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Abstract

This introduction seeks to equip a diversity of policymakers with the core con-
cepts needed to identify, understand, and solve artificial intelligence (AI) policy 
challenges. AI is best conceived as an often ill-defined goal, not a monolithic 
general-purpose technology, driven by a diverse and ever-evolving constellation 
of input technologies. The document first introduces a sample of AI-related chal-
lenges to ground the importance of understanding this technology, the diver-
sity of issues it will create, and its potential to transform law and policy. Next it 
introduces AI, key terms such as machine learning, and ways that AI progress 
can be assessed. Finally, it introduces and explains how three key input technolo-
gies—data, microchips, and algorithms—work and make AI possible. These core 
technologies are known as the AI triad. Intended to serve a variety of audiences, 
these explanations are presented with multiple levels of depth. Technical con-
cepts are tied to relevant policy questions, thereby guiding the application of this 
knowledge while illustrating the value of understanding this emerging technol-
ogy beyond a surface level. This introduction to AI appears both in written form 
and as an ever-evolving website supported by the Mercatus Center.
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1. Introduction

In 2022, the release of ChatGPT took both 
the public and policymakers by surprise. 
Accessible, conversationally fluid, and 

helpful across a breadth of domains, artificial 
intelligence (AI) finally started to distantly 
resemble sci-fi promises. We are clearly at an AI 
inflection point, but what has changed? First is 
scale. Near the turn of the current decade, three 
forces converged to enable large, massively intel-
ligent models: the flexibility of new, highly scal-
able algorithmic techniques, big data amassed at 
scale to provide necessary knowledge, and the 
wickedly fast chips to handle AI’s highly inten-
sive data and computation. Second, and perhaps 
more important, is breadth. In 2021, Stanford 
University’s Human-Centered Artificial Intel-
ligence Institute wrote about a broad, profound 
AI “paradigm shift” arising from these conver-
gent technologies.1 The result of AI’s new scale 
was a new class of so-called foundation mod-
els—large-scale systems trained on broad sets of 
data that can be easily adapted or fine-tuned to 

a wide range of downstream tasks.2 Armed with 
computational heft and flexibility, these mod-
els offer many of the tools needed for AI to step 
beyond a mere curiosity. 

Even with a measure of skepticism toward 
the AI hype, recent developments illustrate that 
the impact of AI is simultaneously emerging 
across a multitude of domains: 

• AlphaFold predicts the structure of nearly 
every known protein—a critical new tool in 
biological and medical research.

• Midjourney’s art generator produced near-
human-quality works. 

• AlphaTensor discovered a more efficient 
approach to matrix multiplication than 
previously known, and this could soon 
speed up a wide range of applications.

• Insilico Medicine’s proprietary systems 
created a potential treatment for idiopathic 
pulmonary fibrosis, the first AI drug to 
enter FDA phase II human trials.3 

https://www.newscientist.com/article/2330866-deepminds-protein-folding-ai-cracks-biologys-biggest-problem/
https://arstechnica.com/information-technology/2022/08/ai-wins-state-fair-art-contest-annoys-humans/
https://www.deepmind.com/blog/discovering-novel-algorithms-with-alphatensor
https://www.cnbc.com/2023/06/29/ai-generated-drug-begins-clinical-trials-in-human-patients.html
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• MūtCompute discovered an enzyme that 
breaks down polyethylene terephthalate, a 
common plastic that represents 12 percent 
of global waste.

• GraphCast provides 10-day weather pre-
dictions with state-of-the-art accuracy in 
under a minute.4

• OpenAI’s ChatGPT produces logically 
complete text and image responses to user 
queries.5 

Note the range of fields. AI is being applied 
everywhere—from the arts and linguistics to 
chemistry and pure mathematics. It is flex-
ible. The tools that make AI possible represent 
a new class of general-purpose technologies, 
innovations that “[have] the potential to affect 
the entire economic system.”6 Just as previous 
general-purpose technologies such as electric-
ity transformed society, AI systems are changing 
many domains—from science to entertainment, 
from education to health, from national defense 
to the financial system—and could even radically 
transform them. 

Some critics claim that these advances in AI 
are skin deep, mere “stochastic parrots” that 
randomly rearrange and regurgitate data.7 They 
may look effective, critics argue, but AI lacks any 
true understanding, common sense, or ability to 
explain its decisions. There is ample room for 
debating the nature of true intelligence, and crit-
ics will err dramatically if they dismiss AI outright 
as unimportant. The future of AI is unclear, but 
the increasing breadth and scale of AI applications 
demands attention from an increasing breadth of 
decision makers. 

Yet policymakers are often not keeping pace.
Policy decisions about AI made today may 

hold long-term importance for this technology’s 
future. While knowledge is no “good government 

cure-all,” it is a necessary first step for thoughtful 
decision-making. In this work, we hope to impart 
a basic understanding of AI design, application, 
and policy challenges to inform policy-minded 
readers. 

The Tip of the AI Policy Iceberg
“However brilliant computer engineers may be 

when facing down technological challenges, they 
rarely have real insight into what’s happening out-

side the digital bubble.”8

—Jacob Helberg, former Google news policy lead;  
commissioner, US-China Economic and  

Security Review Commission

What do we lose without a diversity of experts 
engaging with AI in depth?

In summer 2022, AI image generation 
seemed to appear out of nowhere. With the release 
of DALL-E mini, an open-source approximation 
of OpenAI’s DALL-E 2 art generator, AI art was 
suddenly accessible to everyone. Delighted by 
the often strange yet sometimes human-quality 
works, consumers flocked to the application and 
flooded social media with bizarre AI creations. 
Powerful enough to wow yet amusingly inaccu-
rate, DALL-E mini introduced many to a glimpse 
of the possibilities of image generation while 
comforting others with the understanding that 
generative AI was still out of immediate reach. 
Yet, in just a matter of weeks, things changed. 
OpenAI broadened access to the full version of 
DALL-E 2, Midjourney generated covers for The 
Economist,9 and Stability AI released the power-
ful Stable Diffusion— in just one summer these 
wonky generators suddenly proved capable. Since 
then, generative tech has matured and broadened, 
perfecting images while making headway in video, 
audio, and video games. 

https://news.utexas.edu/2022/04/27/plastic-eating-enzyme-could-eliminate-billions-of-tons-of-landfill-waste/
https://deepmind.google/discover/blog/graphcast-ai-model-for-faster-and-more-accurate-global-weather-forecasting/
https://openai.com/blog/chatgpt/
https://www.simonandschuster.com/books/The-Wires-of-War/Jacob-Helberg/9781982144449
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This sudden burst of innovation caught 
policy officials off guard. In a matter of weeks, 
copyright, intellectual property (IP), and other 
media-relevant officials had to shift gears toward 
confronting an unexpected slew of novel AI-
based issues far from consideration just months 
earlier. One notable controversy: artistic rights. 
To develop these systems, engineers scraped 
volumes of preexisting human-crafted works 
from galleries across the web, leaning on those 
data to hone their model’s image-crafting abili-
ties. Often, this process was undertaken without 
artistic consent. As a result, prominent digital 
artists found that this software could produce 
near-perfect renditions of their works, allowing 
anyone to appropriate signature styles.10 This 
situation raised challenging questions of usage 
rights, privacy, personal autonomy, and copy-
right infringement. Since 2022, the controversy 
has led to growing artistic agitation. Online, cre-
ators have attempted to disable image generators 
through intentionally corrupted data.11 In indus-
try, the 2023 Hollywood strikes struck back at 
potential corporate application. In government, 
policy remains under deep IP uncertainty. 

At the time, many affected artists viewed 
this situation as potentially existential. For those 
at the top levels of AI policy when DALL-E first 
arrived, however, it was off-radar. Interviewed 
on the effect of image generators in late 2022, one 
member of the National Artificial Intelligence 
Research Resource Task Force, the nation’s top 
AI policy advisory panel, had not even heard of 
the issue.12 It’s likely the broader task force was 
also in the dark. 

The reason? AI had been treated as a tech-
nical specialty. Because the task force was com-
posed almost exclusively of computer scientists, 
one is hardly surprised that it was not thinking 
about artistic rights questions. Had media policy 

officials recognized AI’s coming general- purpose 
breadth, perhaps those in the arts would have 
been engaged in policy and had their voices 
heard in the design of potential solutions. A sec-
ond challenge is prediction. Breadth of expertise 
cannot sacrifice depth of technical knowledge. 
Only by understanding the technical progress of 
generative AI—how data are scraped and used 
to train AI and what type of data are needed—
could those concerned about artistic rights have 
perhaps predicted this issue and have begun to 
consider appropriate action. Many generators 
are now open sourced, meaning their code is no 
longer controlled by a single entity, and affected 
artists may have little recourse. Solving this issue 
would have required forward thinking, knowl-
edgeable officials aware of technical trends, and 
dedicated AI policy work in media and artistic 
rights policy. In AI policy, such specificity is often 
missing. 

The Importance of Deeper 
Understanding 

To manage impactful technology, we must 
broadly equip officials. The National Security 
Commission on Artificial Intelligence recently 
wrote that “AI … promise[s] to be the most pow-
erful tools in generations for expanding knowl-
edge, increasing prosperity, and enriching the 
human experience.”13 All policy areas will be 
touched and even transformed by AI (see box 1.1). 
The sudden explosion in AI progress demands a 
new class of policymakers who not only under-
stand AI, but also understand it in depth. Just as 
all policy experts need a working knowledge of 
economics, all will need a working understand-
ing of AI. 

Traditionally, those who have engaged with 
AI outside computer science have done so only 



BOX 1.1. AI touches all federal departments

Artificial intelligence (AI) has a broad effect. One can see how it is actively affecting policy in each federal depart-
ment and across disparate policy areas:

• Agriculture: The US Department of Agriculture is researching the use of AI to promote food safety.a

• Commerce: The Commerce Department is developing an AI risk management framework for the marketplace 
to provide unbiased and trustworthy AI.b

• Defense: The Department of Defense has used AI for targeting exercises and flying autonomous, unmanned 
aerial vehicles.c

• Education: The Education Department is seeking to engage education professionals on how AI will affect their 
classrooms.d

• Energy: The Department of Energy’s National Laboratories researches and develops AI capabilities for many 
industries.e

• Health and Human Services: The Department of Health and Human Services identifies areas in the health 
industry that could benefit from AI, funds research to develop AI solutions, and monitors and regulates AI use 
in the health industry.f

• Homeland Security: The Department of Homeland Security uses AI in customs and border protection and 
investigations.g

• Housing and Urban Development: The Department of Housing and Urban Development is researching the use 
of AI risk assessments to promote fairness and equity.h

• Interior: The Department of the Interior is using AI tools to analyze wildlife, landscape, and energy information.i

• Justice: The Justice Department employs AI to analyze evidence, forecast crime, and enable rehabilitation.j

• Labor: The Department of Labor is researching the possible effects of widespread AI adoption, including the 
effect of AI bias on hiring and employment.k

• State: The State Department has developed and used AI to fight global disinformation.l

• Treasury: The Department of the Treasury is using AI programs to combat illicit finance operations.m

• Transportation: The Department of Transportation governs the integration of AI into automated driving systems, 
unmanned aircraft systems, and traffic management operations.n

• Veterans Affairs: The Department of Veterans Affairs has used AI to predict COVID-19 outcomes and reduce 
wait times.o

NOTES
a. Scott Elliott, “Artificial Intelligence Improves America’s Food Sys-
tem,” US Department of Agriculture Blog, July 29, 2021, https:// 
www.usda.gov/media/blog/2020/12/10/artificial-intelligence 
-improves-americas-food-system.
b. Don Graves, “Remarks by U.S. Deputy Secretary of Commerce 
Don Graves at the Artificial Intelligence Symposium,” April 27, 2022, 
https://www.commerce.gov/news/speeches/2022/04/remarks-us-
deputy-secretary-commerce-don-graves-artificial-intelligence.
c. David Vergun, “Artificial Intelligence, Autonomy Will Play Crucial 
Role in Warfare, General Says,” US Department of Defense, Febru-
ary 8, 2022, https://www.defense.gov/News/News-Stories/Article 
/Article/2928194/artificial-intelligence-autonomy-will-play-crucial 
-role-in-warfare-general-says/.
d. Office of Educational Technology, “Artificial Intelligence,” accessed 
February 8, 2023, https://tech.ed.gov/ai/.
e. Argonne National Laboratory, “Artificial Intelligence: Accelerating 
Science, Driving Innovation,” accessed February 9, 2023, https://
www.anl.gov/ai.
f. US Department of Health and Human Services, “HHS Artificial Intel-
ligence (AI) Strategy,” December 22, 2021, https://www.hhs.gov 
/about/agencies/asa/ocio/ai/strategy.
g. John Hewitt Jones, “DHS Launches Public Survey on Use of AI,” 
FedScoop, November 10, 2021, https://fedscoop.com/dhs-launches 
-public-survey-on-use-of-ai/.
h. Office of Policy Development and Research, “Using Artificial Intel-
ligence to Promote Equity in Home Mortgage Access,” PD&R Edge, 

November 9, 2021, https://www.huduser.gov/portal/pdredge/pdr 
-edge-featd-article-110921.html.
i. Bureau of Safety and Environmental Enforcement, “Safety Perfor-
mance Enhanced by Analytical Review,” accessed February 9, 2023, 
https://www.bsee.gov/what-we-do/offshore-regulatory-programs 
/safety-performance-enhanced-by-analytical-review-spear.
j. National Institute of Justice, “Artificial Intelligence: Applying AI  
to Criminal Justice Purposes,” accessed February 8, 2023, https:// 
nij.ojp.gov/topics/artificial-intelligence.
k. Nathan Cunningham, “How Artificial Intelligence Affects Workers 
with Disabilities: A New Toolkit for Businesses,” US Department of 
Labor Blog, November 1, 2021, https://blog.dol.gov/2021/11/01 
/how-artificial-intelligence-affects-workers-with-disabilities-a-new 
-toolkit-for-businesses.
l. US Department of State, “Artificial Intelligence (AI),” accessed Feb-
ruary 8, 2023, https://www.state.gov/artificial-intelligence.
m. Perkins Coie, “US Treasury Highlights Anti-Money Laundering 
Priorities in 2022 Illicit Finance Strategy,” May 26, 2022, https://www 
.perkinscoie.com/en/news-insights/us-treasury-highlights-anti 
-money-laundering-priorities-in-2022-illicit-finance-strategy.html.
n. US Department of Transportation, “U.S. DOT Artificial Intelligence 
Activities,” September 23, 2019, https://www.transportation.gov/AI.
o. Mike Richman, “New VA Tool Uses Artificial Intelligence to Predict 
COVID-19 Patient Mortality,” VA Research Currents, June 28, 2021, 
https://www.research.va.gov/currents/0621-New-VA-tool-uses 
-artificial-intelligence-to-predict-COVID-19-patient-mortality.cfm.
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at a basic level, a so-called Level 1 understand-
ing. They can engage with the concept, and per-
haps entertain abstract effects, but cannot dig 
into problems or imagine specific solutions. AI 
is maturing, and policymakers should go deeper. 
The goal should be a Level 2 understanding, in 
which policymakers understand conceptually 
how AI works and the array of core concepts and 
technologies on which it is built. Although they 
might not be able to code a neural network, they 
know how one functions. Although they have not 
studied electrical engineering, they understand 
the AI chip deck.

With a Level 2 understanding, this new class 
of policymakers can meet engineers halfway. 
More specifically, they will have the confidence to 
ask the right questions, the ability to understand 
engineers’ explanations, and, crucially, the capa-
bility to question technical experts. This level of 
understanding brings AI down to earth, allowing 
policymakers to see the breadth of AI’s effect and 
the many technical tools on which it is built. 

How to Use This Work 

The goal of this work is to equip a diversity 
of policymakers with the core concepts needed 
to acquire a degree of understanding. While a 
Level 2 understanding is the goal, in each section 
we offer two levels of depth to support readers 
who want only a basic understanding and those 
seeking greater depth. For clarity, we are identi-
fying Level 1 material as Fundamentals and Level 
2 material as Deeper Dive.

