Preliminary Economic Analysis and Initial Regulatory Flexibility Analysis

Supporting document for the Notice of Proposed Rulemaking for Occupational Exposure to Crystalline Silica

Occupational Safety and Health Administration U.S. Department of Labor

2013

CHAPTER I: INTRODUCTION

OSHA's Preliminary Economic Analysis and Initial Regulatory Flexibility Analysis (PEA) addresses issues related to the costs, benefits, technological and economic feasibility, and the economic impacts (including impacts on small entities) of the proposed respirable crystalline silica rule and evaluates regulatory alternatives to the proposed rule. Executive Orders 13563 and 12866 direct agencies to assess all costs and benefits of available regulatory alternatives and, if regulation is necessary, to select regulatory approaches that maximize net benefits (including potential economic, environmental, public health and safety effects, distributive impacts, and equity). Executive Order 13563 emphasizes the importance of quantifying both costs and benefits, of reducing costs, of harmonizing rules and of promoting flexibility. OSHA has determined that this proposed rule governing occupational exposure to respirable crystalline silica ("silica") is an economically significant regulatory action under section 3(f)(1) of Executive Order 12866. Accordingly, the Office of Regulatory Analysis within OSHA has prepared this preliminary economic analysis (PEA) for the proposed rule. In conducting this PEA, OSHA has endeavored to meet the requirements of OMB's Circular A-4 (OMB, 2003), a guidance document for regulatory agencies preparing economic analyses under Executive Order 12866.

This rule has been reviewed by the Office of Information and Regulatory Affairs in the Office of Management and Budget, as required by Executive Order 12866.

The purpose of this Preliminary Economic and Initial Regulatory Flexibility Analysis is to:

- Identify the establishments and industries potentially affected by the proposed rule;
- Estimate current exposures and the technologically feasible methods of controlling these exposures;
- Estimate the benefits resulting from employers coming into compliance with the rule in terms of the reduction in fatal cases of lung cancer, fatal cases of non-malignant respiratory disease, fatal cases of end-stage renal disease, and cases of silicosis morbidity;
- Evaluate the costs and economic impacts that establishments in the regulated community will incur to achieve compliance with the proposed rule;
- Assess the economic feasibility of the rule for affected industries;
- Evaluate the principal regulatory alternatives to the proposed rule that OSHA has considered; and
- Estimate the impacts of the final rule on small entities as defined by the Small Business Administration (in accordance with the Regulatory Flexibility Act, as amended in 1996).

The rest of this chapter is devoted to a description of the need for a silica rule, a discussion of the major provisions of the proposed rule, and a list of the chapters to follow in this PEA. To develop this PEA, OSHA relied considerably on the support of OSHA's contractor Eastern Research Group (ERG). ERG's individual work products are referenced throughout this PEA.

REASONS WHY ACTION BY THE AGENCY IS BEING CONSIDERED

When establishing the need for an occupational safety and health standard, OSHA must evaluate available data to determine whether or not workers will suffer a material impairment of their health or functional capacity as a result of being exposed to a particular safety or health hazard. Section 6(b)(5) of the Occupational Safety and Health Act (OSH Act) directs OSHA to set the standard "... which most adequately assures, to the extent feasible, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life." 29 U.S.C. 655(b)(5).

The Supreme Court, in reviewing previous OSHA standards, has also directed the Agency to make a determination that ". . . significant risks are present and can be eliminated or lessened by a change in practices" before promulgating any health or safety standard. <u>Indus. Union Dep't, AFL-CIO v. Am. Petroleum Inst.</u>, 448 U.S. 607, 642 (1980). While the Supreme Court did not specify what constituted a "significant risk" and considered that determination to be largely a policy decision for OSHA, the Court did offer guidance, stating that a reasonable person might well consider a 1 in 1000 risk of fatality to be significant. Id. at 655.

OSHA makes its material impairment and significant risk determinations by first evaluating available data to identify hazards to which employees are exposed in the workplace that are likely to induce material impairments of their health or functional capacity. The Agency looks at a broad array of scientific data and assesses the overall weight of evidence in making its significant risk determinations. In the next step, the Agency looks at the overall quality of the data to identify studies or other data that are useful in making quantitative estimates of the risk of those impairments of health among exposed workers over their working life (as mandated by the OSH Act). While many studies may add to the overall weight of evidence, often only select studies have suitable information for making quantitative estimates of risk. In the case of health risk analyses, the quantitative estimation of risk often involves the use of dose-response mathematical models. This is a common approach used in the field of health risk assessment that allows the Agency to extrapolate scientifically observable data, from humans or animals, to a variety of exposure scenarios that may be relevant to exposed workers.

In the case of respirable crystalline silica, OSHA has identified over 60 epidemiological studies (covering more than 30 occupational groups) that provide clear evidence that

respirable crystalline silica is a human lung carcinogen. In addition, epidemiological evidence and case reports among exposed workers indicate that exposure to respirable crystalline silica leads to other adverse respiratory effects, such as fatal non-malignant silicosis and chronic obstructive pulmonary disease, and an elevated risk of end-stage renal disease. OSHA also identified seven studies that quantitatively described relationships between exposure to respirable crystalline silica and silicosis morbidity, as diagnosed from chest radiography (i.e., chest x-rays or computerized tomography).

Considering just respirable crystalline silica as a human lung carcinogen, OSHA believes that the strongest evidence for carcinogenicity comes from studies in five industry sectors (diatomaceous earth, pottery, granite, industrial sand, and coal mining) as well as a study by Steenland et al. (2001) that analyzed pooled data from 10 occupational cohort studies; each of these studies found a positive relationship between exposure to respirable crystalline silica and lung cancer mortality. Using data from a specific worker cohort to determine the risk to exposed workers has been upheld on judicial review in other standards regulating worker exposure to other toxic substances. It is also an accepted scientific approach used by other regulatory and non-regulatory entities in making decisions regarding public health.

Based on a variety of relative risk models fit to these data sets for death from lung cancer, OSHA estimates that the excess lifetime risk to workers exposed over a working life of 45 years at the current general industry permissible exposure limit (PEL) (approximately $100 \, \mu \text{g/m}^3$ respirable crystalline silica) is between 13 and 60 deaths per 1,000 workers. For exposure over a working life at the current construction and shipyard employment PELs (estimated to range between 250 and 500 $\mu \text{g/m}^3$), the estimated excess risk lies between 37 and 653 deaths per 1,000. Reducing these PELs to the proposed PEL of 50 $\mu \text{g/m}^3$ respirable crystalline silica results in a substantial reduction of these risks, to a range estimated to be between 6 and 26 deaths from lung cancer per 1,000 workers.

Overall, OSHA estimates that the proposed rule would prevent between 579 and 796 fatalities annually—375 from non-malignant respiratory disease, 151 from end-stage renal disease, and between 53 and 271 from lung cancer—and an additional 1,585 cases of moderate-to-severe silicosis annually.

SUMMARY OF THE PROPOSED STANDARDS FOR RESPIRABLE CRYSTALLINE SILICA

OSHA has developed a comprehensive standard to protect employees from exposure to respirable crystalline silica in general industry and maritime and is proposing a separate standard for the construction industry. The proposed standards contains a permissible exposure limit (PEL) and other requirements, including: employee exposure assessment, regulated areas, methods of compliance, respiratory protection, medical surveillance, communication of silica hazards to employees, and recordkeeping. The text below summarizes the requirements contained in the proposed standards.

(a) Scope and application

One proposed standard would apply to all workplaces where there is occupational exposure to respirable crystalline silica within general industry and maritime. The other proposed standard would apply to all workplaces in construction industries where there is occupational exposure to respirable crystalline silica. Neither proposed standard would apply to agriculture.

(b) Definitions

The definitions section explains important terms used in the proposed standards, such as "action level," "employee exposure," "objective data," "regulated area," and others.

(c) Permissible Exposure Limit (PEL)

OSHA's proposed PEL is expressed in units of microgram(s) per cubic meter of air ($\mu g/m^3$), calculated as an 8-hour time-weighted average (TWA). The Agency is proposing a PEL of 50 $\mu g/m^3$ but for analytical purposes has also assessed the feasibility of an alternative PEL of 25 $\mu g/m^3$, as well as the economic impacts of an alternative PEL of 100 $\mu g/m^3$.

Health risk data and analyses indicate that the risk of non-malignant respiratory disease, end-stage renal disease, and lung cancer associated with exposure to $100 \,\mu\text{g/m}^3$ respirable crystalline silica over a working lifetime is of a magnitude that would be considered significant by the Agency. Although OSHA is still evaluating the scientific evidence underlying these risk analyses, OSHA has made a preliminary decision not to consider an alternative PEL greater than $100 \,\mu\text{g/m}^3$.

In this proposed rule, OSHA is also setting an action level of $25 \,\mu\text{g/m}^3$. In these proposed standards, as in previous OSHA standards, the provisions for initial and periodic exposure monitoring are only triggered once the action level is reached or exceeded. Thus, employers may be able to considerably reduce the burden of complying with the proposed standards by reducing employee exposures below the action level.

(d) Exposure Assessment

This paragraph of the proposed standards has provisions for conducting an initial exposure assessment, for performing periodic and additional exposure monitoring, and for observing monitoring. Each employer is required to conduct an assessment of the work site to determine if employees are exposed to levels of respirable crystalline silica at or above the action level. The purpose of this assessment is to determine not only whether or not engineering and work practice controls are required to meet the PEL, but also whether certain provisions of the proposed standards—such as medical surveillance, periodic monitoring, training, or respiratory protection—would be needed. Airborne exposures would be measured by personal breathing zone air samples.

In cases where the employer has conducted exposure monitoring within the 12 months prior to the effective date of the rule, and has satisfied all other requirements within this section, the results of previous monitoring may be used to satisfy the initial monitoring provision. In addition, in cases where the employer has objective data demonstrating that respirable crystalline silica is not capable of being released in concentrations that exceed the action level, the employer may rely upon such data to satisfy the initial exposure assessment requirements of this section.

If the initial monitoring indicates that employee exposures are at or above the action level, the employer must comply with one of two requirements to re-evaluate exposures. Under an option that prescribes a fixed schedule, for airborne levels above the action level but below the PEL, monitoring is required every 6 months. For airborne levels above the PEL, monitoring is required every 3 months. However, if the periodic monitoring indicates that exposures are below the action level and the employer can confirm the results by two consecutive measurements taken at least seven days apart, then the employer may discontinue monitoring for employees covered by that monitoring. An alternative performance option permits the employer to assess the 8-hour TWA exposure for each employee on the basis of any combination of air monitoring data or objective data sufficient to accurately characterize employee exposure to respirable crystalline silica.

Additional monitoring is required when there is a change in the production process, control equipment, personnel, or work practices that may result in new or additional exposures to respirable crystalline silica.

The proposed construction standard requires employers to notify employees of the results of an exposure assessment within 5 days of completing an assessment. Employers in general industry and maritime are required to notify employees of the results of an exposure assessment within 15 days of completing an assessment. This notification may be made individually in writing or by posting the results in a location that is accessible to all affected employees. Where exposure levels are above the PEL, the employer is required to describe in the written notification the corrective action being taken to lower the exposure levels to below the PEL.

In addition, the proposed standard specifies the procedures and protocol to which laboratories must adhere when analyzing respirable crystalline silica exposure samples.

Employers are required to provide affected employees or their designated representatives with an opportunity to observe any monitoring of employees for exposure to respirable crystalline silica. The employer is also required to provide personal protective equipment (PPE) at no cost to all those observing the monitoring.

For construction, where employees perform operations listed in Table 1 in the proposed construction standard and the employer has fully implemented the engineering controls, work practices, and respiratory protection specified in Table 1 for that operation, the employer is not required to assess the exposure of employees performing such operations.

To implement this option, the employer must presume that each employee performing an operation listed in Table 1 is exposed at or above the action level, and that each employee performing an operation listed in Table 1 that requires a respirator is exposed above the PEL, unless the employer can demonstrate otherwise in accordance with the exposure assessment requirements in the standard.

(e) Regulated Areas

To minimize any unnecessary employee exposures, the proposed standard requires employers to establish either a regulated area or an access control plan wherever an employee's exposure to airborne concentrations of respirable crystalline silica is, or can reasonably be expected to be, above the PEL.

Under the first option, the proposed standard requires that the regulated area include demarcating the boundaries of the regulated area (as separate from the rest of the workplace), limiting access to the regulated area, providing an appropriate respirator to each employee entering the regulated area, and providing protective clothing as needed in the regulated area.

Under the second option, the access control plan must include the following elements: competent person provisions, notification and demarcation procedures, multi-employer workplace procedures, provisions for limiting access, provisions for supplying respirators, and protective work clothing procedures. OSHA anticipates that employers will incur costs for labor, materials, and respiratory protection to comply with the proposed access control requirements.

(f) Methods of Compliance

The proposed standards would require that the employer use engineering controls and work practices to maintain exposures to levels at or below the PEL, unless the employer can demonstrate that such controls are not feasible. Wherever feasible engineering and work practice controls are not sufficient to reduce employee exposure to the PEL, the employer shall use them to reduce employee exposure to the lowest level achievable and then supplement them with respiratory protection.

The proposed standard cross-references other standards that address the unique conditions associated with abrasive blasting. Moreover, employers are prohibited from rotating employees to different jobs to achieve compliance with the PEL.

For operations listed in Table 1 in the proposed construction standard, employers who fully implement the engineering controls, work practices, and respiratory protection described in the table would be considered to be in compliance with the requirements in this section.

(g) Respiratory Protection

For all three affected major sectors (general industry, maritime, and construction), the proposed standards make reference to OSHA's respiratory protection standard for general industry (29 CFR 1910.134), which must be complied with when employees are required to use respirators for protection against respirable crystalline silica exposure. The respiratory protection standard requires written procedures for the proper selection, use, cleaning, storage, and maintenance of respirators. The proposed standards for respirable crystalline silica require the use of respirators in four situations: (1) periods necessary to install or implement feasible engineering and work practice controls; (2) work operations such as maintenance and repair activities where meeting the PEL with engineering and work practice controls is not feasible; (3) work operations in which an employer has implemented all feasible engineering and work practice controls and these controls do not reduce exposures to the PEL; and (4) during periods when the employee is in a regulated area, or, for construction, during periods when the employee is in an area where respirator use is required under an access control plan or under Table 1.

(h) Medical Surveillance

The proposed standards require employers to make medical surveillance available at no cost to the employee and at a reasonable time and place for those employees who will be exposed to silica above the PEL for 30 or more days a year. All medical examinations are to be performed by a physician or other licensed health care professional (PLHCP).

Medical examinations must be given within 30 days after initial assignment, unless the employer can demonstrate that the employee has already received a medical examination for respirable crystalline silica exposure within the past 12 months. Otherwise, medical examinations must be given: (1) every three years covering medical and work history, a chest x-ray and pulmonary function test, and a physical examination with special emphasis on the respiratory system; and (2) within 30 days if the PLHCP's written medical opinion indicates that an employee should be examined by a pulmonary specialist.

The initial medical examination must include a physical examination of the respiratory system, a chest x-ray, a pulmonary function test, testing for latent tuberculosis infection, and any other tests deemed appropriate by the PLHCP. The medical examination must also include an evaluation of the individual's medical and work history, with emphasis on past, present, and anticipated future exposure to respirable crystalline silica, dust, and other agents affecting the respiratory system; any history of respiratory system dysfunction, including signs and symptoms of respiratory disease (e.g., shortness of breath, cough, wheezing) and history of tuberculosis; and smoking status and history.

The employer is required to ensure the PLHCP has a copy of the standard. The PLHCP must be given information on the employee's work duties, levels of silica exposure, a description of all PPE used including duration of use, and previous medical records that are in the control of the employer, so that the PLHCP will have appropriate information

to determine whether to recommend any limitations on the employee's exposure to silica or the use of PPE, such as respirators.

The employer is required to obtain a written medical opinion from the PLHCP within 30 days of the medical exam. The written opinion should explain: (1) whether the employee has any detected medical condition that would place the employee at increased risk of developing health problems from occupational exposure to respirable crystalline silica; (2) any limitations that the employee may have in the use of respirators or other PPE; (3) a statement that the employee should be examined by an American Board Certified Specialist in Pulmonary Disease ("pulmonary specialist"), if the chest X-ray provided in accordance with this section is classified as 1/0 or higher, or if referral to a pulmonary specialist is otherwise deemed appropriate by the PLHCP; and (4) a statement that the PLHCP has explained to the employee the results of the medical examination, including findings of any medical conditions related to respirable crystalline silica exposure that require further evaluation or treatment, and any special provisions for use of protective clothing or equipment.

If the PLHCP's written medical opinion indicates that an employee should be examined by a pulmonary specialist, the proposed standards require that the employer provide a medical examination by a pulmonary specialist within 30 days after receiving the PLHCP's written medical opinion. The employer must (1) ensure that the examining pulmonary specialist is provided with all of the information that the employer is obligated to provide to the PLHCP and (2) obtain a written medical opinion from the pulmonary specialist that meets the requirements of the proposed standards pertaining to the contents of the PLHCP's written medical opinion.

(i) Communication of Respirable Crystalline Silica Hazards to Employees

This paragraph of the proposed standard includes a cross-reference to OSHA's Hazard Communication Standard (HCS) (29 CFR 1910.1200) and requires that employers include respirable crystalline silica in their hazard communication program, implementation of which must include labels, material safety data sheets, and information and training. This is not a new requirement as the existing hazard communication standard already requires that hazardous chemicals such as respirable crystalline silica be included in the employer's hazard communication program.

Under the proposed paragraph for communication of hazards, employers must ensure that each employee has access to labels on containers of respirable crystalline silica and material safety data sheets, has access to copies of the proposed standard without cost to employees, and is trained in accordance with the provisions of HCS and this communication section of the proposed standard. The employer must ensure that at least the following hazards are addressed: cancer, lung effects, immune system effects, and kidney effects.

Training must be tailored to operations at the work site and be designed to provide information on health hazards associated with silica exposure, operations that could result

in exposures exceeding the PEL, principles of safe handling of silica materials, and methods used to minimize exposure. The employer must ensure that each affected employee can demonstrate knowledge of at least the following: (1) specific operations in the workplace that could result in exposure to respirable crystalline silica, especially operations where exposure may exceed the PEL; (2) specific procedures the employer has implemented to protect employees from exposure to respirable crystalline silica, including appropriate work practices and use of PPE such as respirators and protective clothing; (3) the contents of this section; and (4) the purpose and a description of the medical surveillance program required by the proposed standard.

(j) Recordkeeping

The employer is responsible for maintaining a record of employee exposure measurements, objective data, and employee medical surveillance information. Exposure and medical records must be maintained in accordance with 29 CFR 1910.1020.

For records of exposure measurements, the proposed standards require that the records include the date when each sample was taken; identification of the operation involving exposure to silica that was monitored; the sampling and analytical methods used; the number, duration and results of the samples; the identity of the laboratory that performed the analysis; type of PPE used; and name, social security number, and job classification of all employees represented by the monitoring, indicating which employees were actually monitored.

The proposed standard requires that employers maintain accurate records of objective data. The records maintained should include information on: the silica-containing material in question; the source of the objective data; the test protocol and results of testing, or analysis of the material for the release of respirable crystalline silica; a description of the process, operation, or activity and how the data support the assessment; and other data relevant to the process, operation, activity, material, or employee exposures. These records must be kept for as long as the objective data are relied upon.

The proposed standards require that all affected employers establish and maintain accurate records of each employee covered by medical surveillance. The information maintained should include: name and social security number of the employee; a copy of the written opinion of the physician or other licensed health care professional (PLHCP) and the pulmonary specialist; and a copy of the information provided to the PLHCPs and pulmonary specialists as required by the medical surveillance section of the proposed standards.

(k) Dates

Employers are required to comply with effective dates and start-up dates set forth in the proposed rule for certain provisions. The effective date is set for 60 days after publication of the final standard in the Federal Register. The start-up dates for most requirements are set at 180 days after the effective dates, except for engineering controls

required by paragraph (f) of this standard, which must be implemented no later than one year after the effective date. The laboratory requirements commence two years after the effective date.

THE REST OF THIS PEA

Following this Introduction, the PEA contains the following chapters:

- Chapter II: Assessing the Need for Regulation
- Chapter III: Profile of Affected Industries
- Chapter IV: Technological Feasibility
- Chapter V: Costs of Compliance
- Chapter VI: Economic Feasibility Analysis and Regulatory Flexibility Determination
- Chapter VII: Benefits and Net Benefits
- Chapter VIII: Regulatory Alternatives
- Chapter IX: Initial Regulatory Flexibility Analysis
- Chapter X: Environmental Impacts

Subsequent to completion of the final draft of this PEA, OSHA identified an industry, hydraulic fracturing, that would be impacted by the proposed standard. Hydraulic fracturing, sometimes called "fracking", is a process used to extract natural gas and oil deposits from shale and other tight geologic formations. Recent developments show that this industry routinely exposes workers to significant levels of silica. OSHA finds that there are now sufficient data to provide the main elements of the economic analysis for this rapidly growing industry and has done so in Appendix A to this PEA.

REFERENCES

U. S. Office of Management and Budget, 2003 (OMB, 2003). Circular A-4, Regulatory Analysis, September 17, 2003. Available at:

http://www.whitehouse.gov/sites/default/files/omb/assets/regulatory_matters_pdf/a-4.pdf
OSHA-2010-0034-0931

Steenland K, A. Mannetje, P. Boffetta, L. Stayner, M. Attfield, J. Chen, M. Dosemeci, N. DeKlerk, E. Hnizdo, R. Koskela, and H. Checkoway, 2001a. Pooled exposure-response and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multi-centric study. Cancer Causes Control 12:773-784. **OSHA-2010-0034-0452**

CHAPTER II: ASSESSING THE NEED FOR REGULATION

INTRODUCTION

The stated purpose of the Occupational Safety and Health Act of 1970 (OSH Act) is to "assure so far as possible every working man and woman in the Nation safe and healthful working conditions and to preserve our human resources" 29 U.S.C. 651(b). Section 2(b)(3) of the Act specifically authorizes "the Secretary of Labor to set mandatory occupational safety and health standards applicable to businesses affecting interstate commerce." 29 U.S.C. 651(b)(3). This congressional mandate provides the authority for OSHA's standard for respirable crystalline silica ("silica"), which is designed to mitigate the adverse health effects associated with occupational exposure to this hazardous substance.

Section 6(b)(5) of the Act requires the Secretary of Labor, when promulgating health standards, to set the standard at the level "which most adequately assures, to the extent feasible, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity" 29 U.S.C. 655(b)(5). In its "Benzene" decision, the Supreme Court more precisely interpreted this language to mean that OSHA's health standards must reduce a "significant risk" of material impairment, subject to other regulatory constraints such as feasibility. The Agency has determined that employees across a range of industries are exposed to levels of airborne silica that result in the development of lung cancer, silicosis, and end-stage renal disease—and premature death. The Agency's proposed standard would reduce these occupational risks of lung cancer, silicosis, and end-stage renal disease, with the result that an estimated 634 to 1,037 deaths annually will be prevented. Protecting employees from a significant risk of these diseases establishes the need for the Agency's remedy: to increase worker protection from exposure to silica.

Executive Order 12866 directs regulatory agencies to assess whether, from a legal or an economic view, a Federal regulation is needed:

Section 1. Statement of Regulatory Philosophy and Principles.

(a) The Regulatory Philosophy. Federal agencies should promulgate only such regulations as are required by law, are necessary to interpret the law, or are made necessary by compelling public need, such as material failures of private markets to protect or improve the health and safety of the public, the environment, or the well-being of the American people. 58 FR 51735 (Oct. 4, 1993).

OSHA believes there is a failure of private markets to protect the health of the public by exposing employees to unnecessarily high levels of silica. In making this statement, the

¹ Indus. Union Dep't, AFL-CIO v. Am. Petroleum Inst., 448 U.S. 607 (1980)).

Agency recognizes that many firms have responded to the risks posed by exposure to silica by implementing control programs for their employees. In fact, some existing control programs go beyond the requirements of the proposed rule, and information that OSHA has collected suggests that a significant percentage of all employees with silica present in the workplace are currently being protected against the risks posed by silica. For these firms and these employees, the economic incentives provided by private markets appear to be working effectively. Nevertheless, the effectiveness of private markets in protecting worker health and safety is far from universal. In particular, OSHA sampling data clearly indicate that many firms have not protected their workers from overexposure to silica.

The discussion below considers why private markets, as well as information dissemination programs, workers' compensation systems, and tort liability options, each may fail to protect employees from silica exposure, resulting in the need for a more protective OSHA silica rule.

PRIVATE MARKETS

In the United States, the preferred mechanism for making economic decisions and taking economic actions is the private market. Under suitable conditions, a market system is economically efficient in the following sense: resources are allocated where they are most highly valued; the appropriate mix of goods and services, embodying the desired bundle of characteristics, is produced; and further improvements in the welfare of any member of society cannot be attained without making at least one other member worse off.

In the job market, as ideally conceived, employers and employees bargain over the conditions of employment, including not only salary and other worker benefits, but also occupational risks to worker safety and health. Employers compete among themselves to attract workers. In order to induce workers to accept hazardous jobs, employers must offer a higher salary—termed a "wage premium for risk," or a "risk premium" for short—to compensate for the additional job risk.² Because they must pay higher wages for more hazardous work, employers have an incentive to make the workplace safer by making safety-related investments in equipment and training or by using more costly but safer work practices. According to economic theory, the operation of the private job market will provide the optimal level of occupational risk, where for each employer the additional cost of job safety just equals the avoided payout in risk premiums to workers.

For the job market to function in this idealized manner, however, four conditions must be satisfied. First, workers, as well as employers, must have perfect information—that is, they must be fully informed about their workplace options, including job hazards, or be able to costlessly acquire such information. Second, participants in the job market must

II-2

² The concept of compensating wage differentials for undesirable job characteristics, including occupational hazards, goes back to Adam Smith's *The Wealth of Nations*, which was originally published in 1776.

directly bear all of the costs and obtain all of the benefits of their actions; that is, none of the direct impacts of job market transactions can be externalized to outside parties. Third, the relevant job market must be perfectly competitive; that is, it must contain such a large number of employers and such a large number of workers that no individual economic agent is able to influence the risk-adjusted wage. Fourth, since job market outcomes vary depending on the preexisting distribution of wealth and on other social parameters, for the market-derived level of occupational risk to be socially optimal (not just allocatively efficient), the social setting in which the job market operates cannot be unjust or unacceptably inequitable. In practice, each of these four conditions is violated in important ways. These are discussed below in the context of four specific types of market imperfections: (1) imperfect information, (2) externalities, (3) imperfect competition, and (4) market-transmitted inequities or injustices.³

Imperfect Information

As described below, imperfect information about job hazards is present at several levels that reinforce each other: employers frequently lack knowledge about workplace hazards and how to reduce them; workers are often unaware of the workplace health and safety risks to which they are exposed; and workers typically have difficulty in understanding whatever risk information they are able to obtain. Imperfect information at these various levels has surely impeded the efficient operation of the job market as far as workplace risk is concerned. The reason is that workers unaware of job hazards do not seek, or receive, compensation for the risks they bear, and as a result, employers have insufficient incentive to invest in safer working conditions.

Lack of Employer Information

In the absence of regulation, employers have limited economic incentives to identify the health and safety risks that their workers bear. Furthermore, employers have little incentive to share what information they possess about job hazards with their workers, whose response would be to demand higher wages to compensate for the risk. Similarly, employers who develop cost-effective methods of reducing workplace risk have little incentive to share information with their competitors about such methods (unless they are patentable). As a result, without regulation, many employers are likely to be unaware of the magnitude of silica-related health risks in the workplace or of the availability of effective ways of ameliorating or eliminating these risks.

³ Furthermore, other related market imperfections are identified and discussed in the section on workers' compensation insurance later in this chapter.

⁴ Other private parties also lack incentives to invest resources to collect and analyze occupational risk data due to the public-good nature of the information. See Ashford and Caldart (1996), p. 234.

⁵ Relatedly, in the absence of regulation, employers, as well as third parties, have less incentive to develop new technological solutions to protect workers on the job. For evidence of regulatory stimuli inducing innovations to improve worker health and safety, see, for example, Ashford, Ayers, and Stone (1985), as well as more recent evidence from OSHA's 610 regulatory reviews.

Lack of Worker Information

Even without information from their employer, workers might reasonably be cognizant, at least at some simple qualitative level, of many occupational *safety* hazards. For example, workers can expect that activities involving explosive materials or working at heights in an open space are inherently dangerous. Furthermore, workers can develop some, admittedly limited, knowledge of safety hazards in their workplace from their own and their coworkers' on-the-job accident and injury experience.

The same cannot generally be said for occupational *health* hazards, such as worker exposure to respirable crystalline silica. Whereas the relationship between a workplace accident and the resultant injury is both immediate and obvious, the connection between exposure to an occupational health hazard and the resultant disease generally is not. Most diseases have multiple potential causes and may be the result of synergistic effects, making it virtually impossible to ascertain whether a worker's disease is job-related rather than an "ordinary disease of life" resulting from genetic, physiological, lifestyle, or non-occupational environmental factors. Compounding this causation problem is the fact that there is frequently a long latency period—sometimes 20 years or more—between exposure to the occupational health hazard and the manifestation of the resultant disease. Consequently, workers usually cannot logically or intuitively draw a connection between work conditions and a chronic disease, as would be the case for an acute injury. For example, should workers attribute their lung cancer to cigarette smoking, to genetic predisposition, to exposure to silica in the workplace, or to other non-occupational exposures?

Even the preceding characterization fails to capture the extent to which imperfect information impairs the idealized job market's decision calculus, as workers supposedly weigh increased workplace safety or health hazards against wage increases. One reason is that the risk information available to the worker is typically crude and imprecise. For example, workers might reasonably be aware, at least over time, that their on-the-job exposure to silica increases their chance of contracting silicosis, but they could hardly be expected to know that, at an average silica exposure level of, say, $100 \, \mu g/m^3$, they are increasing their risk of silicosis by 27 percent; furthermore, they probably would have no idea that they are increasing their risk of lung cancer, much less that they are increasing their risk by 20 percent. Even more to the point, workers would have no way of ascertaining their average silica exposure without exposure monitoring, and the current silica rule does not require employers to conduct exposure monitoring. In addition to silicosis, moreover, how many affected workers would, *a priori*, be aware of the link between silica exposure and end-stage renal disease, let alone the risk of developing such

_

⁶ It is true that, in rare circumstances, the cause of a disease is unique or nearly so. Examples of such "signature" diseases include mesothelioma and angiosarcoma, which are caused by exposure to asbestos and vinyl chloride, respectively. In some cases, silica can be uniquely identified as the dust causing a worker's pneumoconiosis, a restrictive lung disease due to inhalation of dust; in such cases, the disease is classified as silicosis. Silica cannot be uniquely identified, in individual cases, as the cause of other diseases arising from worker exposure to silica, such as lung cancer, tuberculosis, and renal failure.

an illness? A second, related reason is that workers are unlikely to know the workplace risks associated with their particular employer, or with one potential employer versus another, even if the types of work assignments are the same. For example, at a general level, how do workers know their level of silica exposure with a particular employer? More specifically, on tasks involving silica exposure, how do workers know whether adequate engineering controls are being applied or that the respirators the employer provides have adequate protection factors and have been properly fit-tested and maintained? In fact, even the assumption that the employer is using engineering controls and supplying respirators may not be warranted in the absence of regulation.

Inability to Process Risk Information

Equally problematic as the ability of workers to obtain workplace risk information is their ability to understand whatever workplace risk information they obtain. Both experimental studies and observed market behavior suggest that individuals have considerable difficulty rationally processing information about low-probability, high-consequence events such as occupational injuries, illnesses, and fatalities. For example, most individuals are unable to comprehend or rationally act on risk information when presented, as risk analysis often is, in mathematical terms—a 0.0001 versus a 0.00001 versus a 0.00001 annual risk of death from occupational causes, for instance.

In order to cope with uncertain situations, individuals have developed various rules of thumb—termed "heuristics" (Tversky and Kahneman, 1974)—to aid in their decision-making. In many circumstances, these heuristics work quickly and effectively (which is their purpose), but sometimes they introduce unintentional cognitive biases that can lead to illogical, inconsistent, or otherwise poor decision-making. Examples of these apparently almost universal human biases include framing effects; biases due to

Loewenstein, and Prelec (2005).

⁷ The literature documenting risk perception problems is huge. See, in particular, the classic work of Tversky and Kahneman (1974). For a recent summary of risk perception problems and their causes, see Thaler and Sunstein (2008), pp. 17-37.

⁸ These decision-making anomalies are the central theme in the growing field of behavioral economics, which has enriched economic modeling with insights from psychology (and which includes the seminal work of Tversky and Kahneman, 1974). For more information on developments in behavioral economics, see, for example, Camerer, Loewenstein, and Rabin (2004).

The emerging field of neuroeconomics has provided scientific evidence to buttress the findings of cognitive biases reported in the behavioral economics literature. Neuroeconomics combines neuroscience, economics, and psychology to study how people make decisions. Brain scans performed in neuroeconomic experiments compare the roles of the different brain areas that contribute to economic decision-making. Neuroeconomic research has shown that human behavior involves a fluid interaction between controlled (reflective) and automatic processes of the brain and between cognitive and affective (emotional) systems. So-called decision-making "anomalies" are therefore the result of simplistic modeling of human decision-making, in which only the reflective processes of the brain and cognitive systems are recognized. For more information on neuroeconomics, see, for example, Camerer,

⁹ Framing effects arise when alternative representations of probabilistically identical decision problems lead to systematically different choices. For example, experiments have shown that subjects' choices in otherwise identical problems depend upon whether they are phrased as gambling or insurance

representativeness, availability, and anchoring heuristics; ¹⁰ and the interrelated effects of prior endowment, status quo bias, and loss aversion. ¹¹

Furthermore, there is substantial evidence that most individuals are unrealistically optimistic, even in high-stakes, high-risk situations and even if they are aware of the statistical risks (Thaler and Sunstein, 2009, pp. 31-33). In the area of occupational safety and health, this means that most workers underestimate their own risk of work-related injury, disease, or fatality and, therefore, fail to demand adequate compensation for bearing those risks.

Externalities

Externalities arise when an economic transaction generates direct positive or negative spillover effects on parties not involved in the transaction. The resulting divergence between private and social costs undermines the efficient allocation of resources in the market because the market is imparting inaccurate cost and price signals to economic agents. Applied to the job market, when costs are externalized, they are not reflected in the decisions that employers and workers make—leading to allocative distortions in that market.

Negative externalities exist in the job market because many of the costs of occupational injury and illness are borne by parties other than individual employers or workers. The major source of these externalities, for chronic occupational diseases, has to do with those occupational illness costs <u>not</u> covered by workers' compensation. Only a portion of these residual costs is borne either by workers or by their employers. Outside of

decisions or whether the statistical outcomes are presented in terms of lives saved or lives lost. See, for example, Machina (1987), pp. 141-147.

¹⁰ Representativeness refers to a probabilistic judgment—say, of person A belonging to category B—that is based on the similarity of A to a subject's image or stereotype of B, often without reference to or contrary to statistical principles (such as regression towards the mean) or factors (such as known prior probabilities or sample size). Availability refers to probabilistic judgments based on how readily examples come to mind. Hence, more recent, more vivid, and more highly publicized causes of death tend to generate inflated estimates of likelihood of occurrence. Anchoring refers to an estimation process of adjustment from an initial value (the anchor). Problems arise due to faulty (e.g., sometimes random or externally imposed) anchors and inadequate adjustment. Characterization of these three heuristics, and the biased judgments associated with them, originated with Tversky and Kahneman (1974).

¹¹ The endowment effect reflects the fact that individuals often demand much more for an object they own than they would be willing to pay to acquire it. Loss aversion is a similar manifestation of asymmetric value in which the disutility of giving up an object is greater than the utility associated with acquiring it. Status quo bias is a preference by individuals for the current state such that they are induced neither to buy nor to sell an object. See, for example, Kahneman, Knetsch, and Thaler (1991).

Workers' compensation is separately discussion later in this chapter. As described there, in many cases (particularly for smaller firms), the premiums that an individual employer pays for workers' compensation are only loosely related, or unrelated, to the occupational risks that that employer's workers bear. However, workers' compensation does not cover chronic occupational diseases in most instances. For that reason, negative externalities tend to be a more significant issue in the case of occupational injuries.

workers' compensation, workers incapacitated by an occupational injury or illness and their families often receive health care, rehabilitation, retraining, direct income maintenance, and life insurance benefits, most of which are paid for by society through Social Security and other social insurance and social welfare programs. ¹³ Furthermore, the entire medical care system in the United States is heavily subsidized by government so that part of the medical cost of treating injured or ill workers is paid for by the rest of society (Nichols and Zeckhauser, 1977, pp. 44-45). To the extent that the costs of occupational injury and illness are not borne by employers or workers, they will ignore these costs in their job market negotiations. The result will be an inefficiently high level of occupational risk.

Imperfect Competition

In the idealized job market, the actions of large numbers of buyers and sellers of labor services establish the market-clearing, risk-compensated wage, so that individual employers and workers effectively take that wage as given. In reality, however, the job market is not one market but many markets differentiated by location, occupation, and other factors; furthermore in wage negotiations with their own workers, employers are typically in an advantageous position relative to all other potential employers. In these situations, discussed below, employers may have sufficient power to influence or to determine the wage their workers receive. This violates the conditions necessary for perfect competition and can result in inadequate worker compensation for exposure to workplace hazards.

Some job markets are dominated by one or a few firms. The classic example would be a small town in a rural area whose entire economy is based on a single employer, such as a manufacturing plant or a mining operation. In the abstract these job markets are still competitive, since workers offered less than a competitive market wage could move to a higher-wage town, state, or region. After all, the United States is a very mobile country, with economic considerations—particularly wage increases—being the chief motivation for worker migration. However, the general mobility of the American population masks the fact that many individuals, particularly in rural or isolated communities, are in fact geographically immobile. These individuals may be bound by local family ties, the values and preferences they associate with their community, a lack of education or marketable job training, age, or other factors. Whatever the reason, some employers in isolated areas have a relatively captive labor pool and can exert their monopsony power in the job market to their advantage.

A more pervasive problem in the job market is that, contrary to the model of perfect competition, workers cannot costlessly quit their job and obtain a similar job at the same wage with another employer. Leaving one's current employer can entail the expense and uncertainty associated with relocating to take advantage of better employment

II-7

¹³ In addition, many occupational injuries and illnesses are not processed through the workers' compensation system at all, with workers choosing to seek care from their own private physician rather than from their employer's physician.

opportunities, ¹⁴ the cost and difficulty of upgrading job skills, and the risk of a prolonged period of unemployment. In addition, employers derive market power from the fact that a portion of the compensation their own workers receive is not transferable to other jobs. Examples include job-specific training and associated compensation, seniority rights and associated benefits, investments in a pension plan, and most important, in many cases—at least at the time of this writing ¹⁵—health insurance ¹⁶ (which, even if provided by competing employers, would typically be subject to exclusions for pre-existing conditions).

Under the conditions described above, employers would not have to take the market-clearing wage as given, but could offer a lower wage than would be observed in a perfectly competitive market, ¹⁷ and less than full compensation for workplace health and safety risks. As a result, relative to the idealized competitive job market, employers would have less incentive to invest in workplace safety. OSHA welcomes comment and supporting evidence on the degree of competitiveness in the labor markets affected by the proposed silica standard and the extent to which competitive pressures, or the lack thereof, have affected worker health risks from exposure to respirable crystalline silica.

Market-Transmitted Inequities or Injustices

In the idealized market, it is impossible to reallocate resources in a way that makes one party better off without making at least one other party worse off. Economists refer to such an allocation of resources as "Pareto optimal" (or, more accurately, as "Pareto efficient"). However, market transactions do not take place in a vacuum. They occur in a societal environment with a preexisting distribution of wealth and a specified set of legal rights and constraints. The Pareto-efficient allocation of resources will vary

¹⁴ Two factors have made relocation for employment purposes much more difficult in recent decades in the United States. One is the significant increase in the number of married households in which both spouses are employed. One spouse, for example, wishing to relocate for a better job may be confronted with the prospect that the other spouse would have to give up a job for a worse job or no job at all. Second, the increased rate of home ownership has negative consequences for job mobility because a home is much more illiquid than an apartment.

