. Transform-
ers’ key selling point is their attention mecha-

nism, which allows the model to “pay attention” 
to key features and remember how those features 
in the data relate to others.168 This quality allows 
these models to treat data as a complex whole, a 
characteristic that is essential for any task that 
requires understanding over time, such as read-
ing text. The basis for many foundation models 
today is transformers. 
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7. CONCLUSION: THE POLICYMAKER’S CHALLENGE

While the goal of this introduction to 
AI is simplicity, some may find the 
staggering breadth of AI unwieldy. 

AI’s wide scope is a natural consequence of its 
general and often ill-defined nature. Recall that, 
fundamentally, AI is a normative goal. As with 
any goal, it can be defined in a variety of ways 
depending on the user and the context. One goal 
might be to wield and design AI systems to max-
imize safety, another might involve minimizing 
bias, and a third perhaps would prioritize liberal-
ism. Such general goals only grow more specific 
and varied as systems are designed and applied in 
application-specific contexts. 

The fundamental challenge for policymak-
ers will be recognizing this diversity and under-
standing that not all AI goals will coexist peace-
fully, nor will they necessarily match the goals 
of policymakers. Any regulation or AI-related 
policy will naturally involve a normative choice. 

What should AI look like, what should it do, and 
how should it be used—that is, what goal or set of 
goals are encouraged or allowed?

Diversity is perhaps the best first step toward 
meeting this difficult challenge. Only through 
application- and sector-specific knowledge can 
the full range of potential AI goals, applications, 
and issues be understood. Meeting the challenge 
will require a representative breadth of policy-
makers to understand AI. This general-purpose 
technology is also a general-purpose policy issue. 

Having peeked under the AI hood, readers 
should have a technical starting point that can be 
customized and applied to each given sector and 
field. Today, AI systems are changing—and per-
haps even transforming—many fields. With such 
potential, it is incumbent on all policymakers to 
dig in, understand these concepts, and grapple 
with the diversity of these impactful systems.  



  MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

47

GLOSSARY

Accuracy: An evaluation metric that measures 
the reliability of a system’s inferences.

Activation function: The mathematical func-
tion that transforms data inputs into outputs. 
This both shapes the final predictions that are 
made and serves as the algorithmic trigger that 
needs to be tripped by input data for a given pre-
diction to be made.  

Adversarial examples: Data inputs maliciously 
designed to trick AI systems during inference.

Adversarial machine learning: Refers gener-
ally to the study and design of machine learning 
cyberattacks and defenses.

AI alignment: In the context of artificial general 
intelligence, alignment of AI systems refers to 
their correspondence with generally accepted 
human values (do not harm, do not kill, protect 
the vulnerable, allocate human rights equitably, 
and so on).

AI chips or AI accelerators: A range of chips 
designed specifically for the unique processing 
needs of AI.

AI triad: The three primary “input” technolo-
gies that yield artificial intelligence: microchips, 
data, and algorithms. 

Algorithm: A logical sequence of steps to accom-
plish a task such as solving a problem. 

Alignment imbalance: A state in which AI is 
generally misaligned with human values. This 
imbalance supposes that AI systems can possibly 
be balanced with human values. However, imbal-
ance may be inherent to all AI systems and baked 
into their design. 

Application-specific integrated circuits 
(ASICs): The fastest and least flexible form of AI 
chip. ASICS are single-purpose chips and cannot 
be rewritten; the algorithms they use are hard 
wired into their silicon. 
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Artificial data: Data that are artificially created 
but still thought to be generally representative 
of a problem. Training AI on artificial data can 
supplement real-world when data are poor. 

Artificial general intelligence: A general-
purpose AI system that can adapt and learn any 
task. It is not designed for a specific narrow pur-
pose or set of purposes.  

Artificial intelligence (AI): The goal of auto-
mating tasks normally performed by humans. 
To reach this goal, one uses “machine-based 
system[s] that can, for a given set of human-
defined objectives, make predictions, recommen-
dations or decisions influencing real or virtual 
environments.”169

Artificial narrow intelligence: AI built for a 
narrow purpose such as a specific application. 
This AI can do one or a few tasks with high accu-
racy, but it cannot transfer to other applications 
outside of its design mandate. 

Artificial neural network (ANN): A type of 
model formed from networks of interconnected 
artificial neurons. Neurons take in data, divide 
that data, and parse these divisions to discover 
patterns. Patterns are then assembled to form 
increasingly advanced patterns and ultimately 
inform the network’s final predictions. 

Artificial neurons: Individual components of 
ANNs that take in data and look for specific pat-
terns in that data that they have learned are sig-
nificant during the training process.  

Bayesian methods: Models that are coded with 
prior information that provides context and 
shrinks the overall learning task and, by exten-
sion, the needed training data. 

Benchmarks: Common datasets paired with 
evaluation metrics that can allow researchers to 
compare the quality of models. 

Bias: Defined generally as the difference between 
desired outcomes and measured outcomes. Often 
it refers to human biases inherited in AI systems 
through model or data design choices.  