Note that AI is enabled not by one tech-
nology but rather by a diverse “constellation of 
technologies.”14 AI comes in many forms and 
uses a range of concepts and devices. To under-
stand and solve diverse AI issues, readers must 
grasp the AI space. Primarily, this work seeks to 
explain how AI works through illustration. Along 
the way, it equips readers with key terms, funda-
mental concepts, and core technologies in a tool-
box of knowledge that can be supplemented with 
application-specific expertise.
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2. What Is AI?

Artificial intelligence (AI) is characterized by the 
following:

• Normatively, AI can be thought of as a 
goal—the goal of using human-designed 
systems to build something intelli-
gent, often resembling the human mind. 
Descriptively, AI is commonly considered 
a technology, a catch-all for the many tech-
nologies and designs that make AI possible.

• AI systems generally aim to automate 
intellectual tasks normally performed by 
humans.

• Technologies such as machine learning are 
used to create AI systems. 

• Most AI systems are best conceived as 
advanced inference—or prediction—
engines. These inferences are used to pro-
duce analysis, inform decisions, and take 
automated actions.

• AI is the result of a triad of essential inputs: 
software (algorithms), hardware (micro-
chips), and data.

• The core advantages of AI systems are 
advanced automation, analytical speed, 
and greater scale of action.

• While AI systems have traditionally been 
geared toward narrow applications, more 
general-purpose systems are emerging. 
Despite widespread attention on these 
general-purpose systems, the bulk of sys-
tems in use are designed for discrete, 
narrow-use cases.

• An algorithm is simply a logical sequence of 
steps needed to perform a task. In computer 
science, algorithms are written in code.

• Machine learning algorithms are often 
trained with data stored in a databank or 
collected in real time.
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FUNDAMENTALS

Basics of AI
“A fundamental problem in artificial intelligence is 

that nobody really knows what intelligence is.”15

—Shane Legg and Marcus Hutter,  
Google Deep Mind

There is no one accepted definition of AI; there 
are, in fact, hundreds. For policy experts, Con-
gress thankfully simplified definitional selection 
by hard coding an AI definition into law through 
the National Artificial Intelligence Initiative Act 
of 2020. Legally, AI is defined as follows:

a machine-based system that can, for a 
given set of human-defined objectives, 
make predictions, recommendations 
or decisions influencing real or virtual 
environments. Artificial intelligence 
systems use machine and human-based 
inputs to—(A) perceive real and virtual 
environments; (B) abstract such per-
ceptions into models through analysis 
in an automated manner; and (C) use 
model inference to formulate options 
for information or action.16

This definition is wordy, but a few core concepts 
stand out.

Intelligence
First, note that the legal definition just mentioned 
does not explain the goal of AI technology. The 
reason: the goal is in the name. As observed ear-
lier, artificial intelligence itself is a goal enabled by 
a set of ever-changing technologies (for example, 
machine learning). The bounds and aims of this 
goal are naturally murky because there is little 

consensus on what constitutes “intelligence.” 
Some believe serious research should downplay 
mimicking intelligence, and specifically human 
intelligence, as the end goal, with emphasis alter-
natively placed on advanced task automation, 
data analysis, and other goals to set expectations. 
That said, several organizations today, such as 
OpenAI, are explicitly seeking to produce gener-
ally intelligent, human-level (or beyond) systems. 
Mimicking human intelligence was the goal of 
AI’s founders, and most watershed moments in 
AI history such as AlphaGo’s mastery of the game 
Go involve outmatching specifically human intel-
ligence. Although defining intelligence is murky, 
there is no question that many AI engineers (for 
better or for worse) will keep some notion of 
human intelligence as their ultimate goal. 

Readers should take this approach with a 
grain of salt. Focusing too intently on efforts to 
mimic human thought can distort our under-
standing of what an AI system is or represents. It 
also distracts from progress in the many systems 
that aren’t trying to achieve human or general 
intelligence. Today, most AI systems are nar-
rowly scoped, seeking complex task automation. 
Facial recognition systems, for instance, are not 
trying to create human intelligence; they are try-
ing to automate human identification. 

Regardless of the aim or application, mod-
ern AI systems are united by a general attempt to 
“automate intellectual tasks normally performed 
by humans,”17 an effort naturally shaped by the 
application at hand and the personal views of its 
engineers. 

Inference
A second highlight from this definition is that 
machine-based systems “make predictions, rec-
ommendations or decisions.” In the field, this is 
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called inference. Inference is at the core of all 
systems, and the goal of AI systems can be gen-
eralized as the goal of making good inferences. 
When one asks the Alexa voice assistant to play a 
song, it infers a song title based on the sound of the 
words, triggering instructions that compare that 
inferred title against other titles in its database. It 
then plays the most likely match.18 Similarly,

• Identifying and labeling the contents of a 
picture means inferring the correct match 
between the input image and potential 
labels, and

• Autonomously operating a car requires 
thousands of near-instant inferences about 
which actions to take in the near future—
that is, predictions based on the position 
of the vehicle and surrounding objects and 
other information. 

When these inferences trigger machine action 
(such as playing a song or steering a car), AI 
achieves the goal of automation. 

The AI triad
A third highlight is the phrase “machine-based 
systems.” AI scholar Ben Buchanan explains 
that “machine learning systems use computing 
power to execute algorithms that learn from 
data.”19 This is the AI triad:20 algorithms, data, 
and microchips—the core input technologies that 
together enable AI. An essential theme of this 
introduction is that each of these technologies 
is equally necessary and interdependent. Under-
standing this interdependence is key to designing 
AI policy. 

Benefits of AI 
Before diving into how AI works, one must form 
an idea of what AI systems offer:

1. Automation. AI can automate new types 
of tasks that previously required human 
input. Before AI, automation was reserved 
for the consistent, predictable, and repeti-
tive.21 AI expands automation into “fuzzy” 
tasks that deal with complex problems 
and uncertainty. With AI, automation 
can extend to imprecise tasks, including 
image recognition, speech translation, and 
writing.

2. Speed. AI can resolve complex problems 
nearly instantly. Driverless cars face no 
cognitive lag when responding to hazards, 
and ChatGPT faces no analysis paralysis 
when writing. Decisive, near-instant deci-
sions provide an advantage over human 
decisions, which can lag as a result of 
indecision, stress, and other factors. In 
other cases, speed can also be a hazard of 
its own. An extreme example lies in mili-
tary systems that once granted autonomy 
over target engagement, allowing action 
before a human commander authorizes 
engagement. 

3. Scale. AI can effectively perform certain 
tasks better than an army of humans hired 
for that purpose. For instance, streaming 
can simultaneously address the individual 
preferences of millions of music listeners 
or TV viewers, drug discovery systems can 
analyze millions of compounds, and Chat-
GPT can search and connect millions of 
disparate ideas.

System Flexibility 
Today, all AI systems can be categorized as artifi-
cial narrow intelligence,22 designed to perform 
a specific, limited function set.23 These AI sys-
tems can perform one or a few tasks with high 
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quality but cannot perform tasks outside their 
discrete training. 

AI applications range from single-purpose 
systems, such as OpenAI’s DALL-E image gen-
erator, to more complex systems, such as driv-
erless cars or even ChatGPT. Even within these 
narrow domains, AI can still suffer inflexibil-
ity. Generalization refers to a system’s ability 
to “adapt properly to new, previously unseen 
data”24—that is, it can flexibly adapt to novel 
scenarios it hasn’t been explicitly trained to 
handle. The more a system can generalize and 
deal with the unexpected corner cases in its 
domain, the higher its quality. Imagine a driv-
erless car that is highly accurate but only in 
average, fair-weather road conditions. This 
car would perform perfectly in the majority of 
cases, yet when it meets a rare and unexpected 
situation—say, a tornado—it may not know the 
best course of action to protect the driver. 

Although today’s AI systems are narrow in 
scope, efforts are under way to develop so-called 
artificial general intelligence (AGI), which 
has “the ability to achieve a variety of goals, and 
carry out a variety of tasks, in a variety of dif-
ferent contexts and environments.”25 This cat-
egory represents the science fiction vision that 
many readers hold of AI. Note that generality 
does not imply balanced quality across capabili-
ties. Just as a lion might excel at hunting and a 
human at mathematical reasoning, it is possible 
for AGI systems to perform tasks at varying lev-
els of proficiency.26 Also note that AGI does not 
imply humanlike AI; AGI can be as advanced 
as humans without necessarily mimicking our 
cognition.27 A chess-playing AI, for instance, 
might win by mere exhaustive calculation of 
every combination of possible moves. Contrast 
this thought process with the strategic reason-
ing of human cognition. AGI also does not mean 

superintelligence—that is, an AI system that is 
smarter than humans in almost every domain.28 
These variations on advanced AI systems do 
not yet exist, though increasing R&D has been 
devoted to their development. 

Policymakers should take these concepts 
seriously even if they consider true AGI far off 
or impossible. Even an AI that can convincingly 
mimic AGI or superintelligence ought to be a 
matter of policy concern.

How AI Works: Prerequisites
The following sections discuss the various ele-
ments of the AI triad and the way AI works. First, 
several basic terms and concepts are as follows:

• Algorithm. “A logical sequence of steps 
to solve a problem or accomplish a task.”29 
Although this term sounds to some like 
technical jargon, algorithms are every-
where. For instance, Grandma’s pot roast 
recipe is a type of algorithm: a list of steps 
that, if followed, can produce the delicious 
Sunday dinner. In computer science, this 
term is more specific, referring to the list 
of instructions, or code, that a computer 
follows. The essence is still the same; the 
computer follows lines of code to perform 
its tasks just like one might follow a recipe. 
The term is often used interchangeably 
with computer program and software. 

Although this guide defines algorithm 
in its most general sense, in the context of 
AI, “algorithm” is often used as shorthand 
to refer more specifically to machine learn-
ing algorithms, the processes that a com-
puter follows to create artificially intelli-
gent software. 

• Model. Unlike the more general term 
“algorithm,” the model is the software 
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configuration that, once fed input data, 
can produce output inferences, predic-
tions, and decisions. The model is the end 
result, which is the inference software 
created from the iterative refinement of 
machine learning or engineering.30 When 
one trains an AI system, one is training the 
model; when one runs an AI system, one is 
running the model. 

• Machine learning. Most AI systems today 
are the result of a process called machine 
learning. Machine learning is a method 
for iteratively refining the process a model 
uses to form inferences by feeding the 
model stored or real-time data. This learn-
ing process is called training and is a nec-
essary step to build artificially intelligent 
systems. In section 6, “Algorithms,” this 
process is explained in greater detail.

In addition to understanding what AI is and 
how it works, many policymakers must know 
how to assess it. Unfortunately, there is no one 
performance metric for AI models, and the mea-
surement criteria used are highly specific to each 
application and are constantly changing. This 
study offers a starting point, describing several 
common metrics and the way to approach these 
figures with a critical eye.

DEEPER DIVE

Accuracy Assessments
A natural starting point for quality assessment 
is accuracy, which measures how a system’s 
inferences and actions match expectations. 
Accuracy is broadly useful, understandable, and 
often sufficient. Note, however, that perfect accu-
racy will rarely be possible. When deploying AI 
applications, engineers must actively decide on 

an acceptable rate of failure (a choice based on 
their own reasoning), application requirements, 
and perhaps regulatory prescriptions. Alexa, for 
instance, answers incorrectly around 20 percent 
of the time.31 In Amazon’s estimation, this rate 
of failure is acceptable. This estimation illus-
trates that accuracy need not be perfect when 
the stakes are low.

Contrast this example with safety modules 
in a driverless car. In this case, many argue that, 
given the danger, the acceptable level of accu-
racy must be higher.32 Safety still must balance 
practical considerations. Projections show that 
deploying a driverless car that is only 10 percent 
safer than one with human drivers could still 
save many lives; perhaps a seemingly high rate 
of failure might be acceptable if it still minimizes 
comparative risk.33 Other AI benefits must also 
be weighed against accuracy. Conceivably, driv-
erless cars could efficiently clear traffic in the 
presence of ambulances, potentially saving lives. 
Perhaps such a benefit would justify a lower rate 
of overall accuracy. 

Accuracy Is Not Everything 
Accuracy, although an important metric, can-
not fully assess system quality in all cases. For 
instance, if a deadly virus appears only once in 
a sample of 100 patients, a disease-spotting AI 
coded to always predict a negative result would 
still be 99 percent accurate. Although highly 
accurate, this system would fail its basic purpose, 
and the sick would go untreated. For policymak-
ers, a critical eye is needed to ensure that the 
numbers provide proper nuance. 

To gain a better sense of the quality of a sys-
tem, one may need additional evaluation met-
rics. It is important to emphasize that any metric 
used to evaluate AI carries tradeoffs. As an illus-
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tration, there is often a tradeoff between measur-
ing false positives and false negatives.34 Choosing 
which to prioritize in evaluation depends on con-
text and system goals. 

Returning to the disease-detecting AI exam-
ple, suppose one is doing aid work for the United 
States Agency for International Development. 
The chief concern is treating disease, and there is 
no cost to treating a healthy patient. In this case, 
one might prioritize minimizing false negatives 
so as to ensure that those with the disease get 
treatment. Also, one might measure quality using 
recall, a metric that states the percentage of the 
model’s negative results that are true negatives.35 
This metric would allow one to see the likelihood 
of a false negative, and if that probability is low, 
the model is effective for our purposes. 

Now imagine the reverse: suppose one is an 
official at the Centers for Disease Control and 
Prevention, and the chief concern is correctly 
analyzing disease transmission. In this scenario, 
perhaps one would want to minimize false posi-
tives by measuring with precision, a metric that 
evaluates how many positive results of the sys-
tem are indeed positives.36 If precision is high, 
then one can be certain that one is correctly 
identifying positive results and can better track 
transmission. 

If one finds both false positives and false 
negatives undesirable, perhaps one wants a 
model that minimizes both. In this case, one 
would try to maximize the F1 score, assessing 
how well the model minimizes both false nega-
tives and false positives.37 

These example metrics are widely used to 
assess AI that seeks to classify data; however, that 
is only one aspect of evaluation, and it is not nec-
essarily ideal for all applications. Consider how 
one might assess the quality of art-generation 
software. This task is naturally fuzzy and, in 

many cases, depends on the priorities or tastes of 
individuals; this is not something that can be eas-
ily captured in statistical metrics. A 2019 study 
found that for generative adversarial net-
works (GANs)—an AI model that can serve as an 
AI art generator—there were at least 29 different 
evaluation metrics that could be used to assess 
the overall quality of these systems in different 
contexts.38 AI evaluation metrics, like AI itself, 
are meaningless without application. 

Benchmarks
Although evaluation metrics can usefully 
describe an individual model’s effectiveness, 
they are not suited for comparing models or 
tracking progress toward certain goals. As such, 
AI researchers have adopted a variety of bench-
marks, common datasets paired with evalu-
ation metrics to allow model comparison and 
results tracking and determine state-of-the-art 
performance on a specific goal or task.39 These 
benchmarks are often tailored to specific tasks, 
goals, and complexities. For instance, ImageNet 
benchmarks image detection and classification,40 
while HellaSwag benchmarks a chatbot’s com-
monsense reasoning.41 

Although useful for tracking improvements 
in AI systems and the state of the art, these 
benchmarks can be limited in their descriptive 
abilities. Researchers have noted that while 
benchmarks are often seen as describing gen-
eral AI abilities, what they actually represent is 
more limited in scope, measuring only a system’s 
ability at the tightly constrained benchmarking 
task.42 Even if an AI system is able to accurately 
identify most images in ImageNet’s database, 
that action does not necessarily mean those abili-
ties will translate to real-time, real-world image 
recognition. The complexity and noise of real-
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world analysis can be a far cry from the limited 
frame of benchmarking tests. Further, it has been 
noted that benchmarks often fail to test neces-
sary characteristics such as a model’s resistance 

to adversarial attacks, bias, and causal reason-
ing.43 Benchmarks are constantly being replaced, 
supplemented, or updated as these limitations 
are discovered. 
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3. AI Policy Challenges 

Before digging into the technology that 
makes AI possible, we must first estab-
lish what artificial intelligence (AI) 

policy looks like today and what issues are at 
stake. Currently, there is limited artificial intel-
ligence–specific law. Only a handful of federal 
laws relate directly to AI, and those that do, such 
as the National Artificial Intelligence Initiative 
Act of 2020, cover basic study and coordination 
rather than explicit regulation.44 

There is comparatively more AI-specific 
policy and executive action, though this too is 
in introductory stages. The National Institute of 
Standards and Technology’s widely used AI Risk 
Management framework45 provides optional 
processes and considerations for organizations 
looking to responsibly and safely develop and 
deploy AI systems. The 2022 Blueprint for an AI 
Bill of Rights lays out a list of principles officials 
believe should guide AI application and policy.46 
More substantially, 2023’s Executive Order on 
the Safe, Secure, and Trustworthy Development 

and Use of Artificial Intelligence acts as the guid-
ing document of AI strategy in the United States. 
This lengthy list of requirements includes limits 
on government use of AI, and it requires chief AI 
officers in most agencies, AI talent development 
initiatives, and technology reporting for frontier 
AI labs. Beyond these specific actions are intro-
ductory requests to a range of agencies to con-
sider research, investigation, or even actions on 
critical infrastructure risks, civil rights, market 
competition, intellectual property, AI bias, and 
consumer protection, among other steps. 