¹⁵ The Patient Protection and Affordable Care Act (PPACA) (<u>Pub.L. 111-148</u>, 124 <u>Stat.</u> 119), signed into law by President Obama on March 30, 2010, promises to comprehensively address the issue of health care availability in the United States. However, the key provisions in PPACA that would remove health-care-related competitive barriers in labor markets, such as exclusions or higher rates for individuals with pre-existing conditions, would not take effect until January 1, 2014.

¹⁶ It should be noted, however, that the percentage of employers providing health insurance coverage in the United States has been steadily declining over time, both because of rising costs and because of the increased difficulty of obtaining such insurance. In any case, health insurers are only responsible for losses not covered by workers' compensation (and not subject to exclusions, such as for pre-existing conditions) within the life of the policy—normally one year. In future years, insurers can raise rates or cancel the health insurance policy with the employer if circumstances change.

¹⁷ For a graphical demonstration that an employer with monopsony power will pay less than the competitive market wage, see Borjas (2000), pp. 187-189.

depending on these societal conditions. If the initial endowment of wealth is distributed in an unjust or socially undesirable manner, the resulting market outcome, even if Pareto-efficient, will, in all likelihood, not be socially optimal.

In addition, some individual actions are circumscribed by rights and duties or other social purposes (OMB, 2003) that take precedence over market considerations. Market transactions in such circumstances may be legally forbidden or socially unacceptable on ethical grounds, even if there are willing parties to the transactions. For example, in the United States, one's right to vote cannot be sold to another person, and the prison time a convicted criminal receives cannot be served by another person in exchange for a fee. In the context of the job market, individuals cannot sell themselves into slavery, and small children cannot work in factories.

The preceding points suggest that, because of important rights and duties or other social purposes, government intervention may sometimes improve the workings of the unfettered job market. In fact, the American people, through their elected representatives, have made a determination to override the operation of the unfettered job market if necessary by assuring, in the OSH Act "so far as possible every working man and woman in the Nation safe and healthful working conditions" 29 U.S.C. 651(b). It is under this congressional mandate that OSHA has developed the proposed silica rule.

NON-MARKET AND QUASI-MARKET ALTERNATIVES TO REGULATION

The discussion in this section considers whether non-market and quasi-market alternatives to the proposed rule would be capable of protecting workers from the hazards of silica exposure. The alternatives under consideration are information dissemination programs, workers' compensation systems, and tort liability options.

Information Dissemination Programs

An alternative to OSHA's proposed silica rule would be the dissemination of information, either voluntarily or through compliance with OSHA's hazard communication standard, about the health risks associated with workplace exposure to silica. Better informed workers could more accurately assess the occupational risks associated with different jobs, thereby facilitating, through labor market transactions, higher risk premiums for more hazardous work and inducing employers to make the workplace less hazardous. The proposed rule recognizes the link between the dissemination of information and workplace risks by requiring that workers engaged in jobs involving exposure to silica be provided with information and training about silicarelated illnesses and ways to prevent them. There are several reasons, however, why reliance on information dissemination programs alone would not yield the level of worker protection achievable through the proposed silica rule.

First, in the context of OSHA's hazard communication standard, which requires employers to transmit information about the inherently hazardous properties of hazardous substances, insufficient information is provided to identify risks in specific workplaces. Silica-related risks, for instance, are highly specific to individual tasks and work environments. Accurate knowledge about these occupational health risks would thus require that individual employers make available specific information, beyond that required by OSHA's hazard communications standard, about the risks to workers at each particular worksite.

Second, in the case of voluntary information dissemination programs, there are no incentives or mechanisms, absent a regulation, to ensure that all appropriate information regarding worker risk—including, in particular, worksite-specific hazards—will actually be distributed to workers.

Third, even if workers were better informed about workplace risks and hazards, all of the defects in the functioning of the private job market previously discussed—the limited ability of workers to evaluate risk information, externalities, imperfect competition, and factors that transcend the market—would still apply. Better information, therefore, would not ensure that the job market will yield wage premiums for risk in a manner that is consistent with an efficient allocation of resources.

Thus, while improved access to information about silica-related hazards can provide for more rational decision-making in the private job market, information dissemination programs will not, by themselves, produce an adequate level of worker protection.

Workers' Compensation Systems

Another alternative to OSHA regulation is simply to use the various state workers' compensation programs to augment the workings of the private job market to limit occupational risks to worker safety and health. After all, one of the objectives of the workers' compensation system is to shift the costs of occupational injury and disease from workers to employers in order to induce employers to improve working conditions. Two other objectives are to provide fair and prompt compensation to workers for medical costs and lost wages resulting from workplace injury and disease and, through the risk-spreading features of the workers' compensation insurance pool, to prevent individual employers from suffering a catastrophic financial loss (Ashford, 2007, p. 1712).

However, there are three reasons, discussed below, why the workers' compensation system has fallen short of the goal of shifting, to employers, the costs of workplace injury and disease—and, in particular, the costs of worker exposure to silica—and would, therefore, result in inadequate worker protection in the absence of the proposed silica rule.

A Divergence between Workers' Compensation Premiums and Workplace Risk

The first reason is that the risk-spreading objective of workers' compensation conflicts with, and ultimately helps undermine, the cost-internalization objective. ¹⁸ For the 99 percent of employers who rely on workers' compensation insurance, ¹⁹ the payment of premiums represents their primary cost for silica-related illnesses and other types of occupational injuries and illnesses. However, the mechanism for determining an employer's workers' compensation insurance premium typically fails to reflect the actual occupational risk present in that employer's workplace.

Approximately 85 percent of employers have their premiums set on the basis of a "class rating," which is based on *industry* illness and injury history. Employers in this class are typically the smallest firms and represent only about 15 percent of workers (Ashford, 2007, p. 1713). Small firms are often ineligible for experience rating because of insufficient claims history or because of a high year-to-year variance in their claim rates. These firms are granted rate reductions only if the experience of the entire class improves. The remaining 14 percent of employers, representing approximately 70 percent of workers, have their premiums set on the basis of a combination of "class rating" and "experience rating," which adjusts the class rating to reflect a firm's individual claims experience. Furthermore, a firm's experience rating is generally based on the history of workers' compensation payments to workers injured at that firm's workplace, not on the quality of the firm's overall worker protection program and safety and health record. Thus, for example, the existence of circumstances that may lead to catastrophic future losses are not included in an experience rating—only actual past losses are.

Insurance companies do have the right to refuse to provide workers' compensation insurance to an employer—and frequently exercise that right based on their inspections and evaluations of a firm's health and safety practices. However, almost all states have assigned risk pools that insist that any firm that cannot obtain workers' compensation policies from any insurer must be provided workers' compensation insurance at a statemandated rate that reflects a combination of class and experience rating.

¹⁸ Recall from the earlier discussion of externalities that the failure to internalize costs leads to allocative distortions and inefficiencies in the market.

¹⁹ Only the largest firms, constituting approximately 1 percent of employers and representing approximately 15 percent of workers, are self-insured. These individual firms accomplish risk-spreading as a result of the large number of workers they cover. See Ashford (2007), p. 1712.

²⁰ In order to spread risks in an efficient manner, it is critical that insurers have adequate information to set individual premiums that reflect each individual employer's risks. As the preceding discussion has made clear, by and large, they do not. In that sense, insurers can be added to employers and employees (as previously noted in the earlier discussion of private markets) as suffering from imperfect information about job hazards.

Workers' compensation insurance does protect individual employers against a catastrophic financial loss due to work-related injury or illness claims. As a result of risk spreading, however, efforts made by employers to reduce the incidence of occupational injuries and illnesses are not fully reflected in reduced workers' compensation premiums. Conversely, employers that devote fewer resources to promoting worker safety and health may not incur commensurately higher workers' compensation costs. This creates a type of moral hazard, in that the presence of risk spreading in workers' compensation insurance may induce employers to make fewer investments in equipment and training to reduce the risk of workplace injuries and illnesses.

In short, the premiums most individual employers pay for workers' compensation insurance coverage do not reflect the actual cost burden those employers impose on the worker's compensation system. Consequently, employers considering measures to lower the incidence of workplace injuries and illnesses can expect to receive a less-than-commensurate reduction in workers' compensation premiums.

Failure to Provide Compensation for Most Occupational Diseases

The second, and most important, reason is that, as a practical matter, the various state workers' compensation programs tend not to provide benefits for most work-related diseases—including those resulting from silica exposure, such as cancer, renal disease, and chronic obstructive pulmonary disease. Several related factors account for this:

- Most occupational diseases have multiple causes and are indistinguishable from ordinary diseases of life. It would therefore be difficult for workers' compensation to trace the cause of these diseases to the workplace.
- Many occupational diseases have a long latency period, which tends to obscure the actual cause of the disease or the place of employment where exposure occurred.
- Workers (as well as medical personnel) often do not realize that a disease is work-related and, therefore, fail to file a workers' compensation claim.
- Most states have filing restrictions, such as a statute of limitations of ten years or less, that may preclude claims with a long latency period, and many states have a minimum time period of exposure before a disease can be attributed to an occupational cause.

As a result, excluding musculoskeletal disorders, only 5 percent of occupational diseases and 1.1 percent of occupational fatalities are actually covered by workers' compensation (Ashford, 2007, p. 1714). Silica-related occupational diseases face a similar lack of workers' compensation coverage. For instance, based on epidemiological estimates, workers' compensation covers only 3 percent of silicosis-related fatalities (Leigh and Robbins, 2004, p. 713), even though silicosis-related fatalities are the easiest fatalities to associate with silica exposure.

Limitations on Payouts

The third reason that employers do not fully pay for the costs of work-related injuries and diseases under the workers' compensation system is because, even for those claims that are accepted into the system, states have imposed significant limitations on payouts. Depending on the state, these include the following:

- Caps on wage replacement, based on the average wage in the state rather than the injured workers' actual wage;
- Restrictions on which medical care services are compensated and on the amount of compensation;
- No compensation for non-pecuniary losses, such as pain and suffering or impairment unrelated to earning power;
- Either no or limited cost-of-living increases;
- Restricted permanent, partial, and total disability benefits, either by specifying a
 maximum number of weeks for which benefits can be paid or by imposing an
 absolute ceiling on dollar payouts; and
- A low absolute ceiling on death benefits.

The last two restrictions may be the most important ones for occupational diseases with long-term health effects and possible fatal outcomes, such as those associated with worker exposure to silica. It would not be uncommon for the maximum workers' compensation cap on recovery for an accepted disease claim from worker exposure to silica to be less than 10 percent of economists' estimates of total disability costs or less than 2 percent of willingness-to-pay estimates of a lost (statistical) life.²¹

In summary, for all of the reasons discussed above, the worker's compensation system does not provide adequate incentives to employers to control occupational risks to worker safety and health.

Tort Liability Options

Another alternative to OSHA regulation would be for workers to use the tort system to seek redress for work-related injuries and diseases, including silica-related ones. A tort is a civil wrong (other than breach of contract), for which the courts provide a remedy in the form of an action for damages. The application of the tort system to occupationally related injury and disease would allow workers to sue their employer, or other responsible parties (so-called "third parties," such as suppliers of hazardous material or equipment used in the workplace), to recover damages. The tort system could thus shift the liability for the direct costs of occupational injury and disease from the worker to the

²¹ On willingness-to-pay estimates of the value of a statistical life, and the logic underlying the concept, see Chapter VII of this PEA.

employer or to other responsible parties—who would, in turn, be induced to improve worker on-the-job safety and health.

With limited exceptions, however, the tort system has not been a viable alternative to occupational safety and health regulation. The dominant reason is the "exclusive remedy" language in every state's workers' compensation statutes. Workers' compensation is essentially a type of no-fault insurance. In return for employers' willingness to provide, through workers' compensation, wage-loss and medical coverage for their workers' job-related injuries and diseases, regardless of fault, workers are barred from suing their employers for damages, except in cases of intentional harm or, in some states, gross negligence (Ashford and Caldart, 1996, p. 233). Thus, in most cases, the workers' compensation system is the exclusive legal remedy available to workers to recover damages from their employer.

Workers may, in principle, attempt to recover damages for work-related injuries and disease from third parties through the tort system, but the process is adversarial and expensive and, particularly in a tort case involving a chronic occupational disease, the likelihood of prevailing in court and ultimately obtaining compensation is small:

- In a tort action, the burden of proof is on the plaintiff—the worker—to demonstrate by "a preponderance of the evidence" that the defendant owed a duty to the plaintiff, that the defendant breached that duty, and that such breach caused the worker's injury or disease.
- To establish third-party liability requires the worker to show that the third party's products or equipment or instructions for use were defective or negligently designed. Liability is often subject to dispute and difficult to prove by a preponderance of the evidence.
- Typically even more difficult to prove, in the case of chronic disease, is that the third-party was causally responsible. The worker must prove, based on a preponderance of the evidence, not only that the disease was not an ordinary disease of life and was the result of an occupational rather than a non-occupational exposure, but also that the causal exposure was due to the plaintiff's product at a particular worksite (rather than to some other third party's product at some other worksite). For diseases with long-latency periods and workers with long work histories, it may be almost impossible to establish causation based on a preponderance of the evidence.
- For chronic diseases, the potentially lengthy latency period between worker exposure and manifestation of the disease significantly lowers the probability that the responsible third party will still be in business when tort claims are ultimately filed and, furthermore, that the firm will have sufficient assets to cover the claims, particularly if there are many of them.²²

II-14

²² The same qualification about the firm being in business and having sufficient assets to pay claims may also apply to liability insurers, in those cases where the firm has purchased liability insurance.

Workers may be deterred from filing tort actions because of the substantial
costs involved—including attorney fees, court costs, and the costs of obtaining
evidence and providing witnesses—and the lengthy period, often many years,
before a final verdict is rendered.

In sum, the use of the tort system as an alternative to regulation is severely limited because of the "exclusive remedy" provisions in workers' compensation statutes; because of the various legal and practical difficulties in seeking recovery from responsible third parties, particularly in cases of occupational disease such as those caused by on-the-job silica exposure; and because of the substantial costs associated with a tort action. The tort system, therefore, does not adequately serve to protect workers from exposure to hazards in the workplace.

SUMMARY

As shown in the preamble to the proposed silica rule, OSHA has determined that workers are exposed to a significant risk of incurring silicosis, lung cancer, and other silica-related diseases. The private market—augmented by information dissemination programs, workers' compensation systems, and tort liability options—has not been effective in reducing this level of risk for all workers due to a lack of information about health risks, the presence of externalities, imperfect competition, and other factors discussed above. The Agency has concluded that the private market will not provide the level of protection afforded by a silica health standard that adheres to the statutory requirements of the OSH Act.

For example, some liability insurers that provided asbestos coverage were unable to settle all claims and had to declare bankruptcy.

REFERENCES

- Ashford, N.A., 2007. Workers' Compensation (pp. 1712-1719), in Environmental and Occupational Medicine (Fourth Edition), Rom, W. N. (editor). Lippincott-Raven: Philadelphia. **OSHA-2010-0034-1702**
- Ashford, N.A., C. Ayers, and R.F. Stone, 1985. Using Regulation to Change the Market for Innovation. Harvard Environmental Law Review 9(2): 871-906. **OSHA-2010-0034-0536**
- Ashford, N.A., and C.C. Caldart, 1996. Technology, Law, and the Working Environment (Revised Edition). Washington, D.C.: Island Press. **OSHA-2010-0034-0538**
- Borjas, G. J., 2000. Labor Economics (Second Edition). Boston: Irwin McGraw-Hill. **OSHA-2010-0034-0565**
- Camerer, C., G. Loewenstein, and D. Prelec, 2005. Neuroeconomics: How Neuroscience Can Inform Economics. Journal of Economic Literature XLIII(1): 9-64. **OSHA-2010-0034-0579**
- Camerer, C., G. Loewenstein, and M. Rabin (eds), 2004. Advances in Behavioral Economics. Princeton: Princeton University Press. **OSHA-2010-0034-1684**
- Kahneman, D., J. L. Knetsch, and R. H. Thaler, 1991. The Endowment Effect, Loss Aversion, and Status Quo Bias. Journal of Economic Perspectives 5(1): 193-206. **OSHA-2010-0034-0757**
- Leigh, J.P., and H.H. Robbins, 2004. Occupational Disease and Workers' Compensation: Coverage, Costs, and Consequences. Milbank Quarterly 82(4): 689-721. **OSHA-2010-0034-0781**
- Machina, M. J., 1987. Choice Under Uncertainty: Problems Solved and Unsolved. Journal of Economic Perspectives 1(1): 121-154. **OSHA-2010-0034-1674**
- Nichols, A. L., and R. Zeckhauser, 1977. Government Comes to the Workplace: An Assessment of OSHA. The Public Interest 49: 36-69. **OSHA-2010-0034-0834**
- Office of Management and Budget (OMB), September 17, 2003. Circular A-4. Circular A-4 is available at:

 http://www.whitehouse.gov/sites/default/files/omb/assets/regulatory_matters_pdf/a4.pdf. OSHA-2010-0034-1493
- Thaler, R. H., and C. R. Sunstein, 2009. Nudge. New Haven: Yale University Press. **OSHA-2010-0034-1697**

Tversky, A., and D. Kahneman, 1974. Judgment under Uncertainty: Heuristics and Biases. Science 185: 1124-1131. **OSHA-2010-0034-1675**

CHAPTER III: PROFILE OF AFFECTED INDUSTRIES

INTRODUCTION

In this chapter, OSHA presents profile data for industries potentially affected by the proposed silica standard. As a first step, OSHA identifies the North American Industrial Classification System (NAICS) industries, both in general industry and maritime and in the construction sector, with potential worker exposure to silica. Next, OSHA provides summary statistics for the affected industries, including the number of affected entities and establishments, the number of at-risk workers, and the average revenue for affected entities and establishments. This information is provided for each affected industry in total, as well as for small entities as defined by SBA and for small entities with fewer than 20 employees in each affected industry. Finally, OSHA presents silica exposure profiles for at-risk workers. These data are presented by sector and job category. Summary data are also provided for the number of workers in each affected industry who are currently exposed above the proposed silica PEL of $50 \mu g/m^3$, as well as above an alternative PEL of $100 \mu g/m^3$ for economic analysis purposes.

The methodological basis for the industry and at-risk worker data presented in this chapter comes from ERG (2007a, 2007b, 2008a, and 2008b). The actual data used in this chapter come from the technological feasibility analyses presented in Chapter IV of this PEA and from ERG (2011), which updated ERG's earlier spreadsheets to reflect the most recent industry data available. The technological feasibility analyses identified the job categories with potential worker exposure to silica. ERG (2007a, 2007b) matched the BLS Occupational Employment Survey (OES) occupational titles in NAICS industries with the at-risk job categories and then calculated the percentages of production employment represented by each at-risk job title. These percentages were then used to project the number of employees in the at-risk job categories by NAICS industry. OSHA welcomes additional information and data that might help improve the accuracy and usefulness of this industry profile.

SELECTION OF NAICS INDUSTRIES FOR ANALYSIS

The technological feasibility analyses presented in Chapter IV of this PEA identify the general industry and maritime sectors and the construction activities potentially affected by the proposed silica standard.

¹ An establishment is a single physical location at which business is conducted or services or industrial operations are performed. An entity is an aggregation of all establishments owned by a parent company within an industry with some annual payroll.

² Production employment includes workers in building and grounds maintenance; forestry, fishing, and farming; installation and maintenance; construction; production; and material handling occupations.

General Industry and Maritime

Employees engaged in various activities in general industry and maritime routinely encounter crystalline silica as a molding material, as an inert mineral additive, as a refractory material, as a sandblasting abrasive, or as a natural component of the base materials with which they work. Some industries use various forms of silica for multiple purposes. As a result, employers are challenged to limit worker exposure to silica in dozens of job categories throughout the general industry and maritime sectors.

Job categories in general industry and maritime were selected for analysis based on data from the technical industrial hygiene literature, evidence from OSHA Special Emphasis Program (SEP) results, and, in several cases, information from ERG site visit reports. These data sources provided evidence of silica exposures in numerous sectors. While the available data are not entirely comprehensive, OSHA believes that silica exposures in other sectors are quite limited.

The 25 industry subsectors in the overall general industry and maritime sectors that OSHA identified as being potentially affected by the proposed silica standard are as follows:

- Asphalt Paving Products
- Asphalt Roofing Materials
- Industries with Captive Foundries³
- Concrete Products
- Cut Stone
- Dental Equipment and Supplies
- Dental Laboratories

³ Captive foundries is a subsector of the overall foundries industry described in Chapter IV of this PEA and includes establishments with foundry processes incidental to the primary products manufactured (e.g., heavy equipment manufacturing). Because the number of manufacturing establishments with captive foundry operations is not reported, ERG estimated the number of such establishments by industry using occupational employment information from BLS (2005) presenting, by industry, the number of employees in key foundry occupations. ERG identified those nonfoundry industries reporting employment in both the "pourers and casters, metal" and "foundry moldmakers and coremakers" occupational categories and then estimated overall employment in captive foundry operations by inflating the number of pourers and casters and foundry moldmakers and coremakers to account for other foundry workers. The Occupational Employment Survey (OES) 4-digit NAICS-based estimates for foundries were then converted to 73 6-digit NAICS industries with employment in the key foundry occupations. See ERG (2008) for further discussion of the identification of industries and the development of estimates of the numbers of establishments in this subsector.

- Flat Glass⁴
- Iron Foundries⁵
- Jewelry
- Mineral Processing
- Mineral Wool⁶
- Nonferrous Sand Casting Foundries⁷
- Non-Sand Casting Foundries⁸
- Other Ferrous Sand Casting Foundries⁹
- Other Glass Products¹⁰
- Paint and Coatings
- Porcelain Enameling
- Pottery
- Railroads
- Ready-Mix Concrete
- Refractories
- Refractory Repair
- Shipyards
- Structural Clay

⁴ Flat glass is a subsector of the glass industry described in Chapter IV of this PEA. See also ERG (2008).

⁵ Iron foundries is a subsector of the overall foundries industry described in Chapter IV of this PEA. See also ERG (2008).

⁶ Mineral wool is a subsector of the glass industry described in Chapter IV of this PEA. See also ERG (2008).

⁷ Nonferrous sand casting foundries is a subsector of the overall foundries industry described in Chapter IV of this PEA. See also ERG (2008).

⁸ Non-sand casting foundries is a subsector of the overall foundries industry described Chapter IV of this PEA. See also in ERG (2008).

⁹ Other ferrous sand casting foundries is a subsector of the overall foundries industry described in Chapter IV of this PEA. See also ERG (2008).

¹⁰ Other glass products is a subsector of the glass industry described in Chapter IV of this PEA. See also ERG (2008).

As described in ERG (2008b), OSHA identified the six-digit NAICS codes for these subsectors to develop a list of industries potentially affected by the proposed silica standard. In some cases, such as in the foundry and glass sectors, affected sectors discussed in ERG (2008b) have been disaggregated to facilitate the cost and economic impact analysis. Table III-1 presents the sectors listed above with their corresponding six-digit NAICS industries. ¹²

¹¹ ERG (2008) also discussed potential silica exposures in the engineered stone and landscape contracting industries. These industries were judged to generate negligible levels of silica exposure in the United States and, as a result, no compliance costs were estimated for these industries. Accordingly, these industries are not shown in the following tables.

¹² As seen in this table, several NAICS industries (i.e., NAICS 331524, Aluminum foundries - except die-casting; NAICS 331525, Copper foundries – except die-casting; and NAICS 331528, Other nonferrous foundries – except die-casting) are contained in more than one sector (i.e., in both Nonferrous Sand Casting Foundries and Non-Sand Casting Foundries). This bifurcation of an industry into two sectors presents no special methodological or analytic difficulties. It merely reflects the fact that, within a particular NAICS industry (in the case of a few foundry industries), some establishments use sand-casting molds and some use non-sand-casting molds.

Table III-1
General Industry and Martime Sectors and Industries Potentially Affected by OSHA's Proposed Silica Rule

Sector		Industry
Asphalt Paving Products		Asphalt paving mixture and block mfg
Asphalt Roofing Materials		Asphalt shingle and roofing materials
Captive Foundaries		Iron & steel mills Electrometallurgical ferroalloy product mfg
		Iron & steel pipes & tubes mfg from purchased steel
		Cold-rolled steel shape mfg
		Steel wire drawing
		Secondary smelting & alloying of aluminum
		Secondary smelting, refining, & alloying of copper
		Other nonferrous metal secondary smelting, refining, & alloying
		Iron & steel forging
		Nonferrous forging
		Crown & closure mfg
		Metal stamping
		Powder metallurgy part mfg
		Cutlery & flatware (except precious) mfg
	332212	Hand & edge tool mfg
	332213	Saw blade & handsaw mfg
	332214	Kitchen utensil, pot, & pan mfg
	332439	Other metal container mfg
	332510	Hardware mfg
	332611	Spring (heavy gauge) mfg
	332612	Spring (light gauge) mfg
	332618	Other fabricated wire product mfg
		Machine shops
		Industrial valve mfg
		Fluid power valve & hose fitting mfg
		Plumbing fixture fitting & trim mfg
		Other metal valve & pipe fitting mfg
		Ball & roller bearing mfg
		Fabricated pipe & pipe fitting mfg
	332997	, ,
		Enameled iron & metal sanitary ware mfg
		All other miscellaneous fabricated metal product mfg
		Other commercial & service industry machinery mfg
	333411	Air purification equipment mfg
		Industrial & commercial fan & blower mfg
		Heating equipment (except warm air furnaces) mfg Industrial mold mfg
	333511	Machine tool (metal cutting types) mfg
		Machine tool (metal cutting types) mfg Machine tool (metal forming types) mfg
		Special die & tool, die set, jig, & fixture mfg
		Cutting tool & machine tool accessory mfg
		Rolling mill machinery & equipment mfg
		Other metalworking machinery mfg
	333612	Speed changer, industrial high-speed drive, & gear mfg
	333613	
	333911	
		Air & gas compressor mfg
		Power-driven handtool mfg
		Welding & soldering equipment mfg
	333993	
	333994	, ,
	333995	Fluid power cylinder & actuator mfg
	333996	, ,
	333997	Scale & balance (except laboratory) mfg
	333999	All other miscellaneous general-purpose machinery mfg
		Watch, clock, & part mfg
	336111	Automobile mfg
		Light truck & utility vehicle mfg
		Heavy duty truck mfg
	336120	ricavy duty truck mig
	336211	Motor vehicle body mfg

Table III-1
General Industry and Martime Sectors and Industries Potentially Affected by OSHA's Proposed Silica Rule
(Continued)

Sector	NAICS	
		Motor home mfg
		Carburetor, piston, piston ring, & valve mfg
		Gasoline engine & engine parts mfg
		Other motor vehicle electrical & electronic equipment mfg
		Motor vehicle steering & suspension component (except spring) mfg
	336340	Motor vehicle brake system mfg
	336350	Motor vehicle transmission & power train parts mfg
	336370	Motor vehicle metal stamping
	336399	All other motor vehicle parts mfg
	336992	Military armored vehicle, tank, & tank component mfg
	337215	Showcase, partition, shelving, & locker mfg
	339914	Costume jewelry & novelty mfg
Concrete Products	327331	Concrete block & brick mfg
	327332	Concrete pipe mfg
	327390	Other concrete product mfg
	327999	All other miscellaneous nonmetallic mineral product mfg
Cut Stone	327991	Cut stone & stone product mfg
Dental Equipment and Supplies		Dental equipment and supplies, manufacturing
Dental Laboratories		Dental laboratories
	621210	Offices of dentists
Flat Glass	327211	Flat glass mfg
ron Foundries		Iron foundries
Jewelry	339911	Jewelry (except costume) mfg
•		Jewelers' material & lapidary work mfg
		Costume jewelry & novelty mfg
Mineral Processing		Ground or treated mineral and earth manufacturing
Mineral Wool		Mineral wool mfg
Nonferrous Sand Casting Foundries		Aluminum foundries (except die-casting)
g		Copper foundries (except die-casting)
		Other nonferrous foundries (except die-casting)
Non-Sand Casting Foundries		Steel investment foundries
Ton Janu Jaoung Counting		Aluminum foundries (except die-casting)
		Copper foundries (except die-casting)
		Other nonferrous foundries (except die-casting)
Other Ferrous Sand Casting Foundries		Steel foundries (except investment)
Other Glass Products		Other pressed & blown glass & glassware mfg
Other Glass i roducts		Glass container mfg
Paint and Coatings		Paint & coating mfg [e]
<u> </u>		Metal coating and allied services
Porcelain Enameling		<u> </u>
		Enameled iron & metal sanitary ware mfg Electric housewares and household fans
		Household cooking appliance manufactruing
		0 11
		Household refrigerator and home freezer manufacturing
		Ornamental and architectural metal work
	335224	3
	335228	Other major household appliance manufacturing
Dotton	339950	- 9 9
Pottery	327111	3
		Vitreous china, fine earthenware, & other pottery product mfg
Dellar ada		Porcelain electrical supply mfg
Railraods		Rail transportation
Ready-Mix Concrete		Ready-mix concrete mfg
Refractories		Clay refractory mfg
		Nonclay refractory mfg
Refractory Repair		Industrial supplies - wholesale
Shipyards	336611	
Shipyards		B (1 0 0
Shipyards		Boat building
• •	327121	Brick & structural clay tile mfg
Shipyards Structural Clay	327121	•

Source: ERG, 2011

Construction

The construction sector is an integral part of the nation's economy, accounting for almost 6 percent of total employment. Establishments in this industry are involved in a wide variety of activities, including land development and subdivision, homebuilding, construction of nonresidential buildings and other structures, heavy construction work (including roadways and bridges), and a myriad of special trades such as plumbing, roofing, electrical, excavation, and demolition work.

Construction activities were selected for analysis based on historical data of recorded samples of construction worker exposures from the OSHA Integrated Management Information System (IMIS) and the National Institute for Occupational Safety and Health (NIOSH). In addition, OSHA reviewed the industrial hygiene literature across the full range of construction activities and focused on dusty operations where silica sand was most likely to be fractured or abraded by work operations. These physical processes have been found to cause the silica exposures that pose the greatest risk of silicosis for workers.

The 12 construction activities, by job category, that OSHA identified as being potentially affected by the proposed silica standard are as follows:

- Abrasive Blasters
- Drywall Finishers
- Heavy Equipment Operators
- Hole Drillers Using Hand-Held Drills
- Jackhammer and Impact Drillers
- Masonry Cutters Using Portable Saws
- Masonry Cutters Using Stationary Saws
- Millers Using Portable or Mobile Machines
- Rock and Concrete Drillers
- Rock-Crushing Machine Operators and Tenders
- Tuckpointers and Grinders
- Underground Construction Workers

As shown in the ERG Technological Feasibility Study for Construction (ERG, 2008a), these construction activities occur in the following construction industries, accompanied by their four-digit NAICS codes:¹³

- 2361 Residential Building Construction
- 2362 Nonresidential Building Construction
- 2371 Utility System Construction
- 2372 Land Subdivision
- 2373 Highway, Street, and Bridge Construction
- 2379 Other Heavy and Civil Engineering Construction
- 2381 Foundation, Structure, and Building Exterior Contractors
- 2382 Building Equipment Contractors
- 2383 Building Finishing Contractors
- 2389 Other Specialty Trade Contractors

In addition, some public employees in state and local governments are exposed to elevated levels of respirable crystalline silica. These exposures are included in the construction sector because they are the result of construction activities. OSHA requests comment on whether other industries—and, if so, which industries—perform construction work outside the construction sector that involves worker exposure to respirable crystalline silica. OSHA is also interested in the amount of construction work being performed in those industries that involves respirable crystalline silica.

CHARACTERISTICS OF AFFECTED INDUSTRIES

Table III-2 provides an overview of the industries and estimated number of workers affected by the proposed rule. Included in Table III-2 are summary statistics for each of the affected industries, subtotals for construction and for general industry and maritime, and grand totals for all affected industries combined.

The first five columns in Table III-2 identify each industry in which workers are routinely exposed to respirable crystalline silica (preceded by the industry's NAICS code) and the total number of entities, establishments, and employees for that industry.¹⁴ Note that not

¹³ ERG and OSHA used the four-digit NAICS codes for the construction sector both because the BLS's Occupational Employment Statistics Survey only provides data at this level of detail and because, unlike the case in general industry and maritime, job categories in the construction sector are task-specific, not industry-specific. Furthermore, as far as economic impacts are concerned, IRS data on profitability are reported only at the four-digit NAICS code level of detail.

¹⁴ The source of these industry data is the U.S. Census Bureau, Statistics of U.S. Businesses, 2006.

all entities, establishments, and employees in these affected industries necessarily engage in activities involving silica exposure.

	Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities													
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues per Establish- ment			
Constru	ction									•				
236100	Residential Building Construction	197,600	198,912	966,198	54,973	55,338	55,338	27,669	\$374,724,410	\$1,896,379	\$1,883,870			
236200	Nonresidential Building Construction	43,634	44,702	741,978	43,634	44,702	173,939	34,788	\$313,592,140	\$7,186,876	\$7,015,170			
237100	Utility System Construction	20,236	21,232	496,628	20,236	21,232	217,070	96,181	\$98,129,343	\$4,849,246	\$4,621,766			
237200	Land Subdivision	12,383	12,469	77,406	6,466	6,511	6,511	3,255	\$24,449,519	\$1,974,442	\$1,960,824			
237300	Highway, Street, and Bridge Construction	11,081	11,860	325,182	11,081	11,860	204,899	66,916	\$96,655,241	\$8,722,610	\$8,149,683			
237900	Other Heavy and Civil Engineering Construction	5,326	5,561	90,167	5,326	5,561	46,813	18,835	\$19,456,230	\$3,653,066	\$3,498,693			
238100	Foundation, Structure, and Building Exterior Contractors	116,836	117,456	1,167,986	116,836	117,456	559,729	111,946	\$157,513,197	\$1,348,156	\$1,341,040			
238200	Building Equipment Contractors	179,051	182,368	1,940,281	19,988	20,358	20,358	10,179	\$267,537,377	\$1,494,196	\$1,467,019			
238300	Building Finishing Contractors	132,219	133,343	975,335	119,000	120,012	120,012	60,006	\$112,005,298	\$847,120	\$839,979			
238900	Other Specialty Trade Contractors	73,922	74,446	557,638	73,922	74,446	274,439	137,219	\$84,184,953	\$1,138,835	\$1,130,819			
999000	State and local governments [d]	14,397	N/A	5,762,939	14,397	NA	170,068	85,034	N/A	N/A	N/A			
	Subtotals - Construction	806,685	802,349	13,101,738	485,859	477,476	1,849,175	652,029	\$1,548,247,709	\$1,954,148	\$1,929,644			

	Table III-2: Chara	cteristics	of Industries	Affected b	y OSHA's	Proposed	Standard	for Silic	a – All Entitio	es (continu	ed)
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues Per Establish- ment
General Maritime	Industry and										
324121	Asphalt paving mixture and block manufacturing	480	1,431	14,471	480	1,431	5,043		\$8,909,030	\$18,560,480	\$6,225,737
324122	Asphalt shingle and roofing materials	121	224	12,631	121	224	4,395		\$7,168,591	\$59,244,556	\$32,002,640
325510	Paint and coating manufacturing [e]	1,093	1,344	46,209	1,093	1,344	3,285		\$24,113,682	\$22,061,923	\$17,941,728
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	31	41	5,854	31	41	2,802		\$818,725	\$26,410,479	\$19,968,899
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	728	731	9,178	728	731	4,394		\$827,296	\$1,136,395	\$1,131,731
327113	Porcelain electrical supply mfg	110	125	6,168	110	125	2,953		\$951,475	\$8,649,776	\$7,611,802
327121	Brick and structural clay mfg	104	204	13,509	104	204	5,132		\$2,195,641	\$21,111,931	\$10,762,945
327122	Ceramic wall and floor tile mfg	180	193	7,094	180	193	2,695		\$1,217,597	\$6,764,429	\$6,308,794
327123	Other structural clay product mfg	45	49	1,603	45	49	609		\$227,406	\$5,053,461	\$4,640,933
327124	Clay refractory manufacturing	108	129	4,475	108	129	1,646		\$955,377	\$8,846,082	\$7,406,022
327125	Nonclay refractory manufacturing	81	105	5,640	81	105	2,075		\$1,453,869	\$17,948,999	\$13,846,371

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total Total Total **Total Total Total Total Revenues Per** FTE **Affected Affected Affected** Revenues **NAICS** Revenues Industry **Entities** Establish-**Employ-**Affected Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [d] ments [b] ment [b] ees [b] Flat glass 327211 56 83 11,003 56 83 271 \$61,101,328 \$41,224,993 \$3,421,674 manufacturing Other pressed and blown glass and 327212 457 499 20.625 457 499 1.034 \$7,430,274 \$6,804,880 \$3,395,635 glassware manufacturing Glass container 327213 32 72 14.392 32 72 722 \$136,427,289 \$60,634,351 \$4,365,673 manufacturing Ready-mixed 327320 concrete 2,470 6,064 107,190 2,470 6,064 43,920 \$11,297,453 \$27,904,708 \$4,601,700 manufacturing Concrete block and 327331 599 951 22.738 599 951 10.962 \$5,127,518 \$8,560,131 \$5,391,712 brick mfg 327332 Concrete pipe mfg 194 385 14,077 194 385 6,787 \$2.861.038 \$14,747,620 \$7,431,268 Other concrete 327390 1.934 2,281 66,095 1,934 2,281 31,865 \$10.336.178 \$5,344,456 \$4,531,424 product mfg Cut stone and stone 1,943 327991 product 1,885 30,633 1,885 1,943 12,085 \$1,860,588 \$1,805,048 \$3,507,209 manufacturing Ground or treated 327992 mineral and earth 171 271 6,629 171 271 5,051 \$12,900,061 \$8,139,891 \$2,205,910 manufacturing Mineral wool 327993 195 321 19,241 195 321 1,090 \$5.734.226 \$29,406,287 \$17.863.633 manufacturing All other misc. 327999 nonmetallic mineral 350 465 10,028 350 465 4,835 \$2.538.560 \$7.253.028 \$5,459,268 product mfg

523

614

12

614

12

331111

331112

Iron and steel mills

Electrometallurgical ferroalloy product

manufacturing

686

22

805

22

108,592

2,198

\$53,496,748

\$1.027.769

\$77,983,597

\$46,716,774

\$66,455,587

\$46,716,774

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total Total Total **Total Total Total** Total **Revenues Per** FTE Affected Affected Affected Revenues **NAICS** Establish-Industry **Entities Employ-**Affected Revenues Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [b] ments [b] ment [b] ees [b] Iron and steel pipe and tube 331210 122 186 240 21,543 94 122 \$7,014,894 \$37,714,484 \$29,228,725 manufacturing from purchased steel Rolled steel shape 331221 150 170 10,857 54 61 61 \$29,961,696 \$4,494,254 \$26,436,790 manufacturing 331222 Steel wire drawing 232 288 14.669 67 83 83 \$3,496,143 \$15,069,584 \$12,139,387 Secondary smelting 331314 and alloying of 119 150 7,381 33 42 42 \$34,783,724 \$27,595,088 \$4,139,263 aluminum Secondary smelting, 29 7 7 7 331423 refining, and alloying 31 1.278 \$765,196 \$26,386,082 \$24,683,755 of copper Secondary smelting, refining, and alloying 331492 195 217 9,383 48 53 53 \$3.012.985 \$15.451.203 \$13,884,721 of nonferrous metal (except cu & al) 331511 Iron foundries 457 527 59,209 457 527 22,111 \$9,753,093 \$21,341,560 \$18,506,818 Steel investment 331512 115 132 16,429 115 132 5.934 \$2,290,472 \$19,917,147 \$17,352,060 foundries Steel foundries 331513 208 222 17,722 208 222 6,618 \$3,640,441 \$17,502,121 \$16,398,383 (except investment) Aluminum foundries 331524 441 466 26,565 441 466 9,633 \$3,614,233 \$8,195,541 \$7,755,866 (except die-casting) Copper foundries 331525 251 256 6,120 251 256 2,219 \$747,437 \$2,977,835 \$2,919,674 (except die-casting) Other nonferrous 331528 foundries (except die-119 124 4,710 119 124 1.708 \$821,327 \$6,901,910 \$6,623,607

casting)