Bias value: The threshold that the weighted data 
must surpass for a neuron to activate. Mathemat-
ically, this serves as the intercept that orients the 
activation function toward the “shape” of reality. 

Big data: Big-data AI systems are trained on 
large, representative, and diverse datasets that 
are expected to capture all the corner cases and 
details of a given problem. The theory is that by 
training an AI system on such a dataset, the sys-
tem should hopefully capture and learn all the 
needed details of a given problem. 

Binary: A numerical system that represents val-
ues in series of just 1s and 0s. Most data in com-
puter science and artificial intelligence are rep-
resented in this form.   

Bit: The smallest unit of data that represents a 
binary choice between a 1 and a 0. 

Black box: A term that refers to the often-opaque 
decision-making processes behind deep neural 
networks.

Byte: A data unit the size of 8 bits. 

Central processing units (CPUs): A type of 
general-purpose chip designed to handle all stan-
dard computation. 

Circuits: Electronic components linked together 
to enable certain computational functions such 
as addition, subtraction, or memory storage.
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Cloud computing: A general computing concept 
in which computing resources (both memory 
and processors) are stored remotely.

Code: The set of instructions given to a computer 
system.

Computer program or software: Code for the 
operation of a computer application. 

Convolutional neural networks (CNNs): A 
form of neural network that uses convolutional 
layers, which act as data filters trained to spot 
and separate patterns that are highly correlated 
with a specific result. These layers simplify data 
and accentuate the most important features. 
CNNs can be useful in many applications such as 
image analysis, financial time series analysis, and 
natural language processing.

Data: In the context of computer science, data 
are pieces of discrete information that can be 
encoded, stored, and computed. 

Data cleaning: The process by which data are 
prepared for use by an AI algorithm. 

Data poisoning attacks: Attacks on AI systems 
caused by the malicious manipulation of data. 

Data standards: Industry and application-
specific standards that dictate in certain circum-
stances what data must be recorded and how that 
data must be recorded. 

Data warehouses: Large, centralized ware-
houses holding hundreds of servers on which 
vast lakes of data are stored and large-scale com-
putations are run. 

Deep learning: A type of machine learning 
that specifically uses deep, multilayered neural 
networks.

Deposition: A process used in chip fabrica-
tion that blankets chips with materials to add 
components.

Dopants: Intentional impurities that lace the 
silicon in transistors, changing when and how 
transistors switch between conducting or insu-
lating electric current.  

Electronic design automation: The software 
used by hardware engineers to design computer 
systems and chips. 

Etching: A process used in chip fabrication that 
uses chemicals to remove unwanted material and 
shape the design of the chip.

Evaluation metrics: Metrics that can be used to 
assess AI system quality. These are diverse and 
the metrics selected should match application 
needs and engineering goals. 

Execution units: Microprocessor subsystems 
that package related circuits together with mem-
ory and other tools to enable basic functions. 

Explainable AI or white box AI: An emerging 
class of AI that seeks to provide explanations of 
how the system’s decisions and predictions are 
made. 

F1 score: An evaluation metric that assesses how 
well a model minimizes both false negatives and 
false positives. 

Feed-forward neural network: A type of 
machine learning in which data flow in one 
direction through the network’s layers.

Field-programmable gate arrays (FPGAs): 
Task-specific chips that can be written and 
rewritten for a single-purpose algorithm. Given 
their task specificity, FPGAs are faster than 
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GPUs. They are still slower than application-
specific integrated circuits, because their ability 
to be rewritten comes with certain speed costs. 

File formats: A type of data standard that defines 
how data are digitally represented.  

Foundation models: Large-scale machine learn-
ing models trained on broad sets of data that can 
be easily adapted to a wide range of downstream 
tasks.

General-purpose technology: Innovations 
that “[have] the potential to affect the entire eco-
nomic system.”170,171

Generative adversarial neural networks 
(GANs): A form of neural network in which 
competing agents seek to outcompete each other. 
Through competition, each party improves, ulti-
mately improving its overall predictive qualities. 
GANs are noted for their generative modeling, or 
creative, abilities. This means specifically they 
use pattern recognition to predict how to best 
generate novel output content such as images. 

Graphics processing units (GPUs): Limited-
purpose processors that were originally designed 
for graphics processing but that have been reap-
propriated for AI. GPUs excel at matrix multi-
plication, a function central to AI, giving them 
speed advantage over traditional CPUs. 

Hyperparameters: High-level settings that can 
be adjusted by engineers to control the model’s 
functions. 

Inference: A probabilistic guess made by an 
AI system on the basis of patterns or trends 
observed in data.

Inherently interpretable: Models that by 
design are simple to interpret or understand.

Integrated circuits or microprocessors: 
Devices that can perform basic operations of 
software commands. 

Internet of things (IoT): Networks of diverse 
internet-connected devices. IoT devices often 
act as key data inputs to AI systems. 

Layers: Collections of neurons that data must 
pass through simultaneously in a network. 

Libraries: Databases of functions that can be 
plugged into computer programs. There are 
many free-to-use libraries of machine-learning 
models that are commonly appropriated for AI. 