Such executive actions depend on a range of 
preexisting general-purpose statutes that apply 
to and can regulate all technologies, AI included. 
For instance, 2023’s AI executive order used the 
Defense Production Act’s industrial base assess-
ment powers as the basis for its new technical 
reporting requirements for frontier AI labs.47 
Likewise, the Federal Communications Commis-
sion ruled that, under the Telephone Consumer 
Protection Act, AI-generated voices in robocalls 
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are illegal.48 Other general-purpose statutes 
regulating domains include consumer safety, 
transportation, intellectual property, healthcare, 
national defense, the justice system, and discrim-
ination (among others) that likely also will apply 
to specific AI systems in certain circumstances. 

At the state and local levels, policy is varied 
and often more application specific. In many 
states, actions have been targeted at limited-
scope and well-publicized AI applications and 
issues. These applications include “deep fakes,”49 
AI-generated election materials,50 autonomous 
vehicles,51 and AI-assisted hiring.52 Following 
ChatGPT’s release, some states have consid-
ered various forms of broad, comprehensive AI 
regulation, though no such bill has passed. In 
all cases, there is clearly a desire to act (perhaps 
regulate) and manage certain AI risks. What that 
may look like and how state legislation interacts 
with federal legislation remain to be seen. 

The design of AI law and policy is and will 
be a complex task because of the importance 
and wide reach of this technology. The following 
sections offer a few questions that policymakers 
should consider when designing AI policy.

Critical Questions for Policymakers
Policymakers face many important decisions in 
the areas of research, development, and manu-
facturing; inputs and resources; quality control; 
externalities; and security and safety. This sec-
tion discusses each in turn. 

Note that related to each issue is a broader 
question of implementation and governance. 
Because AI broadly impacts society, policymak-
ers must consider how to structure regulatory 
and policy governance. They should consider 
these high-level questions: 

1. Should there be a dedicated “AI agency,” or 
should policy and regulation be devolved to 
domain-specific agencies? What problems 
would a potential new agency solve? What 
would its jurisdiction be? 

2. What gaps and overlaps in law and policy 
might hinder clear, effective policy? How 
can we identify those gaps and overlaps? 

Research, development,  
and innovation 
Chip development. Historically, the US gov-
ernment has sponsored and supported AI chip 
development. The recent CHIPS and Science 
Act illustrates the support of the semiconduc-
tor industry by policymakers of both parties.53 
This legislation follows a long history of public 
engagement with this sector. While the issue has 
enjoyed congressional support, the utility of AI 
industrial policy has been the subject of consid-
erable debate, including the following questions:

1. Is there certain fundamental AI chip 
research that might not exist without gov-
ernment support?

2. Does government support and subsidiza-
tion risk crowding out or privileging cer-
tain innovations and alternative designs?

3. How can policy play a role in ensuring that 
US industry competes with China’s consid-
erable state-led AI investments?

Computer science and algorithmic research. 
Algorithm and computer science research has 
long been intertwined with public research 
support and policy. Early neural networks, for 
instance, were first introduced by the Office 
of Naval Research.54 The Defense Advanced 
Research Projects Agency’s Grand Challenge, a 
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military-sponsored desert race, sought to incen-
tivize autonomous vehicle progress through a 
competition and cash prize.55 Some argue that 
this race supercharged autonomous vehicle 
breakthroughs. Although the public history of 
AI algorithm development is perhaps impressive, 
one should note that all such policies involve 
tradeoffs, risks, and implementation challenges. 
Policymakers should consider the following:

1. How can the timeliness and efficiency of 
public research support be improved? 

2. What form of research support, including 
computational resources, prize challenges, 
or monetary grants, will best support a 
given goal? 

3. How might public investments crowd out 
or supplement private funding? Will such 
investments distort or privilege certain 
research outcomes?

4. How can one best incentivize development 
while minimizing market distortions?

5. How can one ensure continued national 
competitiveness in R&D writ large?

6. How can algorithms be developed and 
designed to support principles, including 
democracy, freedom, and fairness?

7. What types of AI and applications should 
the public support? Should policy focus on 
foundational or applied research? For mil-
itary research, how does one ensure that 
innovations are designed for dual use? 

Open source. A significant portion of AI devel-
opment is open source, raising questions about 
safety and regulation and continued innovation. 
Some worry that open-source, highly capable 
models will leave potentially harmful software 
uncontrolled and easily accessible to bad actors. 

Conversely, some worry that attempts to regulate 
open source will cost innovation by depressing 
highly dynamic innovation of the open-source 
community and weaken the security benefits that 
transparent, easily critiquable software enjoys. 
Enforceability is another challenge: how can 
regulations apply to anonymous actors? There-
fore, policymakers should consider the following 
questions:

1. What are the costs and benefits of open 
source AI? Do the cybersecurity and inno-
vation benefits of open-source models 
outweigh potential risks of open models? 
What risks do open models pose?

2. How could any potential regulations be 
enforced? What are the limits of success? 

3. How can governments improve open-
source code? Is there a place for public 
open-source analysis or vulnerability 
tracking? 

4. How can public-sector code be open 
sourced to share potential innovations with 
other governments, agencies, and actors? 

Inputs and resources 
Supply chain robustness. AI chips and hardware 
require a diverse range of materials and compo-
nents to support processing needs. A robust AI 
ecosystem requires supply chains that can reli-
ably source and provision the resources needed 
by the AI economy. Toward these ends, policy-
makers should consider the following:

1. How can the United States trade openly 
with new markets to ensure access to these 
goods?

2. How can the United States ensure an effi-
cient and balanced supply chain?
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3. Can domestic resources help supply the 
needed materials? How can the United 
States balance the benefits of domestic 
resource extraction with environmental 
costs?

4. How can the United States ensure access 
to key resources such as rare minerals? Can 
alternative materials be developed  or dis-
covered to reduce dependence on rare or 
environmentally harmful materials? 

Talent and immigration. AI development requires 
a range of highly technical and specialized skills. 
Supporting manufacturing, research, design, 
and deployment will require a deep talent pool 
and expensive labor. Education, grants, appren-
ticeships, and immigration can help fill this gulf. 
Policymakers should consider the following:

1. What education policies can incentivize 
AI and computer science education? What 
type of skill sets are needed? 

2. How can nontechnical fields be upskilled 
with AI knowledge to prepare those fields 
for the potential effect of AI? 

3. Can private-sector incentives for training 
and apprenticeship programs reduce edu-
cational burdens?

4. How can immigration policy be reformed 
to attract and retain global talent?

5. How can AI education balance techni-
cal skills with a need for free and creative 
thinking?

Data resources, privacy, and intellectual prop-
erty. The scale and source of data often used to 
train AI systems has prompted a diversity of con-
cerns over data rights, privacy, and intellectual 
property. Important policy questions include the 
following: 

1. How can the United States ensure that 
governments and companies adequately 
protect the vast and sensitive data used to 
create their AI systems?

2. How can the United States mitigate con-
cerns that it will lose an “AI race” to China 
because authoritarian tools allow for more 
extensive and detailed data collection? 

3. There is concern that new market entrants 
with limited data stores and scraping capa-
bilities cannot compete against the vast 
stores of user data amassed by big tech 
firms. How can the United States ensure 
a level playing field and a competitive 
market? 

4. How can copyright and IP law balance fair 
use, artistic autonomy, intellectual prop-
erty rights, and continued AI innovation? 

Data standards and interoperability. Data stan-
dards can affect the nature and usability of data. 
Healthcare AI, for instance, has been slow to 
develop because of highly siloed data, disparate 
technology practices, and recordkeeping differ-
ences across systems.56 A key to this problem is 
interoperability and standardization. If tech-
nology can easily communicate and share data, 
and if data are standardized and easy to use, this 
could aid the development of AI systems. Toward 
these ends, policymakers should consider the 
following:

1. How should the government design and 
format data standards to best serve AI? 
What information should the data capture? 
How do these decisions affect the ability to 
share data, develop AI systems, and pro-
mote innovation? Conversely, how might 
standardization hinder innovation? 
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2. How can the government reduce data bal-
kanization to ensure that AI has the tools it 
needs to grow? How might this be balanced 
with privacy and security concerns?

3. How can industry or private actors set and 
manage standards and data interoperabil-
ity without government involvement? 

Quality control
Explainability. Because AI systems often focus 
on capabilities rather than explanation, the rea-
soning behind their actions can be opaque. Law 
and policy often require clear reasoning and 
decision-making. This requirement can raise 
questions and concerns, such as the following: 

1. Should the government risk using autono-
mous weapons if we do not understand 
how they select, and possibly kill, targets?

2. Should the government use AI sentencing 
algorithms if we do not know if their final 
decisions are affected by racial biases?

3. How does the government know that an 
AI’s decision-making process has not been 
compromised by a malicious actor?

4. How might the government know if auton-
omous vehicles are making safe decisions?

5. How does the government know that statis-
tical AI models are producing high-quality 
predictions and results? 

Overfitting and underfitting. Overfitting is the 
problem of fitting a prediction algorithm too 
tightly to training data, so much so that it under-
performs with new data. Underfitting, in turn, is 
the failure to adequately fit an algorithm to the 
training data, rendering predictions with new 
data altogether unreliable. For policy-sensitive 
applications, AI models must be able to demon-

strate that they are neither over- nor underfit for 
the task at hand. At present, there is no easy solu-
tion to this challenge. For policymakers, the best 
approach is vigilance. The following are exam-
ples of issues that this challenge could create:

1. Economic data have a relatively short his-
tory. Treasury models therefore run an 
underfitting risk that could lead to faulty 
algorithms when trying to predict inflation, 
employment, and other key metrics. 

2. Court-sentencing algorithms can run the 
risk of overfitting. If a case used in a mod-
el’s training set is sufficiently unique, the 
model could carve out a prefabricated deci-
sion path that is not generalized but instead 
is tailored specifically to that set. Should 
this sort of model, regardless of fitness, 
ever be used by courts? 

Bias and auditing. The data used and the bias 
embedded in AI algorithms can lead to incor-
rect or harmful results. AI-powered pulse oxim-
eters, for instance, have been found significantly 
more inaccurate for dark-skinned patients.57 
Such biases can cause harm. In another case, 
Amazon found unintentional bias embedded in 
its hiring algorithm, which favored male appli-
cants far more than female ones.58 Such biases 
can cause discrimination. One proposed path 
forward would be AI audits that could be used 
to assess algorithmic weaknesses, security, and 
bias. Regarding bias and auditing, policymak-
ers should consider the following questions to 
address these issues:

1. What algorithmic design best practices and 
industry standards can help spot and miti-
gate bias?

2. What data sourcing, cleaning, and process-
ing standards can help minimize bias and 
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ensure robust algorithms? What tradeoffs, 
unintended consequences, or concerns 
could such standards create?

3. Is there an acceptable level of bias? What 
biases are unacceptable? How does the law 
deal with AI bias?

4. Can intentional bias be used to mitigate 
negative biases? What risks or unintended 
consequences could this pose?

5. Should AI audits be required? If so, when, 
and what processes should they include 
to ensure strong results? Further, would 
requiring audits place an undue burden on 
innovation?

Externalities
Energy use, emissions, and environmental 
impact. Supporting AI requires significant 
energy use. Chip fabrication requires exten-
sive energy resources,59 as does the computer-
intensive training process. Energy requirements 
expand as AI algorithms and market demand 
grow. As a result, intensive computing can leave a 
high carbon footprint. Cloud computing centers 
also constrain local energy supplies, potentially 
increasing local energy prices to support often 
nonlocal demand. Finally, fabrication produces 
wastewater and toxic by-products, while cloud 
computing centers burn through difficult-to-
recycle semiconductors. Policymakers should 
consider the following:

1. How can the government and private 
actors balance the energy use and emis-
sions costs of AI systems against the ben-
efits of AI innovation? 

2. Can AI system innovation in energy man-
agement and climate research be used to 
help reduce costs and fight climate change?

3. What waste and recycling standards and 
policies can ensure that waste is properly 
managed?

Labor disruptions. Advances in AI automation 
may disrupt the workforce and displace certain 
professions. For instance, in the United States, 
there are more than three million truckers, a 
generally low-education profession that could 
be eliminated or transformed by driverless vehi-
cles.60 Other industries may feel similar strains. 
Although there is no guarantee that AI will lead 
to fewer jobs, some people will likely have to 
find new employment or find that AI changes 
the nature of their work. As such, policymakers 
should consider the following:

1. How can education policy be used to 
upskill or reskill displaced or underskilled 
workers? 

2. How can policy ease workforce transitions 
and ensure that older workers are not left 
behind?

3. How can agencies update or remove 
regulations that might entrench cer-
tain labor classes despite AI automation 
improvements?

4. Should the government or private actors 
ensure redundant human skills in fields 
automated by AI? If so, how? 

Security and safety
Cybersecurity. The introduction of AI naturally 
comes with a transformation of the cyberthreat 
landscape. New threats can be found in AI. The 
massive scope of certain models can make it dif-
ficult to spot vulnerabilities or bad actors. Fur-
ther, data can act as a new attack surface. Data 
poisoning attacks seek to inject vulnerabilities 
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into a system through bad data or use data inputs 
to cause a trained system to malfunction. AI will 
also be used as a tool of cybersecurity. Offen-
sively, it could be used to hunt and exploit vulner-
abilities without human involvement or generate 
highly convincing spear-phishing emails. Defen-
sively, AI can be used to detect intrusions, spot 
bugs, and stop bad actors. Policymakers should 
consider the following:

1. What processes can be used to detect vul-
nerabilities not only in algorithms but also 
in the data and processors that drive these 
systems? 

2. What standards and best practices can be 
passed to the private sector to mitigate and 
minimize AI cyber risks? 

3. How can the government detect and alert 
the public to systemic AI cyberattacks and 
risks? 

4. How can the government encourage effec-
tive prosocial cybersecurity research and 
hacking? 

5. How can the government ensure criti-
cal infrastructure remains secure and 
operational? 

Supply chain security. The supply chain that sup-
ports AI technologies is long, complex, and brit-
tle. Chips are often manufactured abroad, leaving 
them vulnerable to foreign influence. Data are 
often collected, sold, and reused. This creates 
novel threats and attack surfaces. Policymakers 
should consider the following: 

1. How can the government or private actors 
gather intelligence about supply chain–
based vulnerabilities and threats?

2. How can the government or private actors 
detect compromised or counterfeit chips?

3. How does the government hedge against 
security threats to its supply chain, such 
as China’s threat to Taiwan—its primary 
semiconductor trading partner?

4. How does the government or private actors 
balance the need for plentiful resources 
with the need to minimize the influence of 
bad actors?

5. How can the government collaboratively 
work with its allies to ensure access to safe 
components? 

Content regulation, identification, and modera-
tion. As generative AI grows in quality, and for-
mats such as generated video and audio mature, 
political scrutiny has grown. When generated 
content is found obscene, objectionable, or ille-
gal, the content itself is viewed as the problem. In 
other cases, content use is the challenge. Already 
AI has been used to generate propaganda, adver-
tisements, and misinformation. Finally, some 
worry that if AI-generated content isn’t readily 
identifiable, consumers can be misled. Without 
the availability of identification tools or proce-
dures, AI-based scams, deep fakes, generated 
misinformation, and other challenges could eas-
ily cause harm. Policymakers might consider the 
following: 

1. What generated content might be off lim-
its? How might any content restrictions 
overlap with existing law, such as Section 
230 of the Communications Decency Act 
and the First Amendment? How might lim-
its be enforced effectively without harming 
innovation? 