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total Total Total **Total Total Total Total Revenues Per** FTE **Affected Affected** Affected Revenues **NAICS** Industry **Entities** Establish-**Employ-**Affected Revenues Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [d] ments [b] ment [b] ees [b] 332111 Iron and steel forging 358 398 26,596 135 150 150 \$5,702,872 \$15,929,811 \$14,328,825 332112 Nonferrous forging 67 77 8,814 43 50 50 \$31,044,783 \$2,080,000 \$27,012,993 Crown and closure 332115 50 59 3,243 15 18 18 \$18,104,119 \$905,206 \$15,342,473 manufacturing 332116 Metal stamping 1.556 1.641 64.724 347 366 366 \$10,418,233 \$6,695,523 \$6,348,710 Powder metallurgy 332117 111 129 8.362 41 47 47 \$1,178,698 \$10,618,900 \$9,137,193 part manufacturing Cutlery and flatware 5,779 33 \$8,686,049 332211 (except precious) 138 141 32 33 \$1,198,675 \$8,501,240 manufacturing Hand and edge tool 332212 1,056 1,155 36,622 189 207 207 \$6,382,593 \$6,044,123 \$5,526,055 manufacturing Saw blade and 332213 handsaw 127 136 7,304 39 41 41 \$11,423,474 \$10,667,509 \$1,450,781 manufacturing Kitchen utensil, pot, 332214 and pan 64 70 3,928 20 22 22 \$1,226,230 \$19,159,850 \$17,517,577 manufacturing Ornamental and 332323 architectural metal 2,408 2,450 39,947 53 54 54 \$6,402,565 \$2.658.873 \$2.613.292 work Other metal container 332439 364 401 15,195 78 86 86 \$2,817,120 \$7,739,340 \$7,025,236 manufacturing Hardware 332510 734 828 45,282 227 256 256 \$9,268,800 \$12,627,793 \$11,194,203 manufacturing Spring (heavy gauge) 332611 109 113 4,059 22 23 23 \$825,444 \$7,572,882 \$7,304,815 manufacturing

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued)

Table III-2. Characteristics of industries Affected by OoriA's Proposed Standard for Sinca – All Entitles (Continued)											cuj
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues Per Establish- ment
332612	Spring (light gauge) manufacturing	270	340	15,336	69	87	87		\$2,618,283	\$9,697,344	\$7,700,832
332618	Other fabricated wire product manufacturing	1,103	1,198	36,364	189	205	205		\$5,770,701	\$5,231,823	\$4,816,946
332710	Machine shops	21,135	21,356	266,597	1,490	1,506	1,506		\$32,643,382	\$1,544,518	\$1,528,534
332812	Metal coating and allied services	2,363	2,599	56,978	2,363	2,599	4,695		\$11,010,624	\$4,659,595	\$4,236,485
332911	Industrial valve manufacturing	394	488	38,330	175	216	216		\$8,446,768	\$21,438,497	\$17,308,951
332912	Fluid power valve and hose fitting manufacturing	306	381	35,519	161	201	201		\$8,044,008	\$26,287,608	\$21,112,882
332913	Plumbing fixture fitting and trim manufacturing	126	144	11,513	57	65	65		\$3,276,413	\$26,003,281	\$22,752,871
332919	Other metal valve and pipe fitting manufacturing	240	268	18,112	91	102	102		\$3,787,626	\$15,781,773	\$14,132,931
332991	Ball and roller bearing manufacturing	107	180	27,197	91	154	154		\$6,198,871	\$57,933,374	\$34,438,172
332996	Fabricated pipe and pipe fitting manufacturing	711	765	27,201	143	154	154		\$4,879,023	\$6,862,198	\$6,377,808
332997	Industrial pattern manufacturing	459	461	5,281	30	30	30		\$486,947	\$1,060,887	\$1,056,285
332998	Enameled iron and metal sanitary ware manufacturing	72	76	5,655	72	76	96		\$1,036,508	\$14,395,940	\$13,638,259
332999	All other miscellaneous fabricated metal	3,043	3,123	72,201	397	408	408		\$12,944,345	\$4,253,811	\$4,144,843

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total Total Total **Total Total** Total **Total Revenues Per** FTE Affected Affected **Affected** Revenues **NAICS** Establish-Revenues Industry **Entities Employ-**Affected Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [b] ments [b] ment [b] ees [b] product manufacturing Other commercial and service industry 333319 1.253 1.349 53.012 278 299 299 \$10,171,373 \$9,447,539 \$12,744,730 machinery manufacturing Air purification 333411 303 equipment 351 14.883 72 84 84 \$2,428,159 \$8,013,727 \$6,917,833 manufacturing Industrial and 333412 52 59 commercial fan and 142 163 10,506 59 \$1,962,040 \$13,817,181 \$12,037,053 blower manufacturing Heating equipment (except warm air 333414 377 407 20,577 108 116 116 \$4,266,536 \$11,317,071 \$10,482,888 furnaces) manufacturing Industrial mold 333511 2,084 2,126 39,917 221 226 226 \$4,963,915 \$2,381,917 \$2,334,861 manufacturing Machine tool (metal 514 97 97 333512 cutting types) 530 17,220 94 \$3.675.264 \$7.150.320 \$6,934,461 manufacturing Machine tool (metal 333513 forming types) 274 285 8,556 46 48 48 \$1,398,993 \$5,105,812 \$4,908,746 manufacturing Special die and tool, 333514 die set, jig, and 3,172 3,232 57,576 319 325 325 \$7.232.706 \$2.280.172 \$2.237.842 fixture manufacturing Cutting tool and machine tool 333515 1.482 1.552 34.922 188 197 197 \$4,941,932 \$3,334,637 \$3,184,235 accessory

17

17

manufacturing
Rolling mill
machinery and

equipment manufacturing

70

73

3,020

333516

\$652,141

\$9,316,299

\$8,933,437

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total Total Total **Total Total Total Total Revenues Per** FTE Affected **Affected Affected** Revenues **NAICS** Industry **Entities** Establish-**Employ-**Affected Revenues Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [d] ments [b] ment [b] ees [b] Other metalworking 333518 machinery 362 383 12,470 67 70 70 \$2,605,582 \$7,197,740 \$6,803,086 manufacturing Speed changer, industrial high-speed 333612 70 70 197 226 12,374 61 \$2,280,825 \$11,577,790 \$10,092,145 drive, and gear manufacturing Mechanical power transmission 333613 196 231 15.645 75 88 88 \$3,256,010 \$16,612,294 \$14,095,280 equipment manufacturing Pump and pumping 333911 equipment 413 490 30,764 147 174 174 \$7,872,517 \$19,061,785 \$16,066,362 manufacturing Air and gas 333912 compressor 272 318 21,417 104 121 121 \$6,305,944 \$23,183,616 \$19,830,011 manufacturing Power-driven 333991 handtool 137 150 8,714 45 49 49 \$3,115,514 \$22,740,979 \$20,770,094 manufacturing Welding and soldering equipment 333992 250 275 15,853 82 90 90 \$4,257,678 \$17,030,713 \$15,482,466 manufacturing Packaging machinery 333993 583 619 120 120 21,179 113 \$4.294.579 \$7.366.345 \$6.937.931 manufacturing Industrial process 333994 furnace and oven 312 335 10,720 56 61 61 \$1,759,938 \$5,640,828 \$5,253,548 manufacturing Fluid power cylinder 333995 and actuator 269 319 19.887 95 112 112 \$3,991,832 \$14,839,523 \$12,513,579 manufacturing Fluid power pump

77

77

333996

and motor

manufacturing

146

178

13,631

\$3.019.188

\$20.679.367

\$16.961.728

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued)

	,							,			
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues Per Establish- ment
333997	Scale and balance (except laboratory) manufacturing	95	102	3,748	20	21	21		\$694,419	\$7,309,671	\$6,808,027
333999	All other miscellaneous general purpose machinery manufacturing	1,630	1,725	52,454	280	296	296		\$9,791,511	\$6,007,062	\$5,676,238
334518	Watch, clock, and part manufacturing	104	106	2,188	12	12	12		\$491,114	\$4,722,250	\$4,633,151
335211	Electric housewares and household fans	99	105	7,425	20	22	22		\$2,175,398	\$21,973,717	\$20,718,076
335221	Household cooking appliance manufacturing	116	125	16,033	43	47	47		\$4,461,008	\$38,456,968	\$35,688,066
335222	Household refrigerator and home freezer manufacturing	18	26	17,121	18	26	50		\$4,601,594	\$255,644,105	\$176,984,380
335224	Household laundry equipment manufacturing	17	23	16,269	17	23	47		\$4,792,444	\$281,908,445	\$208,367,112
335228	Other major household appliance manufacturing	39	45	12,806	32	37	37		\$4,549,859	\$116,663,058	\$101,107,984
336111	Automobile manufacturing	167	181	75,225	167	181	425		\$87,308,106	\$522,803,033	\$482,365,229
336112	Light truck and utility vehicle manufacturing	63	94	103,815	63	94	587		\$139,827,543	\$2,219,484,812	\$1,487,527,055
336120	Heavy duty truck manufacturing	77	95	32,122	77	95	181		\$17,387,065	\$225,806,042	\$183,021,739
336211	Motor vehicle body manufacturing	728	820	47,566	239	269	269		\$11,581,029	\$15,908,007	\$14,123,206

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued)

	1 4510 111 21 011414		or madounoe	, , , , , o o t o a k	,, 00	л торосоц	• tanaara		۰ / ۱۱۱ <u>۱۱۱۱ ۱۱۱۱ ۱۱۱</u>	50 (00mma	ou,
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues Per Establish- ment
336212	Truck trailer manufacturing	353	394	32,260	163	182	182		\$6,313,133	\$17,884,229	\$16,023,179
336213	Motor home manufacturing	79	91	21,533	79	91	122		\$5,600,569	\$70,893,283	\$61,544,718
336311	Carburetor, piston, piston ring, and valve manufacturing	102	116	10,537	52	60	60		\$2,327,226	\$22,815,945	\$20,062,296
336312	Gasoline engine and engine parts manufacturing	810	876	66,112	345	373	373		\$30,440,351	\$37,580,680	\$34,749,259
336322	Other motor vehicle electrical and electronic equipment manufacturing	643	697	62,016	323	350	350		\$22,222,133	\$34,560,082	\$31,882,544
336330	Motor vehicle steering and suspension components (except spring) manufacturing	214	257	39,390	185	223	223		\$10,244,934	\$47,873,524	\$39,863,557
336340	Motor vehicle brake system manufacturing	188	241	33,782	149	191	191		\$11,675,801	\$62,105,323	\$48,447,306
336350	Motor vehicle transmission and power train parts manufacturing	432	535	83,756	382	473	473		\$31,710,273	\$73,403,409	\$59,271,538
336370	Motor vehicle metal stamping	635	781	110,578	508	624	624		\$24,461,822	\$38,522,554	\$31,321,154
336399	All other motor vehicle parts manufacturing	1,189	1,458	149,251	687	843	843	_	\$42,936,991	\$36,111,851	\$29,449,239
336611	Ship building and repair	575	635	87,352	575	635	2,798		\$14,650,189	\$25,478,589	\$23,071,163

Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued) Total Total **Total** Total **Total Total** Total **Total Revenues Per** FTE **Affected Affected Affected** Revenues **NAICS** Industry **Entities** Establish-**Employ-**Affected Revenues Establish-**Entities** Establish-**Employ-**Per Entity **Employ-**(\$1,000) [c] [a] ments [a] ment [a] ment [b] ments [b] ment [b] ees [b] 336612 Boat building 1,066 1,129 54,705 1,066 1,129 1,752 \$10,062,908 \$9,439,876 \$8,913,116 Military armored vehicle, tank, and 336992 47 57 6.899 32 39 39 \$42,227,477 \$2,406,966 \$51,212,047 tank component manufacturing Showcase, partition, 337215 334 shelving, and locker 1.647 1.733 59.080 317 334 \$8,059,533 \$4,893,462 \$4,650,625 manufacturing Dental equipment and supplies 740 339114 763 15,550 399 411 411 \$3,397,252 \$4,590,881 \$4,452,493 manufacturing **Dental laboratories** \$530.546 339116 7,028 7,261 47,088 7,028 7,261 33,214 \$3,852,293 \$548,135 Jewelry (except 339911 costume) 1,760 1,777 25,280 1,760 1,777 7,813 \$6,160,238 \$3,500,135 \$3,466,650 manufacturing Jewelers' materials 339913 and lapidary work 261 264 1.607 \$934,387 \$3,580,028 \$3,539,346 5,199 261 264 manufacturing Costume jewelry and 339914 novelty 590 590 6,775 590 590 1,088 \$751.192 \$1,273,206 \$1,273,206 manufacturing 339950 Sign manufacturing 6,291 6,415 89,360 487 496 496 \$11,299,429 \$1,796,126 \$1,761,407

N/A

7.655

47,007

383

N/A

7,980

56,121

383

16,895

7.980

294,886

Industrial supplies,

Rail transportation

Subtotals - General

Industry and maritime

wholesalers

Dental offices

7,016

N/A

119,471

219,203

10,742

124,553

238,942

N/A

111,198

817,396

4,406,990

N/A

423840

482110

621210

\$19,335,522

\$88,473,742

\$1,101,555,989

N/A

\$2,755,918

\$740.546

\$5,025,278

N/A

\$1,799,993

\$710.330

\$4,610,140

N/A

	Table III-2: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – All Entities (continued)													
NAICS	Industry	Total Entities [a]	Total Establish- ments [a]	Total Employ- ment [a]	Total Affected Entities [b]	Total Affected Establish- ments [b]	Total Affected Employ- ment [b]	Total FTE Affected Employ- ees [b]	Total Revenues (\$1,000) [c]	Revenues Per Entity	Revenues Per Establish- ment			
	Totals – All Industries	1,025,888	1,041,291	17,508,728	532,866	533,597	2,144,061	652,029	\$2,649,803,698	\$2,619,701	\$2,544,729			

[[]a] US Census Bureau, Statistics of US Businesses, 2006.

Source: US Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG, 2011.

[[]b] OSHA estimates of employees potentially exposed to silica and associated entities and establishments. Affected entities and establishments constrained to be less than or equal to the number of affected employees.

[[]c] Estimates based on 2002 receipts and payroll data from US Census Bureau, Statistics of US Businesses, 2002, and payroll data from the US Census Bureau, Statistics of US Businesses, 2006. Receipts are not reported for 2006, but were estimated assuming the ratio of receipts to payroll remained unchanged from 2002 to 2006.

[[]d] State-plan states only. State and local governments are included under the construction sector because the silica risks for public employees are the result of construction-related activities.

[[]e] OSHA estimates that only one-third of the entities and establishments in this industry, as reported above, use silica-containing inputs.

The next three columns in Table III-2 show, for each affected industry, the number of entities and establishments in which workers are actually exposed to silica and the total number of workers exposed to silica. ¹⁵ The number of affected establishments was set equal to the total number of establishments in an industry (based on Census data) unless the number of affected establishments would exceed the number of affected employees in the industry. In that case, the number of affected establishments in the industry was set equal to the number of affected employees, and the number of affected entities in the industry was reduced so as to maintain the same ratio of entities to establishments in the industry. ¹⁶

As shown in Table III-2, OSHA estimates that a total of 533,000 entities (486,000 in construction; 47,000 in general industry and maritime), 534,000 establishments (477,500 in construction; 56,100 in general industry and maritime), and 2.1 million workers (1.8 million in construction; 0.3 million in general industry and maritime) would be affected by the proposed silica rule. Note that only slightly more than 50 percent of the entities and establishments, and about 12 percent of the workers in affected industries, actually engage in activities involving silica exposure.¹⁷

It should be mentioned that a fraction of the workforce exposed to silica is likely exposed to other substances currently regulated by OSHA and therefore may benefit from existing controls. OSHA has not attempted to quantify the extent to which silica exposures, and exposure control, overlap with other OSHA-regulated substances, but believes that any effect (for example, a reduction in compliance costs in relation to an OSHA silica standard) would be minor. OSHA requests comment on the effect of overlapping exposures on OSHA's estimates of the costs and benefits of the proposed silica rule.

The ninth column in Table III-2, with data only for construction, shows for each affected NAICS construction industry the number of full-time-equivalent (FTE) affected workers that corresponds to the total number of affected construction workers in the previous

¹⁵ Estimates of the numbers of affected employees in general industry and maritime were based on an assessment for each sector of the job categories of workers who perform tasks where silica exposures can occur. OSHA matched occupational titles from the 2008 BLS Occupational Employment Statistics (OES) survey with these at-risk job categories and then used OES occupational employment statistics to generate industry-specific estimates of the numbers of affected employees. To ensure data compatibility, OES occupational employment statistics were benchmarked to the 2006 County Business Pattern employment totals for each industry.

¹⁶ OSHA determined that removing this assumption would have a negligible impact on total costs and would reduce the cost and economic impact on the average affected establishment or entity.

¹⁷ It should be emphasized that these percentages vary significantly depending on the industry sector and, within an industry sector, depending on the NAICS industry. For example, about 14 percent of the workers in construction, but only 7 percent of workers in general industry, actually engage in activities involving silica exposure. As an example within construction, about 63 percent of workers in highway, street, and bridge construction, but only 3 percent of workers in state and local governments, actually engage in activities involving silica exposure.

column.¹⁸ This distinction is necessary because affected construction workers may spend large amounts of time working on tasks with no risk of silica exposure. As shown in Table III-2, the 1.8 million affected workers in construction converts to approximately 652,000 FTE affected workers. In contrast, OSHA based its analysis of the affected workers in general industry and maritime on the assumption that they were engaged full time in activities with some silica exposure.

The last three columns in Table III-2 show combined total revenues for all entities (not just affected entities) in each affected industry and the average revenue per entity and per establishment in each affected industry. Because OSHA did not have data to distinguish revenues for affected entities and establishments in any industry, average revenue per entity and average revenue per affected entity (as well as average revenue per establishment and average revenue per affected establishment) are estimated to be equal in value.

Similar information to that provided in Table III-2 for all entities in each affected industry is also provided for all small entities, as defined by SBA, in each affected industry (in Table III-3) and for all small entities with fewer than 20 employees in each affected industry (in Table III-4).

¹⁸ FTE affected workers becomes a relevant variable in the estimation of control costs in the construction industry in Chapter V of this PEA. The reason is that, consistent with the costing methodology, control costs depend only on how many worker-days there are in which exposures are above the PEL. These are the worker-days in which controls are required. For the derivation of FTEs, see Tables IV-8 and IV-22 and the associated text in ERG (2007a).

¹⁹ Revenue estimates are based on 2002 receipts and payroll data from the U.S. Census Bureau, Statistics of U.S. Businesses, 2002, and payroll data from U.S. Census Bureau, Statistics of U.S. Businesses, 2006. Receipts are not reported for 2006, but were estimated assuming that the ratio of receipts to payroll remained unchanged between 2002 and 2006.

	Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities													
NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities[c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment			
Constru	ction													
236100	Residential Building Construction	\$33.5 million	196,920	197,028	772,357	44,236	44,236	22,118	\$241,430,957	\$1,226,036	\$1,225,364			
236200	Nonresidential Building Construction	\$33.5 million	42,536	42,680	445,279	42,536	104,385	20,877	\$164,773,960	\$3,873,753	\$3,860,683			
237100	Utility System Construction	\$33.5 million	20,069	20,244	315,725	20,069	138,000	61,146	\$61,322,564	\$3,055,586	\$3,029,172			
237200	Land Subdivision	\$7 million	11,642	11,652	36,125	3,039	3,039	1,519	\$13,314,383	\$1,143,651	\$1,142,669			
237300	Highway, Street, and Bridge Construction	\$33.5 million	10,350	10,397	138,783	10,350	87,448	28,559	\$37,505,489	\$3,623,719	\$3,607,338			
237900	Other Heavy and Civil Engineering Construction	\$33.5 million	5,260	5,320	66,063	5,260	34,298	13,800	\$12,795,638	\$2,432,631	\$2,405,195			
238100	Foundation, Structure, and Building Exterior Contractors	\$14 million	115,345	115,489	813,345	115,345	389,776	77,955	\$107,561,550	\$932,520	\$931,358			
238200	Building Equipment Contractors	\$14 million	176,705	177,064	1,330,657	13,962	13,962	6,981	\$181,594,976	\$1,027,673	\$1,025,589			
238300	Building Finishing Contractors	\$14 million	131,123	131,244	710,648	87,443	87,443	43,721	\$91,025,950	\$694,203	\$693,563			
238900	Other Specialty Trade Contractors	\$14 million	73,291	73,395	435,959	73,291	214,555	107,278	\$69,405,885	\$946,991	\$945,649			
999000	State and local governments [e]	Population of 50,000 or less	13,482	N/A	739,795	13,482	21,832	10,916	N/A	N/A	N/A			
	Subtotals -													
	Construction		796,723	784,513	5,804,736	429,012	1,138,973	394,870	\$980,731,352	\$1,252,145	\$1,250,115			

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued) **SBA Small** Affected **Affected Business** Affected Estab-FTE **Employ-SBA Total** Classifilish-**Small Employ-**Small Revenues ment (at **Entity** Revenues Revenues cation **Business** ments **Business** ees (at per SBA **NAICS** for SBA Per SBA Industry **Employ** risk) for (Limit for or Gov. for SBA or Gov. risk) for Establish-**Entities SBA Entity** -ment revenues Entities [b] **Entities Entities SBA** ment **Entities** [b] (\$1,000) [d] **Entities** or employ-[c] [b] [c] ment) [a] [c] General Industry and Maritime Asphalt paving 500 mixture and block 713 2,819 324121 431 8,091 431 \$4,228,380 \$5,930,407 \$9.810.627 employees manufacturing Asphalt shingle and 750 324122 106 131 3.491 106 1,215 \$1,402,794 \$10,708,353 \$13,233,907 roofing materials employees Paint and coating 500 325510 1,042 1,121 20,147 1,042 1,432 \$6,266,578 \$5,590,168 \$6,013,990 manufacturing [f] employees Vitreous china plumbing fixtures & 750 327111 bathroom 25 25 818 25 392 \$35,505 \$1,420,219 \$1,420,219 employees accessories manufacturing Vitreous china, fine earthenware. & 500 327112 other pottery 717 719 6,242 717 2,988 \$467.868 \$652.535 \$650.720 employees product manufacturing 500 Porcelain electrical 327113 97 106 3,381 97 1,619 \$417,430 \$4,303,399 \$3,938,016 supply mfg employees Brick and structural 500 327121 93 107 93 1,958 5,153 \$810.661 \$8,716,789 \$7,576,275 clay mfg employees Ceramic wall and 500 327122 173 177 3.684 173 1.399 \$526,758 \$3,044,845 \$2,976,035 floor tile mfg employees Other structural clay 500 327123 42 46 860 42 327 \$102,418 \$2,438,515 \$2,226,470 product mfg employees

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

										-	
NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
327124	Clay refractory manufacturing	500 employees	96	100	1,869	96	688		\$544,243	\$5,669,203	\$5,442,435
327125	Nonclay refractory manufacturing	750 employees	68	74	1,962	68	722		\$469,975	\$6,911,400	\$6,351,017
327211	Flat glass manufacturing	1,000 employees	56	83	11,003	56	271		\$3,421,674	\$61,101,328	\$41,224,993
327212	Other pressed and blown glass and glassware manufacturing	750 employees	432	440	4,623	228	232		\$380,129	\$879,928	\$863,929
327213	Glass container manufacturing	750 employees	24	24	1,099	24	55		\$229,887	\$9,578,637	\$9,578,637
327320	Ready-mixed concrete manufacturing	500 employees	2,401	3,791	63,259	2,401	25,920		\$16,366,671	\$6,816,606	\$4,317,244
327331	Concrete block and brick mfg	500 employees	567	690	14,003	567	6,751		\$3,370,132	\$5,943,795	\$4,884,249
327332	Concrete pipe mfg	500 employees	181	221	7,052	181	3,400		\$1,337,014	\$7,386,815	\$6,049,835
327390	Other concrete product mfg	500 employees	1,876	2,002	43,172	1,876	20,814		\$6,215,690	\$3,313,267	\$3,104,740
327991	Cut stone and stone product manufacturing	500 employees	1,874	1,902	27,472	1,874	10,838		\$3,051,218	\$1,628,185	\$1,604,216
327992	Ground or treated mineral and earth manufacturing	500 employees	132	164	2,937	132	2,238		\$780,856	\$5,915,575	\$4,761,317

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
327993	Mineral wool manufacturing	750 employees	175	193	5,118	175	290		\$1,017,676	\$5,815,293	\$5,272,934
327999	All other misc. nonmetallic mineral product mfg	500 employees	326	337	5,528	326	2,665		\$1,318,597	\$4,044,776	\$3,912,751
331111	Iron and steel mills	1,000 employees	686	805	108,592	523	614		\$53,496,748	\$77,983,597	\$66,455,587
331112	Electrometallurgical ferroalloy product manufacturing	750 employees	18	18	1,278	7	7		\$408,459	\$22,692,159	\$22,692,159
331210	Iron and steel pipe and tube manufacturing from purchased steel	1,000 employees	186	240	21,543	94	122		\$7,014,894	\$37,714,484	\$29,228,725
331221	Rolled steel shape manufacturing	1,000 employees	150	170	10,857	54	61		\$4,494,254	\$29,961,696	\$26,436,790
331222	Steel wire drawing	1,000 employees	232	288	14,669	67	83		\$3,496,143	\$15,069,584	\$12,139,387
331314	Secondary smelting and alloying of aluminum	750 employees	107	120	3,921	20	22		\$1,861,853	\$17,400,493	\$15,515,440
331423	Secondary smelting, refining, and alloying of copper	750 employees	26	27	1,088	6	6		\$502,924	\$19,343,215	\$18,626,799
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	750 employees	167	178	4,662	25	26		\$1,494,647	\$8,949,982	\$8,396,894
331511	Iron foundries	500 employees	408	422	19,421	408	7,253		\$2,251,262	\$5,517,799	\$5,334,744

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classifi- cation (Limit for revenues or employ- ment) [a]	Small Business or Gov. Entities [b]	Establishments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
331512	Steel investment foundries	500 employees	101	103	6,204	101	2,241		\$806,662	\$7,986,753	\$7,831,670
331513	Steel foundries (except investment)	500 employees	192	195	9,220	192	3,443		\$2,163,437	\$11,267,900	\$11,094,547
331524	Aluminum foundries (except die-casting)	500 employees	412	420	15,641	412	5,671		\$1,565,556	\$3,799,894	\$3,727,515
331525	Copper foundries (except die-casting)	500 employees	246	251	5,785	246	2,098		\$658,948	\$2,678,652	\$2,625,292
331528	Other nonferrous foundries (except die-casting)	500 employees	112	112	2,248	112	815		\$278,178	\$2,483,733	\$2,483,733
332111	Iron and steel forging	500 employees	317	327	11,442	63	65		\$2,478,449	\$7,818,452	\$7,579,356
332112	Nonferrous forging	500 employees	54	56	3,165	17	18		\$1,112,135	\$20,595,086	\$19,859,547
332115	Crown and closure manufacturing	500 employees	44	44	1,233	7	7		\$277,248	\$6,301,099	\$6,301,099
332116	Metal stamping	500 employees	1,498	1,553	51,247	279	290		\$7,554,099	\$5,042,790	\$4,864,198
332117	Powder metallurgy part manufacturing	500 employees	98	102	4,246	23	24		\$583,445	\$5,953,519	\$5,720,048
332211	Cutlery and flatware (except precious) manufacturing	500 employees	129	130	2,522	14	14		\$346,209	\$2,683,788	\$2,663,143
332212	Hand and edge tool manufacturing	500 employees	1,025	1,081	21,182	113	120		\$3,278,282	\$3,198,324	\$3,032,639

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
332213	Saw blade and handsaw manufacturing	500 employees	114	117	2,223	12	13		\$577,563	\$5,066,344	\$4,936,437
332214	Kitchen utensil, pot, and pan manufacturing	500 employees	56	61	2,525	13	14		\$545,534	\$9,741,680	\$8,943,181
332323	Ornamental and architectural metal work	500 employees	2,378	2,400	31,781	42	43		\$4,629,638	\$1,946,862	\$1,929,016
332439	Other metal container manufacturing	500 employees	342	366	10,628	56	60		\$1,692,546	\$4,948,965	\$4,624,443
332510	Hardware manufacturing	500 employees	682	704	18,979	104	107		\$2,850,379	\$4,179,442	\$4,048,834
332611	Spring (heavy gauge) manufacturing	500 employees	103	106	3,401	19	19		\$641,639	\$6,229,509	\$6,053,202
332612	Spring (light gauge) manufacturing	500 employees	261	297	8,909	44	50		\$1,105,090	\$4,234,063	\$3,720,843
332618	Other fabricated wire product manufacturing	500 employees	1,065	1,113	27,446	148	155		\$3,447,000	\$3,236,620	\$3,097,035
332710	Machine shops	500 employees	21,020	21,176	249,538	1,399	1,410		\$28,957,294	\$1,377,607	\$1,367,458
332812	Metal coating and allied services	500 employees	2,301	2,422	45,444	2,301	3,745		\$6,287,992	\$2,732,721	\$2,596,198
332911	Industrial valve manufacturing	500 employees	344	353	12,938	71	73		\$1,890,247	\$5,494,903	\$5,354,807

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
332912	Fluid power valve and hose fitting manufacturing	500 employees	264	273	10,076	55	57		\$1,610,940	\$6,102,046	\$5,900,880
332913	Plumbing fixture fitting and trim manufacturing	500 employees	115	118	4,596	25	26		\$993,520	\$8,639,301	\$8,419,657
332919	Other metal valve and pipe fitting manufacturing	500 employees	210	219	7,411	40	42		\$1,863,531	\$8,873,957	\$8,509,274
332991	Ball and roller bearing manufacturing	750 employees	83	88	3,452	18	20		\$460,076	\$5,543,088	\$5,228,140
332996	Fabricated pipe and pipe fitting manufacturing	500 employees	680	700	18,055	99	102		\$2,800,361	\$4,118,178	\$4,000,516
332997	Industrial pattern manufacturing	500 employees	453	455	5,006	28	28		\$480,407	\$1,060,502	\$1,055,840
332998	Enameled iron and metal sanitary ware manufacturing	750 employees	60	60	1,284	22	22		\$180,350	\$3,005,840	\$3,005,840
332999	All other miscellaneous fabricated metal product manufacturing	500 employees	2,959	2,999	55,806	311	315		\$8,085,145	\$2,732,391	\$2,695,947
333319	Other commercial and service industry machinery manufacturing	500 employees	1,190	1,218	29,926	165	169		\$5,553,611	\$4,666,900	\$4,559,615
333411	Air purification equipment manufacturing	500 employees	278	284	6,538	36	37		\$1,163,708	\$4,185,999	\$4,097,563

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

					<u> </u>						
NAICS	Industry	SBA Small Business Classifi- cation (Limit for revenues or employ- ment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
333412	Industrial and commercial fan and blower manufacturing	500 employees	126	136	6,556	34	37		\$939,848	\$7,459,115	\$6,910,651
333414	Heating equipment (except warm air furnaces) manufacturing	500 employees	352	356	10,936	61	62		\$1,876,671	\$5,331,452	\$5,271,548
333511	Industrial mold manufacturing	500 employees	2,042	2,072	34,594	193	196		\$4,075,012	\$1,995,598	\$1,966,705
333512	Machine tool (metal cutting types) manufacturing	500 employees	491	500	10,852	60	61		\$1,910,885	\$3,891,823	\$3,821,770
333513	Machine tool (metal forming types) manufacturing	500 employees	263	272	7,341	40	41		\$1,078,246	\$4,099,796	\$3,964,141
333514	Special die and tool, die set, jig, and fixture manufacturing	500 employees	3,126	3,171	49,262	274	278		\$6,126,103	\$1,959,726	\$1,931,915
333515	Cutting tool and machine tool accessory manufacturing	500 employees	1,453	1,479	25,229	140	142		\$2,846,376	\$1,958,965	\$1,924,528
333516	Rolling mill machinery and equipment manufacturing	500 employees	63	64	2,289	13	13		\$493,725	\$7,836,908	\$7,714,456
333518	Other metalworking machinery manufacturing	500 employees	343	358	9,270	50	52		\$1,832,815	\$5,343,484	\$5,119,595

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

				•	=	-				-	-
NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
333612	Speed changer, industrial high- speed drive, and gear manufacturing	500 employees	179	190	6,061	32	34		\$1,015,097	\$5,670,934	\$5,342,617
333613	Mechanical power transmission equipment manufacturing	500 employees	172	177	6,332	35	36		\$1,471,611	\$8,555,877	\$8,314,185
333911	Pump and pumping equipment manufacturing	500 employees	368	383	9,987	54	56		\$2,153,602	\$5,852,179	\$5,622,982
333912	Air and gas compressor manufacturing	500 employees	234	242	5,786	32	33		\$1,384,829	\$5,918,075	\$5,722,436
333991	Power-driven handtool manufacturing	500 employees	120	120	2,379	13	13		\$430,821	\$3,590,179	\$3,590,179
333992	Welding and soldering equipment manufacturing	500 employees	233	237	5,584	31	32		\$1,235,324	\$5,301,818	\$5,212,335
333993	Packaging machinery manufacturing	500 employees	551	558	13,273	74	75		\$2,197,889	\$3,988,910	\$3,938,870
333994	Industrial process furnace and oven manufacturing	500 employees	302	312	8,316	45	47		\$1,270,055	\$4,205,481	\$4,070,690
333995	Fluid power cylinder and actuator manufacturing	500 employees	245	253	7,795	43	44		\$1,343,729	\$5,484,609	\$5,311,183
333996	Fluid power pump and motor manufacturing	500 employees	130	137	3,688	20	21		\$538,330	\$4,141,001	\$3,929,417

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classifi- cation (Limit for revenues or employ- ment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
333997	Scale and balance (except laboratory) manufacturing	500 employees	92	96	2,941	16	17		\$431,691	\$4,692,298	\$4,496,785
333999	All other miscellaneous general purpose machinery manufacturing	500 employees	1,547	1,574	29,810	166	168		\$4,747,476	\$3,068,828	\$3,016,186
334518	Watch, clock, and part manufacturing	500 employees	101	101	1,598	9	9		\$273,509	\$2,708,008	\$2,708,008
335211	Electric housewares and household fans	750 employees	89	89	1,773	5	5		\$509,756	\$5,727,593	\$5,727,593
335221	Household cooking appliance manufacturing	750 employees	104	105	3,476	10	10		\$1,023,414	\$9,840,520	\$9,746,801
335222	Household refrigerator and home freezer manufacturing	1,000 employees	18	26	17,121	18	50		\$4,601,594	\$255,644,105	\$176,984,380
335224	Household laundry equipment manufacturing	1,000 employees	17	23	16,269	17	47		\$4,792,444	\$281,908,445	\$208,367,112
335228	Other major household appliance manufacturing	500 employees	26	26	980	3	3		\$202,255	\$7,779,055	\$7,779,055
336111	Automobile manufacturing	1,000 employees	167	181	75,225	167	425		\$87,308,106	\$522,803,033	\$482,365,229
336112	Light truck and utility vehicle manufacturing	1,000 employees	63	94	103,815	63	587		\$139,827,543	\$2,219,484,812	\$1,487,527,055

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

				-		<u>-</u>				•	•
NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
336120	Heavy duty truck manufacturing	1,000 employees	77	95	32,122	77	181		\$17,387,065	\$225,806,042	\$183,021,739
336211	Motor vehicle body manufacturing	1,000 employees	728	820	47,566	239	269		\$11,581,029	\$15,908,007	\$14,123,206
336212	Truck trailer manufacturing	500 employees	329	336	13,076	72	74		\$2,791,165	\$8,483,783	\$8,307,038
336213	Motor home manufacturing	1000 employees	79	91	21,533	79	122		\$5,600,569	\$70,893,283	\$61,544,718
336311	Carburetor, piston, piston ring, and valve manufacturing	500 employees	92	94	2,482	14	14		\$194,045	\$2,109,189	\$2,064,313
336312	Gasoline engine and engine parts manufacturing	750 employees	758	769	16,812	94	95		\$3,027,205	\$3,993,675	\$3,936,548
336322	Other motor vehicle electrical and electronic equipment manufacturing	750 employees	586	597	18,259	101	103		\$3,719,120	\$6,346,622	\$6,229,682
336330	Motor vehicle steering and suspension components (except spring) manufacturing	750 employees	176	180	6,522	36	37		\$1,281,978	\$7,283,967	\$7,122,101
336340	Motor vehicle brake system manufacturing	750 employees	157	161	8,409	46	47		\$968,024	\$6,165,756	\$6,012,570
336350	Motor vehicle transmission and power train parts	750 employees	374	384	11,991	66	68		\$2,131,769	\$5,699,918	\$5,551,482
		·	·	·	TTT		·	Cilian DE A	~	·	·

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry manufacturing	SBA Small Business Classifi- cation (Limit for revenues or employ- ment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
336370	Motor vehicle metal stamping	500 employees	550	595	38,474	201	217		\$5,938,434	\$10,797,152	\$9,980,561
336399	All other motor vehicle parts manufacturing	750 employees	1,038	1,080	43,308	235	245		\$6,820,940	\$6,571,233	\$6,315,685
336611	Ship building and repair	1,000 employees	575	635	87,352	575	2,798		\$14,650,189	\$25,478,589	\$23,071,163
336612	Boat building	500 employees	1,041	1,048	25,582	814	819		\$5,194,492	\$4,989,906	\$4,956,576
336992	Military armored vehicle, tank, and tank component manufacturing	1,000 employees	47	57	6,899	32	39		\$2,406,966	\$51,212,047	\$42,227,477
337215	Showcase, partition, shelving, and locker manufacturing	500 employees	1,600	1,641	42,750	235	241		\$5,475,456	\$3,422,160	\$3,336,658
339114	Dental equipment and supplies manufacturing	500 employees	729	738	11,186	292	296		\$1,796,269	\$2,464,017	\$2,433,968
339116	Dental laboratories	500 employees	7,011	7,060	39,244	7,011	27,681		\$3,514,294	\$501,254	\$497,775
339911	Jewelry (except costume) manufacturing	500 employees	1,751	1,758	20,447	1,751	6,319		\$4,309,089	\$2,460,930	\$2,451,131
339913	Jewelers' materials and lapidary work manufacturing	500 employees	258	261	3,779	258	1,168		\$673,700	\$2,611,240	\$2,581,225

Table III-3: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Small Entities (continued)

NAICS	Industry	SBA Small Business Classification (Limit for revenues or employment) [a]	Small Business or Gov. Entities [b]	Estab- lish- ments for SBA Entities [b]	SBA Entity Employ -ment [b]	Affected Small Business or Gov. Entities [c]	Affected Employ- ment (at risk) for SBA Entities [c]	Affected FTE Employ- ees (at risk) for SBA Entities [c]	Total Revenues for SBA Entities (\$1,000) [d]	Revenues Per SBA Entity	Revenues per SBA Establish- ment
339914	Costume jewelry and novelty manufacturing	500 employees	588	588	6,326	588	1,016		\$537,493	\$914,103	\$914,103
339950	Sign manufacturing	500 employees	6,261	6,339	78,049	428	434		\$9,676,242	\$1,545,479	\$1,526,462
423840	Industrial supplies, wholesalers	100 employees	6,885	8,489	80,884	226	278		\$32,394,611	\$4,705,100	\$3,816,069
482110	Rail transportation	N/A	NA	NA	NA	NA	NA		NA	NA	NA
621210	Dental offices	\$6 million	119,272	121,934	777,326	7,423	7,589		\$74,497,933	\$624,605	\$610,969
	Subtotals – General Industry and Maritime		216,079	224,419	3,036,008	41,136	171,282		\$719,209,398	\$3,328,456	\$3,204,762
	Totals – All Industries		1,012,802	1,008,932	8,840,744	470,148	1,310,254		\$1,699,940,750	\$1,701,097	\$1,684,891

[[]a] Data were not available specifically for small entities with more than 500 employees. For SBA small business classifications specifying 750 or fewer employees, OSHA used data for small businesses with 500 or fewer employees. For SBA small business classifications specifying 1,000 or fewer employees, OSHA used data for all entities in the industry.

[[]b] US Census Bureau, Statistics of US Businesses, 2006.