Loss: In machine learning, this is the mathemati-
cal difference between the correct outcome and 
the desired outcome. 

Machine learning: A method for iteratively 
refining the process a model uses to form infer-
ences through feeding it stored or real-time data.

Memory units: Devices that use transistors and 
other components to store information. Memory 
units can be subcomponents of a chip or stand-
alone chips depending on their size and function. 

Model: The software configuration that results 
from machine learning. Once fed new data, the 
model can produce inferences in the form of pre-
dictions, decisions, and other outputs.172

Moore’s law: An observation stating that the 
number of transistors per chip doubles roughly 
every two years. More than an empirical observa-
tion, it was an expectation that came to organize 
the efforts of the microchip industry and was a 
self-fulfilling prophecy for a long time.

Overfitting: A situation where a model is tuned 
so precisely to the training data that it cannot 
adequately account for new data. 
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Parallelism: The ability of a chip to perform cer-
tain functions in parallel rather than sequentially, 
allowing faster processing.

Parameters: The values that shape a model’s 
analytical processes.

Photolithography: A process used in chip fab-
rication by which light is shined through a “cir-
cuit stencil” known as a photomask, printing the 
design onto the chip’s wafer. 

Precision: An evaluation metric that evaluates 
how many positive results are true positives.

Recall: An evaluation metric that states the per-
centage of a model’s negative results that are true 
negatives. 

Recurrent neural networks: Neural networks 
defined by their ability to remember past infor-
mation and connect that information to future 
data. This “memory” is necessary in complex, 
time-dependent data such as video analysis, nat-
ural language processing, and other applications.

Reinforcement learning: A type of machine 
learning that uses trial and error to learn the best 
process to achieve a given goal. To learn, an AI is 
placed in a scenario and tasked with maximiz-
ing a reward or achieving a goal. When its pro-
cess improves, it receives a rewards signal that 
instructs it to reinforce the processes that led to 
that improvement.

Representation: The concept of translating 
observable objects (images, words, sounds) into 
digital code.

Semiconductor devices: A class of devices that 
uses the unique switching properties of semicon-
ductor materials to alert the flow of electricity. 
Example devices include LEDs and transistors. 

Microchips, integrated circuits, and micropro-
cessors are all made of semiconductor materials. 

Semiconductor materials: Materials such as 
silicon that can act as either insulators or con-
ductors of electricity. 

Semi-supervised learning: A hybrid of unsu-
pervised and supervised learning in which 
a portion of labeled data are provided to the 
model on top of a larger amount of unlabeled 
data. This approach can provide a light touch of 
supervision.

Small data: An alternative strategy to big data 
approaches that uses a variety of techniques to 
train AI algorithms on smaller datasets when 
information is poor, lacking, or unavailable. 

Stale data: Outdated data that are no longer rep-
resentative of a given problem. 

Stochastic parrots: A term that describes AI 
systems that randomly rearrange and regurgitate 
learned data rather than provide true insight or 
understanding. 

Superintelligence: An AI system that is smarter 
than humans in almost every domain

Supervised learning: A type of machine learning 
that uses a guess-and-check methodology by which 
the model takes in data, makes a prediction about 
that data, and compares that prediction to a labeled 
answer key. If the inference is incorrect, the algo-
rithm adjusts itself to improve performance. 

Test data: The unique set of data reserved for 
testing the model for final accuracy and effective-
ness used in machine learning. Test data must be 
separate from the training data. 

Three Vs: Key characteristics that define the 
quality of a dataset. Variety refers to the diversity 
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of the data. Volume refers to the size of the data-
set. And velocity refers to the usability and speed 
by which the data can be applied. Other publica-
tions may list four, five, or even six Vs. The term 
tends to vary depending on context and purpose. 

Training: The process by which models take in 
stored or real-time data to refine their processes 
and improve their inferences.  

Training data: The unique set of data reserved 
for the model training process in machine 
learning. 

Transfer learning: One small-data approach 
that allows models to inherit learning from pre-
viously trained big-data models. 

Transformers: An emerging class of neural net-
works that uses a so-called attention mechanism 
that allows the model to pay attention to key fea-
tures and remember how those features in the 
data relate to others.

Transistor: A device built from a combination 
of silicon and dopants, impurities that alter the 
properties of conductivity to enable engineers’ 
discrete control over electric currents.

Underfitting: A situation where a model has not 
been properly tuned to the problem because of 
poor design or data quality.

Unsupervised learning: A type of machine 
learning that focuses on sorting unlabeled, 
unsorted data and discovering patterns in those 
data. This method does not focus on specific out-
comes but rather on discovering the meaning and 
patterns in data. 

Validation: The process by which the engineer 
uses a dedicated validation dataset to tune the 
hyperparameters of the model. Generally, this is 
done after training but before testing. 

Validation data: The unique set of data used 
during machine-learning validation. These 
data are used specifically to tune the model’s 
hyperparameters. 

Wafer: The thin disk of semiconductor materials 
that acts as the base of a computer chip. 

Weight: A numerical value that amplifies or sup-
presses the importance of a pattern found in data. 
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