2. Who is liable for harm related to gener-
ated media? What impact would liability 
questions have on safety, innovation, and 
deployment? 
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3. Should the United States restrict the use of 
AI-generated materials in certain media, 
such as advertisements or election materi-
als? If so, how? 

4. How can policymakers respond to gen-
erated spam, disinformation, or scams? 
How can consumers identify AI-generated 
media? What technologies, rules, or norms 
are needed to ensure that consumers and 
governments understand what is gener-
ated? Should generated media identifica-
tion or certain authentication procedures 
be required? 

Lethal autonomous weapons systems. AI algo-
rithms make a reality of robotic weaponry that 
can select and engage targets without humans in 
the loop. This is no longer science fiction; such 
systems are already in use on the battlefield.61 
Policymakers must actively engage in the many 
now-practical ethical and legal implications of 
these systems. Questions that policymakers must 
answer include the following:

1. How do autonomous weapons conform to 
international law and the laws of war?

2. How might arms control law apply to 
autonomous weapons, and how might the 
government technically verify a potential 
arms control agreement?

3. What role do humans play in controlling or 
mitigating the potential harms of autono-
mous weapons?

4. How can the actions and life-or-death 
decisions made by autonomous weapons 
be justified or explained?

Incomplete and Ever-Evolving List
This list is not comprehensive but rather a small 
selection of the issues at stake. The hope is that 
this starting point can help readers understand 
the importance of AI technology and its relation-
ship to a broad array of policy domains. As they 
dig into the technology that makes AI possible, 
readers are encouraged to imagine further unan-
swered questions and connect these concepts to 
issues in their given fields.
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4. Data

Data serve two high-level purposes in 
artificial intelligence (AI) systems. 
First is the input. Data are the digital 

raw material used to train models during the 
machine learning process, as well as the input 
on which trained models make inferences. Sec-
ond is the output of inference that serves the 
practical purposes of users and output that can 
be recycled as input for further refining model 
performance.62 

Several design choices of the dataset—such 
as volume, data selection, and the removal of out-
liers—shape the nature of AI systems. The tech-
nical form of digital data files also matters. The 
resolution of a photo, the compression of digital 
music, and unseen metadata all shape what infor-
mation an AI system can process during learning 
or inference. To understand how microchips and 
algorithms shape AI, policymakers must first 
grasp the fundamental importance of data. 

Data have many important aspects:

• Through the training process, machine 
learning models use data to refine their 
inferences.

• When deployed, trained models use input 
data to make inferences, which can be 
translated into predictions and decisions. 

• Many machine learning approaches require 
large volumes of data to train AI models.

• Machine learning approaches with small 
data are emerging to enable success with-
out big data. 

• The variety of data can be just as important 
as the volume. With diverse and represen-
tative data, systems can better account for 
real-world diversity and complexity. 

• A diversity of data storage, warehousing, 
and collection systems is an important con-
sideration in understanding AI governance. 

• The data used to train and operate systems 
are often the result of human curation, 
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labeling, and cleaning. Human curation 
of data can lead systems to reflect biases. 
Some systems may perpetuate nega-
tive biases, whereas some might be more 
objective. 

FUNDAMENTALS

Data Volume 
“We don’t have better algorithms. We have more 

data.”63

—Peter Norvig, director of research at Google

Whether an AI system is in development or in 
use, the quality of its data is paramount to suc-
cess. Selecting high-quality AI data is challeng-
ing, a function of multiple competing factors 
including volume, variety, and velocity. These 
qualities together are sometimes referred to as 
the “three V’s.”64

Determining the ideal data volume, or the 
quantity of data relative to the model’s needs, 
has become a central question of machine learn-
ing. To train AI systems, there are two emerging 
approaches: big data and small data.

The big data approach is likely the most 
familiar. To train an AI system, vast stores of data 
are funneled into the model, which learns from 
that data and refines itself over time. Although 
this process does not always work in practice, the 
hope is that with enough data, the model even-
tually arrives at an optimal form with powerful 
predictive capabilities. 

The famed ImageNet database illustrates 
the power that large and diverse datasets can 
provide. Introduced in 2009, ImageNet included 
more than 14 million images and was conceived 
on the premise that progress in AI image recog-
nition was a matter of more data, not improved 
algorithmic design.65 This approach proved suc-

cessful. Massive data accelerated the improve-
ments in computer image recognition; the 
accuracy of models using ImageNet jumped 
from a modest 72 percent success rate in 2010 
to 96 percent in 2015, an accuracy rate exceed-
ing average human success achieved in just five 
years.66 Such results are rooted in the volume of 
this database. 

Although the ImageNet approach to image 
recognition benefited from millions of data points, 
the exact volume required for machine learning 
training is not standardized. Note that image rec-
ognition is a narrow, single- purpose application 
of this technology, yet it still required vast troves 
of data. For more complex systems, such as dri-
verless vehicles or chatbots, the volume of data 
is likely orders of magnitude larger. Estimating 
how much data are enough is a moving target and 
heavily depends on the application complexity,67 
model size,68 accuracy requirements, and other 
goals. Progress has been made toward defining 
the relationship between algorithms and data 
requirements;69 however, current models are still 
speculative.70 In practice, engineers often depend 
on soft rules of thumb rather than empirically 
tested processes.71 Today’s AI engineering is more 
an art than a science. 

Trending against big data approaches are 
the increasingly common small data strategies.72 
These can be used in scenarios where data are 
limited, spotty, or even unavailable. Small data 
strategies use a variety of techniques to overcome 
data limitations, including transfer learning, 
where a model “inherits” learned information 
from previously trained models; synthetic data, 
where representative yet generated data are 
synthetically created;73 and Bayesian methods, 
where models are coded with “prior informa-
tion” that provides problem context before learn-
ing begins, thereby shrinking the overall learning 



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

27

challenge.74 Given predictions that high-quality 
data may soon be exhausted,75 such strategies 
could augment or maximize the value of existing 
human-generated data.

In 2018, DeepMind’s AlphaZero demon-
strated how an AI system could master chess, 
Shogi, and Go through self-play—learning with-
out any input data apart from the game rules.76 
The system bested all existing big data–trained 
systems, challenging the assumption that more 
data are always better. Although AlphaZero’s 
design is not universally applicable, it demon-
strates the potential of small data AI to trans-
form future AI development. This ability to make 
accurate inferences without having seen explicit 
examples is called zero-shot learning,77 while 
few-shot learning78 is the ability to make infer-
ences based on a handful of examples. Both are 
considered rare yet highly desirable qualities 
essential for model flexibility and robustness. 

Data Variety 
Variety is just as important as volume. The prob-
lems that AI systems face are often complex and, 
in theory, a great variety of data can help mod-
els account for the unique wrinkles and corner 
cases that complexity brings. Flexibility is essen-
tial to AI quality and ensures that systems are 
robust in the face of the unexpected. A classic 
example illustrating the importance of variety is 
the facial images used to train facial recognition 
algorithms. Human faces come in many varieties, 
and to perform accurately, an algorithm should 
be trained on data containing a full variety of 
races, genders, hair colors, and so forth. With-
out full variety, these systems have been shown 
to misidentify nonwhite faces at significantly 
higher rates.79 Insufficient variety can create 
performance- degrading bias. 

The variety of data must match the task at 
hand. The maps, visual images, and proximity 
sensor data needed to train a driverless car will 
be vastly different from the data required to train 
a stock-trading AI. Data must also be timely. 
Adding stale data—that is, old data that are not 
quite pertinent to the current problem—just for 
the sake of greater volume can reduce the over-
all quality of an AI system.80 As an illustration, 
inflation data taken before 1971, when the US 
government promised a fixed rate for gold coins 
(and gold bullion), may contain more noise than 
signal for inflation data since 1971. Perhaps such 
data should be excluded when training economic 
modeling systems. 

Data Velocity 
Velocity refers to the speed “in which data is 
generated, distributed, and collected.”81 In 
general, this speaks to an AI system’s ability to 
manage and access the data it needs for optimal 
performance. 

Data generation and collection depend 
on the design of a system and the way it inter-
faces with the world. Web applications are well 
known for their ability to amass diverse and 
incisive data from their users. Meta and Google 
use digital platforms, social media, and adware 
to track users and collect personal data. Mass 
data collection is also widespread outside of the 
internet. In healthcare, electronic health records 
have enabled the collection, digitization, and 
aggregation of bulky tranches of data. These data 
include physician documentation, patient inputs, 
external medical facilities transmissions, and 
direct transmissions of medical data from hos-
pital instruments. As in social media, aggregated 
healthcare data can be truly massive.82 
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As AI models are embedded into physical 
systems such as cars and drones, an “AI system” 
has broadened to include the visual, audio, and 
signal arrays that capture real-time information 
to function adequately. Some refer to this as the 
broader “AI constellation.”83 AI increasingly 
takes advantage of the internet of things (IoT), 
a network that connects uniquely identifiable 
“things” to the internet, where the “things” are 
devices that can sense and interact according to 
their hardware and software capabilities. IoT 
devices can prove rich data sources and give AI 
additional eyes and ears into a problem. Recall 
that one of the primary benefits of AI is its sen-
sory scale and scope. The IoT is a relatively new 
phenomenon, and these devices may grow in 
importance to AI because they are able to col-
lect a wide variety of previously inaccessible 
data.84

Web storage and networking technologies 
are essential components of many AI systems, 
physically distributing the data storage and pro-
cessing burden. These devices include not only 
data warehouses—large, centralized ware-
houses holding hundreds of servers on which 
vast lakes of data are stored85—but also smaller 
caches of data physically closer to where the pro-
gram is running to allow for quick data access. 
For an AI to learn quickly and function efficiently 
during inference, data must be easy to collect, 
store, and access.86 Distributed data resources 
allow systems to take advantage of storage and 
processing power otherwise unavailable, while 
resource consolidation in warehouses can lead 
to economies of scale and lower cost burdens. 

Data Management 
Data management often dominates AI design. 
In fact, engineers frequently cite that data pre-

processing accounts for 80 percent of engineer-
ing time.87 Data are often disjointed, messy, and 
incomplete. Before a model can be trained, data 
cleaning, often by hand, is required to ensure 
usability.88 To prepare data, engineers must 
decide whether to remove outliers, and they 
must weed out irrelevant information and ensure 
that the data are well organized and machine 
readable. Various methods and rules of thumb 
have also been developed to help fill in data gaps 
as needed.89 To reiterate, AI engineering is often 
more art than science. Further, data must often 
be labeled. AI cannot naturally know the labels 
and symbols that humans apply to objects. An 
image of a red, shiny fruit can be labeled “apple” 
only if AI knows that term. All these labels are 
often affixed by hand.90 Automatic label genera-
tion, however, is increasingly common. OpenAI’s 
DALL-E 3 used 95 percent AI-generated cap-
tions in its training dataset, often enabling longer, 
more descriptive captions than those written by 
humans.91 While traditionally time consuming 
and human driven, data management overall is 
increasingly automated. 

Bias
A common concern in AI is bias, defined gen-
erally as the difference between desired out-
comes and measured outcomes. Data are a major 
source of AI bias. When a model learns from 
human-curated data, the model takes on a lens 
that reflects the viewpoint of the humans who 
selected and shaped those data. For instance, 
natural language–processing AI trained on news 
articles may take on and perpetuate the societal 
stereotypes embedded in the language and view-
point of those articles.92 Even after training, the 
data input used during model inference can bias 
its output. Input data that ask an AI chatbot to 
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write a “positive poem,” versus just a poem, will 
bias results in a positive direction. 

The National Institute for Standards and 
Technology (NIST) notes that AI bias has many 
roots. In many cases, bias simply stems from the 
natural blind spots in human cognition and judg-
ment and the consequent choices that engineers 
make about what data are more important or 
less important.93 Because humans collect data, 
all data will be biased in some way. In other 
cases, bias is rooted in structural constraints. 
Perhaps the dataset an engineer uses is selected 
not because of its superior quality but merely 
because it was easy or cheap to access. The result-
ing AI system will then take on the qualities of 
that set, whatever they may be.94 Historical data 
trends can also bias present-data AI systems. For 
instance, if an algorithm used to judge recidivism 
was trained on data marred by historical racism, 
its decisions could incorporate those histori-
cal prejudices moving forward.95 Beyond these 
examples, there are many additional sources of 
bias, all of which must be balanced when select-
ing data.

Bias, although unavoidable, is not necessar-
ily harmful. Often, the intensity of a given bias 
may be negligible or irrelevant to the goals of a 
system. A chatbot that is biased toward using 
an overly academic tone might be useful as a 
research reference tool despite occasionally 
sounding pompous. In other cases, biases may 
exist yet have little effect on system performance 
because they are exceedingly rare. Identity-based 
biases may be considered negligible in a system 
if they occurred only once every trillion queries. 
In all cases, engineers decide, consciously or 
not, what constitutes an acceptable level of bias 
before they deploy these systems. Today, these 
decisions are increasingly shaped by various AI 
bias correctives. Developing these fixes is inher-

ently challenging, however, and has become a 
prominent focus of recent AI research and policy 
discussion.96 

Beneath the stored information lies a wealth 
of technical decisions that decide what informa-
tion is contained in the dataset, how it is to be 
used, and how it interacts with the AI model. 
A deeper understanding of the choices behind 
data design can reveal the lens through which AI 
“sees” the world. These choices can matter for 
policy, not only because many data standards are 
mandated by law, but also because they can influ-
ence or even dramatically change outcomes. The 
following sections introduce several concepts 
pertinent to the governance of data.

DEEPER DIVE

Adversarial Machine Learning
Data affect not only AI system design but also 
system security. Adversarial machine learn-
ing refers generally to the study and design of 
machine learning cyberattacks and defenses. Of 
central importance to many attacks are data.97 
The design of these systems is often driven by 
training data, and training data alterations made 
by malicious actors have been demonstrated 
to both degrade model performance and pur-
posefully misdirect it. So-called data poison-
ing attacks can be implemented in some cases 
with only minor alterations to data. One study 
found that a single altered image in a training 
dataset caused a classification system to misclas-
sify thousands of images.98 As a result, poisoned 
data can be difficult to spot, lowering the bar for 
attacks.

Data can also be used to attack systems after 
training is complete. For instance, adversarial 
examples, which are data inputs designed to 
trick AI systems during inference, can cause 
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models to make incorrect predictions.99 In a clas-
sic example, the addition of only a few stickers to 
a stop sign caused a visual classification system to 
classify it as a 45-mile-per-hour sign.100 Similar 
attacks have been developed for a range of other 
AI applications. 

Adversarial techniques can be used defen-
sively. Glaze is a system that imperceptibly alters 
digital art, causing image-generation models 
training on that data to misinterpret the data’s 
contents and style. This system is used by art-
ists to block image generators from learning and 
copying their style.101 DeFake is a system that 
alters human voice recordings to disrupt bad 
actors trying to clone someone’s voice to carry 
out synthetic voice fraud.102 

Beyond these prominent examples, there 
are many emerging adversarial attacks and 
defensive-use cases, and this new field of study is 
constantly changing. Mitigating and preventing 
these vulnerabilities will prove a major challenge 
as AI capabilities improve and become even more 
widespread. 

Data Standards and Data Capture
Much of data that are collected and used are 
constrained or guided by data standards set by 
industry or government.103 For instance, account-
ing data standards in the United States are set 
by the Financial Accounting Standards Board, 
which dictates how financial statements are 
structured and recorded.104 Standards can deeply 
shape what data are available for any particular 
AI application. Under the board’s rules, compa-
nies can pick one of three methods to account 
for inventory, whereas entities regulated under 

International Financial Reporting Standards 
have only two permitted methods.105 As a result 
of these policy choices, the inventory data that 
are recorded can vary substantially.106 If applied 
to AI, these data differences can ultimately alter 
analysis and results. As with all concepts in AI, 
application matters. The effect of some standards 
may be minor in certain cases but dramatic in 
others.