[[]c] OSHA estimates of employees potentially exposed to silica and associated entities and establishments. Affected entities and establishments constrained to be less than or equal to the number of affected employees.

[[]d] Estimates based on 2002 receipts and payroll data from US Census Bureau, Statistics of US Businesses, 2002, and payroll data from the US Census Bureau, Statistics of US Businesses, 2006. Receipts are not reported for 2006, but were estimated assuming the ratio of receipts to payroll remained unchanged from 2002 to 2006.

[[]e] State-plan states only. State and local governments are included under the construction sector because the silica risks for public employees are the result of construction-related activities.

[[]f] OSHA estimates that only one-third of the entities and establishments in this industry, as reported above, use silica-containing inputs. Source: US Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG, 2011.

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 **Employees** Affected Affected FTE **Employ-**Total Affected **Employ-**Estab. For Revenues Revenue per **Entities** ment for **Employ-**Revenues for ees for **Entities Entities** Per Entity Estab. For with <20 **Entities** ees for **Entities with NAICS Entities** Industry with <20 with <20 with <20 **Entities with Entities Employ**with <20 <20 **Employ-**Employwith <20 **Employ-**<20 Employwith <20 **Employ-Employees** ees [a] ees [a] ees [b] **Employ** ees ees ees[a] **Employ-**(\$1,000) [c] ees [b] ees[b] Construction Residential Building 236100 190,863 190,876 559,487 32,044 32,044 16,022 \$165,597,421 \$867,625 \$867,565 Construction Nonresidential Building 236200 35,746 35,773 187,254 35,746 43,897 8,779 \$63,990,139 \$1,790,134 \$1,788,783 Construction Utility System 16,113 84,361 16.113 36,873 16,338 \$933.007 237100 16.118 \$15,033,541 \$932,718 Construction 237200 Land Subdivision 11.642 11.652 36.125 3.039 3.039 1.519 \$13.314.383 \$1.143.651 \$1.142.669 Highway, Street, and 237300 8,080 8,085 43,108 8,080 27,163 8,871 \$12,536,864 \$1,551,592 \$1,550,633 **Bridge Construction** Other Heavy and Civil 237900 Engineering 4.436 4.440 19.031 4.436 9.880 3.975 \$3,480,614 \$784.629 \$783.922 Construction Foundation, Structure, 105,227 105,237 421,630 105,227 202,056 40,411 \$560,962 238100 and Building Exterior \$59,028,342 \$560,909 Contractors **Building Equipment** 238200 159.965 160.012 694.285 7.285 7.285 3.642 \$87.240.419 \$545.372 \$545.212 Contractors **Building Finishing** 25,377 238300 123,229 123,241 412,476 50,754 50,754 \$49,750,510 \$403,724 \$403,685 Contractors Other Specialty Trade 238900 68,075 68,093 243,192 68.075 119.686 59.843 \$38,466,840 \$565,066 \$564,916 Contractors State and local 999000 N/A N/A N/A N/A N/A N/A N/A N/A N/A governments [d] Subtotals -723.376 723.527 2,700,949 330,798 532,676 184,778 \$508,439,073 \$702,870 \$702,723 Construction

Table I	Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued) Affected Affected												
NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees			
General Indu	stry and Maritime												
324121	Asphalt paving mixture and block manufacturing	260	265	1,547	260	539		\$1,060,478	\$4,078,763	\$4,001,806			
324122	Asphalt shingle and roofing materials	57	57	300	57	104		\$215,229	\$3,775,939	\$3,775,939			
325510	Paint and coating manufacturing [e]	740	743	4,578	325	325		\$1,302,704	\$1,760,410	\$1,753,302			
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	19	19	84	19	40		\$5,851	\$307,970	\$307,970			
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	645	646	2,358	645	1,129		\$94,208	\$146,058	\$145,832			
327113	Porcelain electrical supply mfg	57	57	252	57	120		\$32,244	\$565,684	\$565,684			
327121	Brick and structural clay mfg	31	31	126	31	48		\$20,854	\$672,724	\$672,724			
327122	Ceramic wall and floor tile mfg	136	136	629	136	239		\$103,286	\$759,454	\$759,454			
327123	Other structural clay product mfg	25	25	110	25	42		\$18,403	\$736,137	\$736,137			
327124	Clay refractory manufacturing	55	55	243	55	89		\$78,722	\$1,431,313	\$1,431,313			

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employee Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
327125	Nonclay refractory manufacturing	40	40	277	40	102		\$56,676	\$1,416,902	\$1,416,902
327211	Flat glass manufacturing	37	37	168	4	4		\$31,520	\$851,902	\$851,902
327212	Other pressed and blown glass and glassware manufacturing	373	373	1,583	79	79		\$130,107	\$348,811	\$348,811
327213	Glass container manufacturing	19	19	86	4	4		\$48,082	\$2,530,632	\$2,530,632
327320	Ready-mixed concrete manufacturing	1,429	1,454	10,356	1,429	4,243		\$2,584,674	\$1,808,729	\$1,777,630
327331	Concrete block and brick mfg	339	340	2,499	339	1,205		\$636,496	\$1,877,568	\$1,872,046
327332	Concrete pipe mfg	67	69	535	67	258		\$149,703	\$2,234,377	\$2,169,613
327390	Other concrete product mfg	1,326	1,328	8,646	1,326	4,168		\$1,215,695	\$916,814	\$915,433
327991	Cut stone and stone product manufacturing	1,471	1,473	8,855	1,471	3,493		\$1,309,890	\$890,476	\$889,267
327992	Ground or treated mineral and earth manufacturing	78	78	514	78	392		\$119,980	\$1,538,203	\$1,538,203
327993	Mineral wool manufacturing	118	118	808	46	46		\$155,219	\$1,315,417	\$1,315,417

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

				Employee	3 (COIICIIIC	icu)	T			
NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
327999	All other misc. nonmetallic mineral product mfg	235	236	1,430	235	689		\$322,146	\$1,370,834	\$1,365,026
331111	Iron and steel mills	467	469	2,137	12	12		\$1,835,440	\$3,930,278	\$3,913,518
331112	Electrometallurgical ferroalloy product manufacturing	6	6	33	0	0		\$6,788	\$1,131,348	\$1,131,348
331210	Iron and steel pipe and tube manufacturing from purchased steel	72	72	390	2	2		\$143,147	\$1,988,148	\$1,988,148
331221	Rolled steel shape manufacturing	72	72	368	2	2		\$142,816	\$1,983,557	\$1,983,557
331222	Steel wire drawing	128	128	672	4	4		\$100,600	\$785,939	\$785,939
331314	Secondary smelting and alloying of aluminum	51	51	288	2	2		\$97,843	\$1,918,495	\$1,918,495
331423	Secondary smelting, refining, and alloying of copper	10	10	42	0	0		\$25,674	\$2,567,427	\$2,567,427
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	103	103	661	4	4		\$149,834	\$1,454,703	\$1,454,703
331511	Iron foundries	201	201	1,144	201	427		\$194,991	\$970,105	\$970,105
331512	Steel investment foundries	27	27	165	27	60		\$46,518	\$1,722,873	\$1,722,873

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

				Employee	s (continu	iea)				
NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
331513	Steel foundries (except investment)	102	102	563	102	210		\$151,386	\$1,484,181	\$1,484,181
331524	Aluminum foundries (except die-casting)	235	235	1,726	235	626		\$193,232	\$822,265	\$822,265
331525	Copper foundries (except die-casting)	164	164	1,270	164	460		\$125,674	\$766,307	\$766,307
331528	Other nonferrous foundries (except die-casting)	77	77	556	77	202		\$60,663	\$787,832	\$787,832
332111	Iron and steel forging	197	197	935	5	5		\$217,882	\$1,106,000	\$1,106,000
332112	Nonferrous forging	26	26	180	1	1		\$35,023	\$1,347,027	\$1,347,027
332115	Crown and closure manufacturing	29	29	228	1	1		\$46,812	\$1,614,205	\$1,614,205
332116	Metal stamping	814	815	6,211	35	35		\$877,879	\$1,078,476	\$1,077,153
332117	Powder metallurgy part manufacturing	50	50	475	3	3		\$74,365	\$1,487,293	\$1,487,293
332211	Cutlery and flatware (except precious) manufacturing	101	101	508	3	3		\$37,244	\$368,754	\$368,754
332212	Hand and edge tool manufacturing	758	758	4,472	25	25		\$549,687	\$725,180	\$725,180
332213	Saw blade and handsaw manufacturing	84	84	524	3	3		\$77,102	\$917,882	\$917,882

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employee Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
332214	Kitchen utensil, pot, and pan manufacturing	30	30	169	0	0		\$23,323	\$777,440	\$777,440
332323	Ornamental and architectural metal work	1,946	1,946	10,169	14	14		\$1,274,104	\$654,730	\$654,730
332439	Other metal container manufacturing	213	217	1,211	7	7		\$205,891	\$966,624	\$948,806
332510	Hardware manufacturing	438	440	2,714	15	15		\$320,154	\$730,945	\$727,622
332611	Spring (heavy gauge) manufacturing	61	62	441	2	2		\$101,835	\$1,669,429	\$1,642,503
332612	Spring (light gauge) manufacturing	148	148	1,136	6	6		\$151,107	\$1,020,992	\$1,020,992
332618	Other fabricated wire product manufacturing	714	714	4,562	26	26		\$523,160	\$732,717	\$732,717
332710	Machine shops	17,619	17,632	95,210	538	538		\$10,770,479	\$611,299	\$610,848
332812	Metal coating and allied services	1,652	1,654	10,754	886	886		\$936,503	\$566,890	\$566,205
332911	Industrial valve manufacturing	202	202	1,347	8	8		\$246,078	\$1,218,210	\$1,218,210
332912	Fluid power valve and hose fitting manufacturing	151	151	1,027	6	6		\$191,842	\$1,270,476	\$1,270,476

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
332913	Plumbing fixture fitting and trim manufacturing	67	67	344	2	2		\$51,137	\$763,242	\$763,242
332919	Other metal valve and pipe fitting manufacturing	112	113	621	4	4		\$228,107	\$2,036,674	\$2,018,650
332991	Ball and roller bearing manufacturing	44	44	259	1	1		\$74,848	\$1,701,096	\$1,701,096
332996	Fabricated pipe and pipe fitting manufacturing	437	437	2,852	16	16		\$508,646	\$1,163,949	\$1,163,949
332997	Industrial pattern manufacturing	386	386	2,035	12	12		\$182,760	\$473,471	\$473,471
332998	Enameled iron and metal sanitary ware manufacturing	47	47	280	5	5		\$32,078	\$682,501	\$682,501
332999	All other miscellaneous fabricated metal product manufacturing	2,149	2,149	12,813	72	72		\$1,887,691	\$878,404	\$878,404
333319	Other commercial and service industry machinery manufacturing	804	804	4,525	26	26		\$853,167	\$1,061,153	\$1,061,153
333411	Air purification equipment manufacturing	180	180	1,087	6	6		\$195,185	\$1,084,359	\$1,084,359
333412	Industrial and commercial fan and blower	55	55	383	2	2		\$75,247	\$1,368,128	\$1,368,128

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

	Employees (continued)											
NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees		
	manufacturing											
333414	Heating equipment (except warm air furnaces) manufacturing	227	228	1,391	8	8		\$192,527	\$848,137	\$844,417		
333511	Industrial mold manufacturing	1,538	1,539	10,002	57	57		\$1,036,687	\$674,049	\$673,611		
333512	Machine tool (metal cutting types) manufacturing	326	327	2,006	11	11		\$279,661	\$857,856	\$855,233		
333513	Machine tool (metal forming types) manufacturing	164	164	1,068	6	6		\$201,919	\$1,231,215	\$1,231,215		
333514	Special die and tool, die set, jig, and fixture manufacturing	2,425	2,427	15,077	85	85		\$1,863,802	\$768,578	\$767,945		
333515	Cutting tool and machine tool accessory manufacturing	1,107	1,109	7,191	41	41		\$803,091	\$725,466	\$724,158		
333516	Rolling mill machinery and equipment manufacturing	35	35	307	2	2		\$73,880	\$2,110,852	\$2,110,852		
333518	Other metalworking machinery manufacturing	207	207	1,548	9	9		\$188,053	\$908,471	\$908,471		
333612	Speed changer, industrial high-speed drive, and gear manufacturing	100	100	759	4	4		\$131,130	\$1,311,301	\$1,311,301		

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employee ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
333613	Mechanical power transmission equipment manufacturing	96	96	713	4	4		\$190,842	\$1,987,939	\$1,987,939
333911	Pump and pumping equipment manufacturing	235	235	1,648	9	9		\$297,095	\$1,264,236	\$1,264,236
333912	Air and gas compressor manufacturing	154	154	967	5	5		\$238,270	\$1,547,208	\$1,547,208
333991	Power-driven handtool manufacturing	89	89	505	3	3		\$180,704	\$2,030,378	\$2,030,378
333992	Welding and soldering equipment manufacturing	156	156	876	5	5		\$195,409	\$1,252,620	\$1,252,620
333993	Packaging machinery manufacturing	365	365	2,231	13	13		\$277,950	\$761,507	\$761,507
333994	Industrial process furnace and oven manufacturing	186	186	1,288	7	7		\$231,810	\$1,246,288	\$1,246,288
333995	Fluid power cylinder and actuator manufacturing	148	148	905	5	5		\$127,620	\$862,298	\$862,298
333996	Fluid power pump and motor manufacturing	91	91	611	3	3		\$121,353	\$1,333,551	\$1,333,551
333997	Scale and balance (except laboratory) manufacturing	63	63	447	3	3		\$90,539	\$1,437,128	\$1,437,128

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employee Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
333999	All other miscellaneous general purpose machinery manufacturing	1,141	1,141	7,465	42	42		\$935,673	\$820,046	\$820,046
334518	Watch, clock, and part manufacturing	71	71	301	2	2		\$39,164	\$551,606	\$551,606
335211	Electric housewares and household fans	66	66	265	0	0		\$52,615	\$797,194	\$797,194
335221	Household cooking appliance manufacturing	74	74	355	1	1		\$155,125	\$2,096,278	\$2,096,278
335222	Household refrigerator and home freezer manufacturing	7	7	58	0	0		\$32,383	\$4,626,121	\$4,626,121
335224	Household laundry equipment manufacturing	8	8	24	0	0		\$13,304	\$1,663,024	\$1,663,024
335228	Other major household appliance manufacturing	13	13	45	0	0		\$20,876	\$1,605,841	\$1,605,841
336111	Automobile manufacturing	108	108	491	3	3		\$153,123	\$1,417,805	\$1,417,805
336112	Light truck and utility vehicle manufacturing	40	40	182	1	1		\$41,009	\$1,025,224	\$1,025,224
336120	Heavy duty truck manufacturing	33	33	216	1	1		\$135,707	\$4,112,321	\$4,112,321

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

	_	T .	-	Employee	3 (COITCITE	ieu)				
NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
336211	Motor vehicle body manufacturing	394	394	2,830	16	16		\$637,726	\$1,618,593	\$1,618,593
336212	Truck trailer manufacturing	188	188	1,177	7	7		\$478,649	\$2,546,006	\$2,546,006
336213	Motor home manufacturing	35	35	273	2	2		\$71,923	\$2,054,950	\$2,054,950
336311	Carburetor, piston, piston ring, and valve manufacturing	62	62	304	2	2		\$50,773	\$818,914	\$818,914
336312	Gasoline engine and engine parts manufacturing	612	612	2,673	15	15		\$499,567	\$816,287	\$816,287
336322	Other motor vehicle electrical and electronic equipment manufacturing	382	382	1,972	11	11		\$497,299	\$1,301,831	\$1,301,831
336330	Motor vehicle steering and suspension components (except spring) manufacturing	104	104	658	4	4		\$151,006	\$1,451,978	\$1,451,978
336340	Motor vehicle brake system manufacturing	91	91	546	3	3		\$118,026	\$1,296,989	\$1,296,989
336350	Motor vehicle transmission and power train parts manufacturing	261	261	1,462	8	8		\$212,325	\$813,505	\$813,505
336370	Motor vehicle metal stamping	182	183	1,318	7	7		\$260,226	\$1,429,814	\$1,422,000

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 Employees (continued)

NAICS	Industry	Entities with <20 Employ- ees [a]	Estab. For Entities with <20 Employ- ees [a]	Employ- ment for Entities with <20 Employ- ees[a]	Affected Entities with <20 Employ- ees [b]	Affected Employ- ees for Entities with <20 Employe es [b]	Affected FTE Employ- ees for Entities with <20 Employ- ees[b]	Total Revenues for Entities with <20 Employees (\$1,000) [c]	Revenues Per Entity with <20 Employ- ees	Revenue per Estab. For Entities with <20 Employ- ees
336399	All other motor vehicle parts manufacturing	615	615	3,666	21	21		\$792,101	\$1,287,970	\$1,287,970
336611	Ship building and repair	370	371	2,041	65	65		\$268,330	\$725,215	\$723,261
336612	Boat building	782	783	3,773	121	121		\$810,202	\$1,036,064	\$1,034,741
336992	Military armored vehicle, tank, and tank component manufacturing	20	20	138	0	0		\$21,559	\$1,077,970	\$1,077,970
337215	Showcase, partition, shelving, and locker manufacturing	1,013	1,013	6,459	36	36		\$826,194	\$815,591	\$815,591
339114	Dental equipment and supplies manufacturing	610	610	3,277	87	87		\$377,132	\$618,249	\$618,249
339116	Dental laboratories	6,664	6,667	24,555	6,664	17,320		\$2,048,372	\$307,379	\$307,241
339911	Jewelry (except costume) manufacturing	1,532	1,533	6,761	1,532	2,090		\$971,176	\$633,927	\$633,513
339913	Jewelers' materials and lapidary work manufacturing	218	218	1,096	218	339		\$188,557	\$864,940	\$864,940
339914	Costume jewelry and novelty manufacturing	514	514	2,289	368	368		\$219,669	\$427,372	\$427,372
339950	Sign manufacturing	5,312	5,316	25,236	140	140		\$2,606,147	\$490,615	\$490,246

Table III-4: Characteristics of Industries Affected by OSHA's Proposed Standard for Silica – Entities with Fewer than 20 **Employees (continued)** Affected **Affected** FTE **Employ-**Total Affected Estab. For **Employ-**Revenues Revenue per **Entities** ment for Employ-Revenues for **Entities Entities** ees for Per Entity Estab. For with <20 **Entities** ees for **Entities with Entities NAICS** Industry with <20 with <20 with <20 **Entities with** with <20 **Employ-Entities** <20 **Employ-Employ**with <20 **Employ-**<20 Employees [a] **Employ**with <20 **Employees** ees [a] ees [b] **Employe** ees ees ees[a] (\$1,000) [c] Employes [b] ees[b] Industrial supplies. 423840 5,707 98 98 5,881 28,505 \$13,059,089 \$2,288,258 \$2,220,556 wholesalers Rail transportation N/A N/A N/A N/A N/A N/A N/A N/A 482110 621210 Dental offices 115.748 117.076 674.036 6.581 6.581 \$61,302,763 \$529.623 \$523,615 Subtotals - General Industry and 189,475 191,063 1,077,459 25,625 48,771 \$128,486,243 \$678,117 \$672,481 Maritime Totals - All \$697,732 \$696,405 912.851 914.590 3.778.408 356.424 581,447 \$636.925.316 Industries

[[]a] US Census Bureau, Statistics of US Businesses, 2006.

[[]b] OSHA estimates of employees potentially exposed to silica and associated entities and establishments. Affected entities and establishments constrained to be less than or equal to the number of affected employees.

[[]c] Estimates based on 2002 receipts and payroll data from US Census Bureau, Statistics of US Businesses, 2002, and payroll data from the US Census Bureau, Statistics of US Businesses, 2006. Receipts are not reported for 2006, but were estimated assuming the ratio of receipts to payroll remained unchanged from 2002 to 2006.

[[]d] State-plan states only. State and local governments are included under the construction sector because the silica risks for public employees are the result of construction-related activities.

[[]e] OSHA estimates that only one-third of the entities and establishments in this industry, as reported above, use silica-containing inputs. Source: US Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG, 2011.

SILICA EXPOSURE PROFILE OF AT-RISK WORKERS

The technological feasibility analyses presented in Chapter IV of this PEA contain data and discussion of worker exposures to silica throughout industry. Exposure profiles, by job category, were developed from individual exposure measurements that were judged to be substantive and to contain sufficient accompanying description to allow interpretation of the circumstance of each measurement. The resulting exposure profiles show the job categories with current overexposures to silica and, thus, the workers for whom silica controls would be implemented under the proposed rule.

Table III-5 summarizes, from the exposure profiles, the number of workers at risk from silica exposure and the distribution of 8-hour TWA respirable crystalline silica exposures by job category for general industry and maritime sectors and for construction activities. Exposures are grouped into the following ranges: less than 25 μ g/m³; \geq 25 μ g/m³ and \leq 50 μ g/m³; > 50 μ g/m³ and \leq 100 μ g/m³; > 100 μ g/m³ and \leq 250 μ g/m³, and greater than 250 μ g/m³. These frequencies represent the percentages of production employees in each job category and sector currently exposed at levels within the indicated range.

Table III-6 presents data by NAICS code—for each affected general, maritime, and construction industry—on the estimated number of workers currently at risk from silica exposure, as well as the estimated number of workers at risk of silica exposure at or above 25 μ g/m³, above 50 μ g/m³, and above 100 μ g/m³. As shown, an estimated 1,026,000 workers (851,000 in construction; 176,000 in general industry and maritime) currently have silica exposures at or above the proposed action level of 25 μ g/m³; an estimated 770,000 workers (648,000 in construction; 122,000 in general industry and maritime) currently have silica exposures above the proposed PEL of 50 μ g/m³; and an estimated 501,000 workers (420,000 in construction; 81,000 in general industry and maritime) currently have silica exposures above 100 μ g/m³—an alternative PEL investigated by OSHA for economic analysis purposes.

Table III-5
Distribution of Silica Exposures by Sector and Job Category or Activity

	stribution of Silica Exposures by Sector ar			Exposure	Range		
Sector	Job Category/Activity	<25 μg/m³	25-50 μg/m³	50-100 μg/m³	100-250 μg/m³	>250 μg/m³	Total
Construction	on						
	Abrasive Blasters	18.6%	11.9%	16.9%	20.3%	32.2%	100.09
	Drywall Finishers	86.7%	6.7%	6.7%	0.0%	0.0%	100.09
	Heavy Equipment Operators	79.2%	8.3%	8.3%	4.2%	0.0%	100.0
	Hole Drillers Using Hand-Held Drills	14.3%	28.6%	35.7%	14.3%		100.0
	Jackhammer and Impact Drillers	18.3%	8.3%	15.6%	24.8%		100.0
	Masonry Cutters Using Portable Saws	24.2%	9.9%	12.1%	38.5%	15.4%	100.0
	Masonry Cutters Using Stationary Saws	21.4%	25.0%	25.0%	3.6%	25.0%	100.09
	Millers Using Portable or Mobile Machines	54.3%	20.0%	20.0%	2.9%	2.9%	100.0
	Rock and Concrete Drillers	35.9%	17.9%	17.9%	17.9%	10.3%	100.0
	Rock-Crushing Machine Operators and Tenders	0.0%	0.0%	0.0%	20.0%		100.0
	Tuckpointers and Grinders	10.0%	8.5%	11.9%	18.4%		100.0
	Underground Construction Workers	59.3%	18.5%	11.1%	7.4%	3.7%	100.09
General Industry/Maritim		50.00 /	0.00/	50.00/	0.00/	0.00/	400.0
Asphalt Paving Products	Front-end loader operator	50.0%	0.0%	50.0%	0.0%		100.0
	Maintenance worker Plant operator	100.0%	0.0%	0.0%	0.0%		100.0
Sanhalt Bacting Materials	Material handler	100.0% 0.0%	0.0% 28.6%	0.0% 42.9%	0.0% 28.6%		100.0 100.0
Asphalt Roofing Materials	Production operator	0.0%	60.0%	20.0%	20.0%		100.0
Captive Foundries	Abrasive blasting operator	6.6%	24.6%	27.9%	27.9%		100.0
Captive Foundries	Cleaning/Finishing operator	15.5%	21.6%	19.2%	21.1%		100.0
	Coremaker	25.5%	32.1%	29.2%	9.4%		100.0
	Furnace operator	37.5%	25.0%	0.0%	12.5%		100.0
	Housekeeping worker	14.3%	14.3%	42.9%	14.3%		100.0
	Knockout operator	10.8%	35.1%	18.9%	24.3%		100.0
	Maintenance operator	16.7%	25.0%	25.0%	12.5%		100.0
	Material handler	28.1%	18.8%	31.3%	21.9%		100.0
	Molder	26.3%	24.3%	28.9%	19.1%		100.0
	Pouring operator	25.0%	25.0%	16.7%	29.2%		100.0
	Sand systems operator	17.2%	15.5%	25.9%	27.6%		100.0
	Shakeout operator	14.4%	25.8%	29.9%	17.5%		100.0
Concrete Products	Abrasive blasting operator	13.3%	6.7%	20.0%	26.7%		100.0
	Finishing operator	45.9%	16.2%	10.8%	16.2%		100.0
	Forming Line operator	83.3%	7.1%	7.1%	2.4%		100.0
	Material handler	41.9%	22.6%	19.4%	9.7%	6.5%	100.0
	Mixer Operator	46.2%	15.4%	0.0%	30.8%	7.7%	100.0
	Packaging operator	33.3%	0.0%	33.3%	16.7%	16.7%	100.0
Cut Stone	Abrasive blasting ops	14.3%	28.6%	14.3%	14.3%	28.6%	100.0
	Fabricator	16.7%	33.3%	8.3%	25.0%	16.7%	100.0
	Machine operator	11.8%	17.6%	23.5%	35.3%	11.8%	100.0
	Sawyer	17.4%	26.1%	39.1%	17.4%	0.0%	100.0
	Splitter/chipper	17.2%	13.8%	20.7%	48.3%	0.0%	100.0
Dental Equipment	Production operator	33.3%	0.0%	33.3%	33.3%		100.0
Dental Laboratories	Dental technician	83.9%	12.9%	3.2%	0.0%		100.0
Flat Glass	Batch operator	50.0%	0.0%	33.3%	0.0%		100.0
	Material handler	0.0%	16.7%	33.3%	33.3%		100.0
ron Foundries	Abrasive blasting operator	6.6%	24.6%	27.9%	27.9%		100.0
	Cleaning/Finishing operator	15.5%	21.6%	19.2%	21.1%		100.0
	Coremaker	25.5%	32.1%	29.2%	9.4%		100.0
	Furnace operator	37.5%	25.0%	0.0%	12.5%		100.0
	Housekeeping worker	14.3%	14.3%	42.9%	14.3%		100.0
	Knockout operator	10.8%	35.1%	18.9%	24.3%		100.0
	Maintenance operator	16.7%	25.0%	25.0%	12.5%		100.0
	Material handler	28.1%	18.8%	31.3%	21.9%		100.0
	Molder Pouring operator	26.3%	24.3%	28.9%	19.1%		100.0
	Pouring operator	25.0%	25.0%	16.7%	29.2%		100.0
	Sand systems operator Shakeout operator	17.2%	15.5% 25.8%	25.9% 29.9%	27.6% 17.5%		100.0
lawalni		14.4%	25.8%		17.5% 18.8%		100.0
Jewelry	Jewelry workers	37.5%	18.8%	12.5%			100.0
Mineral Processing Mineral Wool	Production worker	0.0%	82.4%	11.8%	5.9%		100.0
MILIETAL WOOL	Batch operator Material handler	50.0%	0.0%	33.3%	0.0%		100.0
Nonferrous Sand Casting	Material nandler Abrasive blasting operator	0.0%	16.7%	33.3% 27.9%	33.3%		100.0
	Aurasive biasting operator	6.6%	24.6%	21.9%	27.9%	13.1%	100.09
Foundries	Clooping/Finishing operator	15 59/	21 60/	10.20/	21 10/	22 50/	100.0
	Cleaning/Finishing operator	15.5%	21.6%	19.2% 29.2%	21.1%		
	Coremaker	25.5%	32.1%	29.2%	9.4%	3.8%	100.0

Table III-5
Distribution of Silica Exposures by Sector and Job Category or Activity
(Continued)

	(Cont	inued)	Silica Exposure Range				
		<25	25-50	50-100	100-250		
Sector	Job Category/Activity	μg/m³	μg/m³	μg/m³	μg/m³	>250 μg/m ³	Total
	Furnace operator	37.5%	25.0%	0.0%	12.5%	25.0%	100.0%
	Housekeeping worker	14.3%	14.3%	42.9%	14.3%	14.3%	100.0%
	Knockout operator	10.8%	35.1%	18.9%	24.3%	10.8%	100.0%
	Maintenance operator	16.7%	25.0%	25.0%	12.5%	20.8%	100.0%
	Material handler	28.1%	18.8%	31.3%	21.9%	0.0%	100.0%
	Molder	26.3%	24.3%	28.9%	19.1%	1.3%	100.0%
	Pouring operator	25.0%	25.0%	16.7%	29.2%	4.2%	100.0%
	Sand systems operator	17.2%	15.5%	25.9%	27.6%	13.8%	100.0%
	Shakeout operator	14.4%	25.8%	29.9%	17.5%	12.4%	100.0%
Non-Sand Casting Foundries	Abrasive blasting operator	6.6%	24.6%	27.9%	27.9%	13.1%	100.0%
	Cleaning/Finishing operator	15.5%	21.6%	19.2%	21.1%	22.5%	100.0%
	Coremaker	25.5%	32.1%	29.2%	9.4%	3.8%	100.0%
	Furnace operator	37.5%	25.0%	0.0%	12.5%	25.0%	100.0%
	Housekeeping worker	14.3%	14.3%	42.9%	14.3%	14.3%	100.0%
	Knockout operator	10.8%	35.1%	18.9%	24.3%	10.8%	100.0%
	Maintenance operator	16.7%	25.0%	25.0%	12.5%	20.8%	100.0%
	Material handler	28.1%	18.8%	31.3%	21.9%	0.0%	100.0%
	Molder	26.3%	24.3%	28.9%	19.1%	1.3%	100.0%
	Pouring operator	25.0%	25.0%	16.7%	29.2%	4.2%	100.0%
	Sand systems operator	17.2%	15.5%	25.9%	27.6%	13.8%	100.0%
	Shakeout operator	14.4%	25.8%	29.9%	17.5%	12.4%	100.0%
Other Ferrous Sand Casting Foundries	Abrasive blasting operator	6.6%	24.6%	27.9%	27.9%	13.1%	100.0%
	Cleaning/Finishing operator	15.5%	21.6%	19.2%	21.1%	22.5%	100.0%
	Coremaker	25.5%	32.1%	29.2%	9.4%	3.8%	100.0%
	Furnace operator	37.5%	25.0%	0.0%	12.5%	25.0%	100.0%
	Housekeeping worker	14.3%	14.3%	42.9%	14.3%	14.3%	100.0%
	Knockout operator	10.8%	35.1%	18.9%	24.3%	10.8%	100.0%
	Maintenance operator	16.7%	25.0%	25.0%	12.5%	20.8%	100.0%
	Material handler	28.1%	18.8%	31.3%	21.9%	0.0%	100.0%
	Molder	26.3%	24.3%	28.9%	19.1%	1.3%	100.0%
	Pouring operator	25.0%	25.0%	16.7%	29.2%	4.2%	100.0%
	Sand systems operator	17.2%	15.5%	25.9%	27.6%	13.8%	100.0%
	Shakeout operator	14.4%	25.8%	29.9%	17.5%	12.4%	100.0%
Other Glass Products	Batch operator	50.0%	0.0%	33.3%	0.0%	16.7%	100.0%
	Material handler	0.0%	16.7%	33.3%	33.3%	16.7%	100.0%
Paint and Coatings	Material handler	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%
· a aa ooago	Mixer operator	80.0%	0.0%	0.0%	0.0%	20.0%	100.0%
Porcelain Enameling	Enamel preparer	33.3%	33.3%	33.3%	0.0%	0.0%	100.0%
	Porcelain applicator	52.2%	13.0%	21.7%	0.0%	13.0%	100.0%
Pottery	Coatings operator	18.9%	10.8%	16.2%	32.4%	21.6%	100.0%
,	Coatings preparer	5.3%	5.3%	31.6%	26.3%	31.6%	100.0%
	Finishing operator	15.4%	34.6%	19.2%	30.8%	0.0%	100.0%
	Forming Line operator	25.6%	40.0%	14.4%	20.0%	0.0%	100.0%
	Material handler	38.1%	19.0%	19.0%	9.5%	14.3%	100.0%
Railroads	Ballast dumper	50.0%	26.9%	7.7%	7.7%	7.7%	100.0%
	Machine operator	21.0%	38.0%	23.0%	11.0%	7.0%	100.0%
Ready mix	Batch operator	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	Maintenance operator	60.0%	20.0%	20.0%	0.0%	0.0%	100.0%
	Material handler	75.0%	0.0%	25.0%	0.0%	0.0%	100.0%
	Quality control technician	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	Truck driver	0.0%	0.0%	0.0%	0.0%	100.0%	100.0%
Refractories	Ceramic fiber furnace operator	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%
Non dolones	Finishing operator	100.0%	0.0%	0.0%	0.0%	0.0%	100.0%
	Forming operator Forming operator	45.5%	27.3%	13.6%	13.6%	0.0%	100.0%
	Material handler	33.3%	22.2%	22.2%	18.5%	3.7%	100.0%
	Packaging operator	50.0%	41.7%	0.0%	8.3%	0.0%	100.0%
Defractory Don-i-	Production operator	20.0%	41.7%	20.0%	20.0%	0.0%	100.0%
Refractory Repair		20.0%	28.6%		14.3%	42.9%	100.0%
Shipyards	Abrasive blasters			14.3%			
Structural Clay	Forming line operator/Coatings blender	10.0%	10.0%	50.0%	30.0%	0.0%	100.0%
	Forming line operator/Formers	27.0%	16.2%	16.2%	29.7%	10.8%	100.0%
	Forming Line operator/Pug mill operator		14.3%	14.3%	28.6%	42.9%	100.0%
		21.4%	7.1%	21.4%	28.6%	21.4%	100.0%
	Grinding operator						
	Material handler/Loader operator	42.9%	0.0%	28.6%	28.6%	0.0%	100.0%
		42.9% 70.3% 30.0%	0.0% 16.2% 20.0%	28.6% 10.8% 30.0%	28.6% 2.7% 15.0%	0.0% 0.0% 5.0%	100.0% 100.0% 100.0%

Source: Technological feasibility analysis in Chapter IV in this PEA.

Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (µg/m³)) **Numbers exposed to Silica** Number of Number of **NAICS** Industry >=0 >=25 >=50 >=100 >=250 **Establishments Employees** Construction 236100 Residential Building Construction 55,338 7,502 198.912 966.198 32,260 24,445 14.652 236200 Nonresidential Building Construction 44.702 741.978 173,939 83,003 63,198 39,632 20,504 237100 **Utility System Construction** 21,232 496,628 217,070 76,687 53,073 28,667 9,783 237200 Land Subdivision 12.469 77.406 6.511 1.745 1.172 560 186 237300 Highway, Street, and Bridge Construction 204,899 11.860 325,182 58.441 39,273 19.347 7.441 237900 Other Heavy and Civil Engineering Construction 5,561 90,167 46,813 12,904 8,655 4,221 1,369 Foundation, Structure, and Building Exterior 238100 559,729 396,582 134,355 Contractors 117,456 1,167,986 323,119 237,537 238200 **Building Equipment Contractors** 182,368 1,940,281 20,358 6,752 4,947 2,876 1,222 **Building Finishing Contractors** 14,762 238300 133,343 975,335 120,012 49.202 37,952 24,662 238900 Other Specialty Trade Contractors 74,446 557,638 274,439 87,267 60,894 32,871 13,718 999000 State and local governments [d] NA 5,762,939 170,068 45,847 15,254 5,161 31,080 **Subtotals - Construction** 802,349 13,101,738 1,849,175 850,690 647,807 420,278 216,003 General Industry and Maritime 324121 Asphalt paving mixture and block manufacturing 1.431 14,471 5.043 48 48 0 0 324122 Asphalt shingle and roofing materials 935 224 12,631 4,395 4,395 1,963 0 Paint and coating manufacturing 325510 1,344 46,209 3,285 404 404 404 404 Vitreous china plumbing fixtures & bathroom 327111 accessories manufacturing 41 5,854 2,802 2,128 1,319 853 227 Vitreous china, fine earthenware, & other pottery 327112 product manufacturing 731 9,178 4,394 3,336 2,068 1,337 356 327113 Porcelain electrical supply mfg 125 6,168 2,953 2,242 1,390 898 239 Brick and structural clay mfg 13,509 5,132 327121 204 3.476 2.663 1.538 461 327122 Ceramic wall and floor tile mfg 193 7.094 2.695 1,826 1,398 808 242 327123 Other structural clay product mfg 49 1,603 609 412 316 182 55 327124 13 129 Clay refractory manufacturing 4.475 1,646 722 364 191 327125 Nonclay refractory manufacturing 105 5,640 2,075 910 459 241 17

83

327211

Flat glass manufacturing

164

154

64

45

271

11,003

Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (μg/m³)) (continued)

				Numbers exposed to Silica				
NAICS	Industry	Number of Establishments	Number of Employees	>=0	>=25	>=50	>=100	>=250
327212	Other pressed and blown glass and glassware manufacturing	499	20,625	1,034	631	593	248	172
327213	Glass container manufacturing	72	14,392	722	440	414	173	120
327320	Ready-mixed concrete manufacturing	6,064	107,190	43,920	32,713	32,110	29,526	29,526
327331	Concrete block and brick mfg	951	22,738	10,962	5,489	3,866	2,329	929
327332	Concrete pipe mfg	385	14,077	6,787	3,398	2,394	1,442	575
327390	Other concrete product mfg	2,281	66,095	31,865	15,957	11,239	6,769	2,700
327991	Cut stone and stone product manufacturing	1,943	30,633	12,085	10,298	7,441	4,577	1,240
327992	Ground or treated mineral and earth manufacturing	271	6,629	5,051	5,051	891	297	0
327993	Mineral wool manufacturing	321	19,241	1,090	675	632	268	182
327999	All other misc. nonmetallic mineral product mfg	465	10,028	4,835	2,421	1,705	1,027	410
331111	Iron and steel mills	805	108,592	614	456	309	167	57
331112	Electrometallurgical ferroalloy product manufacturing	22	2,198	12	9	6	3	1
331210	Iron and steel pipe and tube manufacturing from purchased steel	240	21,543	122	90	61	33	11
331221	Rolled steel shape manufacturing	170	10,857	61	46	31	17	6
331222	Steel wire drawing	288	14,669	83	62	42	23	8
331314	Secondary smelting and alloying of aluminum	150	7,381	42	31	21	11	4
331423	Secondary smelting, refining, and alloying of copper	31	1,278	7	5	4	2	1
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	217	9,383	53	39	27	14	5
331511	Iron foundries	527	59,209	22,111	16,417	11,140	6,005	2,071
331512	Steel investment foundries	132	16,429	5,934	4,570	3,100	1,671	573
331513	Steel foundries (except investment)	222	17,722	6,618	4,914	3,334	1,797	620
331524	Aluminum foundries (except die-casting)	466	26,565	9,633	7,418	5,032	2,712	931
331525	Copper foundries (except die-casting)	256	6,120	2,219	1,709	1,159	625	214
331528	Other nonferrous foundries (except die-casting)	124	4,710	1,708	1,315	892	481	165
332111	Iron and steel forging	398	26,596	150	112	76	41	14
332112	Nonferrous forging	77	8,814	50	37	25	13	5
332115	Crown and closure manufacturing	59	3,243	18	14	9	5	2

Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (μg/m³)) (continued)

				Numbers exposed to Silica					
NAICS	Industry	Number of Establishments	Number of Employees	>=0	>=25	>=50	>=100	>=250	
332116	Metal stamping	1,641	64,724	366	272	184	99	34	
332117	Powder metallurgy part manufacturing	129	8,362	47	35	24	13	4	
332211	Cutlery and flatware (except precious) manufacturing	141	5,779	33	24	16	9	3	
332212	Hand and edge tool manufacturing	1,155	36,622	207	154	104	56	19	
332213	Saw blade and handsaw manufacturing	136	7,304	41	31	21	11	4	
332214	Kitchen utensil, pot, and pan manufacturing	70	3,928	22	17	11	6	2	
332323	Ornamental and architectural metal work	2,450	39,947	54	26	19	7	7	
332439	Other metal container manufacturing	401	15,195	86	64	43	23	8	
332510	Hardware manufacturing	828	45,282	256	190	129	69	24	
332611	Spring (heavy gauge) manufacturing	113	4,059	23	17	12	6	2	
332612	Spring (light gauge) manufacturing	340	15,336	87	64	44	24	8	
332618	Other fabricated wire product manufacturing	1,198	36,364	205	153	104	56	19	
332710	Machine shops	21,356	266,597	1,506	1,118	759	409	141	
332812	Metal coating and allied services	2,599	56,978	4,695	2,255	1,632	606	606	
332911	Industrial valve manufacturing	488	38,330	216	161	109	59	20	
332912	Fluid power valve and hose fitting manufacturing	381	35,519	201	149	101	55	19	
332913	Plumbing fixture fitting and trim manufacturing	144	11,513	65	48	33	18	6	
332919	Other metal valve and pipe fitting manufacturing	268	18,112	102	76	51	28	10	
332991	Ball and roller bearing manufacturing	180	27,197	154	114	77	42	14	
332996	Fabricated pipe and pipe fitting manufacturing	765	27,201	154	114	77	42	14	
332997	Industrial pattern manufacturing	461	5,281	30	22	15	8	3	
332998	Enameled iron and metal sanitary ware manufacturing	76	5,655	96	56	38	16	11	
332999	All other miscellaneous fabricated metal product manufacturing	3,123	72,201	408	303	205	111	38	
333319	Other commercial and service industry machinery manufacturing	1,349	53,012	299	222	151	81	28	
333411	Air purification equipment manufacturing	351	14,883	84	62	42	23	8	
333412	Industrial and commercial fan and blower manufacturing	163	10,506	59	44	30	16	6	
333414	Heating equipment (except warm air furnaces) manufacturing	407	20,577	116	86	59	32	11	
333511	Industrial mold manufacturing	2,126	39,917	226	168	114	61	21	

Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (μg/m³)) (continued)

				Numbers exposed to Silica					
NAICS	Industry	Number of Establishments	Number of Employees	>=0	>=25	>=50	>=100	>=250	
333512	Machine tool (metal cutting types) manufacturing	530	17,220	97	72	49	26	9	
333513	Machine tool (metal forming types) manufacturing	285	8,556	48	36	24	13	5	
333514	Special die and tool, die set, jig, and fixture manufacturing	3,232	57,576	325	241	164	88	30	
333515	Cutting tool and machine tool accessory manufacturing	1,552	34,922	197	146	99	54	18	
333516	Rolling mill machinery and equipment manufacturing	73	3,020	17	13	9	5	2	
333518	Other metalworking machinery manufacturing	383	12,470	70	52	35	19	7	
333612	Speed changer, industrial high-speed drive, and gear manufacturing	226	12,374	70	52	35	19	7	
333613	Mechanical power transmission equipment manufacturing	231	15,645	88	66	44	24	8	
333911	Pump and pumping equipment manufacturing	490	30,764	174	129	88	47	16	
333912	Air and gas compressor manufacturing	318	21,417	121	90	61	33	11	
333991	Power-driven handtool manufacturing	150	8,714	49	37	25	13	5	
333992	Welding and soldering equipment manufacturing	275	15,853	90	67	45	24	8	
333993	Packaging machinery manufacturing	619	21,179	120	89	60	32	11	
333994	Industrial process furnace and oven manufacturing	335	10,720	61	45	31	16	6	
333995	Fluid power cylinder and actuator manufacturing	319	19,887	112	83	57	31	11	
333996	Fluid power pump and motor manufacturing	178	13,631	77	57	39	21	7	
333997	Scale and balance (except laboratory) manufacturing	102	3,748	21	16	11	6	2	
333999	All other miscellaneous general purpose machinery manufacturing	1,725	52,454	296	220	149	80	28	
334518	Watch, clock, and part manufacturing	106	2,188	12	9	6	3	1	
335211	Electric housewares and household fans	105	7,425	22	10	8	3	3	
335221	Household cooking appliance manufacturing	125	16,033	47	22	16	6	6	
335222	Household refrigerator and home freezer manufacturing	26	17,121	50	24	17	7	7	
335224	Household laundry equipment manufacturing	23	16,269	47	23	17	6	6	
335228	Other major household appliance manufacturing	45	12,806	37	18	13	5	5	
336111	Automobile manufacturing	181	75,225	425	316	214	115	40	

Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (μg/m³)) (continued)

					Numbers exposed to Silica				
NAICS	Industry	Number of Establishments	Number of Employees	>=0	>=25	>=50	>=100	>=250	
336112	Light truck and utility vehicle manufacturing	94	103,815	587	436	296	159	55	
336120	Heavy duty truck manufacturing	95	32,122	181	135	91	49	17	
336211	Motor vehicle body manufacturing	820	47,566	269	200	135	73	25	
336212	Truck trailer manufacturing	394	32,260	182	135	92	50	17	
336213	Motor home manufacturing	91	21,533	122	90	61	33	11	
336311	Carburetor, piston, piston ring, and valve manufacturing	116	10,537	60	44	30	16	6	
336312	Gasoline engine and engine parts manufacturing	876	66,112	373	277	188	101	35	
336322	Other motor vehicle electrical and electronic equipment manufacturing	697	62,016	350	260	176	95	33	
336330	Motor vehicle steering and suspension components (except spring) manufacturing	257	39,390	223	165	112	60	21	
336340	Motor vehicle brake system manufacturing	241	33,782	191	142	96	52	18	
336350	Motor vehicle transmission and power train parts manufacturing	535	83,756	473	351	238	128	44	
336370	Motor vehicle metal stamping	781	110,578	624	464	315	170	58	
336399	All other motor vehicle parts manufacturing	1,458	149,251	843	626	425	229	79	
336611	Ship building and repair	635	87,352	2,798	2,798	1,998	1,599	1,199	
336612	Boat building	1,129	54,705	1,752	1,752	1,252	1,001	751	
336992	Military armored vehicle, tank, and tank component manufacturing	57	6,899	39	29	20	11	4	
337215	Showcase, partition, shelving, and locker manufacturing	1,733	59,080	334	248	168	91	31	
339114	Dental equipment and supplies manufacturing	763	15,550	411	274	274	137	0	
339116	Dental laboratories	7,261	47,088	33,214	5,357	1,071	0	0	
339911	Jewelry (except costume) manufacturing	1,777	25,280	7,813	4,883	3,418	2,442	977	
339913	Jewelers' materials and lapidary work manufacturing	264	5,199	1,607	1,004	703	502	201	
339914	Costume jewelry and novelty manufacturing	590	6,775	1,088	685	479	338	135	
339950	Sign manufacturing	6,415	89,360	496	249	172	57	57	
423840	Industrial supplies, wholesalers	10,742	111,198	383	306	153	77	0	
482110	Rail transportation	NA	NA	16,895	11,248	5,629	2,852	1,233	
621210	Dental offices	124,553	817,396	7,980	1,287	257	0	0	

	Table III-6: Numbers of Workers Exposed to Silica (by Affected Industry and Exposure Level (μg/m³)) (continued)												
					Numbers exposed to Silica								
NAICS	Industry	Number of Establishments	Number of Employees	>=0	>=25	>=50	>=100	>=250					
	Subtotals – General Industry and Maritime	238,942	4,406,990	294,886	175,801	122,472	80,731	48,956					
	Totals	1,041,291	17,508,728	2,144,061	1,026,491	770,280	501,009	264,959					

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on Table III-5 and the technological feasibility analysis presented in Chapter IV of this PEA.

REFERENCES

- Bureau of Labor Statistics (BLS 2005). Occupational Employment Statistics Survey, 2004. Accessed online at http://www.bls.gov/OES/, April, 2007. **OSHA-2010-0034-0559**
- Bureau of Labor Statistics (BLS, 2008). Occupational Employment Statistics Survey, 2008. **OSHA-2010-0034-0561**
- Eastern Research Group (ERG, 2007a). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for Construction. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007.
- Eastern Research Group (ERG, 2007b). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for General Industry. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007. **OSHA-2010-0034-1608**
- Eastern Research Group (ERG, 2008a). Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. Draft. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 31, Contract No. GS-10F-0125P, BPA NO. DOL Q059622303DOLJ049F10022. August 2008. **OSHA-2010-0034-1431/OSHA-2010-0034-1433**
- Eastern Research Group (ERG, 2008b). Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry (Volumes 1 and 2). Draft. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 31, Contract No. GS-10F-0125P, BPA NO. DOL Q059622303DOLJ049F10022. August 2008. **OSHA-2010-0034-1365**
- U.S. Census Bureau. 2006a. County Business Patterns, 2006. **OSHA-2010-0034-0586**
- U.S. Census Bureau. 2006b. Statistics of U.S. Businesses, 2006. **OSHA-2010-0034-1176**
- U.S. Census Bureau. 2002. Statistics of U.S. Businesses, 2002. OSHA-2010-0034-1173

CHAPTER IV: TECHNOLOGICAL FEASIBILITY

Data Sources

Defining "Silica" Data

This technological feasibility analysis covers respirable crystalline silica, hereinafter termed "silica." Unless specifically indicated otherwise, all silica exposure data, samples, and results discussed in this technological feasibility analysis refer to measurements of personal breathing zone (PBZ) respirable crystalline silica. The term "respirable crystalline silica" is used as defined in the proposed rule (see "Definitions").

Polymorphs of Crystalline Silica in Air Samples

Silica occurs in multiple forms (polymorphs). OSHA is proposing the same permissible exposure limits (PELs) for all three of the major polymorphs of crystalline silica (quartz, cristobalite, and tridymite). On the rare occasions when more than one form of silica was present in the results available to OSHA, the concentrations of the detected forms were added together.

The vast majority of crystalline silica encountered by workers in the United States is in the quartz form, to such an extent that investigators often use the two terms (crystalline silica and quartz) interchangeably. Nevertheless, the data available to OSHA contain a few samples in which detectable levels of cristobalite were reported, either alone or in addition to quartz. These results, when discussed individually, are specifically identified as including detectable cristobalite. Tridymite was not reported as a component of silica samples available to OSHA.

The exposure profiles and technological feasibility analysis are based on silica results (i.e., PBZ respirable crystalline silica). However, this report also occasionally discusses the results of other types of samples, including area samples and respirable dust samples, when these values contribute information on the effectiveness of engineering controls. In each case where a sample result is other than PBZ respirable crystalline silica, the sample type or analyte is clearly identified to avoid confusion with silica results.

Sources of Silica in Workplace Air Samples

GSilica is a natural component of sand, rock, clay, and other mineral products. The amount of silica in these natural materials varies from location to location.

Silica is also a component of man-made materials produced with these mineral products. The silica content of man-made materials also varies based on the silica content of the minerals incorporated. For example, concrete (made with cement, sand, and rock aggregate) contains crystalline silica from the sand and also from the rock aggregate. The percentage of silica in concrete varies by the amount of sand in the specific formulation and the type of rock used as the aggregate. The percentage of silica in bricks, tiles, pottery, stone products, refractory materials, paints, enamels, and asphalt also varies for similar reasons.

OSHA recognizes that the silica content of rock varies greatly, based on the type of rock and the geographic area. The quantity of silica in rocks in the Earth is not something over which construction contractors have control. In contrast, the amount of silica in purchased rock and mineral products (e.g., obtained from the mining industry or other sources) for use in construction or general industry can be determined and potentially controlled through product selection.

Updated Contractor Reports

For this technological feasibility analysis, OSHA has primarily relied on reports developed by OSHA's contractor Eastern Research Group, Inc. (ERG). ERG initially acquired silica exposure data and related information between 1999 and 2002 using literature search and retrieval processes; records provided by OSHA; and communications with representatives of the National Institute for Occupational Safety and Health (NIOSH), state agencies, identified industries, and other groups.

ERG analyzed the available data using the methods described below and produced reports in 2003 on general industry and construction. These reports were reviewed that same year by a panel convened under the Small Business Regulatory Enforcement Fairness Act (SBREFA) and were entered in the associated silica rulemaking docket.¹

In 2008, ERG produced updated reports on construction and general industry (ERG-C, 2008; ERG-GI, 2008). OSHA has independently reviewed ERG's *Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction* (ERG-C, 2008) and *Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry* (ERG-GI, 2008), which review the literature, available worker exposure data, and exposure controls for affected industries. In general, OSHA finds the logic and methodology of these studies to be sound, the data complete to the extent available, and the analysis compelling. Unless otherwise noted here, OSHA concurs with ERG's findings.

OSHA's present technological feasibility analysis is primarily based on information presented in ERG-C (2008) and ERG-GI (2008). Where additional data and information are available from sources not previously evaluated by ERG, OSHA has considered and referenced them as updates in the present analysis.

Sources of Data

This technological feasibility analysis relies on information from a wide variety of sources available to OSHA and reviewed in ERG's reports (ERG-GI, 2008; ERG-C, 2008):

- Published literature.
- OSHA silica Special Emphasis Program (SEP) inspection reports.²
- NIOSH reports, including health hazard evaluations [HHE], control technology [CT] assessments, in-depth surveys, recommendations for exposure control, and engineering control feasibility studies.

¹ ERG's Cost and Economic Impact Analysis of the Draft Crystalline Silica Standard for General Industry (September 23, 2003) appears in the docket as OSHA-H006A-2006-0800-0020, while ERG's Technological Feasibility Study and Cost and Impact Analysis of the Draft Crystalline Silica Standard for Construction (August 19, 2003) appears as exhibit OSHA-H006A-2006-0800-0002.

² The OSHA SEP inspection reports, provided by OSHA area offices, primarily include files closed between 1994 and 1999 that were identified as containing silica sample results. Two additional reports, provided as separate supplemental submissions, were closed in 2001 (OSHA SEP inspection Report 303207518, discussed in Section IV.C.8 – Foundries) and in 2007 (OSHA SEP Inspection Report 311079172 discussed in Section IV.C.7 – Engineered Stone Products).

- Workplace evaluation reports related to programs on "sentinel event notification system for occupational risks" (SENSOR) for silica from the states of Michigan, New Jersey, and Ohio.³
- ERG and OSHA site visits.
- Unpublished information (e.g., unpublished data and research obtained through personal communications, meetings, and presentations).
- Information available from other federal agencies, state agencies, labor organizations, industry associations, and other groups.

ERG also obtained OSHA Integrated Management Information System (IMIS) data from 1979 through mid-2002, which were used primarily to identify the industries initially considered for inclusion in this technological feasibility analysis.⁴

ERG contractor reports primarily relied on information sources published from 1990 through 2001, updated with some information through 2007. In a few cases, where sources more recent than 1990 were limited and earlier information existed, information from the 1980s was used. Some sources of exposure data span several years, or even decades, and provide valuable insight into how exposure levels change as processes and controls are upgraded.

As noted above, OSHA has primarily relied on the contractor reports, ERG-C (2008) and ERG-GI (2008); however, OSHA has considered and referenced additional material where available.

The exposure profiles only include silica exposure data for workers in the United States. Information on international exposure levels is occasionally offered for perspective or in discussion of control options.

Notes on Data Sources and Characteristics

Integrated Management Information System Limitations

For purposes of this analysis, the documentation for individual results in OSHA's IMIS data (1979 through mid-2002) is incomplete. The IMIS record reports the Standard Industrial Classification (SIC), but not the product formed, action performed, or materials used. Furthermore, the IMIS does not include information on the sample duration; thus it was not possible to confirm whether samples were obtained over 60 minutes or 360 minutes or 480 minutes of the worker's shift (or any other time period). The IMIS record reports the worker's job title (a free text field subject to infinite variability, and therefore difficult to sort into job categories), but not the worker's actual activities during the sampling period or the presence of exposure controls.

³ ERG assigned these reports case file numbers beginning with "ERG #" and followed by the prefix MI-, NJ-, or OH- and a unique 4-digit number [e.g., ERG #MI-1485]; the reports are cited under these designations.

⁴ ERG obtained records for IMIS data for the period May 1, 1979, through April 29, 1998, supplemented by an update in 2002 containing data from January 1, 1998, through May 1, 2002. To ensure that the silica records were interpreted correctly, ERG took steps to check records for conditions that indicated apparent inconsistencies within the record or for which the presence of silica could not be confirmed in the work area. Regardless of the hazard being evaluated, this type of examination is conducted as a first step in detailed data analysis as a means of overcoming inherent limitations of the IMIS database (Linch et al., 1998; Middendorf, 2004). Although a sizable and valuable database, Yassin et al. (2005) point out some of the inherent limitations of IMIS data for analysis beyond the level of a general overview.

As intended, the IMIS system is useful as a management tool for observing trends and identifying industries in which exposures occur. However, for the detailed industry-by-industry technological feasibility analyses, more completely documented data sources were used. Industry sector exposure profiles also were based on other sources, if available.

OSHA Special Emphasis Program Inspection Reports

OSHA silica SEP inspection reports contain silica exposure data that were also entered in the IMIS system. However, in contrast to the IMIS data, these reports include substantial additional information about worker activities, air sampling methods, and silica results, including the compliance safety and health officer's (CSHO's) notes on working conditions, sample duration, and in some cases post-abatement follow-up results. OSHA relied heavily on information from the 191 OSHA SEP inspection reports referenced in the contractor reports (ERG-C, 2008; ERG-GI, 2008).

Limits of Detection for Silica Data

Investigators performing data analysis usually follow the common practice of assigning a value to samples with concentrations reported as "none detected" (sometimes designated as "ND"). The assigned value is typically related to the reported limit of detection (LOD) and permits the investigator to account for these sample results in quantitative analysis, such as when calculating the mean and median.

The LOD indicates the smallest quantity of crystalline silica that can be detected. This practical limitation of the laboratory analysis (procedures and analytical equipment) is typically a fixed value for each analytical method. The silica LOD can be presented in two formats: as the analytical method LOD, which refers to the smallest mass of silica, in micrograms (μg), that can be detected on the filter; or as the concentration LOD, which refers to a calculated value representing the smallest airborne concentration, in μg /cubic meter (m^3) of air, that can be detected.

Results below the limit of quantitation (LOQ) are those in which silica was detected, but not in sufficient quantity to offer an accurate analytical result (this range is sometimes reported non-quantitatively as "trace"). Like the LOD, the LOQ is a function of the laboratory analytical method. OSHA handled results reported as below the LOQ in the same manner as LOD values were handled (e.g., by assigning the reported value of the LOQ to results reported as the LOQ).

The silica analytical method LOD is presented as the number of μg of silica that can be detected on an individual filter used to collect an air sample. For example, OSHA's crystalline silica analytical method (ID-142) has a reported LOD value of 10 μg . If dust on a filter contains less than 10 μg of silica, the analytical process will not be able to measure it. The laboratory technician cannot tell whether the filter holds no silica at all, or if it bears some small amount between 0 μg and the LOD of 10 μg . The only certainty is that the amount of silica on that filter is less than the LOD. Although historically other LODs have been published for other silica analytical methods (NIOSH-1994-7500, 1994), most laboratories currently report an LOD of 10 μg or lower for quartz samples (ERG-LOD, 2009). When a laboratory finds that the mass of silica on a filter is not detectable, the laboratory report will generally indicate that the mass is "less than 10 μg " (<10 μg). In some instances laboratories will not analyze filters that bear such a small amount of respirable dust that the dust level cannot be accurately quantified (regardless of the amount of silica in that dust) or if the dust level was so low that it was not important to measure silica for the purposes of the particular air sampling effort. The results of these samples are also typically reported as not detectable. Silica reporting methods for many sources do not differentiate between results for which the dust level or the silica amount was below the LOD.

When a laboratory reports that the gravimetric result⁵ is not detectable because there is not enough silica on the sample filter, the analytical LOD is used to represent the silica mass in the concentration calculation. The concentration LOD is calculated by dividing the analytical LOD by the volume of air sampled (measured in cubic meters). For example, if the analytical LOD is 10 μ g and the air volume sampled is 816 liters (0.816 m³), the concentration LOD would be calculated as 10 μ g/0.816 m³ or about 12 μ g/m³ (see Table IV.A-1 for examples of the concentration LOD for silica results analyzed using a method with an analytical LOD of 10 μ g).

The resulting concentration LOD indicates the minimum concentration of airborne silica that could have been detected. Because silica was not detected, the true airborne concentration is less than the concentration LOD. These LODs vary depending on the volume of air sampled. For respirable dust samples obtained with a nylon cyclone at 1.7 liters per minute (lpm), a shorter sampling period will always result in a smaller volume of air that is sampled. Thus, a sample collected over a short period will result in a higher LOD than a sample collected over a longer period of time. Two results obtained on the same date at the same location, but involving different volumes of sampled air, will have different LODs.

Practical examples of the concentration LOD for silica results analyzed using a method with an analytical LOD of 10 μ g appear in Table IV.A-1.

Table IV.A-1 LOD Practical Examples of Concentration LODs for Silica Results Obtained Using a Method With an Analytical LOD of 10 μg		
Air Volume Sampled	Calculated Concentration LOD	
816 Liters (0.816 m ³)	12 μg/m ³	
612 Liters (0.612 m ³)	16 μg/m ³	
306 Liters (0.306 m ³)	32 μg/m ³	
51 Liters (0.051 m ³)	196 µg/m ³	
	Air Volume Sampled 816 Liters (0.816 m³) 612 Liters (0.306 m³)	

Several different approaches are available for assigning a value to sample results below the LOD (e.g., assigning a value of one-half the LOD concentration, assigning the unmodified LOD concentration value) (Flanagan et al., 2006; Hornung and Reed, 1990; NIOSH ECTB 233-101c, 1999; Succop et al., 2004). For the purposes of this analysis, OSHA elected to use the unmodified LOD concentration value in order to be as protective as possible. This probably results in a slight overestimation of exposure levels; the true concentration is some unknown level between zero and the LOD.

For example, in exposure profile mean, median, and low-range calculations, OSHA assigns the value $12 \mu g/m^3$ to a result that is less than an LOD of $12 \mu g/m^3$. Furthermore, a value of $16 \mu g/m^3$ is assigned for a smaller air volume sample with a result less than an LOD of $16 \mu g/m^3$. If no LOD was provided for the results and sufficient supporting information was available, OSHA estimated the LOD. When discussing

⁵ A "gravimetric" result is defined as a measurement of weight or mass (e.g., micrograms).

 $^{^6}$ For example consider a "none detected" silica sample result obtained over a 360-minute period, at an air flow rate of 1.7 liters per minute (lpm), and analyzed using a method with a 10 μg LOD. The laboratory will report the result as ND (i.e., below the LOD). OSHA would assign to that sample result the unmodified value of the concentration LOD, in this case 16 μg/m³ (see text and Table IV.A-1). In contrast, Flanagan et al. (2006) assign non-detect samples a value of one-half of the concentration LOD and so would assign to this particular sample result a value of 8 μg/m³. Both LOD values are well below 25 μg/m³, and so the value assigned to the 360-minute sample will not affect the distribution of the results in the exposure profile and is unlikely to affect the median value.

individual airborne concentration results for worker breathing zone samples in which silica was not detected, OSHA typically includes a note (e.g., "LOD") indicating that the reported value (e.g., $12 \mu g/m^3$) is based on a calculated concentration LOD.

By using full-shift results (defined for purposes of this analysis as having a duration of 360 minutes or greater) for general industry, OSHA minimizes the number of results that are less than the LOD. Specifically, the LOD is never greater than $16 \,\mu\text{g/m}^3$ for general industry sample results included in the exposure profiles.

In the construction industry, where task-based sampling is sometimes the most practical option, OSHA has limited the use of short-term samples with results below the LOD when the LOD is unreasonably high (e.g., results were usually excluded when the LOD was above the proposed PEL of 50 μ g/m³), instead giving preference to data covering a greater part of the workers' shifts. As a result, the values assigned to results below the LOD have only a limited impact on the economic and technological feasibility decisions based on this analysis.

Methods to Assess Feasibility of Control Technology Feasibility of Control Technology

This analysis is based on published literature; documents from sources such as NIOSH, trade and industry organizations, and state health departments; IMIS data for respirable crystalline silica from 1979 through mid-2002; OSHA SEP inspection reports for establishments in which silica samples had been obtained as part of the inspection; information from industry representatives on typical workplace processes, job categories, available controls, and exposure data; and site visits conducted by ERG.

The IMIS data was evaluated to identify industries in which crystalline silica had frequently been sampled during OSHA inspections and in which analytical results frequently showed detectable airborne silica in the workplace. Based on these results and information from the available literature, a preliminary list of industries to be included in the technological feasibility analysis was developed. The list was adjusted as information warranted, and a list of affected job categories with notable exposure to silica was developed for each industry.

Silica exposure data for each job category in each industry were identified in the retrieved literature and other information sources. These results formed the basis for the initial exposure profiles, which were presented along with process descriptions and methods of exposure control in two contractor reports: *Cost and Economic Impact Analysis of the Draft Crystalline Silica Standard for General Industry* (September 23, 2003, available in the silica docket as OSHA0H006A-2006-0800-0020) and *Technological Feasibility Study and Cost and Impact Analysis of the Draft Crystalline Silica Standard for Construction* (dated August 19, 2003, and available as OSHA-H006A-2006-0800-0002).

Subsequently, updated contractor documents were made available in 2008 (ERG-C, 2008; ERG-GI, 2008). These revised reports included minor adjustments of the technological feasibility analyses, considered additional possible PELs (e.g., $75~\mu g/m^3$), expanded information on certain industries (engineered stone), and incorporated some more recent information on silica exposure control methods. The 2008 documents made little change to the exposure data presented in the 2003 documents.

⁷ An underlying assumption is that available data represent exposures of workers across the nation, regardless of whether results come from a few facilities or facilities that were sampled multiple times (e.g., before and after modifications). Furthermore, results from before facility upgrades represent worker exposure levels under similar conditions at facilities that have not yet been upgraded to that extent.

For the present technological feasibility analysis, OSHA has relied on the contractor reports (ERG-C, 2008; ERG-GI, 2008) and has included the same industries and job categories addressed in those documents. OSHA conducted a literature search covering the period 1999 to 2009 to identify more recent materials. Where additional information is available, OSHA has incorporated it into the current analysis. The present exposure profiles contain additional data as indicated in the discussion of individual industry sectors. Industries included in this analysis are those identified as having substantial potential for respirable crystalline silica.

OSHA recognizes that the available data unequally represent facilities at which more samples were collected and seeks additional information to further define the distribution of worker exposure in these industries.

Sector Analysis for General Industry and Maritime

The technological feasibility analyses for general industry and maritime workplaces are grouped by industry sector. Within each industry sector, data are further divided into general job categories representing groups of workers with common trends in materials, work processes, equipment, and available exposure control methods. OSHA notes that these job categories are intended to represent job functions; actual job titles and responsibilities might differ depending on the facility. OSHA recognizes that many other job categories exist in these industries, but those job categories are not associated with substantial direct silica exposure and are not included in the analyses.

OSHA seeks additional information that will help identify other job categories that should be addressed in the final rule.

Activity Analysis for Construction Industry

OSHA has preliminarily determined that the best method for analyzing the construction industry is to group workers by construction activity (e.g., workers sawing, drilling, crushing rock). In other grouping strategies, construction workers are categorized either in jobs related to a construction phase or material (e.g., concrete workers, demolition workers) that often encompass many different dusty activities, or that are grouped under a broad title (e.g., "laborer"), which is insufficiently specific to permit meaningful evaluation for the purposes of this technological feasibility analysis. By discussing individual construction industry activities, OSHA can apply the exposure profile and exposure control methods for these activities to workers who perform these activities in any segment of the construction industry. OSHA would like to receive information that will help identify other construction activities that should be addressed in the final rule.

Data Handling for General Industry and Shipyard Employment

All results in the general industry and shipyard employment exposure profiles are 8-hour time-weighted average (TWA) PBZ samples collected over periods of 360 minutes or more (for the purposes of this analysis, defined as "full-shift"). To determine an 8-hour TWA, the exposure level for the period sampled is assumed to have continued over any unsampled portion of the shift. OSHA has preliminarily determined that this sample criterion is valid because workers in general industry are likely to work at the same general task or same repeating set of tasks over most of their shift; thus unsampled periods generally are likely to be similar to the sampled periods.

By setting a minimum sampling period criterion of 6 hours, ERG and OSHA ensured that every sample included in the analysis encompasses at least three-quarters of a typical 8-hour shift and probably captures most activities at which the worker spends a substantial amount of time (NIOSH-77-173, 1977). If

activities differ during the initial and final portions of the shift, the activities are more likely to involve processes required for initial setup and shutting down, which should contribute less to workers' silica exposure. OSHA believes the 6-hour (360-minute) minimum sampling requirement limits the extent of uncertainty about workers' true exposure, as no more than 25 percent of an 8-hour shift would be unsampled.

The minimum sampling period also eliminates the ambiguity associated with the LOD for low air volume samples. As noted previously in the discussion of LODs, using a common sampling method for respirable silica (i.e., using a nylon cyclone operated at 1.7 lpm), an LOD less than 25 μ g/m³ will always be achieved if the sample was obtained for at least 360 minutes. This permits results that are reported in the original data source as below the LOD to be included without contributing substantial uncertainty regarding their relationship to the proposed PEL. This is particularly important for general industry samples, which on average have lower silica levels than typical results for many tasks in the construction industry. At silica concentrations found in many industrial work sites, the smaller air volume obtained using typical methods during a shorter sample period did not collect sufficient silica to result in a reading above the LOD. At the same time, the LOD for these shorter duration sample would be higher than it is for a 6-hour sample. Using an extreme example, a result of "none detected" for a 30-minute sample (obtained at 1.7 lpm) would have an LOD of 196 μ g/m³. The assigned LOD-based value for that sample would indicate only that the true value was somewhere between 0 and 196 μ g/m³, a range too large to be meaningful to OSHA's analysis concerning a proposed PEL of 50 μ g/m³. By relying on 6-hour samples for the exposure profile, OSHA eliminates this ambiguity.

Data obtained in the shipyard employment industry have been handled in the same manner as data for general industry.

Data Handling for the Construction Industry

Construction workers perform variable combinations of tasks that generate silica dust. They also perform these tasks for varying amounts of time, depending on the job. Many workers only occasionally perform one of the construction industry tasks discussed in this technological feasibility analysis, or they perform the task daily, but for only a portion of the shift. Other workers spend the entire shift intermittently performing the same task or a mix of several of these dusty tasks. A few construction workers perform tasks that frequently continue uninterrupted over an entire work shift (e.g., heavy equipment operator). However, like most construction workers, these workers often spend a portion of the shift in transit between job sites, setting up or preparing to depart a site, or idle while waiting for another construction trade to complete an activity.

The data that OSHA incorporated into the exposure profiles reflect real construction site working conditions. The data set contains results from both shorter duration task-based samples (providing that the sample value was not based on a high LOD)⁸ and extended period sampling, including results obtained over entire 8-hour work shifts. Furthermore, a portion of the sample results available to OSHA cover

_

⁸ The vast majority of the task-based samples that OSHA used for the construction industry exposure profile have a duration of at least 2 hours. Shorter duration samples with limits of detection above the range of OSHA's interest were excluded from this analysis when no silica was detected in the sample. As discussed for a previous example, a

were excluded from this analysis when no silica was detected in the sample. As discussed for a previous example, a result of "none detected" for a shorter 30-minute sample (obtained at 1.7 lpm) would have an LOD of 196 μ g/m³, too large to be meaningful to OSHA's analysis concerning a proposed PEL of 50 μ g/m³. A "none detected" result based on an LOD such as this would have been excluded from the construction industry analysis. However, because elevated silica exposure is prevalent in the construction industry, silica was detected in most of the available task-based exposure results available to OSHA.

periods when the workers performed multiple activities, sometimes involving more than one of the tasks analyzed here by OSHA.⁹

Because the duration of the sampled exposure varies widely within this construction industry data set, OSHA has standardized the exposure levels to 8-hour TWA concentrations. In general, these 8-hour TWAs were calculated using an approach that assumes that the sampled period encompassed the majority of the workers' silica exposure, with no notable additional exposure during any unsampled portion of the shift. ^{10, 11} OSHA considers this approach the best of the available options for several reasons. The 8-hour TWAs calculated in this manner would most closely reflect the silica exposure of workers under the greatest range of the working conditions described above.

For example, when adjusted in this manner, the task-based samples (both of short and long duration) would accurately represent the exposure of workers who performed the task for a portion of their shift, with little or no additional silica exposure. Other samples that encompass most, or all, of a work shift represent the exposure of workers who perform the task (either constantly or intermittently) over the course of the whole shift. Because the sampling period covers most of the shift, the calculated 8-hour TWA is not substantially affected by the assumption that no exposure occurred during any unsampled portion of the work shift.

When workers performed multiple activities during the sampling period, the results provide the average silica level from all sources of exposure experienced by the worker during that period. The 8-hour TWAs for these multi-task samples are calculated using the same method used for individual task-based samples.

OSHA acknowledges that this approach is likely to result in some underestimates of exposure and requests comment on whether this approach or another one should be used.¹²

Respirable Dust Properties and Use in Evaluating Control Options

Respirable crystalline silica particles usually make up only a portion of the respirable dust in a worker's breathing zone. The remainder of the respirable dust is typically composed of other minerals and other fine particles in the workplace air. Silica and all other components of respirable dust are typically separated from particles of other sizes based on aerodynamic properties. The use of size-selective samplers for respirable dust particles means that the collected particles all have similar aerodynamic

⁹ For the purposes of this analysis, any sample collected over a period when the worker performed multiple activities was assigned to the specific construction task judged likely to have had the greatest influence on the worker's silica exposure level.

¹⁰ The alternative approach (used for general industry samples of at least 6 hours duration, as discussed previously) assumes that the exposure level during any unsampled period is the same as during the sampled period. That method is not appropriate for task-based samples, since the task in question generally is not continued for the entire shift.

¹¹ An exception to this approach was made in cases where information associated with an exposure result clearly stated that the same exposure continued for the entire shift (although only a portion of the shift was sampled). OSHA respected the judgment of the investigator who obtained the sample and calculated the 8-hour TWA assuming that exposure continued at the same concentration over any unsampled portion of the shift. Furthermore, when information provided with a sample indicated that the shift was greater than 8 hours, the 8-hour TWA was adjusted according to the notes of the investigator who collected the sample.

¹² As noted previously, other uncertainties, such as assigning the unmodified LOD to "none detected" results, contribute to an overestimation of exposure.

properties: they behave similarly in an air stream. Based on this principle, OSHA preliminarily concludes that the results of ventilation control measures tested by evaluating capture of airborne respirable dust particles will be equally applicable to the respirable silica component of a respirable dust.

In addition, OSHA finds that there is considerable evidence that water spray droplet size is a primary factor in the efficiency of water sprays used to control dust. The most effective spray uses a droplet size similar to the size particles that the spray is intended to control (Spray Systems, no date). Therefore, OSHA preliminarily concludes that studies of wet dust control methods applied to respirable dust will be similarly applicable to the silica portion of respirable dust.¹³

Use of Surrogate Data

In some cases, when exposure information from a specific job category is not available, OSHA has based that portion of the exposure profile on surrogate data from one or more similar job categories in related industries. The "surrogate" data are selected based on strong similarities between raw materials (e.g., source of silica, percent silica, particle size), equipment, worker activities, and exposure duration in the job categories. Although other factors differentiate the industries, the individual job categories were determined to be sufficiently similar. When used, OSHA has clearly identified the surrogate data and the relationship between the industries or job categories.

Use of Short-Term Sampling Results

The exposure profiles in this technological feasibility analysis do not include short-term exposure concentrations, for reasons described above. However, short-term samples can provide important information about the effectiveness of controls. Short-term samples also permit multiple trials of controlled and uncontrolled activities. In studies of this nature, investigators measure intensive periods of an activity (such as concrete sawing), without pauses in the process or supplemental activities that can complicate comparisons of airborne dust during controlled and uncontrolled conditions. Results of brief samples, even just a few minutes in duration, can provide useful comparative information, and OSHA considers these experimental results in the discussion of additional controls for specific groups of workers.

Disclaimer

References to specific commercial products or manufacturers in this technological feasibility analysis are included for reference or informational purposes only, and do not constitute endorsements by OSHA of such products or manufacturers.

Technological Feasibility Analyses

The remainder of this analysis addresses the technological feasibility of monitoring silica exposure levels, and the technological feasibility of controlling exposures to or below the proposed PEL in general industry, shipyard employment, and the construction industry.

¹³ This statement applies regardless of whether the water is applied as a spray or as a stream that generates a spray or mist through tool action, as is the case for water-fed abrasive saws (e.g., saws used in the stone products industry or as stationary masonry saws in the construction industry).

REFERENCES

- [ERG-C] Eastern Research Group, Inc., 2008. Technological feasibility study of regulatory alternatives for a proposed crystalline silica standard for construction. **OSHA-2010-0034-1431**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological feasibility study of regulatory alternatives for a proposed crystalline silica standard for general industry, Vols. 1 and 2. **OSHA-2010-0034-1365**
- [ERG-LOD] Eastern Research Group, Inc., 2009. Memorandum addressed to OSHA Directorate of Standards and Guidance from ERG regarding reporting limits for crystalline silica. August 14. **OSHA-2010-0034-0666**
- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144–152. **OSHA-2010-0034-0667.**
- Hornung, W., and L.D. Reed, 1990. Estimation of average concentration in the presence of nondetectable values. Applied Occupational and Environmental Hygiene 5(1):46–51. **OSHA-2010-0034-0743.**
- Linch, K.D., W.E. Miller, R.B. Althouse, D.W. Groce, and J.M. Hale, 1998. Surveillance of respirable crystalline silica dust using OSHA compliance data (1979–1995). American Journal of Industrial Medicine 34:547–558. **OSHA-2010-0034-0783.**
- Middendorf, P.J., 2004. Surveillance of occupational noise exposures using OSHA's Integrated Management Information System. American Journal of Industrial Medicine 46:492–504. **OSHA-2010-0034-0808.**
- [NIOSH-77-173] National Institute for Occupational Safety and Health, 1977. Exposure measurements for an 8-hour TWA standard, Section 3.4. In: Occupational Exposure Sampling Strategy Manual: 40. **OSHA-2010-0034-0845.**
- [NIOSH-1994-7500]. National Institute for Occupational Safety and Health, 1994. Analytical method 7500 for Silica, Crystalline, by XRD. **OSHA-2010-0034-1683**
- [NIOSH-7500] National Institute for Occupational Safety and Health, 2003. NIOSH manual of analytical methods, method 7500 Silica, crystalline, by XRD (filter redeposition). NIOSH publication 2003-154, 3rd supplement. Available at: http://www.cdc.gov/niosh/docs/2003-154/pdfs/7500.pdf OSHA-2010-0034-0901
- [NIOSH-7601] National Institute for Occupational Safety and Health, 2003. NIOSH manual of analytical methods, method 7601 Silica, crystalline, by VIS. NIOSH publication 2003-154, 3rd supplement. Available at: http://www.cdc.gov/niosh/docs/2003-154/pdfs/7601.pdf OSHA-2010-0034-0902
- [NIOSH-7602] National Institute for Occupational Safety and Health, 2003. NIOSH manual of analytical methods, method 7602 Silica, crystalline, by IR (KBr pellet). NIOSH

- publication 2003-154, 3rd supplement. Available at: http://www.cdc.gov/niosh/docs/2003-154/pdfs/7602.pdf **OSHA-2010-0034-0903**
- [NIOSH ECTB 233-101c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 01 A ready-mix concrete plant. **OSHA-2010-0034-0214**
- [OSHA-SAM-Silica] Occupational Safety and Health Administration, 1996. OSHA sampling and analytical methods: Quartz and cristobalite in workplace atmospheres (originally published 1981, revised 1996). Available at:

 http://www.osha.gov/dts/sltc/methods/inorganic/id142/id142.html
 OSHA-2010-0034-0946
- [Spray Systems] Spray Systems Company, no date. Guidelines for spray nozzle selection. **OSHA-2010-0034-1152**
- Succop, P.A., S. Clark, M. Chen, and W. Galke, 2004. Imputation of data values that are less than a detection limit. Journal of Occupational and Environmental Hygiene 1:436–441. **OSHA 2010-0034-1172**
- Yassin, A., F. Yebesi, and R. Tingle, 2005. Occupational exposure to crystalline silica dust in the United States, 1988–2003. Environmental Health Perspectives 113(3):255–260. **OSHA-2010-0034-1236.**

FEASIBILITY OF MEASURING RESPIRABLE CRYSTALLINE SILICA EXPOSURES AT THE PROPOSED PEL AND ACTION LEVEL (Revised March 27, 2013)

As part of OSHA's assessment of the technological feasibility of a new or revised chemical standard, the Agency must determine whether available methods for measuring worker exposures have sufficient sensitivity and precision to ensure that employers can reliably evaluate compliance with the standard and that workers have a reasonably accurate assessment of their exposure to hazardous chemicals. Over the years, respirable crystalline silica has been measured in a variety of ways, with early methods (i.e., pre-1970) based on counting concentrations of particles in the air and later methods relying on gravimetric analysis to measure the mass of total dust or respirable dust in the air. Both particle count and gravimetric dust measurements were combined with analysis of the crystalline silica content of bulk material, such as settled dust, to arrive at estimates of worker exposure to airborne respirable silica dust. Many of these early methods are described more completely in OSHA's review of the health effects literature since epidemiologic studies relied on exposure data obtained from these early techniques. These early strategies for assessing exposures are in fact reflected in the current OSHA permissible exposure limits (PELs) for quartz, adopted from the 1968 American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Values (TLVs), which are formulas that incorporate the concentration, either by mass or particle count, of respirable dust in the air with the percent silica content of the dust present in the workplace.