Standards dictate not only the content of data 
but also the structure of their digital representa-
tion. MP3, PDF, and other file formats are famil-
iar to most people. Each of these file formats is a 
standard that dictates how to arrange 1s and 0s to 
properly represent a given piece of data—in the 
case of PDF, a document, or in the case of MP3, 
an audio file. These formats can affect the quality 
of data and, by extension, AI. For instance, some 
formats, such as JPEG, allow for image compres-
sion, a technique that seeks to reduce file size by 
removing data from an image. This approach can 
have significant implications. In mammography 
image analysis, results have been found to vary 
significantly when AI systems are trained on 
images of differing compression levels. In cer-
tain cases, compression even caused complete 
misinterpretation of mammograms.107 It is worth 
repeating: data standards are design choices that 
are critical to AI applications.

Furthermore, note that, increasingly, cap-
tured data are not necessarily free from AI influ-
ence. Many cameras, including the cameras in 
the Apple iPhone, employ AI techniques to sub-
tly alter images during capture.108 Although the 
effect of these alterations remains to be seen, 
what is captured in data does not necessarily 
represent the unaltered ground truth of reality.



  MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

31

5. Microchips

In 1997, the addition of a tailormade “chess 
chip” allowed IBM’s Deep Blue artificial 
intelligence (AI) system to defeat world 

champion Gary Kasparov in chess.109 This 
defining moment in AI history was enabled by 
improvements in the engineering of semicon-
ductors and the manufacture of microchips (or 
simply, chips). Since then, a recurring theme in 
AI innovation has been the importance of ever 
more efficient chips. Without the significant 
improvements in microchip capabilities since 
1997, none of the big data or machine learning 
strategies that have supplanted the more primi-
tive AI methods used by Deep Blue would have 
been possible. 

Microchips serve two primary purposes in 
AI: providing processing power and storing data. 
Perhaps their most important quality, however, 
is the speed that enables quick computation 
and, by extension, intelligence. This section dis-
cusses how microchips function and addresses 

the increasing importance of this element to AI 
innovation. 

Microchips have many important aspects:

• AI systems depend on microchips to run AI 
algorithms and store data. 

• Variations in chip design can offer unique 
functions, speeds, and storage properties to 
AI systems. 

• Chips are increasingly AI specific. Popu-
lar AI-specific designs include graphics 
processing units and application-specific 
integrated circuits. 

• Over the past four decades, microchips 
have improved exceedingly quickly, dou-
bling their processing speed roughly every 
two years by physically shrinking computa-
tional units. Owing to physical limits, how-
ever, this geometrical pace may not be sus-
tainable over time. Future chip innovation 
will depend on architectural innovation. 
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• Microchip design and manufacturing are 
complex and supported by a wide range of 
disciplines, technologies, and companies.

FUNDAMENTALS

Microchip Basics
Although separate concepts, microchips are 
often refered to as semiconductors. The name 
“semiconductor” comes from semiconductor 
materials, such as silicon or germanium, the key 
ingredient in chips.110 Chips contain many com-
ponents, but their power and speed are owed to 
their transistors, the semiconductor switching 
device that performs computation. As a rule, chip 
power and speed increase as the transistors on 
a chip shrink in size and grow in density—that 
is, more transistors fitted into the same space. 
Historically, chip innovation has been linked to 
transistor innovation (specifically, transistor size 
reductions). For decades, consistent transistor 
improvements have unleashed the ever-growing 
processing speeds that, in the 1990s, enabled sys-
tems such as Deep Blue and, in the modern era, 
machine learning. 

Chip innovation has long followed a pattern, 
known as Moore’s law, in which the number of 
transistors per chip doubles roughly every two 
years.111 Less a “law” and more an observation 
of chip innovation patterns, Moore’s law has 
nonetheless held true over recent decades. The 
resulting pace of chip improvement has allowed 
for predictable improvements in the design of AI 
systems. For algorithms, this improvement has 
enabled greater processing speeds and therefore 
quicker “AI thinking.”112 For data, this advance-
ment has built the storage capacity needed to 
support big data.113 Transistors, however, are 
shrinking to their physical limits, and their per-
formance no longer will advance as quickly, if at 

all, on the basis of size alone. Future improve-
ments in chip function, and by extension AI, will 
require innovation beyond shrinking the transis-
tors inside microchips.114 

AI Chips
The past stability in the rate of growth of pro-
cessing power meant that AI research focused 
on algorithms, sidelining discussion of hard-
ware. In recent years, however, hardware has 
been at the center of the AI conversation. To 
meet processing demands, researchers are turn-
ing to AI chips (also called AI accelerators), a 
range of chips that are designed specifically for 
the unique processing needs of AI.115 AI chips 
improve performance not through transistor 
size reductions but via changes in microchip 
architecture—the “blueprint” configuration of 
chip components. 

The AI chip advantage is rooted in speed 
and specialization. Central processing units 
(CPUs), the general-purpose chip used for AI 
before the emergence of AI chips, are flexible 
but less efficient than AI-dedicated chips when 
processing AI-specific calculations.116 CPUs per-
form inefficiently when operations are repeated 
in bulk and when memory is frequently accessed, 
which are requirements of most AI algorithms.117 
AI chips can solve these problems.

In brief, in addition to CPUs, there are cur-
rently three categories of AI chips that policy-
makers should understand: graphics process-
ing units (GPUs), field-programmable gate 
arrays (FPGAs), and application-specific 
integrated circuits (ASICs). GPUs, FPGAs, and 
ASICs can be conceived of as standing on a spec-
trum spanning greater flexibility at the GPU end 
and greater speed at the ASIC end, with FPGAs 
standing in the middle (figure 5.1).118 
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GPUs are limited-purpose chips originally 
designed for graphics processing, but they have 
been appropriated for AI.119 Training a neural 
network, the most common AI model, requires 
large-scale and frequent matrix multiplication, a 
simple yet time-consuming mathematical opera-
tion.120 GPU architecture is designed with many 
matrix multiplication units that can execute mul-
tiple operations simultaneously, a quality known 
as parallelism.121 To analogize, a CPU is like an 
expert chef—versatile at cooking any dish simple 
or complex, though limited in that he or she can 
cook only a handful of dishes a night. GPUs are 
like an army of fast-food cooks—their versatility 
is low, and the food is not complex, but through 
raw numbers and focusing on only a few menu 
items, these cooks are able to feed far more peo-
ple each night. 

FPGAs and ASICs are single-purpose chips 
custom built for each application. In both, the AI 
software is hard-coded directly into the chip’s sil-
icon base. Application specificity increases speed 
by removing unneeded features and streamlin-
ing computation. The core difference between 
the two is programmability: the circuits baked 
into FPGAs are custom built and can be updated 
as needed. Meanwhile, ASICs are custom built 
but cannot be updated.122 FPGAs, owing to their 
programmability, carry certain efficiency costs. 
ASICs are perfectly tailored to an application’s 
specific needs, giving them greater speed.123 

Chip selection depends both on the phase 
of AI deployment and on application-specific 
inference demands. GPUs, owing to their flex-
ibility and parallelism, command the vast bulk of 
chips used to train systems.124 During inference, 
however, application-specific demands have led 
to greater diversity. For speed-critical applica-
tions, such as real-time monitoring systems, the 
superior speed of ASICs can be critical. For some 
consumer products, pricing is key, favoring CPUs 
over comparatively expensive AI chips. Over-
all, the growing trend in AI inference chips is a 
steady gain of market share by ASICs.125

Often, f﻿loating point operations per sec-
ond (FLOPS) are used to measure processing 
power and intensity. A floating point operation 
is any basic mathematical operation (addition, 
multiplication, etc.) on rational numbers (that is, 
numbers with decimal points; for instance, 3.12). 
Measuring the number of operations per second 
gauges how quickly processors run computations 
and programs. Confusingly, floating point opera-
tions—FLOPs, with a lowercase “s”—are also used 
to measure model “size” based on how many 
operations that model requires. Both are common 
in policy and computer science literature. 

DEEPER DIVE

Microchips in Detail 
What makes silicon and the other semiconductor 
materials that power computing unique is their 

FIGURE 5.1. The semiconductor speed-flexibility tradeoff
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ability to act as both insulators and conductors, 
depending on certain conditions.126 This quality 
is significant because it allows engineers to pro-
gram exactly when these materials will conduct 
electricity. The working part of chips made of 
semiconductor material is the transistor. Func-
tionally, a transistor is an electronic switch that 
alternates from allowing current to flow to block-
ing current. When current flows, it is represented 
as a 1, and when it is blocked, it is represented 
as a 0. This core function forms the basis of data 
representation and computation. 

Transistors are built from a combination of 
silicon and dopants, impurities that alter the 
properties of conductivity to enable engineers’ 
discrete control over electric currents.127 With-
out dopants, engineers could not control when 
and why a transistor switches on or off. 

To manipulate and store electrical currents, 
one can link transistors together in circuits that 
enable them to perform basic computation. For 
instance, an adder is a common circuit that takes 
in two numbers and adds them together. Tran-
sistor circuits can also form memory units. For 
instance, static random-access memory (SRAM), 
a type of computer memory, uses a small collec-
tion of linked transistors to trap energy, thereby 
storing the data that energy represents.128

Integrated circuits (ICs) are devices that 
string together many of these circuits, memory 
units, and other peripheral components to cre-
ate a toolbox of basic operations that software 
engineers can use when running algorithms. ICs 
often include execution units, subsystems that 
package related circuits together with memory 
and other tools to enable basic functions. These 
execution units come in many forms, each with 
a specifically designed purpose. An arithmetic 
logic unit, for instance, may include an “adder” 
to perform addition, as well as all other circuits 

required for basic arithmetic.129 The toolset pro-
vided in a chip can vary widely, and supporting 
AI often means choosing chips with the ideal set 
of capabilities.

Chip Design and Manufacturing 
Central to many policy questions are issues 
related to the design, manufacture, and supply 
chain of microchips. These systems are highly 
complex, and they are supported by a wide web 
of technologies and engineering disciplines. 
Ensuring AI innovation naturally involves ensur-
ing a robust and secure supply chain. 

Talent
The skills required to develop AI chips are funda-
mentally different from those needed for AI algo-
rithms and data management. The scientists who 
design AI chips tend to be electrical engineers 
by trade; algorithms and data are the specialty 
of software engineers.130 Further, manufacturing 
requires an even more distinct skillset to develop 
the physical processes, machines, and production 
foundries. This requirement expands the neces-
sary AI talent pool to include an array of disci-
plines, including chemical engineering, materials 
science, and mechanical engineering.131 AI innova-
tion is not the domain of computer science alone. 

Development and fabrication
Microchip development goes through several 
core phases. To design a chip, engineers wield 
electronic design automation (EDA) software 
that allows them to map a chip’s execution units 
and arrange transistors.132 

Once designed, chips are then fabricated 
in foundries where chips are not assembled 
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but printed. In brief, the process starts with a 
wafer, a raw chip base, usually made of silicon. 
Next, a variety of materials are printed onto the 
chip to enable photolithography, a process by 
which light is shined through a “circuit stencil” 
known as a photomask, printing the design onto 
the chip. Additional elements are added through 
etching (using chemicals to remove unwanted 
material and shape the design) and deposi-
tion (blanketing the chip with materials to add 
components).133 The list of materials required 
spans a large portion of the periodic table. There-
fore, manufacturing requires an extensive supply 
chain, materials stock, and a chemistry knowl-
edge base to support manufacturing opera-
tions.134 After chips are printed, they are pack-
aged in a protective casing and shipped. 

Material science innovations are an often 
overlooked source of greater AI processing 
power. For instance, engineers have found that 
using thinner ultraviolet rays, rather than visible 
light, in photolithography can embed chips with 
thinner components, decreasing chip size and 
increasing chip speed.135 To reiterate, AI innova-
tion is not the domain of only computer science.

As a generality, the equipment used in chip 
development and manufacturing is highly spe-
cialized and, as a result, highly expensive. Pho-
tolithography scanners, for instance, can cost 
more than $100 million per unit.136 Specializa-
tion has also led to concentration. In some cases, 
this concentration is geographical; for example, 
as of 2022, 85 percent of leading-edge chips 
were manufactured in Taiwan and the remain-
ing 15 percent in South Korea.137 The Dutch firm 

ASML Holdings is the only manufacturer of the 
extreme UV lithography machines needed to 
make all state-of-the-art chips in use today.138 All 
of these factors complicate the robustness and 
security of the AI supply chain and have recently 
received significant policy scrutiny.139 

Hardware infrastructure
Once these chips are produced, their specific 
arrangement and use in AI systems are also 
essential to the power they unleash. Not all 
these hardware capabilities will be housed 
locally. Cloud computing, a general concept in 
which computing resources are stored remotely 
and can be accessed for a fee, helps provision 
resources. The cloud cheapens computational 
cost through economies of scale and lowers the 
barrier to entry for AI. This approach can allow 
researchers to access the resources they need 
without buying physical semiconductors.140 
Naturally, this framework renders both the AI 
supply chain and the AI regulatory puzzle ever 
more complex. Pieces of an AI system can exist 
in multiple locations that collectively provide 
needed resources. Decentralized computing 
techniques such as federated learning further 
muddy the waters by eliminating centralized 
computing and data storage. This technique 
trains AI systems on a web of disconnected serv-
ers, rather than a centralized server, to eliminate 
data aggregation and preserve privacy.141 Such 
techniques could add regulatory complexity by 
eliminating the ownership link between AI engi-
neers and the data they use.
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6. Algorithms

Artificial intelligence (AI) algorithms 
serve two main functions: inference 
and learning. The goal of AI models is 

to produce statistical inference based on data—
data for training the model and new data. For 
instance, a chess-playing AI system must infer 
the chess move that, from all available moves, is 
most likely to lead to victory. During learning, 
models improve their performance through iter-
ative data analysis, which is known as training or, 
more narrowly, machine learning.

This section introduces algorithms. It dis-
cusses varieties of models, the way they learn, 
the way they perform inference, and the key chal-
lenges inherent in their application and design. 

Key points:

• Most AI algorithms are varieties of machine 
learning, a technique that produces intelli-
gent systems through learning from input 
data or direct experience. 

• There are several variations and approaches 
to machine learning. 

• Neural networks are perhaps the most 
common technique used in designing AI 
models, including current cutting-edge 
applications. 

• As with the choice of data, the choice of 
algorithmic technology can both influence 
and bias results. 

• Many AI systems are opaque, and the pro-
cess that leads to their predictions and 
decisions is often difficult to explain. AI 
explainability efforts are under way to 
render these processes transparent and 
understandable. 

• To promote AI quality and safety, many 
propose AI audits that would assess the 
biases, accuracies, and strengths of systems 
before and while they are deployed. 
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FUNDAMENTALS

Varieties of Machine Learning
Machine learning is a method for iteratively 
refining the process a model uses to form infer-
ences by feeding it additional stored or real-time 
data. As a model takes in more data, the infer-
ences should become more accurate: this is learn-
ing. Once inferences reach performance goals, 
the system can be put to practical use, inferring 
from new data. Notably, models are not neces-
sarily fixed post-training; learning can continue 
after an AI model is put to practical use. 

This section focuses on the dominant algo-
rithmic technique for developing AI models—
machine learning. Beyond machine learning, 
other methods are used to create AI models, 
including symbolic methods. Today, machine 
learning is the basis for most, if not all, modern 
systems. This technique is so dominant, in fact, 
that the term is largely synonymous with AI 
(box 6.1). 

Symbolic methods are both an alternative 
and a complementary technique. Under symbolic 
AI, engineers try to build intelligence by treating 
knowledge as a collection of symbols—essentially 
core definitions, objects, labels, and representa-
tions that describe the world in human terms. 
“Cat,” for instance, would be the symbol associated 
with the small, domesticated, feline commonly 
kept as a pet. Intelligence under this paradigm is 
a matter of constructing hierarchies and connec-
tions between these symbols and navigating those 
connections.142 While less dominant, symbolic 
learning should not be ignored. Symbolic repre-
sentations are essential to how humans under-
stand the world, and these approaches continue to 
find use, often being paired with complementary 
machine learning systems. 