Since the late 1960s, exposures to respirable crystalline silica have been typically measured by using personal respirable dust samplers coupled with laboratory analysis of the crystalline silica content of the collected airborne dust. The laboratory analysis is usually performed using X-ray diffraction (XRD) or infrared spectroscopy (IR) analysis of the dust that was collected using a personal sampler, although a colorimetric method of analysis is used by a few laboratories. OSHA has successfully used XRD analysis since the early 1970s to enforce its PELs for crystalline silica, which, for general industry, are approximately equivalent to 100 micrograms per cubic meter (μ g/m³) for quartz and 50 μ g/m³ for cristobalite and tridymite.

OSHA is proposing to revise its current formula PELs for all covered forms of respirable crystalline silica to 50 µg/m³. This represents essentially no change in the general industry exposure limits for cristobalite and tridymite, and reduces the current general industry PEL for quartz, the most prevalent form of crystalline silica, by about half. The proposed PEL is approximately one fifth of the current construction PEL. OSHA is also proposing an action level of 25 µg/m³ to trigger additional exposure monitoring. In this section of OSHA's technological feasibility analysis, OSHA presents information on the capabilities of existing sampling and analytical methods to reliably measure occupational exposures to respirable crystalline silica at the proposed PEL and action level. Information on respirable dust sampling devices is presented first, followed by a discussion of the available analytical techniques, and then by a discussion of the sensitivity and precision of the available analytical techniques for detecting crystalline silica concentrations in the range of the proposed PEL and action level. Based on OSHA's analysis of this information, the Agency preliminarily concludes that it is feasible to measure respirable crystalline silica exposures at the proposed PEL of 50 µg/m³ with a reasonable degree of accuracy and precision. Although the variability in measurements of exposures at the proposed action level of 25 µg/m³ is higher than that for the proposed PEL, OSHA preliminarily concludes that measurement of exposures at the proposed action level is sufficiently precise to permit

employers to adequately determine when additional exposure monitoring is necessary under the standard.

Background

The three types of crystalline silica covered under the proposed standard (<u>i.e.</u>, quartz, cristobalite and tridymite) are members of the larger class of minerals known as silicates, which includes many different mineral species that are related to each other by their structure and chemistry. Together, the silicate minerals are among the most common minerals found in the Earth's crust. A silicate mineral is composed of the substance silica, an oxide of silicon, and one or more positively charged metal ions that are bonded to the silicon and oxygen atoms of silica. The silicon and oxygen atoms are arranged in a tetrahedral structure with one silicon atom bonded to four oxygen atoms. The oxygen atoms are bonded to the silicon atoms in adjacent tetrahedral groups resulting in a large-scale ratio of one atom of silicon to two atoms of oxygen; this structure is chemically expressed using the molecular formula SiO₂.

Silica exists in both non-crystalline and crystalline forms. The non-crystalline forms of silica are amorphous with unorganized, randomly arranged silica tetrahedra that are not bonded in a three-dimensional repeating pattern. The non-crystalline forms of silica include natural and manufactured glasses (quartz glass, vitreous silica, and fused silica), biogenic and abiogenic silica, and opals, the latter of which are amorphous silica hydrates.

The crystalline forms of silica include several polymorphs. The term *polymorphic* as applied to crystalline silica describes the different minerals formed when silica tetrahedra combine together to create different three-dimensional crystalline structures. The primary polymorphic forms of crystalline silica that historically have been the subject of occupational exposure standards are quartz, cristobalite, and tridymite. Naturally formed quartz is the most prevalent form of crystalline silica found in the workplace. Most rocks and soils contain at least trace amounts of quartz. Quartz is also present in sand, mortar, concrete, fluxes, abrasives, aggregate, porcelain, paints, and bricks. It is used to manufacture many products including glass and ceramics. It is also used as filler in paper, paints, epoxies, cosmetics, and pharmaceuticals. Cristobalite is found less frequently in the workplace than quartz. Diatomaceous Earth that has been flux-calcined (heated, usually in the presence of sodium carbonate) can contain a substantial amount of cristobalite. Quartz can be converted to cristobalite when subjected to prolonged high temperature such as happens to quartz in brick that is used to line ovens or furnaces. Volcanic eruptions can release cristobalite-containing dust into the air. Tridymite is rarely found in nature or in the workplace. There are other forms of crystalline silica that are extremely rare such as synthetic keatite, meteor-impact-related coesite and stishovite, and morganite.

The names and terms used when discussing crystalline silica are often used interchangeably and without reference, which might result in confusion when the context is unknown or unclear. The term *silica* applies to materials that are comprised of silicon atoms bonded to four oxygen atoms in such a way as to form tetrahedra. It applies to both crystalline and non-crystalline forms. However, it is often used to refer to quartz alone or any or all of the crystalline silica minerals collectively. The term *free silica* is most often used to refer to quartz, but might, in context, refer to any or all of the crystalline silica minerals. The term *crystalline silica* applies to any silica mineral that has a crystalline structure, meaning that the silica tetrahedra are arranged in a long-

range regular array. These are known as *framework silicates*. While there are many different minerals in this group, for the purposes of this OSHA standard, the term *crystalline silica* refers collectively to quartz, cristobalite, and tridymite. Note that in general discussion and often in the literature, the terms *silica*, *free silica*, or *crystalline silica* are commonly used to refer only to quartz because quartz is the most common silica mineral in the workplace. It is important to understand the context wherever possible so as to avoid confusion or over-generalization. To reiterate, OSHA uses the term *crystalline silica* to refer to the regulated crystalline minerals, quartz, cristobalite, and tridymite.

Crystalline silica is often only one component of the airborne dust collected during exposure measurements taken in work environments. Samples of industrial air might contain other silicates that, because of the similarity of their molecular structure to that of regulated crystalline silica, become a potential source of interference when analyzing dust samples for the crystalline silica content. When analyzing respirable dust samples, the crystalline silica content of the dust must be determined to assess the severity of the health hazard. This requires sensitive and accurate sampling and analytical methods to detect and quantify crystalline silica in the presence of other types of dust.

Particle Size-Selective Sampling

Measurement of respirable dusts requires the separation of particles by size to assess exposures to the respirable fraction of airborne dusts. Respirable dust standards and sampling equipment have been developed on the basis of separating the larger particles from the smaller particles in a manner that simulates the size-selective characteristics of the human's upper airways. This allows for the collection of dust samples that only contain particles that are small enough to penetrate deep into the lung (Raabe and Stuart, 1999). Size-selective samplers do not actually model the deposition of respirable particles in the lung, but instead provide a measure of the particulate mass *available* for deposition to the deep lung during breathing (Raabe and Stuart, 1999).

For purposes of assessing exposures to respirable dust, the respirable fraction of airborne dust is defined based on the particle size collection efficiency model of the lung. A variety of different industrial hygiene sampling devices, such as cyclones and elutriators, have been developed to separate the respirable fraction of airborne dust from the non-respirable fraction. Cyclones are the most commonly used size-selective sampling devices, or "samplers," for collecting personal exposure measurements to respirable dusts, such as crystalline silica. The current OSHA (ID-142 revised December 1996), NIOSH (7500, 7601, 7602), and Mine Safety and Health Administration (MSHA) (P-2 and P-7) methods for crystalline silica all specify the use of cyclones (OSHA ID-142, 1996; NIOSH 03-127-7500, 2003; NIOSH 03-127-7601, 2003; NIOSH 03-127-7602, 2003; MSHA P-2, 1999; P-7, 1994).

Principle of Operation

Many commercially available cyclone samplers employ a vortical flow of air inside a cylindrical or conical chamber. They function according to the principle that the rapid circulation of air separates particles according to their aerodynamic diameter. As air enters a cyclone, the larger particles are centrifugally separated and fall into a grit pot, while the smaller particles pass into a

sampling cassette, where they are captured by a filter membrane that can later be analyzed in a laboratory to determine the mass of respirable dust collected (Figure IV.B-1). More specifically, air enters an inlet near the top of the cyclone, creating a double vortex flow within the cyclone body. The flow spirals down the outer portion of the chamber and then reverses and spirals up the inner core to the exit tube (Blachman and Lippmann, 1974; Hering, 2001). Larger particles, which have higher inertia than do smaller particles, do not follow the air streamlines, and impact the cyclone walls and fall into the grit pot. With the proper airflow through the cyclone, virtually all particles having aerodynamic diameters greater than 10 μ m (i.e., non-respirable particles) cannot stay within the vortex but contact the sides of the cyclone and fall out through the bottom. Conversely, virtually all particles less than 1 μ m in diameter are able to follow the airstream and deposit on the filter. Particles with diameters between 1 and 10 μ m will follow the airstream and be collected on the filter in decreasing proportion to their size. Thus, as the aerodynamic diameter of particles increases, the mass fraction of a given size of particles that can deposit on the filter decreases.

Another property of cyclones is that they are very sensitive to flow rate. As the flow rate is increased, a greater percentage of larger and higher-mass particles are removed from the airstream, and smaller particles are collected with greater efficiency, changing the particle collection characteristics of the sampler. Therefore, precise calibration of the sampling pump and maintenance of proper flow rate during the sampling period is an essential element of industrial hygiene sampling protocol.

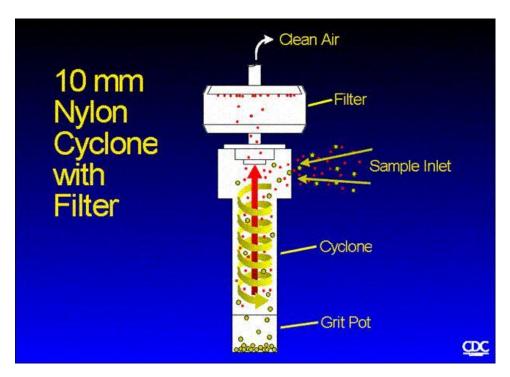


Figure IV.B-1: Schematic Cyclone Assembly

Cyclones are small enough in size to allow for the collection of breathing zone samples. During the sampling period, the cyclone-cassette assembly is attached as close to the worker's breathing zone as possible, normally to the worker's collar. A pump is attached to the cyclone with flexible connective tubing. The pump draws air into the cyclone and is typically clipped to the worker's belt. After the sampling period is over, the cassette is removed, sealed, and sent to a laboratory for analysis.

Particle Size Selection Criteria for Respirable Dust Samplers

Although respirable dust commonly refers to dust particles having an aerodynamic diameter of 10 µm or less, it is more precisely defined by the collection efficiency of the respiratory system as described by a collection efficiency model. These are often depicted by particle collection efficiency curves that describe, for each particle size range, the mass fraction of particles deposited in various parts of the respiratory system. The respirable fraction is that size range which can reach the gas-exchange portion of the lung. These curves describe the mass fraction of particles deposited as a function of particle size and serve as the "yardsticks" against which the performance of cyclone samplers should be compared (Vincent, 2007). Figure IV.B-2 below shows particle collection efficiency curves for two particle size selection criteria that are discussed at length below; these include the criteria specified in the 1968 ACGIH TLV for respirable dust, which is the basis for current OSHA dust standards, and an international specification given by the International Organization for Standardization (ISO) and the Comité Européen de Normalisation (CEN) known as the ISO/CEN model, which is the basis for the proposed definition of respirable crystalline silica. In addition to the curves, which cover the full range of particle sizes that comprise respirable dust, particle size collection criteria are also often described by their 50-percent respirable "cut size" or "cut point." This is the aerodynamic diameter at which 50 percent of the particle mass is collected, i.e., the particle size that the sampler can collect with 50-percent efficiency. Particles smaller than the 50-percent cut point are collected with an efficiency greater than 50 percent, while larger particles are collected with an efficiency of less than 50 percent.

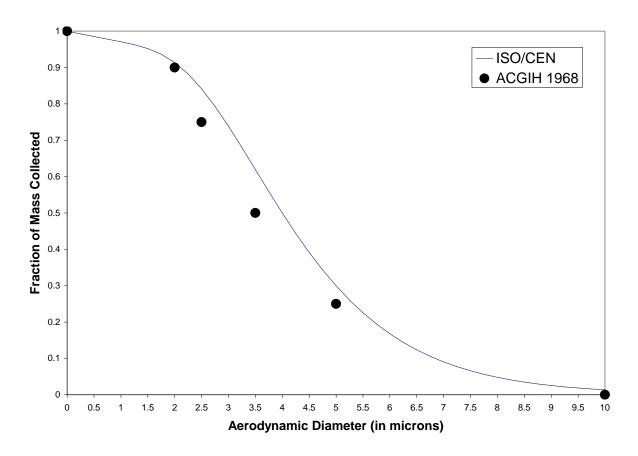


Figure IV.B-2: Comparison of the 1968 ACGIH and ISO/CEN Particle Size Collection Models

Several quantitative definitions for an aerodynamically defined respirable fraction of dust have been set forth since the 1950s (Vincent, 2007). An early definition of respirable dust came from the British Medical Research Council (BMRC) in 1952 and included a 50-percent respirable cutpoint of 5 μ m. The Atomic Energy Commission (AEC) established a definition for respirable dust in 1961 with a 50-percent cut-point at an aerodynamic diameter of 3.5 μ m. (Lippmann, 2001).

In 1968, the ACGIH proposed a definition almost identical to that of the AEC, differing only for 2-µm-size particles, which allowed for a 90-percent efficiency for 2 µm particles rather than 100 percent (Lippmann, 2001). In 1971, OSHA adopted the ACGIH size-selective criteria for respirable dust in its Air Contaminants Standard (29 CFR 1910.1000, Table Z-3). Thus, the current OSHA general industry PEL for crystalline silica is based on the 1968

definition for respirable dust, as displayed in Table IV.B-1.

Table IV.B-1—ACGIH Definition for Respirable Dust 1968	
Aerodynamic Diameter (Unit Density Sphere) (µm)	Percentage of Mass Passing Selector
2	90
2.5	75
3.5	50
5.0	25
10	0

In the early 1980s, ISO and ACGIH pioneered a new framework of thinking in aerosol science in which three aerosol fractions were identified and defined: the inhalable fraction, the thoracic fraction, and the respirable fraction (Vincent, 2007). The criteria for the respirable fraction continued to be shaped during the 1980s and 1990s. ACGIH quantitatively defined the respirable fraction according to the following collection efficiency equation (ACGIH, 2009):

$$RPM(dae) = IPM (dae) [1-F(x)],$$

Where: RPM = respirable particulate matter;

 d_{ae} = aerodynamic diameter of particle in μ m;

IPM = inhalable particulate matter = $0.5[1 + \exp(-0.06 \, d_{ae})]$ for $0 < d_{ae}100 \mu m$;

F(x) = cumulative probability function of the standardized normal variable, x;

 $x = \ln(d_{ae}/\Gamma)/\ln(\Sigma);$

ln = natural logarithm;

 $\Gamma = 4.25 \,\mu \text{m}$ (median aerodynamic diameter for respirable fraction); and

 $\Sigma = 1.5$ (standard deviation for respirable fraction).

The criteria stated in the above equation are consistent with those of CEN and ISO, enabling a degree of international harmonization (Vincent, 2007). These criteria for respirable dust are typically referred to as the ISO/CEN model.

To remain consistent with the idea of international harmonization, OSHA is proposing to adopt the ISO/CEN model for respirable dust in its proposed change to the existing PEL for crystalline

silica. More specifically, OSHA is proposing the following definition for respirable crystalline silica:

Respirable crystalline silica means airborne particles that contain quartz, cristobalite, and/or tridymite and whose measurement is determined by a sampling device designed to meet the characteristics for respirable-particle-size-selective samplers specified in International Organization for Standardization (ISO) 7708:1995: Air Quality – Particle Size Fraction Definitions for Health-Related Sampling.

One distinction between the criteria for respirable dust used in OSHA's existing PEL for crystalline silica and that used in OSHA's proposed change to the PEL for crystalline silica is that the former has a 50-percent respirable cut-size of 3.5 μ m, while the latter has a 50-percent respirable cut-size of 4.0 μ m. Additional differences between the two definitions include (Soderholm, 1991):

The ISO/CEN model specifies a higher sampler collection efficiency at most particle sizes and a slightly lower collection efficiency for particles with an aerodynamic diameter smaller than $2~\mu m$.

For most workplace conditions, the proposed change in the criteria for respirable dust would increase the mass of respirable dust collected over that measured under the current criteria by an amount that depends on the size distribution of airborne particles in the workplace.

The fractional increase in the measured respirable mass concentration would tend to be larger for particle size distributions having larger mass median aerodynamic diameters (MMAD) and smaller geometric standard deviations (GSD).

Soderholm (1991) examined these differences based on 31 aerosol size distributions measured in various industrial workplaces (e.g., coal mine, lead smelter, brass foundry, bakery, Shielded Metal Arc [SMA] welding, spray painting, pistol range) and determined the percentage increase in the mass of respirable dust that would be collected under the ISO/CEN model over that which would be collected under the 1968 ACGIH criteria. Soderholm (1991) obtained the size distribution data from a study by Hinds and Bellin (1988), who in turn collected their data from a compilation of published studies reporting aerosol size distributions. Soderholm (1991) concluded that, for all but three of the 31 size distributions that were evaluated, the increased respirable dust mass that would be collected using the ISO/CEN model for respirable dust instead of the 1968 ACGIH criteria would be less than 30 percent, with most size distributions (25 out of the 31 examined, or 80 percent) resulting in a difference of between 0 and 20 percent. In addition, for most particle size distributions having a median diameter of less than 2 µm, there would be less respirable dust mass collected under the ISO/CEN model as compared with the 1968 ACGIH model. It should be noted that two of the three outlier distributions consisted almost exclusively of particles outside the respirable size range (i.e., MMAD of > 30 µm and GSD of about 2.4). Soderholm suggested that for particle size distributions most often seen in the workplace, the change to the ISO/CEN model had the same effect as reducing the respirable dust TLV by only 25 percent or less. OSHA believes that the magnitude of this effect does not outweigh the advantages of updating the respirable silica PEL by adopting the ISO/CEN model. In particular, as discussed below, incorporating the ISO/CEN model in the definition of

respirable crystalline silica will permit employers to use any sampling device that can be operated to conform to the ISO/CEN model.

Performance of Personal Cyclones Against the ISO/CEN Model

There are a variety of cyclone samplers on the market, such as the Dorr-Oliver, Higgins-Dewell (HD), GK, SIMPEDS, and SKC. Each cyclone has different operating specifications and performance criteria. The sampling flow rate can be adjusted to yield the desired performance. For example, as the airflow rate through a cyclone increases, the 50-percent cut point decreases, and the collection efficiency for larger particles decreases; conversely, lower flow rates will permit more efficient collection of particles at the larger end of the respirable dust size range. Because of the differences between various respirable dust definitions, manufacturers of cyclone samplers specify the flow rates that are necessary to conform to various particle size collection criteria such as the ISO/CEN model.

The current OSHA sampling method for crystalline silica (ID-142 revised December 1996), as well as the MSHA Method P-2 for metal/non-metal mines, specify that a respirable sample should be collected by drawing air at 1.7 ± 0.2 liters/minute (L/min) through a Dorr-Oliver 10 millimeter (mm) nylon cyclone attached to a cassette containing a 5- μ m pore-size, 37-mm diameter polyvinyl chloride (PVC) filter (OSHA ID-142, 1996). Currently, OSHA allows the use of an alternative selector design to the Dorr-Oliver 10-mm nylon cyclone for compliance purposes, if it has been verified to achieve comparable selectivity at all five aerodynamic diameters listed in its Air Contaminants Standard (29 CFR 1910.1000, Table Z-3).

NIOSH has three sampling and analysis methods for crystalline silica: 1) Method 7500 (by XRD), 2) Method 7602 (by infrared absorption spectrophotometry), and 3) Method 7601 (by visual absorption spectrophotometry) (NIOSH 03-127-7500, 2003; NIOSH 03-127-7601, 2003; NIOSH 03-127-7602, 2003). All three NIOSH methods have adopted the ISO/CEN model with flow rate specifications of 1.7 ± 5 percent L/min for the Dorr-Oliver 10-mm nylon cyclone and 2.2 ± 5 percent L/min for the HD cyclone. Method 7500 also allows for the use of an aluminum cyclone at 2.5 ± 5 percent L/min. Like OSHA Method ID-142 (revised December 1996), the three NIOSH methods employ a 5- μ m pore size, 37-mm diameter PVC filter, and Method 7601 also allows for a 0.8- μ m pore size, 37-mm diameter mixed cellulose ester (MCE) filter.

Many cyclones have been evaluated for their compliance with the ISO/CEN criteria for respirable dust. Although there is currently no cyclone that matches the ISO/CEN criteria exactly, available research indicates that many existing cyclones can achieve good agreement with the ISO/CEN criteria for respirable dust when operated at a flow rate that is optimized to minimize bias against the ISO/CEN criteria (Bartley et al., 1994; Chen et al., 1999; Gautam and Sreenath, 1997; Gorner et al., 2001; Kar and Gautam, 1995; Kenny and Gussman, 1997; Liden, 1993; Liden and Kenny, 1993; Soderholm, 1991). Many commercially available sampling devices tend to yield particle collection efficiency curves that are steeper than that of the ISO/CEN curve; that is, the devices will be less efficient (i.e., will collect less mass than predicted by the ISO/CEN model) in capturing larger particles and more efficient in capturing smaller particles than the ISO/CEN model.

Although it would be ideal to know the size distribution of the aerosol that will be sampled to choose the optimum flow rate, this is normally not practical given the wide range of particle size distributions encountered in workplace environments. Instead, researchers determine an optimum flow rate that gives the best outcome over a range of particle size distributions (Liden and Kenny, 1993). This means that bias against the ISO/CEN model will change with different size distributions of particles in the air. Bias against the ISO/CEN model can be either positive (i.e., the device will collect more mass than predicted by the ISO/CEN model) or negative (i.e., less mass will be collected compared with the ISO/CEN model). In general, for most of the commercial cyclones studied, bias against the ISO/CEN model will increase as the particle size distribution in the workplace becomes increasingly monodisperse or as the MMAD of the particle size distribution increases. The discussion that follows briefly summarizes studies that have investigated the optimum flow rates for cyclones to minimize bias against the ISO/CEN model. The general design of these studies was to test the device in a wind chamber with a polydisperse test aerosol to characterize the particle size collection efficiency curve of each device tested. The bias exhibited by each device against the ISO/CEN model can then be determined for a range of particle size distributions (defined by the MMAD and GSD of the distribution) by mathematical simulation.

Bartley et al. (1994) applied polydisperse test aerosols in a wind tunnel to analyze sampling efficiencies for the Dorr-Oliver 10-mm nylon cyclone and the conductive HD cyclone using an aerodynamic particle sizer. Data were collected at various sampling flow rates from 1.5 to 3.0 L/min. Bartley et al. (1994) reported that the Dorr-Oliver 10-mm nylon cyclone matched the ISO/CEN model for respirable dust with minimum bias at an optimized flow rate of 1.7 L/min and the HD cyclone at a flow rate of 2.2 L/min. According to Bartley et al., use of the 1.7 L/min flow rate for the Dorr-Oliver resulted in a 50 percent cut point of about 4.5 μ m, which compensates for the under-sampling of larger particles and thus minimizes bias. The biases of the Dorr-Oliver 10-mm cyclone and the HD cyclone were found to be nearly identical, with a magnitude of ± 10 percent or less over a wide range of size distributions.

Using a wind tunnel, polydisperse anthracite coal particles, and an aerodynamic particle sizer, Kar and Gautam (1995) evaluated the effect of inlet orientation (0°, 90°, 180°) to the wind direction on the sampling efficiency of the Dorr Oliver 10-mm nylon cyclone at three different flow rates (1.2, 1.7, and 2.0 L/min). They found that a sampling flow rate of 1.7 L/min provided the closest agreement to the ISO/CEN model with a mean bias of 4.63 percent. The bias was greatest for the 0° orientation and decreased for the 90° and 180° orientations.

Liden and Kenny (1993) also reported an optimized flow rate of 1.7 L/min for the Dorr-Oliver 10-mm nylon cyclone and 2.1 L/min for the SIMPEDS cyclone, with a residual mean bias after optimization of less than 0.5 percent overall across a wide range of particle size distributions. Depending on the specific particle size distribution, bias was predominately in the range of -20 to +10 percent. Chen et al. (1999) reported that, although Liden and Kenny's (1993) recommended flow rates were based on minimum inaccuracy over the whole curve rather than examination of one point at a cutoff size of 4 μ m, a sampling flow rate of 1.5 L/min for the Dorr-Oliver 10-mm nylon cyclone was found in their study to be best for the requirements on the 50-percent cut point of 4 μ m. Chen et al. (1999) also evaluated two foam samplers that showed a very good fit to the ISO/CEN model with a 1 to 6 percent bias. They tested the samplers using polydisperse particles and an aerodynamic particle sizer under controlled laboratory conditions.

Gautam and Sreenath (1997) used polydisperse test aerosols and an aerodynamic particle sizer to test the Dorr-Oliver 10-mm nylon cyclone in a wind tunnel. They evaluated sampling flow rates of 1.5, 1.7, and 2.0 L/min and found the cyclone to be in good agreement with the ISO/CEN model at the slightly lower flow rate of 1.5 L/min, with a mass bias of +7.5 percent. By comparison, the higher flow rate of 1.7 L/min resulted in a mean bias of -20 percent with respect to the ISO/CEN model. In addition, Gautam and Sreenath (1997) sampled a newer multi-inlet cyclone and found that it matched the ISO/CEN model with a mean bias of only +1 percent at an optimized flow rate of 2.5 L/min. This multi-inlet cyclone is now commercially available from SKC as the GS-3 cyclone (Vincent, 2007).

Gorner et al. (2001) used polydisperse coal dust and an aerodynamic particle sizer method to measure the sampling efficiency of 15 samplers, including several cyclones, in a wind tunnel and found that most were suitable for sampling according to the ISO/CEN model for respirable dust with a modification in flow rate. They reported the following optimized flow rates: 1) 1.5 L/min for the Dorr-Oliver 10-mm nylon cyclone, 2) 1.9 L/min for the plastic SKC cyclone, and 3) 2.2 L/min for the aluminum SKC cyclone. Bias against the ISO/CEN model was calculated for particle size distributions having a MMAD ranging from 1 to 25 μ m (in 1 μ m steps) and a GSD ranging from 2.0 to 3.5 (in steps of 0.25), for 175 different distributions evaluated. For the Dorr-Oliver and aluminum SKC devices, bias was ±10 percent or less for 84 and 86 percent, respectively, of the particle size distributions examined. Biases greater than 10 percent were predicted to occur more frequently with the plastic SKC device, with a bias of ±10 percent or less predicted for 58 percent of particle size distributions examined. Liden (1993) also reported that an early generation of the aluminum SKC cyclone offers a good fit to the ISO/CEN model for respirable dust at an approximate optimized flow rate of 2.2 L/min, with a bias usually within ± 5 percent.

Of special interest, Kenny and Gussman (1997) employed an aerodynamic particle sizer-based testing method and found that the GK2.69 cyclone by BGI Inc. had good agreement with the ISO/CEN model at a higher flow rate of 4.2 L/min. At this flow rate, the cut point for this sampler was about 4.2 μ m and exhibited a collection efficiency curve that was steeper than the ISO/CEN model, with lower efficiency in collecting larger particles and higher efficiency in collecting smaller particles. For particle size distributions up to an MMAD of 25 μ m and GSD of 1.5 to 3.5, bias against the ISO/CEN model was generally between +5 and -10 percent, and up to -20 percent for particle size distributions with MMAD above 10 μ m and low GSDs. Use of a higher flow rate increases the mass of respirable crystalline silica that is collected over a given sampling duration, thus enabling the collection of a quantifiable sample mass during tasks of short duration or of low dustiness (NIOSH 2003-154, 2003).

The literature reviewed above shows that measured sampling efficiencies and optimized flow rates of commercially available cyclones relative to the ISO/CEN model differ somewhat between studies. In particular, for the Dorr-Oliver nylon cyclone, some authors reported an optimized flow rate of 1.7 L/min while others reported a flow rate of 1.5 L/min. According to Gorner et al. (2001), these reported differences reflect that sampler efficiency measurement is a rather complicated experimental exercise with many sources of uncertainty arising from the experimental setup, the experimental aerosol, the flow rate control, and the method of particle size analysis. Also, there appears to be insufficient standardization in the methods of aerosol generation and measurement for evaluating respirable dust sampling devices, which could lead to

greater variability in findings between laboratories. In addition, lower flow rates are more difficult to optimize, given that the changes in flow rates required for optimization are small (less than 0.1 L/min) and there is a greater need for flow-rate stability at lower flow rates in order to optimize the flow rate (Gorner et al., 2001). OSHA invites the public to submit additional information on this topic. In particular, studies on or experience with the GK2.69 and multi-inlet cyclone samplers would be of interest.

Despite these small reported discrepancies, OSHA preliminarily concludes that several commercially available personal sampling cyclones exist, including the Dorr-Oliver cyclone currently used by OSHA, that can be operated at flow rates that permit the devices to conform to the ISO/CEN particle size selection criteria with an acceptable level of bias. Other devices include the SKC aluminum cyclone (at a flow rate of 2.2 L/min), the HD cyclone (2.2 L/min), the BGI GK 2.69 (4.2 L/min), and the SKC GS-3 multi-inlet cyclone. For most particle size distributions encountered in the workplace, bias against the ISO/CEN criteria will fall within ± 20 percent and often is within ± 10 percent

Ability of Personal Cyclones to Collect Sufficient Crystalline Silica for Analysis

The devices discussed above, when used at the appropriate flow rates, are capable of collecting a quantity of respirable crystalline silica that exceeds the quantitative detection limit for quartz of 10 μg for OSHA's XRD method (OSHA ID-142 revised December 1996). For several scenarios based on using various devices and sampling times (8-hour, 4-hour, and 1-hour samples), OSHA calculated the amount of respirable quartz that would be collected at quartz concentrations equal to the current general industry PEL, the proposed PEL, and the proposed action level (Table IV.B-2). Two flow rates were considered for the Dorr-Oliver, since two optimized flow rates have been reported for the Dorr-Oliver in the literature (Bartley et al., 1994; Gautam and Sreenath, 1997; Gorner et al., 2001; Kar and Gautam, 1995; Liden and Kenny, 1993). As seen in Table IV.B-2, computations suggest that the 10-mm nylon Dorr-Oliver operated at an optimized flow rate of 1.5 or 1.7 L/min, the HD cyclone operated at an optimized flow rate of 2.2 L/min, and the GK2.69 operated at an optimized flow rate of 4.2 L/min will all collect enough quartz during an 8-hour full-shift sample to exceed the 10 µg quartz limit of quantification for OSHA Method ID-142 (revised December 1996). In addition, all of the cyclones operated at their optimized flow rates will collect 10 µg or more of respirable quartz during a 4-hour sampling period, with the exception of the Dorr-Oliver operated at 1.5 L/min, at the proposed action level. Therefore, OSHA preliminarily concludes that each of the commercially available cyclones is capable of allowing a sufficient quantity of quartz to be collected from atmospheric concentrations as low as the proposed action level to exceed the limit of quantification for the analytical method, provided that at least 4-hour air samples are taken.

Table IV.B-2—Amount of Qua	artz Colle		Various Perso and Sampling ¹		nes by F	Respirab	le Quartz C	Concentra	ation
Cyclone Sampler	25 μg/m³ (proposed action level)		50 μg/m³ (proposed PEL)			100 μg/m³ (current PEL)			
	1 hr	4 hr	8 hr	1 hr	4 hr	8 hr	1 hr	4 hr	8 hr
Dorr Oliver 10 mm nylon									
(at 1.5 L/min)	2	9	18*	4.5	18	36	9	36	72
Dorr Oliver 10 mm nylon									

Table IV.B-2—Amount of Quartz Collected by Various Personal Cyclones by Respirable Quartz Concentration
and Sampling Time

Cyclone Sampler	25 μg/m³ (proposed action level)		50 μg/m³ (proposed PEL)		100 µg/m³ (current PEL)				
(at 1.7 L/min)	3	10	20	5	20	41	10	41	82
Aluminum SKC									
(at 2.2 L/min)	3	13	26	7	26	53	13	53	106
HD (at 2.2 L/min)	3	13	26	7	26	53	13	53	106
Multi-inlet sampler	4	15	30	8	30	60	15	60	120
(at 2.5 L/min)									
GK2.69 (at 4.2 L/min)	6	25	50	13	50	101	25	101	202

^{*} Shaded boxes represent scenarios that will allow for the collection of enough quartz to meet or exceed the 10 µg limit of quantification for OSHA Method ID-142 (revised December 1996).

For cristobalite, OSHA currently achieves a "Limit of Quantification" (LOQ) of 20 μ g with Method ID-142 (OSHA SLTC, 2010). With the exception of the Dorr-Oliver operated with a flow rate of 1.5 L/min, the devices listed in Table IV.B-3 will collect a sufficient quantity of cristobalite for a full-shift sample taken at the proposed PEL and action level. In addition, the GK2.69, with its higher flow rate, can collect an amount of cristobalite exceeding OSHA's LOQ with a 4-hour sample taken at the proposed PEL and action level. Therefore, OSHA believes that these devices are also capable of collecting more than the minimum amount of cristobalite at the proposed PEL and action level necessary for quantification with OSHA's Method ID-142 (revised December 1996).

These limits of quantification, $10 \mu g$ for quartz and $20 \mu g$ for cristobalite, are determined using NIST certified standard materials which are free of interferences. Compliance samples which are collected in some workplace environments may have increased limits of quantification due to the potential for interference from particulates other than crystalline silica that could be collected on the filter.

Analytical Methods

This section evaluates the feasibility of reliably measuring quantities of crystalline silica collected from the sampling devices discussed in Section IV.B.2 – Particle Size-Selective Sampling to evaluate worker exposures at the proposed PEL and action level. OSHA's preliminary feasibility analysis begins with a description of national recognized analytical methods. This is followed by an assessment of the limits of detection and quantification of the methods, and of the precision achievable in the range of the proposed PEL and action level. Finally, OSHA presents its analysis of total laboratory variability and factors that contribute to inter-laboratory variability in analyzing crystalline silica. After considering the information and analysis presented here, OSHA preliminarily concludes that nationally recognized analytical methods are capable of reliably measuring crystalline silica at filter loadings obtained from sampling devices currently used to assess worker exposures at the proposed PEL of 50 $\mu g/m^3$ and action level of 25 $\mu g/m^3$.

Reliable analysis of crystalline silica presents several challenges that have been described in the published literature. (Madsen 1995, Hearl 1997, Eller 1999) Non-crystalline (amorphous) silica and other types of minerals that are often mixed with crystalline silica in airborne dust samples

have the potential to interfere with the laboratory analysis. Special handling procedures are required during the collection, preparation, and analysis of samples to avoid or to correct for interferences that can result in either an overestimation or underestimation of the quantity of crystalline silica present on the sample filter. (Key-Schwartz, 1994). Factors such as sample loading and particle size can also affect the accuracy of the analysis. The standard reference materials used for the preparation of calibration curves is also critical, particularly for quantification near the analytical limit of detection. Thus, the analysis of crystalline silica requires a high level of laboratory proficiency to reliably measure airborne concentrations at the proposed PEL and action level.

The three most commonly used analytical techniques for the quantitative determination of crystalline silica are XRD, IR, and colorimetric spectrophotometry. The advantages and disadvantages of these techniques, and nationally recognized analytical methods for each technique, are summarized in Table IV.B-3.

Table IV.l	Table IV.B-3—Analytical Techniques for Determination of Crystalline Silica						
Analytical Technique	Advantages	Disadvantages					
 XRD OSHA ID-142 NIOSH 7500 MSHA P-2 	Non-destructive; samples can be reanalyzed if necessary. Specificity for different polymorphs of crystalline silica. Least prone to interferences.	Equipment is expensive and requires skilled operator.					
IRNIOSH 7602NIOSH 7603MSHA P-7	Non-destructive; samples can be reanalyzed if necessary. Can be efficient for routine analysis of samples with well characterized matrix.	Difficult to distinguish between polymorphs of crystalline silica. More prone to interferences than XRD.					
Colorimetric (Vis) • NIOSH 7601	Requires least amount of equipment and expense.	Most prone to interferences. Labor intensive. Sample is destroyed during analysis. Cannot distinguish between polymorphs of crystalline silica.					

A major difference among these analytical techniques relates to their ability to remove or adjust for interferences. Interference in the analysis of crystalline silica occurs because of the structural resemblance of various forms of crystalline silica, its amorphous non-crystalline forms, and the ubiquitous occurrence of the silica tetrahedron in other silicates.

X-Ray Diffraction

The three-dimensional orientation and composition of atoms, molecules, or ions of a crystalline material create a unique pattern that are characteristic to a crystal's structure. When a thin layer of randomly oriented sample is presented to the X-ray beam, X-rays diffract from these crystal planes at specific angles where they are detected by a sensor and recorded as a diffraction peak (Smith 1998). Unique X-ray diffraction patterns are created when the diffraction peaks are plotted against the angles at which they occur. The intensity of the diffracted X-ray beams depends on the amount of crystalline silica present in the sample, which can be quantified based on the height and area of the diffraction peaks.

Analysts are able to identify the crystalline materials in a sample by comparing the sample's diffraction pattern to databases of known patterns. Using XRD, the amount of crystalline silica in an unknown sample can be quantified by comparing the areas of the diffraction peaks obtained from scanning the sample with those obtained from scanning a series of calibration standards prepared with known quantities of an appropriate reference material. Comparing multiple diffraction peaks obtained from the sample with those obtained from the calibration standards permits both quantitative and qualitative confirmation of the amount and type of crystalline silica present in the sample.

Ideally, sample deposits presented for XRD analyses should be composed of a thin layer of particles. When sample loading is too high, crystallites might mask each other. X-rays reflected from the bottom layer of crystalline silica in the sample might also be reabsorbed in the upper sample layers. Sample loadings of up to 2 to 3 milligrams (mg) of respirable dust typically permit deposition of a single layer of sample. XRD analytical methods compensate for heavy sample loadings either by limiting sample weight, removing excess mineral material by an acid wash, or applying correction factors.

The size of the silica crystallites collected for analysis affects each of the analytical techniques used for crystalline silica analyses differently. In the case of XRD analyses, smaller crystallites yield broader diffraction peaks with reduced peak height compared with larger crystallites. Performing the analysis using area integrations of the diffraction peaks rather than peak height alone helps to diminish this particle-size effect. In addition, standard reference materials used for instrument calibrations are prepared in the respirable size range to match the sizes of dust particles collected by particle-size-selective sampling devices (described above in Section IV.B.2 – Particle Size-Selective Sampling), thus minimizing particle size differences between the sample and the reference standards used in the analysis.