Learning and Inference
The following are high-level illustrations of how 
machine learning and model inference work. In 

BOX 6.1. Machine learning varieties 

To create an AI system, engineers must select a machine learning algorithm. The algorithmic choice must be tailored 
to the task at hand. Although there is no one-size-fits-all strategy, most algorithms fall into one of the following 
categories: 

1. Supervised learning. This approach follows a guess-and-check methodology. Data are fed into the model; the 
model forms a trial prediction (a guess) about those data, and, critically, that result is checked against engineer-
provided labels, an answer key of sorts.a If the model’s prediction differs from the correct label, the model then 
tweaks its processes to improve inference. Successive iterations thus improve performance over time. This 
method is useful for well-defined objectives and for situations requiring human terms and understanding. For 
example, supervised learning can teach algorithms to label images of fruit with their correct English name. It 
has also found use in content and model behavior regulation. GPT-4’s engineers used supervised learning to 
fine-tune away certain undesirable behaviors and outputs.b Although useful for helping models understand data 
from a human perspective, this method’s challenge is that models cannot learn what they are not trained to do. 
Their abilities are driven, restricted, and biased by the data chosen during the training process.

2. Unsupervised learning. Unsupervised learning algorithms are used when desired outcomes are unclear or 
broad. Unlike supervised learning, in which a system is trained to perform discrete and human-defined tasks, 
unsupervised learning models take in unlabeled data, sift through them, learn what hidden patterns and features 
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they contain, and then cluster this information according to found categories and patterns.c This approach is 
useful in data analysis, where humans are prone to miss important data features and overlook unobvious correla-
tions. Likewise, large language models such as GPT-3 often use unsupervised techniques to develop their broad 
set of skills and pattern recognition abilities.d Unsupervised learning benefits include looking at data through 
a detailed lens, doing so without many human biases and blind spots, and analyzing data with greater speed. 
Operating without a human-provided lens, however, can be a challenge. Although an unsupervised algorithm 
can categorize data and find patterns, it might not understand how to define its discoveries in human terms or 
match them to human objectives. Nonetheless, unsupervised techniques are behind many of the most cutting-
edge systems in use today. 

3. Semi-supervised learning. Semi-supervised learning is a hybrid of supervised and unsupervised learning that 
combines a portion of labeled data on top of a larger amount of unlabeled data.e This approach provides a light 
touch of supervision that can be helpful when some guidance is needed to direct the algorithm toward useful 
conclusions. It can be useful, for instance, when categorizing written text. The unsupervised half might first 
cluster the symbols based on their shapes. Then to label these groupings, the AI can learn their names using a 
human-provided answer key.f The result is an AI model that can recognize the alphabet.

4. Reinforcement learning. Reinforcement learning is driven by process rather than by data analysis. These algo-
rithms use trial and error rather than big data to figure out the process behind a given task. To learn, an AI agent 
is placed in an environment and tasked with either maximizing some value or achieving some goal.g A driver-
less car might be tasked with minimizing travel distance between two points or maximizing fuel efficiency. The 
algorithm then learns through repetition and a reward signal. Through repeated trials, it tries a process and 
receives a reward signal if that process furthered its goal. It then adjusts its code accordingly to improve future 
trials.h This gamified approach is useful when a general goal is known, such as maximizing distance traveled, 
but the precise means of achieving that goal are unknown. Reinforcement learning from human feedback, for 
instance, is a prominent technique for aligning models with human preferences by testing them on users and 
rewarding them when users rate results positively. Here the goal of “usefulness for humans” is known, but how 
to get there and what that means is fuzzy—reinforcement learning’s flexible style leans into that ambiguity. A 
major challenge with reinforcement learning is that sometimes AI can cheat by following strategies misaligned 
with human goals. For example, if the goal were to maximize fuel efficiency when navigating a group of naval 
vessels to a location, perhaps an AI might choose to destroy the slowest ships to increase total naval speed. Here 
the AI technically finds a more efficient process yet diverges from human intention.

In summary, supervised learning produces models that yield mappings between data, unsupervised learning pro-
duces models that yield classes and patterns in data, and reinforcement learning produces models that yield actions 
to take on the basis of data.i 

NOTES
a. IBM, “What Is Supervised Learning?,” accessed May 22, 2024, 
https://www.ibm.com/cloud/learn/supervised-learning.
b. OpenAI, “GPT-4 Technical Report,” March 4, 2024, https://arxiv 
.org/pdf/2303.08774.
c. IBM, “What Is Unsupervised Learning?,” accessed May 22, 2024, 
https://www.ibm.com/cloud/learn/unsupervised-learning.
d. Tom B. Brown et al., “Language Models Are Few-Shot Learners,” 
Open AI, July 22, 2020, https://arxiv.org/pdf/2005.14165.
e. Jason Brownlee, “What Is Semi-Supervised Learning?,” Machine 
Learning Mastery, April 9, 2021, https://machinelearningmastery.com 
/what-is-semi-supervised-learning/. 

f. Ben Dickson, “What Is Semi-Supervised Machine Learning?,” Tech-
Talks, January 4, 2021, https://bdtechtalks.com/2021/01/04/semi 
-supervised-machine-learning.
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Learning?,” Synopsys, updated April 27, 2021, https://www.synopsys.
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the Level 2 section, each of these is presented in 
a more detailed, yet still understandable, manner. 

Learning
At a high level, how do AI systems learn? To illus-
trate this process, examine how a supervised 
learning algorithm builds its intelligence. 

Fundamentally, this process starts with two 
elements (figure 6.1): data and the model one 
wants to train. To kick off the process, the as-yet 
unintelligent model will take in one piece of data 

FIGURE 6.2. Benchmark model
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FIGURE 6.1. How artificial intelligence systems learn

from the dataset. Although it has not yet been 
refined in any way at this point, the model will 
then attempt an initial prediction based on that 
data. It does so to assess how well it performs so 
that improvements can be made. 

Once this initial prediction is made, the 
model then needs a benchmark to score how well 
it performed. There are many types of bench-
marks, but in the case of supervised learning, one 
can use an answer key of sorts (figure 6.2). Spe-
cifically, each data point will be given a human-
provided label that represents the intended cor-
rect result. Suppose that the model is an image 
recognition system. If the training data included 
an image of an apple, it would be labeled with the 
correct term: “apple.” If the model incorrectly 
produced the prediction “pear,” the label would 
signal to the model that a mistake was made.

When the label and prediction differ, this 
incongruity signals to the model that it must 
change. Guided by a mathematical process, the 
model then gently tweaks certain internal set-
tings and knobs called parameters, which are 
the values that shape its analytical processes. 
These tweaks ought to improve the model’s 
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predictive abilities for future trials. Note that 
although guided by mathematics, these tweaks 
do not guarantee improvement.

The algorithm repeats this process on the 
next piece of data. With each iteration, the model 
tweaks its parameters with the hope that collec-
tively, these small changes allow it to converge on 
a state where it can consistently and accurately 
make high-quality predictions. Recall that proper 
training can require millions of data points and, 
by extension, countless rounds of training to con-
verge on somewhat-reliable inferences.

Once the machine learning process is 
complete, the fully trained model can then be 
deployed and perform inference on real-world 
data that it has not seen before.

Inference
Once training is complete, how do these models 
perform inference on never-before-seen data? As 
is often the case, there are many tools that can 
be used. As an illustration, however, examine 
the most popular: the artificial neural network 
(ANN) (figure 6.3). This work uses neural net-
works to illustrate AI inference because such net-
works are behind most modern AI innovations, 
including driverless cars, image generation, 
AI-powered drug discovery, and large language 
models. Just as machine learning has become 
synonymous with AI, many observers often treat 
neural networks as synonymous with machine 
learning. Unlike the difference between machine 
learning and AI, however, other approaches are 
still widely used and very popular. Examples 
include regression models, which act to map the 
relationship between data variables; decision 
trees, which seek to establish branching patterns 
of logic that input data can follow to reach a con-
clusion; and clustering algorithms, which seek to 

sort data into clusters based on various metrics of 
data similarity.143 

As the name implies, a neural network is 
an attempt to simulate the cognitive processes 
of the brain in digital form. These networks are 
composed of smaller units (the circles in figure 
6.3) called artificial neurons. During the train-
ing process, each neuron will be tuned to find a 
unique and highly specific pattern in the input 
data that is highly correlative with accurate pre-
dictions. For instance, a neuron in a network 
designed to identify a face might be tuned to look 
for the visual patterns that represent a mouth, a 
pattern well correlated with faces. These pat-
terns are the basis of the network’s decisions. 

To analyze a given piece of data, the network 
will first pass that data point into a set of neurons 
called the input layer. This is the far-left column 
in figure 6.3. Each neuron in this set will then 
examine the data for whichever patterns it has 
learned are significant. After this first round of 
analysis, these discovered patterns are then fired 
to downstream neurons. 

When one neuron communicates with 
another, the information it sends is given a 
weight, which tells its neighboring neurons 
the importance of the pattern it has discovered 
for determining the final prediction of the net-
work. Weighting certain patterns gives them an 
outsized influence on the final predictions. This 
approach is useful because it allows the network 
to prioritize what information is worth attention. 
If a network were trying to determine whether an 
image were a face, a freckle might receive a low 
weight because this feature is not highly indica-
tive of a face; the freckle could be on an arm, a leg, 
or anywhere else. An eye, however, would receive 
an exceedingly high weight because this feature 
almost perfectly correlates with the prediction 
that an image is a face.144 These weights are one 
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FIGURE 6.3. Artificial neural network

INPUT HIDDEN OUTPUT

Note: Each dot represents an artificial neuron, and each arrow represents a connection between these neurons.

of the tunable parameters mentioned previously 
that are used to guide network analysis. Subse-
quent neurons take these weighted patterns and 
use them to find more complex patterns within 
patterns, developing an ever more nuanced pic-
ture of what the data represent. If two neurons 
have each identified an eye, these two features 
can be combined by a downstream neuron into 
the more complex and perhaps descriptive fea-
ture, “pair of eyes.”

At the end of this process, all of the informa-
tion will be passed to the output layer of neurons 
that is tasked with determining which prediction 
is best correlated with the total sum of discov-
ered patterns. That prediction will be the final 

output that can be used for further decisions, 
actions, or analyses.

Before moving on, note the advantages of 
this structure. First, this format allows the sys-
tem to divide and conquer. With hundreds, 
thousands, and sometimes millions of neurons 
deployed to look for specific, fine-grained pat-
terns, networks can capture the deep nuance 
and complexity of real-world data. Dividing and 
conquering gives networks both flexibility and 
greater accuracy.

Second, the connections between neurons 
allow for discoveries to be shared and combined, 
deepening analysis. Individual patterns, on their 
own, are often not enough to properly predict 
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what data represent. By combining patterns 
through neuron-to-neuron communication, a 
neural network forms a more complete picture. 
To facilitate this, modern networks are often 
structured in layers of neurons, each of which 
takes in past patterns and recombines them in 
new and ever more complex ways. As a result, 
machine learning that uses neural networks is 
often referred to as deep learning,145 a term that 
describes the multiple layers of neurons that data 
must pass through before a final prediction can 
be made.146

Generative AI
The recent explosion of AI interest largely cen-
ters on generative AI, systems trained to create 
high-quality text, media, or other data. Most 
generative AI systems today wield a shared 
model architecture, a deep learning design 
scheme that dictates how data interact with and 
flow through a model, called the transformer. 
What distinguishes the transformer is its abil-
ity to remember and connect disparate pieces of 
input data, rapidly process many data in parallel, 
and efficiently scale to learn and process a vast 
collection of data. The transformer has enabled 
the generative AI boom. This success, however, 
also rests on improvements in microchip pro-
cessing power, specifically graphics processing 
units equipped to manage a transformer’s often 
immense scale, and the big data needed to cap-
ture the diversity of knowledge that generative 
systems require. The transformer’s flexibility has 
enabled immense breadth, finding application in 
image and video generators, voice cloning, music 
generation, machine translation, materials dis-
covery, drug discovery, and other systems. 

Large language models (LLMs)—genera-
tive models trained to understand, generate, and 

process human language—have received unique 
attention. LLMs include chatbots such as Chat-
GPT and Claude and machine translations sys-
tems. LLMs are also commonly integrated into 
other AI systems such as image and audio gen-
eration that require human language prompts. 
Likewise, language models are increasingly 
trending toward multimodality, or a model’s 
ability to understand or produce multiple types 
of data, often including text, image, video, audio, 
and various computer file types. 

A key LLM and generative AI concern is 
hallucinations, outputs that are incorrect, unre-
lated to the prompt, or inconsistent with reality. 
While work is under way to decrease hallucina-
tions, a perfect solution that always guarantees 
correct results is unlikely. 

Key Challenges
The key challenges of algorithms are model bias, 
explainability, and auditing of AI.

Model bias
As mentioned earlier, AI systems are not free 
from human biases. Although data are usually the 
root of many biased outcomes, model design is an 
often overlooked contributing factor. The frame 
of the problem that engineers are trying to solve 
with AI, for instance, naturally shapes how the 
model is coded. 

For example, trying to design an AI system 
to predict creditworthiness naturally involves a 
decision on what creditworthiness means and 
what goal this decision will further.147 The mod-
el’s code will reflect this choice. If a firm simply 
wants to categorize data, perhaps a supervised 
learning algorithm can be used to categorize 
individuals. If the firm seeks to maximize profit, 
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FIGURE 6.4. Sample Decision Tree

Note: Figure 6.4 is a simplified sample output of how a decision-tree data algorithm might classify data by certain features it has learned during the 
training process.
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perhaps a reinforcement learning algorithm 
could challenge the system to develop a process 
that maximizes returns. These differences in 
goals and model design decisions will naturally 
change outcomes and create qualitatively dif-
ferent AI systems. How a model is trained can 
also affect results. A model intended for multiple 
tasks has been found to show different outcomes 
when trained on each task separately rather than 
all at once.148 Other such variations in the design 
process can be expected to yield varying results. 

Mitigating this form of bias can be chal-
lenging and, like data bias, lacks a silver-bullet 
solution. Best practices are still developing, but 
suggestions tend to focus on process, emphasiz-
ing team diversity, stakeholder engagement, and 
interdisciplinary design teams.149 

Explainability
Deep learning promotes large algorithms with 
opaque decision processes. Generally, as AI 
models balloon in size and complexity, explain-
ing their decision-making processes grows dif-
ficult. Decisions that cannot be easily explained 
are called black box AI. Large neural networks, 
and their convoluted decision paths, tend to fall 

into this category. As a result, interest has grown 
in explainable (or white box) AI, a field that 
involves either designing inherently interpre-
table machine learning models whose decisions 
can be explained150 or building tools that can 
explain AI systems.151 

Some classes of inherently interpretable 
models exist today. For instance, decision trees—
models that autonomously create “if–then” deci-
sion trees to categorize data—can be visually 
mapped for users (figure 6.4).152

Inherently interpretable models, however, 
are limited in accuracy and scale. Few modern 
neural networks are inherently interpretable, 
and model interpretation tools are an area of 
active research and development. Examples 
include tools that can determine what features in 
the input data were most significant in determin-
ing the model’s conclusions.153 The field is deeply 
underdeveloped, however, and cannot provide 
model-wide explanations, explain correlations 
between features, or produce necessarily under-
standable explanations.154 

In many cases, applications of AI may require 
explainability. To abide by the law, an AI hiring 
system may need to prove that its decisions are not 
based on protected class characteristics. Explain-
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ability can also help maximize policy effect. If 
decision makers know how a system produces 
decisions or results, that knowledge can enable 
targeted modifications of code to improve func-
tionality or perhaps minimize unwanted biases. 

AI auditing
Tangential to explainability is AI auditing. Given 
concerns over fairness, bias, correct design, and 
accuracy, there is significant interest in evaluat-
ing AI systems to ensure that they meet certain 
goals. Proposing AI audits, however, is easier said 
than done. Implementation naturally requires 
clarity of purpose. AI design challenges are 
rooted not only in technology but also in data, 
the application of technology, and social forces 
imprinted in these systems via biases. Choosing 
which problems to solve and what benchmarks 
to hit is an inherently messy task. As discussed 
earlier in this work, evaluation metrics and 
benchmarks are diverse and application specific. 

At present, technical and ethical standards 
are fragmented, with little broad-based consen-
sus. A 2021 Arizona State University study found 
an unwieldy 634 separate AI programs dedicated 
to developing soft law—that is, nongovernmental 
standards for AI development and governance.155 
This finding demonstrates that consensus has 
not been reached on the exact benchmarks and 
principles that might be used to audit AI. 

Process is another challenge. As a relatively 
new concept, AI audits lack frameworks and best 
practices, and commentators have noted that 
research on testing, evaluation, verification, and 
validation of AI algorithms has not kept pace 
with other subdomains of AI innovation.156 Cur-
rent processes and technologies offer no single 
audit technique that can test for the full range of 
possible errors.

Existing audits use a variety of methods. The 
data used to train algorithms can be audited to 
ensure that they are representative and avoid 
biases that might lead to disparate effect or to 
simply eliminate data extraneous to engineer-
ing goals. Black box testing, in which test data 
are fed into systems to analyze behavior, can 
help analyze general accuracy and stress test for 
certain undesirable biases. Model code can also 
be analyzed to better understand its process and 
its decision-making.157 This method, however, is 
challenging because code is often complex and 
unwieldy, and the results of that code inherently 
depend on the inputs that are used.

As with all software, AI will be in a constant 
state of flux as updates are made and security 
patches released. Further, not all problems can 
be discovered through a single audit. Some chal-
lenges can be seen only once an AI is deployed in 
a complex human environment. To these ends, 
the National Institute of Standards and Tech-
nology (NIST) has proposed an iterative audit 
process that audits AI throughout its life cycle, 
during development and testing, and continu-
ously after deployment.158 Repeated scrutiny 
could help catch errors at each stage of the pro-
cess and reinforce design principles to ensure 
that they are always top of mind. NIST’s pro-
posed process, however, is still in development. 
Best practices will require time and iteration 
before broad process agreement can be reached.

Each application naturally carries appli-
cation-specific performance expectations. The 
issues faced by a medical AI system will differ 
from those of a music-generation AI.159 Deter-
mining the questions that must be asked, the pro-
cesses followed, and the issues to be tested will 
therefore require diverse thought and subject-
matter expertise. As with the field, AI audits 
depend on application. 
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FIGURE 6.5. Model of a perceptron, a form of artificial neuron
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Artificial Neurons
The previous section discussed machine learn-
ing and AI inference at a high level. This section 
discusses how an individual neuron might take in 
data and spot patterns within those data to pro-
duce good predictions. The general principles 
are illustrated by use of the common supervised 
learning process and the perceptron, a simple yet 
powerful artificial neuron model (figure 6.5). 

Figure 6.5 is a diagram of an artificial neuron. 
On the left, the blue circles represent the input 
data for analysis. On the far right, the black arrow 
represents the final prediction that the model 
will output for the user. The core magic of this 
model, however, is the center. There one finds 
several elements that, while perhaps complex-
looking at first, are relatively simple in operation.

An example follows.

Input
Start at the far left with the blue data inputs. For 
this example, suppose one operates a bank and 
is trying to train an algorithm to categorize loan 
applicants as either prime or subprime borrow-
ers. Now suppose the applicants must submit 
four categories of data: 

1. Whether they hold a savings account: rep-
resented by a 1 (yes), or a 0 (no)

2. Their number of dependents 

3. Their number of monthly bank deposits

4. Their income bracket (represented by 1–7, 
with 7 being the highest)

For this illustration, suppose that the loan 
application for the neuron to analyze is as follows:

1. Savings account: 1

2. Number of dependents: 0



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

46

3. Number of monthly deposits: 2

4. Income bracket: 7

Data adjustment and activation
Detecting patterns in data is actually a process of 
transforming input data into an output that rep-
resents a meaningful pattern. This is done in two 
steps. First, the neuron manipulates the input 
data to amplify the most important information 
and sums the data. Next, it passes this sum to an 
activation function. In a realistic sense, the acti-
vation function represents the rules that trans-
form the input data into the output decision. 
In many cases, however, it can more or less be 
thought of as an algorithmic trigger that needs to 
be tripped for the neuron to activate.160 The acti-
vation function compares the manipulated data 
to certain criteria, which dictate the final output 
that the neuron will produce. In the simple prime 
or subprime case, this criterion is a threshold 
number: if the sum is higher than this threshold, 
the neuron sends a result indicating that this is 
a prime borrower. If not, it indicates subprime. 
Although in this case, the result is the neuron’s 
final decision, note that in complex neural net-
works, the result might just be one of many pat-
terns identified in service of the final decision. 

Elements of an artificial neuron
Next, examine the tools that this neuron uses to 
adjust the data and calculate the final result. Sur-
prisingly, this can be quite simple. In many cases, 
the math involved uses only simple arithmetic. 

Once the data enter the neuron, they 
encounter the green squares in figure 6.5; each 
represents a weight. Using weights, the neuron 
can amplify a certain element of the input data 
through multiplication. For instance, it is likely 

that the income bracket data in this example are 
strongly correlated with prime borrowers; there-
fore, this feature of the data should be amplified 
in the final decision. To do so, one multiplies that 
value by a weight to make it bigger, giving it more 
significance. 

Weights are a useful tool because they allow 
the truly important elements of the data to have 
an outsized effect on the result. Crucially, weights 
are a parameter that can also be tuned. The 
more important the value, the bigger a weight 
multiplier it will receive. Conversely, unimport-
ant data can be eliminated by multiplying them 
by 0. Finding the correct weightings of data val-
ues can be seen as one of the core elements of a 
neuron’s intelligence. 

After the data have been weighted, they are 
added to a bias value. The bias acts as the thresh-
old, mentioned previously, that the weighted 
data must surpass for the neuron to activate. Put 
another way, the bias puts a thumb on the scale of 
the result by adjusting what causes the neuron to 
trigger.161 For instance, if prime borrowers should 
be rare, one might subtract a bias value, making it 
harder for the summed weighted data to trip the 
activation function.

After the data have been adjusted, they are 
then fed to the activation function. In the exam-
ple neuron’s case, if the final value adds up to 1 or 
greater, the neuron communicates a prime result; 
if not, it indicates subprime. 

Calculation of the result
Let’s assemble each element to see how it affects 
the data. As mentioned earlier, to produce a 
result, the neuron will simply take the input 
data—the loan application—multiply each cat-
egory by its weight, and add these results with 
the bias value. 
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In this case, start by weighting the data. The 
data values are in blue, their weights in green, the 
bias in purple, and their sum in red: 

Result = 2 * (savings account) + 10 * 
(number of dependents) + 3 * (number 
of monthly deposits) + 1 * (income 
bracket) – 15.

Each data category is multiplied by a weight 
consistent with the importance of that data ele-
ment in making final predictions. Run the data 
through this equation:

2 * (1) + 10 * (0) + 3 * (2) + 1 * (7)

The weighted data sum is 15.
Next, add the bias. Remember that the bias 

is essentially the threshold that the data need to 
surpass for the neuron to activate. According to 
the rules prescribed by the activation function, 
these values must be greater than or equal to 1 for 
the neuron to indicate a prime value. The result is 
in red, the weighted sum from the previous step 
is in black, and the bias is in purple: 

Result = 15 – 15

The result is 0. Therefore, the neuron 
chooses to categorize the data as subprime.

The learning process
For the sake of illustration, suppose that the 
model is currently in training and this result is 
not correct. The original data show that the indi-
vidual is in the highest tax bracket and likely a 
prime borrower, yet the model in its current form 
classified the person as subprime. Thankfully, 
machine learning algorithms can learn from their 

mistakes and revise their weights and biases to 
produce better predictive outcomes. 

How might this work? First, the algorithm 
must realize there was a mistake. In supervised 
learning, to train a model, engineers will use 
a dedicated set of training data162 paired with 
labels that act as an answer key. In this case, the 
model will compare its result to the key and find 
that it made a mistake. This result will prompt 
the algorithm to adjust its parameters. 

These changes are often made using edu-
cated guesses, guided by mathematics. There are 
a variety of methods, but usually the algorithm 
will base its actions on how much its prediction 
diverged from the correct answer. This is called 
the loss. That value is then used to adjust each of 
the weights up or down depending on whether 
they are causing the neuron to undershoot or 
overshoot the correct result. The goal is to mini-
mize this loss value in future iterations.163 

For the sake of simplicity and sanity, the 
somewhat complicated linear algebra involved 
here is not discussed. The key takeaway is that to 
improve, the algorithm adjusts its weights based 
on how much it erred, nudging the model in the 
direction of the correct answer. Each adjustment 
is not perfect but a mere educated guess. After 
enough trials, however, the process helps mini-
mize loss and optimizes the algorithm. 

Back to the example, suppose the model has 
subsequently altered its weights to make better 
predictions: 

Result = 2 * (savings account) + 1 * 
(number of dependents) + 3 * (number 
of monthly deposits) + 10 * (income 
bracket) – 15

Using this equation, the data would produce 
a result of 63. This is obviously greater than 15, 
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the threshold that the results must surpass for 
the activation function to signal a prime result. 
The model has now learned when to classify this 
individual as a prime borrower.

Training considerations
Once a network is properly trained, its results are 
tested using a dedicated set of test data. This test 
set includes unused data to assess accuracy and 
flexibility. Test data help avoid the problem of 
overfitting, a situation in which a model is tuned 
so precisely to the training data that it cannot 
adequately account for unexpected variations 
in new data. The opposite problem is the chal-
lenge of underfitting, a situation in which the 
model has not been properly tuned to the prob-
lem because of poor data or design, and accuracy 
suffers. Both can be detected using test data. 
When designing models, engineers must strike 
a balance between overfitting and underfitting. 

Model tuning
Recent research suggests that adding greater 
depth and more neurons does not diminish 
returns on predictive performance.164 That said, 
simply building increasingly massive models is 
not always feasible, given limitations in comput-
ing power. Model designers must therefore size 
their models to fit the data and computational 
power at their disposal. For instance, a program-
mer with just a simple laptop CPU wouldn’t be 
able to design a model with hundreds of thou-
sands of neurons. Insufficient data also constrain 
model size. The bigger the model, the more data 
it will need to be well tuned. If engineers do not 
have enough data, they would choose model 
alternatives that are smaller and differently 
resourced. 

Beyond the size and scope of models, engi-
neers also work to tune a model’s hyperpa-
rameters, the settings that control the model’s 
function.165 An example of a hyperparameter is 
the learning rate. This rate dictates how large 
the tweaks to the model’s weights will be each 
time it makes an adjustment. A higher learning 
rate increases training speed, at the cost of accu-
racy, and a lower training rate decreases training 
speed, with accuracy gains. The chosen settings, 
as with model size, depend on the engineer’s spe-
cific resources and goals.

Finally, the engineer must also choose the 
correct model. Not all models are equal, and each 
comes with different strengths. Engineers must 
choose the best model for their goals. If a model 
for a given task does not exist, engineers can of 
course develop their own. That said, the major-
ity of machine learning engineering relies on pre-
fab models found in numerous libraries, many 
of which are free and open source. For example, 
the scikit-learn library includes a multitude of 
models that can be freely used and implemented 
using the Python programming language.166

Note that most AI engineering is unscien-
tific. Rules of thumb have come to dominate AI. 
There are no set rules that govern the specific 
number of neurons required, for instance. This 
adds further bias to AI. These algorithms, much 
like data, are reflections of the skill and goals of 
engineers. The systems are not perfect, nor are 
they scientific. They can, however, still produce 
highly accurate results. 

Model variety
The neuron illustration specifically presented a 
feed-forward neural network, a classic form 
that takes in data and directly maps them to a spe-
cific output.167 For the prime/subprime categori-
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zation task, this process worked perfectly. How-
ever, not all tasks are quite so straightforward. 
Some data, such as text, depend on complex 
relationships. The placement of a given word in 
a sentence depends not only on the words before 
it but also on those that follow. Analyzing a sen-
tence requires a network that can analyze each 
word sequentially and keep track of how each 
word fits into the context of the sentence. Even 
more complexity enters the picture when neural 
networks are applied to generative tasks—that is, 
when they are asked to produce text, paint pic-
tures, write songs, and so forth. These complex 
tasks are not simple categorization exercises. 
As such, numerous tools and models have been 
developed to augment the basic neural network 
structure and account for the unique complexi-
ties that come with each type of task. 

The following is a short list of some of the 
dominant forms of neural networks and the tools 
used by these networks to produce high-quality 
results. Given the dynamism of the field, this list 
cannot detail all types and combinations of neu-
ral networks, nor can it predict which may fall 
out of favor. 

Diffusion models. These models learn to generate 
new data, such as images, by gradually removing 
noise from a random input. Imagine starting with 
a blank canvas and randomly splattering paint all 
over it. The diffusion model learns to slowly and 
carefully remove the random splatters, step by 
step, until a clear, recognizable image emerges. 
It does this by training on a large dataset and 
learning the patterns and structures present in 
the data. The model can then apply this learned 
knowledge to generate new, previously unseen 
data similar to the training data. As of 2024, diffu-
sion models have shown state-of-the-art results 

in generating highly realistic images, video, and 
audio. 

Generative adversarial networks (GANs). A GAN 
is a training model that uses two separate neu-
ral networks that compete against each other to 
learn and improve. One produces fake data try-
ing to trick the other into misclassifying them 
as real, while the other is competing to improve 
its abilities at distinguishing the fake data from 
the real data. This process creates an arms race 
of sorts, with both models adjusting themselves 
to improve their ability to produce fake data that 
look real and their ability to distinguish real from 
fake, respectively.168 Theoretically, both models 
improve, and this refinement results in the abil-
ity to produce high-quality artificial data. This 
method is widely useful in applications in which 
unique data must be generated, including AI-
created art, images, video, and deep fakes. 

Convolutional neural networks (CNNs). CNNs are 
neural networks used in image and video analy-
sis. These models uniquely use convolutional lay-
ers, which act as data filters trained to spot and 
separate patterns that are highly correlated with 
a specific result. The result from these layers sim-
plifies data and accentuates the most important 
features.169 For example, if an algorithm is trained 
to recognize dogs in images, a convolutional layer 
may be trained to specifically find the pixel data 
patterns that form floppy ears. If this layer spots 
this pattern, there is a high likelihood that the 
image is indeed a dog. Overall, these layers act 
to break down images into their component pat-
terns and unlock greater predictive powers for 
neural nets.

Recurrent neural networks (RNNs). These net-
works are defined by their ability to “remember.”170 
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As data flow through an RNN, they are analyzed 
on their own merits, and their qualities are knit 
together and compared to the data that came 
before, allowing the network to see patterns over 
time. This temporal analysis quality has applica-
tions in time-dependent data such as video or 
writing. 

Transformers. An architecture that arrived in 
2017, it has since been widely applied across many 
complex tasks such as natural language pro-
cessing. Transformers’ key selling point is their 
attention mechanism, which allows the model 

to “pay attention” to key features and remem-
ber how those features in the data relate to oth-
ers.171 This quality allows these models to treat 
data as a complex whole, a characteristic that is 
essential for any task that requires understand-
ing over time, such as reading text. Because the 
transformer is an architecture, it is often used in 
concert with other models. OpenAI’s Sora video 
generator, for instance, is a diffusion transformer 
using both diffusion models and the transformer 
architecture. The basis for many foundation 
models today is the transformer. 
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7. Conclusion: The Policymaker’s Challenge

While the goal of this introduction to 
artificial intelligence (AI) is sim-
plicity, some may find the stagger-

ing breadth of AI unwieldy. AI’s wide scope is 
a natural consequence of its general and often 
ill-defined nature. Recall that, fundamentally, 
AI is a normative goal. As with any goal, it can 
be defined in a variety of ways depending on 
the user and the context. One goal might be to 
wield and design AI systems to maximize safety, 
another might involve a minimizing bias, and 
third perhaps would prioritize national secu-
rity. Such general goals grow more specific and 
varied as systems are designed and applied in 
application-specific contexts. 

The fundamental challenge for policymak-
ers will be recognizing this diversity and under-
standing that not all AI goals will coexist peace-
fully, nor will they necessarily match the goals 
of policymakers. Any regulation or AI-related 
policy will naturally involve a normative choice. 

What should AI look like, what should it do, and 
how should it be used—that is, what goal or set of 
goals are encouraged or allowed?

Diversity is perhaps the best first step toward 
meeting this difficult challenge. Only through 
application- and sector-specific knowledge can 
the full range of potential AI goals, applications, 
and issues be understood. Meeting the challenge 
of AI’s increasing breadth requires a represen-
tative breadth of policymakers to understand 
AI. This general-purpose technology is also a 
general-purpose policy issue. 

Having peeked under the AI hood, readers 
should have a technical starting point that can be 
customized and applied to each given sector and 
field. Today, AI systems are changing—and per-
haps even transforming—many fields. With such 
potential, it is incumbent on all policymakers to 
dig in, understand these concepts, and grapple 
with the diversity of these impactful systems.
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Glossary

Accuracy: An evaluation metric that measures 
the reliability of a system’s inferences.