A major advantage of XRD compared with the other techniques used to measure crystalline silica is that X-ray diffraction is specific for crystalline materials. Neither non-crystalline silica nor the amorphous silica layer that forms on crystalline silica particles affects the analysis. The technique is also non-destructive, so samples can be reanalyzed if necessary. The ability of this technique to quantitatively discriminate between different forms of crystalline silica and other crystalline or non-crystalline materials present in the sample makes this method least prone to interferences.

The OSHA Technical Manual lists the following substances as potential interferences for the analysis of crystalline silica using XRD: aluminum phosphate, feldspars (microcline, orthoclase, plagioclase), graphite, iron carbide, lead sulfate, micas (biotite, muscovite), montmorillonite, potash, sillimanite, silver chloride, talc, and zircon. The interference from other minerals usually can be recognized by scanning multiple diffraction peaks quantitatively. Diffraction peakprofiling techniques can resolve and discriminate closely spaced peaks that might interfere with each other. Sometimes interferences cannot be directly resolved using these techniques. Many interfering materials can be chemically washed away in acids that do not dissolve the crystalline silica in the sample. Properly performed, these acid washes can dissolve and remove these interferences without losing substantial amounts of crystalline silica.

XRD instrumentation is more expensive than the equipment used for IR or colorimetric crystalline silica analyses and analysts need to have a high degree of scientific training to properly interpret XRD data.

The nationally recognized analytical methods using XRD include NIOSH 7500, OSHA ID-142 (revised December 1996), and MSHA P-2 (Table IV.B-4). All are based on the XRD of a redeposited thin layered sample with comparison to standards of known concentrations. The methods differ on the techniques used to compensate for high sample loading. MSHA and NIOSH methods use correction factors to compensate for high sample loading, whereas the OSHA method specifies that highly loaded samples be split into fractions small enough not to need correction. These methods also differ on diffraction peak confirmation strategies. The OSHA and MSHA methods require at least three diffraction peaks to be scanned. The NIOSH method only requires that multiple peaks be qualitatively scanned on representative bulk samples to determine the presence of crystalline silica and possible interferences, and quantitative analysis of air samples is based on a single diffraction peak for each crystalline silica polymorph analyzed. The diffraction peak(s) used for quantification in this method must be shown to be interference-free in the bulk sample. There are some drawbacks for relying solely on the bulk sample for identification of polymorphic forms of crystalline silica and the presence of interferences. For example, if the air sample contains a material that interferes with the primary peak and the bulk sample does not, the result will be artificially high. Both the OSHA Method ID-142 (revised December 1996) and MSHA Method P-2 XRD have provisions for acid washing samples to remove interferences when needed.

Table IV.B-4 lists the specifications for these analytical methods for silica utilizing XRD. Methods for Determination of Hazardous Substances (MDHS) 101 is a method used in the U.K., and is included for comparison; it is fundamentally different from U.S. methods in that for MDHS 101, XRD is performed directly on sample filters and not redeposited on silver membrane filters prior to analysis.

Tabl	Table IV.B-4—X-ray Diffraction Sampling and Analytical Methods for Crystalline Silica						
	NMAM 7500	OSHA ID-142	MSHA P-2	MDHS 101			
Silica Polymorph	Quartz cristobalite tridymite	Quartz cristobalite	Quartz cristobalite	Quartz cristobalite			
Sampler	10-mm nylon cyclone, 1.7 L/min Higgins-Dewell cyclone, 2.2 L/min	10-mm nylon Dorr-Oliver cyclone, 1.7 L/min	10-mm nylon Dorr-Oliver cyclone, 1.7 L/min	Higgins-Dewell cyclone, 1.9 L/min			
Filter	37-mm 5-μm PVC membrane	37-mm 5-µm PVC membrane	37-mm 5-µm PVC membrane	25-mm 5-µm PVC membrane			
Volume	400–1000 L total dust <2 mg	408–816 L total dust <3 mg	400–1000 L total dust <3 mg	≥456 L total dust <2 mg			
Filter Preparation	RF plasma asher, muffle furnace, or dissolve filter in THF	Dissolve filter in THF	RF plasma asher	None			

Table	Table IV.B-4—X-ray Diffraction Sampling and Analytical Methods for Crystalline Silica						
	NMAM 7500	OSHA ID-142	MSHA P-2	MDHS 101			
Redeposition	On 0.45-µm silver membrane filter	On 0.45-µm silver membrane filter	On 0.45-µm silver membrane filter	None			
Drift Correction	Silver internal standard	Silver internal standard	Silver internal standard	External standard (eg., aluminum plate)			
X-Ray Source	Cu Kα 40 kV, 35 mA	Cu Kα 40 kV, 40 mA	Cu Kα 55 kV, 40 mA	Cu Kα 45 kV, 45 mA			
Calibration	Suspensions of SiO ₂ in 2-propanol (deposited on silver membrane filter)	Suspensions of SiO ₂ in 2-propanol (deposited on silver membrane filter)	Suspensions of SiO ₂ in 2-propanol (deposited on silver membrane filter)	Sampling from a generated atmosphere of standard quartz dust			
Proficiency Testing	PAT	PAT	PAT	WASP			
Range (µg quartz)	20–2000	50–160 (validation range)	20–500	50–2000			
LOD (µg quartz)	5 (estimated)	Qualitative: 5 Quantitative: 10	5	Qualitative: 3 Quantitative: 10			
Precision	CV pooled = 0.08 @ 50–200 μg	CV pooled = 0.106 @ 50–160 μg	CV = 10 % @ 20–500 μg	Not reported			

NMAM—NIOSH Manual of Analytical Methods; OSHA—Occupational Safety and Health Administration; MSHA—Mine Safety and Health Administration; MDHS—Methods for Determination of Hazardous Substances; PVC—polyvinyl chloride; RF—radio frequency; THF—tetrahydrofuran; Cu—copper; kV—kilovolts; mA—milliamps; PAT—proficiency analytical testing; WASP—workplace analysis scheme for proficiency; LOD—limit of detection; CV—coefficient of variation; RSD—relative standard deviation.

Source: Adapted from NIOSH 2002-129, 2002; United Kingdom-Health and Safety Executive, 2005.

Infrared Spectroscopy

Infrared spectroscopy is based on the principle that molecules of a material will absorb specific wavelengths of infrared electromagnetic energy that match the resonance frequencies of the vibrations and rotations of the electron bonds between the atoms making up the material. IR techniques for the quantification of crystalline silica are based on the absorption of infrared energy in resonance with the vibrations and rotations of the silicon-oxygen electron bonds in the silica tetrahedron. The absorption of IR radiation of the sample is compared with the IR absorption of calibration standards of known concentration to determine the amount of crystalline silica in the sample. Using IR can be efficient for routine analysis of samples that are well characterized, and the technique is non-destructive allowing samples to be reanalyzed if necessary.

Compared with XRD instrumentation, standard IR instruments are relatively inexpensive. Fourier-Transform (FT-IR) instruments, used by most modern laboratories, are more expensive than standard IR instruments, but still less expensive than XRD instruments. FT-IR instruments have greater sensitivities than standard IR instruments and can eliminate some of the analytical

interferences inherent to this technique. This instrumentation also has the ability to rapidly perform multiple scans that can be averaged together, which minimizes random noise and increasing the signal to noise ratio of the absorbance spectrum (Ainsworth et al., 1989).

Interferences from silicates and other minerals can affect the accuracy of IR results. The electromagnetic radiation absorbed by silica in the infrared wavelengths consists of broad bands. In theory, no two compounds have the same absorption bands; however, in actuality, the IR spectra of silicate minerals contain silica tetrahedra and have absorption bands that will overlap. This can be a serious limitation because 90 percent of the minerals in the Earth's crust contain silica tetrahedra that will interfere with the analyses of crystalline silica. These interfering bands can be additive, enhancing the absorption band measured for crystalline silica. If interferences enhance the baseline measurement and are not taken into account, they can have a negative effect that might underestimate the amount of silica in the sample. Compared with XRD, the ability to compensate for these interferences is limited. If the interfering material has an interference-free absorption band at another wavelength, its contribution to the silica band can be subtracted based on the intensity of the non-interfering band. The MSHA and NIOSH methods for analyzing quartz in respirable coal dust samples by IR use this approach to correct for the interfering absorption of kaolinite, a hydrated aluminum silicate commonly found in coal. Other techniques employed include acid washing and high- or low-temperature ashing to reduce or eliminate interferences (Madsen et al., 1995).

It is difficult to distinguish among the different polymorphic forms of crystalline silica by IR because the primary IR band for both quartz and cristobalite occurs at the same wavelength. When quantitative determination for quartz in the presence of cristobalite is needed, the contribution of the cristobalite primary band needs to be subtracted from the quartz primary band. Determining the amount of cristobalite in the sample requires that the secondary cristobalite band be analyzed and found to be free of interferences.

Dark-colored samples might cause attenuation of the quartz bands by as much as 75 percent. Such dark materials should be removed during sample preparation. For example, the coal in coal dust samples to be analyzed for crystalline silica is eliminated with an ashing technique used by NIOSH and MSHA to prepare samples for analysis. If dark material persists in the sample, FT-IR or IR instruments that can compensate for the interference must be used to overcome this problem (United Kingdom-Health and Safety Executive, 2005).

Amorphous silica is a positive interference for IR analyses of quartz and cristobalite. As the particle size decreases below a nominal physical size of 1.5 μ m (which equates to an aerodynamic diameter of 4 μ m) the amorphous layer surrounding silica particles starts contributing substantially to the mass of the particle.

Because of the potential for interferences with IR spectroscopy, OSHA believes IR techniques should only be used to evaluate workers' exposures when the matrix of the sample is characterized sufficiently, such as with coal dust, and shown to be free of uncorrectable interferences.

The principle IR analytical methods for crystalline silica analyses are NIOSH 7602, NIOSH 7603, and MSHA P-7, the specifications of which are listed in Table IV.B-5. NIOSH Method

7603 and MSHA P-7 are both optimized for the analysis of quartz in respirable coal dust. The IR method used in the U.K. for crystalline silica is also described in MDHS 101 and is summarized in Table IV.B-5 for comparison with the U.S. methods.

	Table IV.B-5—Infrared Sa	ampling and Analytical N	Methods for Crystallin	e Silica
	NMAM 7602	NMAM 7603	MSHA P-7	MDHS 101
Matrix		Coal mine dust	Coal mine dust	
Sampler	10-mm nylon cyclone, 1.7 L/min Higgins-Dewell cyclone, 2.2 L/min	10-mm nylon cyclone, 1.7 L/min Higgins-Dewell cyclone, 2.2 L/min	10-mm nylon Dorr- Oliver cyclone, 2.0 L/min	Higgins-Dewell cyclone, 1.9 L/min
Filter	37-mm 5-μm PVC or MCE membrane	37-mm 5-μm PVC membrane	37-mm 5-µm PVC membrane, pre-weighed	25-mm 5-μm PVC membrane
Volume	400-800 L total dust <2mg	300–1000 L total dust <2mg	Not stated	≥456 L total dust <1mg
Filter Preparation	RF plasma asher muffle furnace	RF plasma asher muffle furnace	RF plasma asher	None
Analytical Sample Prep	Mix residue with KBr, press 13 mm pellet	Redeposit on 0.45-µm acrylic copolymer filter	Redeposit on 0.45- µm acrylic copolymer filter	None
Standard	Polystyrene film	Polystyrene film	Polystyrene film	Polystyrene film
Calibration	Quartz diluted in KBr	Standard suspension of quartz in 2-propanol	Standard suspension of quartz in 2-propanol	Sampling from a generated atmosphere of standard quartz dust
Proficiency Testing	PAT	PAT	PAT	WASP
Range (µg quartz)	10–160	30–250	25–250	10–1000
LOD (µg quartz)	5 (estimated)	10 (estimated)	10	Qualitative: 5 Quantitative: 10
Precision	CV pooled <0.15 @ 30µg	CV pooled = 0.098 @ 100 - 500 µg	CV = 7-10 % (corrected 2006) @ 100-500 µg	Not Reported

Table IV.B-5—Infrared Sampling and Analytical Methods for Crystalline Silica							
	NMAM 7602	NMAM 7603	MSHA P-7	MDHS 101			
Determination of F frequency; KBr—p proficiency; LOD—	Hazardous Substances; P\ ootassium bromide; PAT—	ods; MSHA—Mine Safety a VC—polyvinyl chloride; MC-proficiency analytical testi relative standard deviation e standard deviation).	CE—methyl cellulose e ng; WASP—workplace	ster; RF—radio analysis scheme for			
Source: Adapted f	rom NIOSH 2002-129, 20	02; United Kingdom-Healtl	h and Safety Executive	, 2005.			

Colorimetric Spectrophotometry

Colorimetric spectrophotometry techniques take advantage of the insolubility of crystalline silica in most mineral acids and its solubility in hydrofluoric acid. Using this technique, the sample is subjected to a phosphoric acid wash to remove silicate and other silica-containing materials present in the sample. After a timed heating with phosphoric acid, the sample is rinsed in hydrochloric and boric acids to remove the dissolved silicates. The remaining material is dissolved in hydrofluoric acid creating silicon fluoride in solution. A reagent that forms a color with silicon is added and the intensity of the color is measured using a spectrophotometer that operates at visible wavelengths. Sample response from the spectrophotometer is compared with calibration standards of known concentration to determine the amount of silicon present in the sample. The silicon present in the sample is then reported as crystalline silica (Talvite, 1951).

Colorimetric spectrophotometry techniques have numerous possible analytical interferences. In highly loaded samples, interfering materials might not be completely dissolved and eliminated, whereas crystalline silica might be lost during acid washing of samples with low loadings. Silicon-containing substance resistance to phosphoric acid will interfere. Variation in particle size might have either a positive or negative impact on the analysis because of the differences in solubility. The different polymorphic forms of crystalline silica cannot be distinguished, and cristobalite might be lost because it is slightly more soluble in phosphoric acid than quartz. False positive results in samples and blanks are also common.

Colorimetric spectrophotometry analytical methods can be performed by personnel with a minimal amount of scientific training using relatively inexpensive equipment. However, it is a labor-intensive procedure, requiring use of highly hazardous hydrofluoric acid, and the technique destroys the sample eliminating the possibility of re-analysis.

Poor inter-laboratory agreement and lack of specificity render colorimetric spectrophotometry inferior to XRD or IR techniques (Eller et al., 1999a; 1999b). NIOSH has published a colorimetric method for crystalline silica, but NIOSH recognizes the limitations of the method and reports that other methods based on XRD and IR have better "laboratory to laboratory agreement." Thus, NIOSH recommends the method be used for "research use only." Given these considerations, OSHA is proposing not to permit employers to rely on exposure monitoring results based on analytical methods that use colorimetric, and is not considering this technique further in the feasibility analysis.

Sensitivity and Precision of Analytical Methods

Sensitivity

The sensitivity of an analytical method or instrument refers to the smallest quantity of a substance that can be measured with a specified level of accuracy, and is expressed as either the "Limit of Detection" (LOD) or the "Limit of Quantification" (LOQ). These two terms have different meanings. The LOD is the smallest amount of an analyte that can be detected with acceptable confidence that the instrument response is due to the presence of the analyte. The LOQ is the lowest amount of analyte that can be reliably measured in a sample with acceptable analytical precision and recovery. The LOQ is usually about three times greater than the LOD. These values can vary from laboratory to laboratory as well as within a given laboratory between batches of samples because of variation in instrumentation, sample preparation techniques, and the sample matrix, and must be confirmed periodically by laboratories.

For an analytical method to have acceptable sensitivity for determining exposures at the proposed PEL of 50 $\mu g/m^3$ and action level of 25 $\mu g/m^3$, the LOQ must be below the amount of analyte that would be collected in an air sample taken where the concentration of analyte is equivalent to the proposed PEL or action level. At a concentration of 50 $\mu g/m^3$, the mass of crystalline silica collected on a full-shift (480 minute) air sample at a flow rate of 1.7 L/min for a total of 816 L is approximately 41 μg . At a concentration of 25 $\mu g/m^3$, the mass collected is about 20 μg . The LOQ for quartz for OSHA's XRD method is 10 μg (OSHA ID-142, 1996), which is below the amount of quartz that would be collected from full-shift samples at the proposed PEL and action level. Similarly, the reported LODs for quartz for the NIOSH and MSHA XRD and IR methods (see Tables IV.B-4 and IV.B-5) are lower than that which would be collected from full-shift samples taken at the proposed PEL and action level.

A survey of analytical laboratories that participated in proficiency analytical testing (PAT) round 133 was conducted to identify factors that influence performance based on the PAT results (Eller, 1999). Completed questionnaires were received from 80 of the 82 laboratories (98 percent). The responses to questions on laboratory practices and measurement parameters were analyzed. The reported LODs for crystalline silica ranged from 5 to 50 µg, and an LOD of 10 µg was commonly reported (Eller et al., 1999). OSHA believes that the higher LODs reported by some laboratories do not reflect an inability of the method to detect crystalline silica at lower filter loads, but instead reflect laboratory practices with respect to instrument calibration and quality control practices. Therefore, OSHA believes that the XRD and IR methods of analysis are both sufficiently sensitive to quantify levels of quartz that would be collected on air samples taken from concentrations at the proposed PEL and action level.

The proposed $50 \,\mu g/m^3$ PEL for crystalline silica includes quartz, cristobalite, and tridymite in any combination. For cristobalite, the current general industry formula PEL is approximately $50 \,\mu g/m^3$, so the proposed change in the PEL for crystalline silica does not represent a substantive change in the PEL for cristobalite when quartz is not present. OSHA Method ID-142 (revised December 1996) lists a 30- μ g LOQ for cristobalite; however, the current LOQ for cristobalite for OSHA's XRD method as implemented by the Salt Lake Technical Center (SLTC)

is about 20 μg (OSHA SLTC, 2010). OSHA believes that its XRD method is sufficiently sensitive to quantitatively determine cristobalite at filter loadings obtained by full-shift sampling at the proposed PEL and action level. Tridymite is rarely encountered, thus OSHA has very limited experience with the laboratory analysis of tridymite, for which standard reference materials are not readily available.

Precision

All analytical methods have some measurement error. Measurement errors can be either random or systematic. The term precision refers to the amount of random error or variation in replicate measurements of the same sample, and is often expressed as a standard deviation about the mean of the measurements (denoted as S_T). When random errors are normally distributed, a 95-percent confidence interval can be calculated, $\overline{X} \pm (1.96 \times SD)$, where \overline{X} is the mean and SD is the standard deviation. The relative standard deviation (RSD), calculated by dividing the standard deviation by the mean for a data set, is often used to estimate error for analytical methods. The RSD is also known as the coefficient of variation (CV). Systematic error, or bias, is the difference between the mean of a set observed values and a known reference value. Systematic errors can be identified through replicate analyses of samples spiked with a standard containing a known quantity of a reference material.

The Overall Analytical Error cited in OSHA Method ID-142 (revised December 1996) is a function of both the CV and the bias for the analytical method determined from the analysis of 300 internally prepared quality control samples during 1986–1988. It was calculated by adding the absolute value of the bias to $2 \times \text{CV}$, (i.e., $0.052 + (2 \times 0.106)$). For OSHA's Method ID-142 (revised December 1996), the overall error of the analytical method was estimated to be ± 26 percent over the range of 50–160 µg/sample.

OSHA also uses a statistic called the Sampling and Analytical Error (SAE) to estimate the precision of air sampling and analytical methods to assist compliance safety and health officers (CSHOs) in determining compliance with an exposure limit. The estimate of the SAE is unique for each analyte and analytical method, and must be determined by each laboratory based on its own quality control practices. At SLTC, the SAE is based on statistical analysis of results of internally prepared quality control samples. Specifically, OSHA calculates the standard deviation of the analytical recoveries (defined as measured quantity divided by theoretical quantity) of the previous n number of quality control sample results ($18 \le n \le 99$). Sampling and analytical components are assessed separately, where CV_1 reflects analytical error that is estimated from the analysis of quality control samples, and CV_2 is the sampling error, assumed to be 5 percent due to variability in sampling pump flow rates that can affect sample air volume. Analytical error is combined with sampling pump error, and the SAE is calculated as a one-sided 95 percent confidence limit with the following formula:

$$SAE = 1.645 \times \sqrt{CV_1^2 + CV_2^2}$$

The current SLTC SAE for crystalline silica is 0.231 (CV₁ = 0.131) as of July 2010. The average SLTC SAE for the time period February 2007 to present and over the range of 50 to 300

 μ g/sample is 0.227 (CV₁ = 0.129). The estimated error in the range of lower sample loadings is 0.252 (CV₁ = 0.144), based on a subset of samples analyzed from March 2007 to present and having filter loadings of 50–60 μ g/sample. These CV₁s are higher, but still similar to the CV₁ of 0.106 cited in OSHA Method ID-142 (revised December 1996).

OSHA's SLTC conducted a more recent evaluation of the accuracy and precision for the analysis of crystalline silica using XRD at filter loadings of 20 and 40 µg corresponding to the amounts of crystalline silica that would be collected from full-shift sampling at the proposed action level and PEL, respectively (i.e., 816-L samples) (SLTC, Personal Communication, March 2013). For quartz, two sets of 10 replicate filters were prepared with loadings of 21.0 and 40.6 µg using NIST standard quartz reference material SRM 1878a. For cristobalite, filter loadings of 20.0 and 40.0 were prepared using NIST SRM 1879a. The spiked filters were prepared and analyzed at SLTC using a Rigaku ultraX 18-kilowatt (kW) rotating-anode X-ray diffractometer. The mass of crystalline silica detected on the filter was quantified based on the area of the primary peak (i.e., the most sensitive peak) as compared with a standard calibration curve. The results for this test are shown in Table IV.B-6. The RSD (CV₁) for the filters with 40 µg of quartz is 0.073, and the RSD for filters with the nominal 20 µg loading of quartz is 0.086. For cristobalite, the RSD is 0.082 for both the filter loadings tested. These are lower than the CV₁ of 0.144, that was determined from the analysis of quartz quality control samples loaded with 50-60 µg/filter at SLTC. These results also show that, although the RSD increases at the lower filter loadings, accuracy and precision of the method remain acceptable at filter loadings down to 20 µg.

Т	Table IV.B-6–	-Accurac	y and Pre	cision at t	he Propos	ed PEL an	d Action Leve	el
Nominal	Filter							
Air concn	Loading	n	Mean	SD	RSD	SEE	Accuracy	Precision
(µg/m³)	(µg)		(µg)	(µg)			(%)	(%)
Quartz								
25	21.0	10	18.7	1.6	0.086	0.099	89	19
50	40.6	10	38.2	2.8	0.073	0.088	94	17
Cristobalite								
25	20.0	10	20.0	1.6	0.082	0.096	100	19
50	40.0	10	38.9	3.2	0.082	0.096	97	19
n =	Number of re	plicate filte	ers analyze	d				
Mean =	Average mas	s detected	l on filter					
SD =	Standard dev	iation of m	ass detect	ted				
RSD =	= Relative standard deviation (or CV ₁)							
SEE =	Standard erro	Standard error of estimate (includes $CV_2 = 0.05$ for pump error)						
Precision =	Precision at 9	Precision at 95% confidence level						
Accuracy =	racy = Recovery, amount detected divided by amount added to filter							

Standard Error of Estimate (SEE) and precision at the 95 percent confidence level were calculated by the following formulas:

$$SEE = \sqrt{CV_1^2 + CV_2^2}$$
 Precision = 1.96 × SEE

NIOSH Method 7500 for XRD analysis of crystalline silica reports an analytical precision (CV₁) of 0.08 determined for filter loadings in the range of 50 to 200 μg per sample, which is lower than that reported in OSHA Method ID-142 (revised December 1996). The overall accuracy of the NIOSH method is reported to be ± 18 percent over this range of filter loadings. The analytical precision (CV₁) achieved for the infrared methods NIOSH Method 7603 and MSHA Method P-7 are similar, 0.098 (100–500 μg /filter) and 0.05–0.10 (25–250 μg /filter), respectively.

Analysis of Total Variability Using Round Robin Test Data

The sources of random and systematic error described above reflect the variation in sample measurement experienced by a single laboratory; this is termed intra-laboratory variability. Another source of error that affects the reliability of results obtained from sampling and analytical methods is inter-laboratory variability, which describes the extent to which laboratories would obtain disparate results from analyzing the same sample. Inter-laboratory variability can be characterized by using data from round robin testing, where laboratories analyze similarly prepared samples and their results are compared. In practice, however, it is difficult to separate intra- and inter-laboratory variability because each laboratory participating in a round robin test provides analytical results that reflect their own degree of intra-laboratory variability. Thus, use of round robin test data to compare performance of laboratories in implementing an analytical method is really a measure of total laboratory variability. In this section, OSHA evaluates round robin test data to characterize the total variability that has been seen from different laboratories with respect to crystalline silica analysis.

American Industrial Hygiene Association Proficiency Analytical Testing Program

The best available source of data for characterizing total variability (which includes an interlaboratory variability component) of crystalline silica analytical methods is the American Industrial Hygiene Association (AIHA) PAT program. The AIHA PAT Program is a comprehensive round robin testing program that provides an opportunity for laboratories to demonstrate competence in their ability to accurately analyze air samples through comparisons with other labs. The PAT program is designed to help consumers identify laboratories that are proficient.

Crystalline silica (using quartz only) is one of the analytes included in the proficiency testing program. The AIHA PAT program evaluates the total variability among participating laboratories based on round robin testing of specially prepared silica samples. The AIHA contracts the preparation of their crystalline silica PAT samples to an independent laboratory that prepares four spiked PAT samples and one blank sample for each participating laboratory per round. Each set of PAT samples with the same sample number is prepared with as close to the same mass of crystalline silica deposited on the filter as possible. However, some variability occurs within each numbered PAT sample set because of small amounts of random error during sample preparation. Before the contract laboratory distributes the round, it analyzes a representative lot of each numbered set of samples to ensure that they meet established criteria. The samples are distributed to the participating laboratories on a quarterly basis.

The PAT program does not specify the particular analytical method to be used. However, the laboratory is expected to analyze the PAT samples using the methods and procedures it would

use for normal operations. A review of the current list of AIHA-accredited laboratories currently posted on the AIHA Web site found 28 laboratories accredited for analysis of crystalline silica by XRD and 23 laboratories that are accredited for analysis of crystalline silica by IR (Table IV.B-7).

Table IV.B-7—Number of AIHA Accredited Laboratories by Method						
Analytical Method	Total Labs	Commercial Labs				
XRD	28	17				
IR	23	15				
Both	12	8				

The results of the PAT sample analysis are reported to the AIHA by the participating laboratories. For each PAT round, AIHA compiles the results and establishes upper and lower performance limits for each of the four sample results based on the mean and RSD of the sample results. For each of the four samples, a reference value is defined as the mean value from either 1) results from all participating laboratories or 2) results from a selected set of reference laboratories. The RSD for each of the four samples is used to establish the upper and lower performance limits, which are set at three times the RSD. A participating laboratory receives a passing score if at least three out of the four sample results reported are within the specified performance limits of the respective samples. Two or more results reported by a lab in a given round that are outside the limits results in the lab receiving an unsatisfactory rating. An unsatisfactory rating in 2 of the last 3 rounds results in revocation for that lab of the AIHA accreditation for the analysis of crystalline silica. Participation in the PAT program is a prerequisite for accreditation through the AIHA Industrial Hygiene Laboratory Accreditation Program (IHLAP).

Inter-Laboratory Performance In the Proficiency Analytical Testing Program

An evaluation of inter-laboratory variability was performed using the data for AIHA PAT Rounds 156 through 165 that were obtained from AIHA in August 2006 and encompassing the time period of April 2004 through June 2006. There were 60 to 65 laboratories that participated in various rounds during this time frame. Each PAT round (e.g., round 156) for each participating laboratory consists of four samples and one blank. Except for PAT Round 165, reference values were obtained by determining the mean of the sample results from all participating laboratories. Starting with PAT Round 165, AIHA started calculating the reference value from the mean of reported results submitted by certain reference laboratories.

There were two substantial changes in the implementation of the PAT program between Rounds 156 and 165. First, the method for preparing samples changed from aerosol deposition (Rounds 156–160) to direct deposition from a liquid suspension (Rounds 161–165), which was intended to reduce variation in crystalline silica loading of samples. Second, prior to PAT round 159, AIHA based its performance limits for each sample in the round (i.e., ±3 times the calculated RSD) on the actual RSDs calculated from the results. Beginning with Round 159, AIHA decided to limit the maximum RSD to 20 percent, which effectively capped the performance limits.

A summary of the results obtained by OSHA for PAT Rounds 156–165 (AIHI PAT 156-165, 2006) appears in Table IV.B-8 and shows the effect of these program changes. Overall, data for all of the PAT rounds (156 to 165) show a total laboratory RSD (pooled) of 19.5 percent for the analytical range of 49 to 165 μ g, and the RSD from the reported results exceeded 20 percent for about half of the 40 samples prepared for these rounds. Data from earlier PAT rounds (156 to 160) when samples were prepared by aerosol deposition show a total laboratory RSD (pooled) of 21.5 percent for the analytical range of 54 to 136 μ g, and for 16 of the 20 samples prepared for these rounds, the RSD of reported results exceeded 20 percent. Beginning with Round 161, after the AIHA's contract laboratory changed from using aerosol deposition to direct liquid deposition for preparing the samples, the total laboratory RSD (pooled) declined to 17.2 percent with only three of the 20 sample sets having an RSD above 20 percent. Most likely, the decline in sample RDSs reflect improved consistency in the preparation of the PAT samples. However, it is important to note that these data still reflect errors associated with the preparation of the PAT samples using liquid suspensions.

For Rounds 156 through 158, when the AIHA based its performance limits on the calculated RSDs, the pooled RSD for these rounds was 23.2 percent, and the RDS exceeded 20 percent for eight out of the 12 samples prepared for these rounds. After round 158, when AIHA decided to limit the maximum RSD to 20 percent, total laboratory variability seemed to improve. The RSD for rounds 161 to 165 only exceeded 20 percent for three out of 20 samples prepared for those rounds, compared with 16 out of 20 for the previous rounds (156 to 160).

Table IV.B-8—Total Laboratory Variability of Crystalline Silica PAT Data							
	Rounds 156 to 158	Rounds 156 to 160	Rounds 161 to 165	Rounds 156 to 165			
Program change	Rounds Prior to Rounding SD and RSD to 20%	PAT Samples Prepared Using Aerosol Generation	PAT Samples Prepared Using Liquid Suspensions	Summary of All Rounds			
Median Mass (µg)	85	89	107	98			
Average Mass (µg)	88	91	106	98			
Mass Range (µg)	57 to 133	54 to 136	49 to 165	49 to 165			
Air Concentration Range (µg/m³) Based on 816 L	70 to 163	66 to 166	60 to 202	60 to 202			
Average Standard Deviation (µg)	19	19	18	19			
Average Relative Standard Deviation (pooled) (%)	23.2	21.5	17.2	19.5			
Number of Rounds	3	5	5	10			
Number of PAT Numbered Sample Sets	12	20	20	40			
Numbered Sample Sets in Which RSD Exceeded 20%	8	16	3	19			

OSHA used the PAT data to evaluate the frequency with which laboratories achieve reasonably good agreement in their analytical results, defined for this purpose as having a sample result that is ± 25 percent of the reference value. Table IV.B-9 shows the percentage of labs participating in rounds 156 to 165 that reported sample results that were within ± 25 percent of the reference value for each sample prepared for these rounds. Across all PAT samples, an average of

80 percent of labs reported a result that was within ± 25 percent of the reference value. At the low end of the range of filter loading ($\leq 70~\mu g$, 11 samples), the percentage of labs that reported results within ± 25 percent of the group mean ranged from 56 to 90 percent, with an average of 81 percent. These observations suggest that the majority of laboratories achieve reasonably good agreement in their sample results, even at the lower range of filter loadings.

Round Number	Sample Number	Number of Labs	Mean (mg)	RSD	Percent of Labs Within 25% of Ref Value
156	1	62	0.0566	0.2389	66%
156	2	62	0.1200	0.1812	81%
156	3	62	0.0678	0.2139	71%
156	4	62	0.1145	0.2333	73%
157	1	64	0.0906	0.2661	66%
157	2	64	0.0854	0.2725	53%
157	3	64	0.0700	0.1923	72%
157	4	63	0.0671	0.2100	75%
158	1	62	0.0700	0.2346	69%
158	2	62	0.1330	0.2027	74%
158	3	62	0.1005	0.1959	84%
158	4	62	0.0624	0.2545	719
159	1	63	0.1077	0.1779	689
159	2	63	0.1141	0.1999	819
159	3	63	0.1058	0.1999	739
159	4	63	0.0792	0.1997	769
160	1	62	0.0879	0.2000	699
160	2	62	0.0541	0.1999	569
160	3	62	0.1361	0.2000	609
160	4	62	0.1006	0.1999	539
161	1	60	0.0952	0.1365	879
161	2	60	0.1380	0.1792	739
161	3	60	0.1293	0.2000	739
161	4	60	0.0604	0.1793	839
162	1	61	0.1551	0.1596	859
162	2	61	0.0606	0.1316	909
162	3	61	0.1227	0.1496	859
162	4	61	0.0709	0.1630	799
163	1	63	0.1118	0.2000	849
163	2	63	0.1651	0.1541	879
163	3	63	0.0508	0.1827	759
163	4	63	0.0866	0.1684	759
164	1	61	0.1020	0.1855	779
164	2	61	0.1237	0.1817	829
164	3	61	0.1609	0.1294	879
164	4	61	0.0759	0.1956	79%
165	1	62	0.0837	0.2000	66%
165	2	62	0.0490	0.1577	799

	165	3	62	0.1149	0.1572	84%
	165	4	62	0.1573	0.1989	77%
Aver	rage	_		0.1057	0.1705	80%

Although PAT data are useful for characterizing inter-laboratory performance in the analysis of crystalline silica, the results cannot be used for method validation or to characterize intralaboratory variability. For method validation, the mass of material on the samples must be known with a high degree of certainty. Although substantial improvements have recently been made, it has been historically difficult to prepare crystalline silica PAT samples with a high degree of precision. Thus, PAT sample preparation errors contribute to the total analytical variability as characterized by the RSDs of the sample results reported to AIHA. In addition, laboratory results are compared with a reference value, which is the mean of a group of sample results reported by participating laboratories, not to the known or "true" quantity used to spike the samples. The reference mean can be affected by a variety of factors. For example, the analytical equipment and methods vary between labs. For PAT Round 165, there were 38 (61 percent) laboratories that reported using XRD methods, 22 (36 percent) laboratories that reported using IR methods, and two (3 percent) laboratories that reported using colorimetric methods. IR analyses might bias the sample high because the amorphous silica fraction present in the PAT samples contributes to the result if left uncorrected. The laboratories that analyze crystalline silica using colorimetric techniques, although small in number, also contribute to apparent inter-laboratory variability because of the relatively greater imprecision inherent to that methodology.

The analytical standard reference material used by laboratories in these analyses might also be different in homogeneity and quality from the National Institute of Standards and Technology (NIST, formerly the National Bureau of Standards) standard reference material (SRM) 1878a. Furthermore, the reference mean has been determined in a variety of ways over the years. Sometimes the mean of the results from all the laboratories reporting PAT sample results were used as the reference value. Other times only the results from laboratories that meet the criteria of being a "reference laboratory" were used to calculate the mean that is used as the reference value. For these reasons, the results obtained from the PAT data (i.e., measures of RSDs and recoveries obtained from results reported by the laboratories) will usually be higher than a particular laboratory's internal estimated CV₁, and cannot be used to estimate the precision that can be achieved by a laboratory implementing one of the analytical methods.

To evaluate whether there has been any change in overall laboratory performance since the period covered by the PAT data described above, OSHA obtained the aggregate results of PAT samples for rounds 160 to 180 (21 rounds) conducted between June 2005 and February 2010. However, OSHA believes that, because of AIHA's change in practice to cap the RSD at 20 percent for the purpose of establishing performance limits, the later data are too limited to adequately characterize trends in total variability experienced by participating laboratories.

OSHA's Experience With the Proficiency Analytical Testing Program

OSHA's own experience with the PAT program illustrates that results obtained from PAT samples are not suitable measures of analytical accuracy and precision. Recent PAT data from OSHA's SLTC were obtained for PAT Rounds 160-180 covering a period from June 2005

through February 2010 (OSHA SLTC, 2010). A total of 88 PAT samples from the 22 rounds were analyzed by XRD for crystalline silica using OSHA Method ID-142 (revised December 1996). Percent recovery was calculated by dividing the total micrograms of crystalline silica reported by the SLTC laboratory by the reference values determined by the reference laboratories that participated in the same PAT rounds.

The percent recovery is plotted over a range of reference values in Figure IV.B-3. The mean recovery was 99 percent, and the RSD for this set of samples was 19 percent, with a range of 55 to 165 percent. A total of 71 samples (81 percent) were in the range of ±25 percent of the reference mean, indicating that a large proportion of samples was in reasonable agreement with the reference values. Two of the samples in one set (Round 173) were outside the accuracy limits of plus or minus three standard deviations (i.e. z-score greater than 3) from the reference mean, and so a second set of samples was analyzed for the proficiency test.

Figure IV.B-3.

Silica PAT Samples Rounds 160-180 Recovery by Reference Value from SLTC

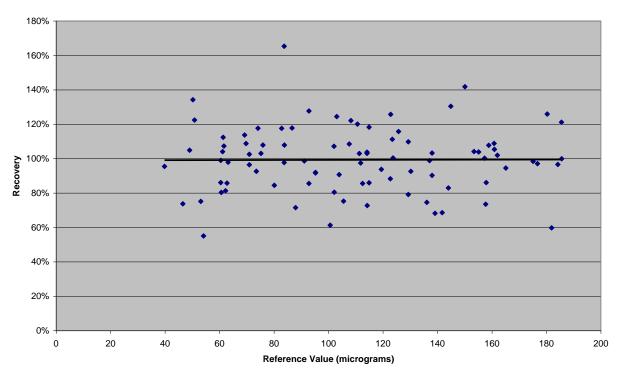


Figure IV.B-3. Recovery vs. Reference Value for Analysis of AIHA PAT Crystalline Silica Samples by SLTC for Rounds 160–180

The overall RSD of 19 percent for this set of samples is substantially greater than the CV_1 of 10.6 percent cited in OSHA Method ID-142 (revised December 1996), and it is higher than the various CV_1 s that were obtained from the analysis of quality control samples analyzed at SLTC. Based on OSHA's experience, estimates of the RSD from the PAT data are consistently higher

than the precision that is achievable by individual laboratories and cannot be used to estimate analytical precision.

Recommendations for Improved Inter-Laboratory Precision

The total variability seen among laboratories participating in the PAT program for crystalline silica is larger than that seen for metals or solvents. The RSD for metals and solvents ranges from 4 to 6 percent, whereas the RSD for crystalline silica ranges from 14 to greater than 20 percent. One study evaluated laboratory practices in an effort to identify factors contributing to the higher variability seen among labs analyzing crystalline silica (Eller, 1999b). Questionnaires were sent to labs that participated in PAT Round 133, and were completed by 80 of the 82 labs, a 98-percent response rate. The responses to the questionnaires among eight labs whose analysis of the PAT samples were outside the "normal" range, identified by statistical analysis as "outliers," were compared with the practices reported by laboratories whose results were within ±40 percent of the group mean.

Poor accuracy and precision were attributed to five factors: 1) six different reference materials were used, 2) four of the labs calibrated equipment annually or even less frequently, 3) three of the labs reported an LOD $>30~\mu g$, 4) three labs did not use a standard less than 15 μg for calibration, and 5) two labs used only three or fewer calibration standards. Based on the response from laboratories that achieved the highest level of accuracy and precision, Eller (1999b) made the following recommendations:

Use only NIST SRM 1979 for reference material and correct for purity. (Note: Presently, quartz is NIST SRM 1878a, and cristobalite is SRM 1879a. Use a certified SRM for tridymite when and if it becomes available.)

Check calibration each day that samples are analyzed.

Use five or more standards to prepare calibration curve.

Use additional low level standards (as low as 10 µg/sample).

Optimize methods and instruments to obtain an LOD <15 µg.