Activation function: The mathematical func-
tion that transforms data inputs into outputs. 
This shapes the final predictions that are made 
and serves as the algorithmic trigger that needs 
to be tripped by input data for a given prediction 
to be made. 

Adversarial examples: Data inputs maliciously 
designed to trick AI systems during inference.

Adversarial machine learning: Refers gener-
ally to the study and design of machine learning 
cyberattacks and defenses.

AI alignment: In the context of artificial general 
intelligence, alignment of AI systems refers to 
their correspondence with generally accepted 
human values (do not harm, do not kill, protect 
the vulnerable, allocate human rights equitably, 
and so on).

AI chips or AI accelerators: A range of chips 
designed specifically for the unique processing 
needs of AI.

AI triad: The three primary input technologies 
that yield artificial intelligence: microchips, data, 
and algorithms. 

Algorithm: A logical sequence of steps to accom-
plish a task, such as solving a problem. 

Alignment imbalance: A state in which AI is 
generally misaligned with human values. This 
imbalance supposes that AI systems can possibly 
be balanced with human values. However, imbal-
ance may be inherent to all AI systems and baked 
into their design. 

Application-specific integrated circuits 
(ASICs): The fastest and least flexible form of AI 
chip. ASICS are single-purpose chips and cannot 
be rewritten; the algorithms they use are hard 
wired into their silicon. 
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Artificial general intelligence: A general-
purpose AI system that can adapt and learn any 
task. It is not designed for a specific narrow pur-
pose or set of purposes. 

Artificial intelligence (AI): The goal of auto-
mating tasks normally performed by humans. 
To reach this goal, one uses “machine-based 
system[s] that can, for a given set of human-
defined objectives, make predictions, recommen-
dations or decisions influencing real or virtual 
environments.”172

Artificial narrow intelligence: AI built for a 
narrow purpose, such as a specific application. 
This AI can do one or a few tasks and do so with 
high accuracy, but it cannot transfer to other 
applications outside of its design mandate. 

Artificial neural network (ANN): A type of 
model formed from networks of interconnected 
artificial neurons. Neurons take in data, divide 
that data, and parse these divisions to discover 
patterns. Patterns are then assembled to form 
increasingly advanced patterns and ultimately 
inform the network’s final predictions. 

Artificial neurons: Individual components of 
ANNs that take in data and look for specific pat-
terns in such data that they have learned are sig-
nificant during the training process. 

Attention mechanism: A component of certain 
neural networks which allows the model to “pay 
attention” to key features in data and remember 
how those features in the data relate to others. 

Bayesian methods: Models that are coded with 
previous information that provides context and 
shrinks the overall learning task and, by exten-
sion, the required training data. 

Benchmarks: Common datasets paired with 
evaluation metrics that can allow researchers to 
compare the quality of models. 

Bias: Defined generally as the difference between 
desired outcomes and measured outcomes. Often 
it refers to human biases inherited in AI systems 
through model or data design choices. 

Bias value: The threshold that the weighted data 
must surpass for a neuron to activate. Mathemat-
ically, this serves as the intercept that orients the 
activation function toward the “shape” of reality. 

Big data: Big data AI systems are trained on 
large, representative, and diverse datasets that 
are expected to capture all the corner cases and 
details of a given problem. The theory is that by 
training an AI system on such a dataset, the sys-
tem should, it is hoped, capture and learn all the 
required details of a given problem. 

Binary: A numerical system that represents val-
ues in series of just 1s and 0s. Most data in com-
puter science and AI are represented in this form.  

Bit: The smallest unit of data that represents a 
binary choice between a 1 and a 0. 

Black box: The often-opaque decision-making 
processes behind deep neural networks.

Byte: A data unit the size of 8 bits. 

Central processing unit (CPU): A type of 
general-purpose chip designed to handle all 
standard computation. 

Chatbot: A class of AI technology that takes 
language-based prompts and responds in a lan-
guage or text-driven, often conversational man-
ner. Examples include ChatGPT and even AI 
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assistants such as Amazon’s Alexa. Chatbots 
have been around for decades; however, today’s 
chatbots often wield large language models 
(LLMs), such as GPT-4, to ensure advanced flex-
ibility, fluidity, and generalization. For sensitive 
or regulated applications, such as finance, more 
stringent technologies such as inflexible decision 
trees remain common. 

Circuits: Electronic components linked together 
to enable certain computational functions such 
as addition, subtraction, or memory storage.

Cloud computing: A general computing concept 
in which computing resources (both memory 
and processors) are stored remotely.

Code: The set of instructions given to a computer 
system.

Computer program or software: Code for the 
operation of a computer application. 

Convolutional neural network (CNN): A form 
of neural network that uses convolutional lay-
ers, which act as data filters trained to spot and 
separate patterns that are highly correlated with 
a specific result. These layers simplify data and 
accentuate the most important features. CNNs 
can be useful in many applications, such as image 
analysis, financial time series analysis, and natu-
ral language processing.

Data: In the context of computer science, data 
are pieces of discrete information that can be 
encoded, stored, and computed. 

Data cleaning: The process by which data are 
prepared for use by an AI algorithm. 

Data poisoning attacks: Attacks on AI systems 
caused by the malicious manipulation of data. 

Data standards: Industry and application-
specific standards that dictate in certain circum-
stances what data must be recorded and how that 
data must be recorded. 

Data warehouses: Large, centralized ware-
houses holding hundreds of servers on which 
vast lakes of data are stored and large-scale com-
putations are run. 

Deep learning: A type of machine learning 
that specifically uses deep, multilayered neural 
networks.

Deposition: A process used in chip fabrica-
tion that blankets chips with materials to add 
components.

Dopants: Intentional impurities that lace the 
silicon in transistors, changing when and how 
transistors switch between conducting or insu-
lating electric current. 

Electronic design automation (EDA): The 
software used by hardware engineers to design 
computer systems and chips. 

Etching: A process used in chip fabrication that 
uses chemicals to remove unwanted material and 
shape the design of the chip.

Evaluation metrics: Metrics that can be used to 
assess AI system quality. These are diverse, and 
the metrics selected should match application 
needs and engineering goals. 

Execution units: Microprocessor subsystems 
that package related circuits together with mem-
ory and other tools to enable basic functions. 

Explainable or white box AI: An emerging class 
of AI that seeks to provide explanations of how 
the system’s decisions and predictions are made. 
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F1 score: An evaluation metric that assesses how 
well a model minimizes both false negatives and 
false positives. 

Feed-forward neural network: A type of 
machine learning in which data flow in one 
direction through the network’s layers.

Federated learning: A training technique that 
trains AI models on a web of disconnected serv-
ers or processors, rather than a centralized 
server, often to eliminate data aggregation and 
preserve privacy. 

Few-shot learning: The ability of a model to 
form accurate inferences trained on only a few 
explicit examples of the problem at hand.   

Field-programmable gate arrays (FPGAs): 
Task-specific chips that can be written and 
rewritten for a single-purpose algorithm. Given 
their task specificity, FPGAs are faster than GPUs. 
They are still slower than ASICs, because their 
ability to be rewritten comes with certain speed 
costs. 

File format: A type of data standard that defines 
how data are digitally represented. 

Fine-tuning: The process of refining a general-
purpose foundation model toward specific goals 
or tasks. Fine-turning often involves additional 
training on task- or domain-specific data, train-
ing in controls to limit certain undesirable behav-
iors, or further training to align models toward 
certain desired behaviors. 

Floating point operations per second 
(FLOPS): A measure of computational speed 
and performance that clocks the floating point 
operations, the number of mathematical opera-
tions a processor can complete in a second. Con-
fusingly, floating point operations (FLOPs with 

a lowercase “s”) are also used to measure model 
size based on how many operations that model 
requires. 

Foundation models: Large-scale machine learn-
ing models trained on broad sets of data that can 
be easily adapted to a wide range of downstream 
tasks.

Generalization: A system’s ability to “adapt 
properly to new, previously unseen data.”173 Gen-
eralization is highly desirable and a marker of AI 
quality. 

General-purpose technology: Innovations 
that “[have] the potential to affect the entire eco-
nomic system.”174

Generative adversarial networks (GANs): A 
form of neural network in which competing agents 
seek to outcompete each other. Through compe-
tition, each party improves, ultimately improving 
its overall predictive qualities. GANs are noted 
for their generative modeling, or creative, abili-
ties. This specifically means that they use pattern 
recognition to predict how to best generate novel 
output content, such as images. 

Generative AI: AI systems trained to create 
high-quality text, media, or other data. Genera-
tive AI is not limited to media. Protein folding 
systems, materials discovery systems, code gen-
eration, and other science, technology, engineer-
ing, and mathematics (STEM) applications can 
be considered generative AI.  

Graphics processing units (GPUs): Limited-
purpose processors that were originally designed 
for graphics processing but that have been reap-
propriated for AI. GPUs excel at matrix multi-
plication, a function central to AI, giving them 
speed advantage over traditional CPUs. 



MERCATUS CENTER AT GEORGE MASON UNIVERSIT Y

56

Hallucinations: Generative AI outputs that are 
incorrect, unrelated to the prompt, or inconsis-
tent with reality. 

Hyperparameters: High-level settings that can 
be adjusted by engineers to control the model’s 
functions. 

Inference: A probabilistic guess made by an 
AI system on the basis of patterns or trends 
observed in data.

Inherently interpretable: Models that by 
design are simple to interpret or understand.

Integrated circuits (ICs) or microprocessors: 
Devices that can perform basic operations of 
software commands. 

Internet of things (IoT): Networks of diverse 
internet-connected devices. IoT devices often 
act as key data inputs to AI systems. 

Large language models (LLMs): Generative 
models trained to understand, generate, and pro-
cess human language. Machine translation and 
chatbots are common LLMs. To enable prompt-
ing, LLMs can also be integrated into systems 
such as image generators.  

Layers: Collections of neurons that data must 
pass through simultaneously in a network. 

Libraries: Databases of functions that can be 
plugged into computer programs. There are 
many free-to-use libraries of machine learning 
models that are commonly appropriated for AI. 

Loss: In machine learning, this is the mathemati-
cal difference between the correct outcome and 
the desired outcome. 

Machine learning: A method for iteratively 
refining the process a model uses to form infer-

ences through feeding it stored or real-time 
data.

Memory units: Devices that use transistors and 
other components to store information. Memory 
units can be subcomponents of a chip or stand-
alone chips depending on their size and function. 

Microchip architecture: The “blueprint” con-
figuration of chip components, including cir-
cuits, execution units, and input/output devices. 
AI chips depend on architectural changes for 
performance gains. 

Model: The software configuration that results 
from machine learning. Once fed new data, the 
model can produce inferences in the form of pre-
dictions, decisions, and other outputs.175

Model architecture: An AI model design 
scheme that dictates how data interact with and 
flow through a model. 

Moore’s law: An observation stating that the 
number of transistors per chip doubles roughly 
every two years. More than an empirical observa-
tion, it was an expectation that came to organize 
the efforts of the microchip industry and was a 
self-fulfilling prophecy for a long time.

Multimodality: The ability of a model to under-
stand multiple types of data, often including text, 
image, audio, and various computer file types. 

Overfitting: A situation in which a model is 
tuned so precisely to the training data that it can-
not adequately account for new data. 

Parallelism: The ability of a chip to perform cer-
tain functions in parallel rather than sequentially, 
allowing faster processing.

Parameters: The values that shape a model’s 
analytical processes.
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Photolithography: A process used in chip fab-
rication by which light is shined through a “cir-
cuit stencil” known as a photomask, printing the 
design onto the chip’s wafer. 

Precision: An evaluation metric that evaluates 
how many positive results are true positives.

Recall: An evaluation metric that states the per-
centage of a model’s negative results that are true 
negatives. 

Recurrent neural networks (RNNs): Neural 
networks defined by their ability to remember 
past information and connect that information 
to future data. This “memory” is necessary in 
complex, time-dependent data such as video 
analysis, natural language processing, and other 
applications.

Reinforcement learning: A type of machine 
learning that uses trial and error to learn the best 
process to achieve a given goal. To learn, an AI 
model is given a scenario and tasked with maxi-
mizing a reward or achieving a goal. When its 
process improves, it receives a rewards signal 
that instructs it to reinforce the processes that 
led to that improvement.

Reinforcement learning from human feed-
back (RLHF): A prominent fine-tuning tech-
nique geared at aligning models with human 
preferences. During RLHF, systems are tested on 
or produce outputs for human users; when those 
users react positively, a reward signal is sent to the 
system, thereby helping it improve its outputs. 

Representation: The concept of translating 
observable objects (images, words, sounds) into 
digital code.

Semiconductor devices: A class of devices that 
uses the unique switching properties of semicon-

ductor materials to alert the flow of electricity. 
Example devices include LEDs and transistors. 
Microchips, ICs, and microprocessors are all 
made of semiconductor materials. 

Semiconductor materials: Materials such as 
silicon that can act as either insulators or con-
ductors of electricity. 

Semi-supervised learning: A hybrid of unsu-
pervised and supervised learning in which 
a portion of labeled data are provided to the 
model on top of a larger amount of unlabeled 
data. This approach can provide a light touch of 
supervision.

Small data: An alternative strategy to big data 
approaches that uses a variety of techniques to 
train AI algorithms on smaller datasets when 
information is poor, lacking, or unavailable. 

Stale data: Outdated data that are no longer rep-
resentative of a given problem. 

Stochastic parrots: A term that describes AI 
systems that randomly rearrange and regurgitate 
learned data rather than provide true insight or 
understanding. 

Superintelligence: An AI system that is smarter 
than humans in almost every domain.

Supervised learning: A type of machine learn-
ing that uses a guess-and-check methodology by 
which the model takes in data, makes a predic-
tion about those data, and compares that predic-
tion to a labeled answer key. If the inference is 
incorrect, the algorithm adjusts itself to improve 
performance. 

Symbolic methods: An alternative and com-
plementary technique to machine learning.  
Under symbolic AI, engineers try to build intel-
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ligence by treating knowledge as a collection of 
symbols—essentially core definitions, objects, 
labels, and representations that describe the 
world in human terms. 

Synthetic data: Data that are artificially cre-
ated either by human or machine generation 
but still thought to be generally representative 
of a problem. Training AI on artificial data can 
supplement real-world data when quality data 
resources are limited. 

Test data: The unique set of data reserved for 
testing the model for final accuracy and effective-
ness used in machine learning. Test data must be 
separate from the training data. 

Three V’s: Key characteristics that define the 
quality of a dataset. Variety refers to the diver-
sity of the data. Volume refers to the size of the 
dataset. Velocity refers to the usability and speed 
by which the data can be applied. Other publica-
tions may list four, five, or even six Vs. The term 
tends to vary depending on context and purpose. 

Training: The process by which models take in 
stored or real-time data to refine their processes 
and improve their inferences. 

Training data: The unique set of data reserved 
for the model training process in machine 
learning. 

Transfer learning: One small-data approach 
that allows models to inherit learning from pre-
viously trained big data models. 

Transformers: An emerging class of neural net-
works that uses a so-called attention mechanism 

that allows the model to pay attention to key fea-
tures and remember how those features in the 
data relate to others.

Transistor: A device built from a combination 
of silicon and dopants, impurities that alter the 
properties of conductivity to provide discrete 
control by engineers over electric currents.

Underfitting: A situation in which a model has 
not been properly tuned to the problem because 
of poor design or data quality.

Unsupervised learning: A type of machine 
learning that focuses on sorting unlabeled, 
unsorted data and discovering patterns in those 
data. This method does not focus on specific out-
comes but rather on discovering the meaning and 
patterns in data. 

Validation: The process by which the engineer 
uses a dedicated validation dataset to tune the 
hyperparameters of the model. Generally, this is 
done after training but before testing. 

Validation data: The unique set of data used 
during machine learning validation. These 
data are used specifically to tune the model’s 
hyperparameters. 

Wafer: The thin disk of semiconductor materials 
that acts as the base of a computer chip. 

Weight: A numerical value that amplifies or sup-
presses the importance of a pattern found in data. 

Zero-shot learning: The ability of a model to form 
accurate inferences without having been trained on 
explicit examples of the problem at hand. 
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