OSHA believes that such varying practice and less rigorous quality control procedures as documented by Eller (1999b) contribute to the higher total variability seen for crystalline silica as compared with other common analytes. The proposed OSHA standard requires employers to use laboratories that engage in certain practices such as those recommended by Eller (1999b) (see Section X of the preamble to the proposed rule, Summary and Explanation). OSHA believes that these proposed requirements will further reduce total variability in the analysis of crystalline silica by XRD and IR. OSHA is inviting comment on the experiences of laboratories that adhere to these or other practices designed to improve analytical precision.

Preliminary Conclusions

OSHA preliminarily concludes that it is technologically feasible to reliably measure exposures of workers at the proposed PEL of $50 \mu g/m^3$ and action level of $25 \mu g/m^3$. OSHA bases this preliminary conclusion on available information describing the performance of respirable dust sampling devices (e.g., personal cyclone samplers) and on the documented precision of

nationally recognized XRD and IR methods to analyze respirable dust samples for crystalline silica content.

OSHA notes that, in certain circumstances, its existing general industry PELs already limit worker exposures to the proposed PEL of $50~\mu\text{g/m}^3$ for respirable crystalline silica. The current general industry PEL is calculated using the formula: 10/(2+% quartz). Thus, the exposure limit is dependent on the silica content of the dust. The existing PEL is equivalent to (or less than) the proposed PEL when the quartz content of respirable dust is 2 percent or less. For example, the existing PEL for respirable dust containing 2 percent quartz is $2.5~\text{mg/m}^3$, which corresponds to a concentration of respirable quartz of $0.05~\text{mg/m}^3$, or $50~\mu\text{g/m}^3$ (i.e., 2 percent of $2.5~\text{mg/m}^3$). Thus, the proposed PEL of $50~\mu\text{g/m}^3$ is at the low end of the range of exposures allowed under the current formula standard. Furthermore, the current general industry PEL for cristobalite is half that of quartz, or $50~\mu\text{g/m}^3$ for dusts containing 100 percent cristobalite. Thus, in these limited circumstances, OSHA has successfully enforced its existing standards.

With regards to the accuracy of sampling respirable dust, there are several personal cyclone sampling devices commercially available that conform closely to the ISO/CEN particle size selection criteria; these include the Dorr-Oliver 10 mm nylon cyclone, currently specified by OSHA's Method ID-142, MSHA's Method P-2, and NIOSH's Method NMAM 7500 for crystalline silica; the Higgens-Dewell aluminum cyclone specified in the NIOSH Method NMAM 7500; the SKC aluminum cyclone; and the BGI GK 2.69 cyclone. For most particle size distributions encountered in the work environment, the variation of respirable particles collected by these devices will be within ±20 percent, and often within ±10 percent, of that specified by the ISO/CEN model. OSHA believes that this degree of bias against the ISO/CEN model is within a reasonable error to adequately assess worker exposures to respirable dust.

OSHA's XRD method has an LOQ of 10 μg for quartz and 20 μg for cristobalite. Therefore, sampling devices must be able to collect at least this much material over a full work shift to evaluate worker exposures against the proposed PEL and action level. Flow rates for the Dorr-Oliver, Dewell-Higgens, and SKC cyclones are 1.7, 2.2, and 2.2 L/min, respectively, to conform to the ISO/CEN model. As such, all of these devices are capable of collecting at least 10 μg of quartz with a four-hour air sample at concentrations equal to the proposed PEL and action level. A higher flow rate device, the BGI GK 2.69, has a recommended flow rate of 4.2 L/min, and can collect more than 10 μg quartz with a 1-hour sample at the proposed PEL. For cristobalite, all of these samplers can collect at least 20 μg in a full-shift sample, and the BGI GK 2.69 can collect a sufficient amount of cristobalite in a 4-hour sample at the proposed PEL and action level to exceed OSHA's LOQ. Therefore, OSHA preliminarily concludes that personal sampling devices are commercially available that permit collecting a sufficient sample of crystalline silica for analysis over a work shift at concentrations equal to the proposed PEL and action level.

OSHA also preliminarily concludes that available analytical methods are capable of measuring crystalline silica with sufficient precision to provide reliable results when full-shift air samples are taken in concentrations equal to the proposed PEL and action level. For the OSHA XRD Method ID-142 (revised December 1996), precision ($\pm 1.96 \times \sqrt{0.106^2 + 0.05^2}$) is ± 23 percent at a working range of 50 to 160 µg crystalline silica. The NIOSH and MSHA XRD and IR methods report a similar degree of precision. A full-shift 8-hour sample (480 minutes) taken using a Dorr-

Oliver cyclone operated at 1.7 L/min will result in 816 L of air being sampled, which, at the proposed PEL of $50~\mu g/m^3$, will collect 41 μg of crystalline silica. This amount is just below the low end of the validation range for OSHA's method. Studies by OSHA's SLTC to evaluate the precision of ID-142 (revised December 1996) at lower filter loadings have shown an acceptable level of precision is achieved at filter loadings of approximately 40 and 20 μg corresponding to the amounts collected from full-shift sampling at the proposed PEL and action level, respectively. This analysis showed the precision of the OSHA method for quartz at filter loadings of 40 μg was 17 percent and at filter loadings of 20 μg was 19 percent. For cristobalite, the precision was 19 percent at filter loadings of both 40 and 20 μg . OSHA believes that these results demonstrate that the OSHA XRD method is capable of achieving acceptable precision to evaluate exposures at the proposed PEL and action level.

Analysis of AIHA PAT data to evaluate inter-laboratory variability in sample analysis for crystalline silica indicates that the majority of laboratories obtain analytical results that are within reasonable agreement; for each sample distributed over 10 PAT rounds conducted between April 2004 and June 2006, an average of 80 percent of laboratories reported sample results that were within ± 25 percent of the mean reference value for filter loadings ranging from 49 to 165 μg. There was a similar degree of agreement between labs at the lower end of the range (< 70 µg). OSHA believes that the PAT data show that an acceptable level of variability is achieved by most laboratories most of the time. OSHA is proposing requirements for employers to use laboratories that engage in certain quality control practices that the Agency believes will further reduce variability in sample results between labs. In addition, the change from the existing formula PEL to the proposed PEL will allow for the direct comparison of a sample result with the PEL, which simplifies the assessment of compliance by eliminating the need to calculate the PEL based on the percent silica content and eliminates the sampling and analytical error associated with the determination of the mass of respirable dust levels in addition to the calculation of the percent silica content. Therefore, OSHA preliminarily concludes that it is technologically feasible to obtain reliable analytical results from XRD or IR analysis at filter loadings that equate to full-shift sampling of respirable crystalline silica at the proposed PEL and action level.

REFERENCES

- [ACGIH] American Conference of Industrial Hygienists. 2009. TLVs and BEIs. Cincinnati, Ohio. **OSHA-2010-0034-1669**
- [AIHA PAT 156-165] American Industrial Hygiene Association. 2006. Proficiency Analytical Testing data for rounds 156 to 165. E-mail from Natasha Sekitoleko (nsekitoleko@aiha.org) to Steven Edwards. July. **OSHA-2010-0034-1632**
- [AIHA PAT 176-180] American Industrial Hygiene Association. 2010. Proficiency Analytical Testing data from rounds 176 to 180. E-mail from Anthony Hodge to Joe Coble. May. OSHA-2010-0034-1649/OSHA-2010-0034-1650/OSHA-2010-0034-1651/ OSHA-2010-0034-1652/ OSHA-2010-0034-1653
- Ainsworth, S. M., Parobeck P.B., Tomb, T. F. 1989. Determining the quartz content of respirable coal mine dust by FTIR. Informational report. Mine Safety and Health Administration. http://www.msha.gov/S&Hinfo/techrpt/dust.htm. **OSHA-2010-0034-1677**
- Bartley, D.L., et al. 1994. Respirable aerosol sampler performance testing. American Industrial Hygiene Association Journal 55(11): 1036–1046. **OSHA-2010-0034-1438**
- Blachman, M.W., and M. Lippmann. 1974. Performance characteristics of the multicyclone aerosol sampler. American Industrial Hygiene Association Journal 35: 311–326. **OSHA-2010-0034-1439**
- Chen, C., et al. 1999. Laboratory performance comparison of respirable samplers. American Industrial Hygiene Association Journal 60: 601–611. **OSHA-2010-0034-1440**
- Edwards, S.L., 2000. Crystalline Silica: Sampling and Analytical Issues, The Synergist, December. **OSHA-2010-0034-1629**
- Eller, P.M., A.H. Feng, R.S. Song, R.J. Key-Schwartz, C.A. Esche, J.H. Groff. 1999a. Proficiency Analytical Testing (PAT) silica variability, 1990-1998. AIHA Journal 60(4): 533–9. **OSHA-2010-0034-1687**
- Eller, P.M., R.J. Key-Schwartz, R.S. Song, S.L. Edwards, P.C. Schlecht. 1999b. Silica method modification for improved interlaboratory precision. The Synergist. November. **OSHA-2010-0034-1688**
- Gautam, M., and A. Sreenath. 1997. Performance of a respirable multi-inlet cyclone sampler. Journal of Aerosol Science 28(7): 1265–1281. **OSHA-2010-0034-1451**
- Gorner, P., et. al. 2001. Study of fifteen respirable aerosol samplers used in occupational hygiene. Annals of Occupational Hygiene 45(1): 43–54. **OSHA-2010-0034-1457**
- Hayes T, Parish H, Key-Schwartz R, Popp D. 2006 An Evaluation of Aerosol- and Liquid Generated Silica Samples for Proficiency Analytical Testing. Journal of ASTM International 3(6). Available online at www.astm.org. **OSHA-2010-0034-1630**

- Hart, D.J., AIHA's Lab Program, The Synergist, Volume 17, No. 7, August 2006 **OSHA-2010-0034-1690**
- Hering, S.V. 2001. Impactors, cyclones, and other particle collectors. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists, pp. 316–375. **OSHA-2010-0034-1441**
- Hinds, W.C., and P. Bellin. 1988. Effect of facial-seal leaks on protection provided by half-mask respirators. *Applied Industrial* Hygiene 3(5): 158164. **OSHA-2010-0034-1442**
- Kar and Gautam. 1995. Orientation bias of the isolated 10-mm nylon cyclone at low stream velocity. American Industrial Hygiene Association Journal 56: 1090–1098. **OSHA-2010-0034-1443**
- Kenny, L.C., and R.A. Gussman. 1997. Characterization and modelling of a family of cyclone aerosol preseparators. Journal of Aerosol Science 28(4): 677–688. **OSHA-2010-0034-1444**
- Liden, G. 1993. Evaluation of the SKC personal respirable dust sampling cyclone. Applied Occupational and Environmental Hygiene 8(3): 178–190. **OSHA-2010-0034-1445**
- Liden, G., and L.C. Kenny. 1993. Optimization of the performance of existing respirable dust samplers. Applied Occupational and Environmental Hygiene. 8(4): 386–391. **OSHA-2010-0034-1450**
- Lippmann, M. 2001. Size-selective health hazard sampling. Air Sampling Instruments for Evaluation of Atmospheric Contaminants. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists (ACGIH), pp.93–134. **OSHA-2010-0034-1446**
- Madsen, F.A., et al. 1995. Review of quartz analytical methodologies: Present and future needs. Applied Occupational and Environmental Hygiene 10(12). **OSHA-2010-0034-1659**
- Murata, K.J., and M.B. Norman. 1976. An index of crystallinity for quartz. American Journal of Science 276: 1120–1130. **OSHA-2010-0034-1696**
- [MSHA] Mine Safety and Health Administration. 1994. Infrared determination of quartz in respirable coal mine dust: Method P-7. **OSHA-2010-0034-1462**
- [MSHA] Mine Safety and Health Administration. 1999. X-ray diffraction determination of quartz and cristobalite in respirable mine dust: Method P-2. **OSHA-2010-0034-1458**
- [NIOSH 03-127-7500] National Institute for Occupational Safety and Health (NIOSH). 2003. Silica, crystalline, by XRD (filter redeposition): Method 7500. NIOSH Manual of Analytical Methods, 4th ed., 3rd Suppl. **OSHA-2010-0034-1447**
- [NIOSH 03-127-7601] National Institute for Occupational Safety and Health (NIOSH). 2003. Silica, crystalline, by VIS: Method 7601. In: NIOSH Manual of Analytical Methods, 4th ed., 3rd Suppl. **OSHA-2010-0034-0902**

- [NIOSH 03-127-7602] National Institute for Occupational Safety and Health (NIOSH). 2003. Silica, crystalline by IR (KBr pellet): Method 7602. In: NIOSH Manual of Analytical Methods, 4th ed., 3rd Suppl. **OSHA-2010-0034-0903**
- [NIOSH 2002-129] National Institute for Occupational Safety and Health (NIOSH). 2002. NIOSH hazard review: Health effects of occupational exposure to respirable crystalline silica. **OSHA-2010-0034-1455**
- [NIOSH 2003-154] National Institute for Occupational Safety and Health (NIOSH). 2003. Determination of airborne crystalline silica. In: NIOSH Manual of Analytical Methods, 4th ed., 3rd Suppl. **OSHA-2010-0034-1454**
- [OSHA ID-142] Occupational Safety and Health Administration. 1996. Sampling and analytical methods: Quartz and cristobalite in workplace atmospheres (method number ID-142). OSHA-2010-0034-1448
- OSHA SLTC. Personal communication from Warren Hendricks to William Perry. 2010. **OSHA-2010-0034-1670**
- Raabe, O.G., and B.O. Stuart. 1999. Sampling criteria for the thoracic and respirable fractions. Particle Size-Selective Sampling for Particulate Air Contaminants. Cincinnati, Ohio: American Conference of Governmental Industrial Hygienists (ACGIH), pp. 73–95. OSHA-2010-0034-1459
- Smith, D. K., Evaluation of the Detectability and Quantification of Respirable Crystalline Silica by X-ray Powder Diffraction Methods, Issues and Controversy: The Measurement of Crystalline Silica, International Symposium, Chemical Manufactures Association-Crystalline Silica Panel, 1992 Published: Powder Diffraction 12(4), December 1997. (This paper can also be found at www.osha.gov.) **OSHA-2010-0034-1660**
- Smith, D.K., Opal, cristobalite, and tridymite: Noncrystallinity versus crystallinity, nomenclature of the silica minerals and bibliography, Powder Diffraction 13 (1), March 1998. **OSHA-2010-0034-1424**
- Soderholm, S.C. 1991. Why change ACGIH's definition of respirable dust? Applied Occupational and Environmental Hygiene 6(4): 248–250. **OSHA-2010-0034-1661**
- Vincent, J.H. 2007. Aerosol sampling: Science, standards, instrumentation and applications. Chichester, West Sussex, England: John Wiley & Sons Ltd. **OSHA-2010-0034-1456**
- United Kingdom-Health and Safety Executive. 2005. Crystalline silica in respirable airborne dusts. MDHS 101. http://www.hse.gov.uk/pubns/mdhs/pdfs/mdhs101.pdf. **OSHA-2010-0034-1631**
- U.S. Department of the Interior, U.S. Bureau of Mines, Crystalline Silica Primer, 92-16938 CIP, 1992 http://geology.usgs.gov/pdf/silica.html **OSHA-2010-0034-1678**

CONTROLLING SILICA EXPOSURE

Asphalt Paving Products Description

Silica-containing materials are commonly used as aggregate to add bulk and durability to asphalt mixtures and blocks (unit pavers) used for pavement construction, rehabilitation, and/or maintenance. Common aggregates for asphalt paving products include sand, gravel, crushed stone, and reclaimed asphalt pavement (RAP) and account for about 95 percent of the total mixture by weight. Additionally, virgin portland cement is sometimes added as a stabilizer (ERG-GI, 2008). For the purposes of this discussion, manufacturing is regarded as the production of asphalt paving products at stationary central mix asphalt plants (versus mixed-in-place asphalt paving mixtures at construction sites). Asphalt paving product manufacturing facilities are classified in the six-digit North American Industry Classification System (NAICS) code 324121, Asphalt Paving Mixture and Block Manufacturing.

There are two types of central mix plants broadly classified as batch mix plants and drum mix (continuous) plants, depending on the process by which the raw materials are mixed. There are also two commonly used types of asphalt paving mixtures that are produced at mix plants: hot mix and cold mix.¹⁴

Hot mix asphalt is a hot mixture of asphalt binder (cement) and well-graded, high quality aggregate. When producing hot mixes in batch plants, the aggregate is dried and heated first, then transported to a screening unit which separates the aggregate by size and deposits the graded aggregate into heated storage bins. Transporting, drying, and screening of aggregate are significant sources of silica dust. Aggregate and mineral filler (another source of silica) are then weighed and transferred to a mixer called a pug mill, where they are mixed with heated asphalt cement to produce asphalt concrete. In hot mix drum plants, a rotary dryer dries a measured amount of aggregate and mixes it with heated asphalt cement that is introduced directly into the dryer chamber (ERG-GI, 2008). Both batch and rotary drum hot mix plants have similar potential to emit silica dust.

Cold mix asphalt is an unheated mixture of aggregate and emulsified (or cutback) asphalt binder. Cold mixes can be mixed in place, made in a standard hot mix plant without any heating, or made by a purpose-designed stationary or portable cold mix plant. Because cold mixes do not require dryers or screens, this equipment is eliminated as a source of silica exposure at plants producing cold mix asphalt (ERG-GI, 2008). Silica dust can still be released during aggregate transfer, conveying, and mixing processes.

Asphalt concrete blocks are unit pavers made from asphalt cement, crushed-stone aggregate, and inorganic dust or filler. Facilities that manufacture these pavers feed the raw materials into a block molding machine where the mixture is rammed, pressed, or vibrated into its final form. The finished pavers are then stacked and allowed to cure. Asphalt-block pavers are available in many sizes, shapes, colors, and finish textures, and are a paving alternative with applications including roads, plazas, parks, playgrounds, piers, driveways, sidewalks, and industrial flooring (ERG-GI, 2008).

¹⁴ A new "warm mix" technology, widely used in Europe, has also become popular in the United States over the past decade. Although similar to hot mix asphalt, warm mix technologies differ in that they allow asphalt mixes to be produced and placed at lower temperatures than hot mixes. Warm mix asphalt may be produced in hot mix plants with some plant modifications. The Federal Highway Administration (FHWA) reports that the benefit is a reduction in energy consumption required by burning fuels to heat traditional hot mix asphalt. The lower production temperature also allows reduced emissions from burning fuels and decreased fumes and odors generated at the plant and the paving site (FHWA, 2008). Although many asphalt plants have begun using warm mix asphalt technologies as an alternative to hot mixes, this trend does not affect workers' exposure to silica.

Asphalt paving product workers can be exposed to silica-containing dusts when handling loose, dry aggregate; during crushing and screening activities; and when mixing aggregate with asphalt cement (ERG-GI, 2008). The job categories with potential for exposure to silica include facility operator, frontend loader operator, and maintenance worker. Table IV.C-1 summarizes the major activities and sources of exposure in this industry.

There is potential for further exposure in facilities with recycling activities that include crushing and screening of recovered concrete and/or RAP. These workers have job titles such as crusher operator and tender (belt picker, laborer), and their activities might involve the use of mobile rubble crushing plants, lump breakers, and screeners. For a discussion of crusher operators and tenders refer to Section IV.C.31 – Rock-Crushing Machine Operators and Tenders.

Table IV.C-1 Job Categories, Major Activities, and Sources of Exposure of Workers in the Asphalt Paving Products Industry (NAICS 324121)							
Job Category*	Major Activities and Sources of Exposure						
Facility Operator	Controls and monitors production of asphalt paving products with an automated computer-controlled process. Operates conveyors, elevators, dryers, and mixing equipment, and dispenses product into trucks or storage silos from a control room/booth. Most control rooms are fully enclosed and ventilated with little potential for exposure to silica-containing dusts.						
	 Dust from "manually" operating production operations (when necessary). Dust from material handling activities and the plant yard/haul road (when control rooms are not fully enclosed). 						
Front-End Loader Operator	Transports raw materials using a front-end loader. Might oversee receipt of raw materials via truck or rail car.						
	 Dust from manually transporting sacks of specialty materials (when necessary). Dust from material handling activities (when the front-end loader is not equipped with a fully enclosed and ventilated cab). Dust from the plant yard/haul road. 						
Maintenance Worker	Inspects, services, repairs, and adjusts equipment. Cleans up around the facility.						
	 Dust from the plant yard/haul road, raw material storage piles, conveyors, weight scales, and process equipment (such as dust collectors). 						
ū	ended to represent job functions; actual job titles might differ, and responsibilities might , depending on the facility.						
Source: ERG-GI, 2008	•						

Baseline Conditions and Exposure Profile

The following sections describe baseline conditions and the exposure profile for each affected job category based on two OSHA Special Emphasis Program (SEP) inspection reports, previously described in ERG-GI (2008). After reviewing the information presented above, OSHA concludes that cold mix plants are no dustier than hot mix plants (and might be somewhat less dusty as they lack dryers and screens). Furthermore, some plants equipped to produce hot mix also produce cold mixes. Therefore, in the absence of information specific to cold mix plants, OSHA preliminarily concludes that the available exposure data apply to both hot and cold mix production, but might overestimate the exposure of some workers when the plant is making a product using cold mix techniques.

The exposure data available to OSHA for this industry include one sample greater than 6 hours duration (53 micrograms per cubic meter $[\mu g/m^3]$) and four samples between 4 and 5 hours duration (all below the limits of detection [LOD] of 19 to 21 $\mu g/m^3$). Had the sample durations been longer, all four samples would have resulted in lower volume-adjusted non-detectable concentrations. Although limited, these sources represent the best data available to OSHA for workers in the asphalt paving products industry. Table IV.C-2 summarizes the exposure information for the affected job categories.

Baseline Conditions for Facility Operators

The only information available for facility operators is one personal breathing zone (PBZ) respirable quartz exposure result at the LOD, which in this case is less than or equal to $21~\mu g/m^3$ (290-minute sample). This value was obtained for an operator working in an air-conditioned room at a continuous feed asphalt plant where visible dust had been greatly reduced by maintenance and adjustments to an existing ventilation system on the blending equipment and water spray in the sand/aggregate drier exhaust system (OSHA SEP Inspection Report 300576204). In the absence of additional information, OSHA preliminarily concludes that this is

¹⁵ As noted in Section IV.A – Methodology, OSHA's exposure profiles give preference to samples that are 6 hours or longer. However, due to the extremely limited exposure data available for the asphalt paving industry, here OSHA has also considered data from four samples greater than 4 hours duration. In this case all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 4-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

¹⁶ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

¹⁷ Assuming that these workers' exposures remain negligible or very low, an increased sampling time and subsequent increase in collected volume would result in a lower nondetectable concentration (i.e., the quantity of silica would remain consistent, but the volume would increase). Note that where full-shift results are available for a job category, OSHA has relied primarily on those better-supported data.

Table IV.C-2
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Asphalt Paving Products Industry (NAICS 324121)

	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (μg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (µg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Facility Operator	1	21	21	21	21	1 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Front-End Loader Operator	2	37	37	20	53	1 (50%)	0 (0%)	1 (50%)	0 (0%)	0 (0%)	
Maintenance Worker	2	20	20	20	20	2 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Totals	5	27	20	20	53	4 (80%)	0 (0%)	1 (20%)	0 (0%)	0 (0%)	

Notes: All samples are personal breathing zone (PBZ) results for durations of 272 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

the baseline working condition for facility operators and that the baseline exposure level for these workers is $21 \,\mu g/m^3$.

Because of the limited data available, OSHA also reviewed the exposure results for batch operators in the ready-mixed concrete sector (addressed elsewhere in this analysis). Batch operators at ready-mixed concrete plants perform tasks similar to those performed by plant operators at asphalt plants (both hot and cold mix). The three PBZ exposure results available for batch operators are all less than the LOD (ERG-GI, 2008). Although these data are for a different industry sector, they lend additional support to the exposure result for facility operators in the asphalt paving products manufacturing industry.

Baseline Conditions for Front-End Loader Operators

Based on a review of two silica results obtained during two OSHA inspections at asphalt plants (ERG-GI, 2008), OSHA found that for front-end loader operators both the median and mean exposure levels are 37 $\mu g/m^3$ and that results range from the LOD (in this case 20 $\mu g/m^3$, for a 290-minute sample) to 53 $\mu g/m^3$ (435-minute sample). At both of the plants, the front-end loader operators scooped sand, aggregate, and other filler materials and dumped them into hoppers (OSHA SEP Inspection Report 2116507 and 300576204). At one of the plants, previous maintenance work on existing dust controls had substantially reduced visible dust on the sampling date. OSHA concludes that the working conditions for these front-end loader operators are typical of baseline conditions.

Just as it did for the previous job category, OSHA also reviewed the exposure results for front-end loader operators in the ready-mixed concrete sector. These workers are referred to as raw material handlers in the ready-mixed concrete sector discussion. The eight full-shift PBZ samples for raw material handlers have a median of $13 \,\mu\text{g/m}^3$, a mean of $23 \,\mu\text{g/m}^3$, and a range from $10 \,\mu\text{g/m}^3$ to $57 \,\mu\text{g/m}^3$. Although the ready-mixed concrete exposure data are for a different (but similar) industry sector, they lend support to the preliminary finding that the true median exposure for front-end loader operators in the asphalt paving products industry is similar to, or possibly somewhat less than, the median of $37 \,\mu\text{g/m}^3$ in Table IV.C-2.

Based on the best available information, OSHA preliminarily concludes that at least half (50 percent) of front-end loader operators are currently exposed to silica levels of 37 μ g/m³ (the median level presented in Table IV.C-2) or less, and that most exposures are expected to be below the proposed 50 μ g/m³ PEL.

Baseline Conditions for Maintenance Workers (Laborers)

OSHA reviewed two PBZ samples obtained during the OSHA inspection at the same asphalt plant previously described (where maintenance recently performed on existing controls had reduced visible dust). These laborers serviced machinery, picked trash from the belt carrying aggregate to the blender, and assisted with trucks (OSHA SEP Inspection Report 300576204). OSHA preliminarily concludes that these are baseline conditions for maintenance workers. As summarized in Table IV.C-2, the mean and median PBZ respirable quartz exposure level for these maintenance worker results is 20 µg/m³ (LOD) (ERG-GI, 2008). This value is based on two PBZ samples (sample durations of 282 and 297 minutes).

OSHA also reviewed exposure data for maintenance workers in the ready-mixed concrete industry (ERG-GI, 2008). The five full-shift PBZ samples for these workers have a median of $11 \mu g/m^3$ and a mean of $27 \mu g/m^3$. These results ranged from $11 \mu g/m^3$ to $58 \mu g/m^3$. The findings in the ready-mixed concrete industry (an industry that is similar to asphalt paving product manufacturing) suggest that typical exposures for maintenance workers might be less than $50 \mu g/m^3$ and so support the available results for workers in this job category in the asphalt paving industry.

Based on the best available exposure data, OSHA preliminarily concludes that the results summarized in Table IV.C-2 represent baseline conditions for this job category. Thus, the preliminary baseline exposure level is estimated to be $20 \,\mu\text{g/m}^3$.

Additional Controls

Additional Controls for Facility Operators

OSHA does not anticipate that the routine activities of facility operators will generate silica concentrations in excess of $50~\mu\text{g/m}^3$ because the facility operator's work station is typically isolated from production operations. Therefore, additional exposure controls are not required for this job category. In those instances where elevated exposure might occur, silica levels can be reduced through the use of fully enclosed and ventilated operator control rooms and/or by controlling adjacent sources of silica-containing dust through local exhaust ventilation (LEV) and dust suppression methods.

Although few data are available regarding exposure reduction through LEV or dust suppression methods, these methods are generally effective in controlling silica dust. In a 272-minute sample, OSHA measured a PBZ concentration less than the LOD ($21 \mu g/m^3$ in this case) for a facility operator who worked in an air-conditioned booth at the previously discussed hot-mix asphalt plant where maintenance and adjustments to existing local exhaust ventilation (on the blender) and wet scrubber (aggregate drier exhaust) had greatly reduced visible dust (OSHA SEP Inspection Report 300576204).

Related studies with the use of dust suppressants suggest that a significant reduction in silica exposure can be achieved with the proper use of dust suppressants to control fugitive dust emissions associated with haul roads, and aggregate storage and handling. For example, a university study compared the performance of four dust suppressants (lignosulfonate, calcium chloride, magnesium chloride, and no treatment) on an unpaved roadway over 4 1/2 months. The dust suppressants reduced fugitive dust emissions by 50 to 70 percent when compared with the untreated section (Addo and Sanders, 1995).

Additional Controls for Front-End Loader Operators

Based on summary information from Table IV.C-2 and from the ready-mix concrete industry, OSHA finds that the exposures of at least half (50 percent) of front-end loader operators is already less than 50 $\mu g/m^3$. In those instances where elevated exposure still occurs, the silica exposure of front-end loader operators will be reduced through improved maintenance of existing dust control systems. Furthermore, silica levels can be reduced through the use of fully enclosed, sealed, ventilated, and maintained operator cabs and/or by controlling adjacent sources of silica-containing dust through LEV and wet or other dust suppression methods.

Dust suppression methods are particularly beneficial for work with sand and aggregates, such as those that are manipulated by front-end loader operators. Simple foams provide dust control benefits similar to water spray, but offer increased dust control capacity compared with the same volume of water (Midwest-Edwards, 2009). For this reason a simple foam applied at the hopper can be an appropriate dust suppression method for aggregates that will eventually pass through a drier (where energy is required to remove moisture). The foam will provide dust suppression benefits for the front-end loader operator and downstream workers (such as belt pickers and maintenance workers), and compared with plain water the foam will contribute less moisture that must be removed later in the drier. OSHA notes that it is important to consider the ultimate use of the aggregate and the compatibility of dust suppressant substances to that use (Midwest-Edwards, 2009).

For facilities where elevated exposures persist, well-sealed, air-conditioned cabs maintained under positive pressure with filtered air provide an additional control option for loader operators. While cabs are available, the cabs are not consistently used as a dust control measure. Operators frequently open the windows and cab interiors can contain a notable amount of silica-containing dust. Additionally, NIOSH and the Mine Safety Health Administration (MSHA) report that, in general, heavy equipment cabs are poorly sealed and that original-equipment ventilation design does not necessarily provide positive pressure or appropriately filter air (NIOSH 2009-123, 2009; NIOSH Mobile Cab Web site, no date; MSHA 2000a, 2000b, 2000c). To effectively reduce the silica exposure of loader operators, cabs will need to be modified.

Although data documenting the effectiveness of such enclosures (i.e., equipment cabs) at asphalt paving product facilities are not available, data from other sources suggest a 94 to 99.5 percent reduction in respirable dust (inside compared with outside the cab) with well-sealed, air-conditioned, and filtered cabs (ERG-GI, 2008). The precise reduction depends on dust size and the ventilation system. Operators working in heavy equipment cabs designed to meet the American Society of Agricultural Engineers' (ASAE) standard should experience exposure reductions in this general range. Although these cabs require regular maintenance to function properly and concerns regarding the construction standards of new heavy equipment exist, OSHA estimates that appropriately fitted and maintained cabs would offer a similar reduction in silica exposure for front-end loader operators in the asphalt paving products industry (ERG-GI, 2008).

Additional Controls for Maintenance Workers (Laborers)

Based on the exposure profile (Table IV.C-2), OSHA estimates that the current exposure level for most maintenance workers (laborers) is less than 25 μ g/m³. In those instances where elevated exposure occurs, silica levels can be reduced by: 1) controlling adjacent sources of silica-containing dust (e.g., yard dust and dust associated with aggregate storage and handling activities) through wet or other dust suppression methods (discussed above), 2) installing enclosures and exhaust ventilation, and/or 3) using wet cleaning methods and high-efficiency particulate air (HEPA)-filtered vacuuming. For some maintenance and repair

activities engineering controls might not be feasible (e.g., servicing the inside of a dust collector/bag house). In these cases respiratory protection might be necessary to control worker exposure to silica.

The use of effective exhaust ventilation in controlling worker exposures to silica is illustrated by a Canadian study of a rock crushing plant that installed an LEV system with a wet dust collector (Grenier, 1987). To evaluate the system, researchers collected area samples for silica at five locations inside the facility before and after the original general exhaust ventilation system was replaced with the LEV system. Operation of the LEV system was associated with reductions of silica levels ranging from 20 percent to 79 percent.

In another study, the U.S. Bureau of Mines designed and evaluated a total mill ventilation system (TMVS) for a clay processing facility that performed crushing and screening operations (Cecala et al., 1996). Use of the system was associated with an average respirable dust reduction of 40 percent throughout the facility. Although personal samples were not collected and silica exposures were not determined, OSHA anticipates that similar reductions in respirable dust levels in asphalt paving products facilities would result in reduced exposures for maintenance workers.

NIOSH repeatedly recommends vacuuming with an approved HEPA-filtered vacuum or the use of wet cleaning methods to minimize worker exposure to hazardous air contaminants such as asbestos, silica, and heavy metals during housekeeping activities (ERG-GI, 2008). Additionally, OSHA general industry standards for asbestos and cadmium specify that work surfaces are to be cleaned wherever possible by vacuuming and that HEPA-filtered vacuuming equipment must be used for vacuuming.

Feasibility Finding

Feasibility Finding for Facility Operators

OSHA estimates that most facility operators experience exposure levels less than 25 $\mu g/m^3$. This finding is based on one sample result and analogous exposure data from the ready-mixed concrete industry. OSHA finds that most facility operators are not likely to have silica exposures in excess of 50 $\mu g/m^3$ because they are usually isolated from production operations in a control room or booth. Additional exposure controls are not anticipated for this job category. In instances where elevated exposures might occur, OSHA estimates that silica levels can be reduced to 50 $\mu g/m^3$ or less through the use of fully enclosed and ventilated operator control rooms and/or by controlling adjacent sources of silica-containing dust through LEV.

Feasibility Finding for Front-End Loader Operators

OSHA estimates the preliminary baseline exposure level for front-end loader operators to be less than 50 $\mu g/m^3$. This finding is based on two sample results and analogous exposure data from the ready-mixed concrete industry. Additional exposure controls are not anticipated for this job category; however, should elevated exposure occur, OSHA estimates silica levels can be reduced to 50 $\mu g/m^3$ or less through the use of fully enclosed, sealed, ventilated, and maintained operator cabs and/or by controlling adjacent sources of silica-containing dust through LEV or dust suppression methods.

Feasibility Finding for Maintenance Workers (Laborers)

OSHA estimates the preliminary baseline exposure level for all maintenance workers to be less than 25 $\mu g/m^3$. This finding is based on two sample results (both under 25 $\mu g/m^3$) and relevant exposure data from the ready-mixed concrete industry. While a need for additional controls is not anticipated, in instances where elevated exposures might occur OSHA estimates silica levels can be reduced to 50 $\mu g/m^3$

or less by: 1) utilizing wet or other dust suppression methods, 2) installing engineering controls such as enclosures and LEV, and 3) using wet cleaning methods and HEPA-filtered vacuuming.

Overall Feasibility Finding for Asphalt Paving Facilities

In summary, OSHA preliminarily concludes that, by implementing additional controls for some workers, asphalt roofing facilities can achieve exposure levels of $50 \mu g/m^3$ or less for most of their workers most of the time.

REFERENCES

- Addo, J.Q., and T.G. Sanders, 1995. Effectiveness and environmental impact of road dust suppressants. Mountain-Plains Consortium Report No. 95-28A. **OSHA-2010-0034-0516**
- Cecala, A.B., J.H. Daniel, and E.D. Thimons, 1996. Methods to lower dust exposures at mineral processing operations. Applied Occupational and Environmental Hygiene 11(7):854-859. **OSHA-2010-0034-1413**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [FHWA] Federal Highway Administration, 2008. Warm mix asphalt technologies and research. Available at http://www.fhwa.dot.gov/pavement/asphalt/wma.cfm. **OSHA-2010-0034-0674**
- Grenier, M.G., 1987. Evaluation of a wet dust collector at an underground crushing operation. Fifty-Sixth Annual Technical Session, Mines Accident Prevention Association of Ontario, Canada. **OSHA-2010-0034-0717**
- [Midwest-Edwards] Midwest Industrial Supply, Inc., 2009. Personal communication between Lynn Edwards, mining dust control specialist at Midwest Industrial Supply, Inc., and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-1360**
- [MSHA] Mine Safety Health Administration, 2000a. Memorandum from R.A. Haney regarding respirable dust and silica study at the Gooseneck Branch Mine, Lodestar, Energy, Inc. Mine I.D. No. 15 18045, Pike County, Kentucky. January 12. **OSHA-2010-0034-0822**
- [MSHA] Mine Safety Health Administration, 2000b. Memorandum from R. A. Haney regarding respirable dust and silica study at the Three Mile Mine No. 1, Branham and Baker Coal Co. Inc., Mine I.D. No. 15 17659, Pike County, Kentucky. January 12. **OSHA-2010-0034-0823**
- [MSHA] Mine Safety Health Administration, 2000c. Memorandum from R.A. Haney regarding respirable dust and silica study at the Kesco Pit, TDK Coal Sales Inc., Mine I.D. No. 36 07707, Armstrong County, Pennsylvania. March 15. **OSHA-2010-0034-0824**
- [NIOSH 2009-123] National Institute for Occupational Safety and Health, 2009. Reducing hazardous dust in enclosed operator cabs during construction. **OSHA-2010-0034-0839**

- [NIOSH Mobile Cab Web site] National Institute for Occupational Safety and Health, no date. Internet Web site: Improvements in mobile equipment cabs to reduce dust exposure. Available at: http://www.cdc.gov/niosh/nas/mining/intermediateoutcome6.htm OSHA-2010-0034-0888
- [OSHA SEP Inspection Report 2116507] OSHA Special Emphasis Program Inspection Report 2116507. **OSHA-2010-0034-0186**
- [OSHA SEP Inspection Report 300576204] OSHA Special Emphasis Program Inspection Report 300576204. **OSHA-2010-0034-0077**

Asphalt Roofing Materials Description

Manufacturers of asphalt roofing materials produce roofing products that can be classified in three broad categories: shingles, surfaced and smooth roll roofing, and asphalt-saturated felt rolls. Shingles and roll roofing are outer roof coverings, and saturated felts are inner roof coverings used as underlayment protection for the exposed roofing materials. Shingles and roll roofing consist of three basic components: 1) a base material of organic felt or fiberglass mat, 2) an asphalt coating, and 3) a surfacing of mineral granules. Saturated felts consist of dry felt saturated with asphalt (ERG-GI, 2008). These manufacturers are classified in the six-digit North American Industry Classification System (NAICS) 324122, Asphalt Shingle and Coating Materials Manufacturing.

The production of asphalt roofing materials is a continuous process performed on a roofing machine that begins with a roll of base material at one end and concludes with the finished product at the other end (ERG-GI, 2008). In simple terms, the principal steps in the manufacturing process include unwinding a roll of base material and saturating it with asphalt by passing this continuous sheet of material through a series of hot asphalt tanks, ending with a coater unit that applies a final layer of mineral-stabilized asphalt (ERG-GI, 2008). After leaving the coater unit, the base material for either shingles or roll roofing passes through a mineral applicator where minerals are pressed into the hot, coated surface on both sides. The mineral stabilizers increase the coating's resistance to weathering and fire. After application of the mineral surfacing, the coated sheet is rapidly cooled and air dried. A strip of adhesive is applied to the dry material, which is then cut and packaged (ERG-GI, 2008).

Although this process is highly automated, employees ensure the flow of raw materials and monitor the machinery. Mineral stabilizer material is delivered by truck, conveyed to storage bins, heated, and then mixed with the coating asphalt. Granules and back surfacing materials are brought by rail or truck and mechanically or pneumatically conveyed to storage bins and hoppers (ERG-GI, 2008). Each step in the operation has a worker assigned to it, and exposures are primarily from the materials that are added at that step. For the purposes of this discussion, workers with potential silica exposure have been identified as production operators and (mineral) material handlers. Their job descriptions are described in Table IV.C-3.

¹⁸ Typical mineral stabilizers include finely ground slate (5 to 15 percent silica content), limestone (up to 67 percent), dolomite (0 to 3 percent), and trap rock (up to 12 percent). Other materials also may be used (ERG-GI, 2008). Backing minerals include talc (up to 5 percent silica content), sand (75 to 98 percent), or mica (up to 10 percent), while the front side can also receive ceramic granules (ERG-GI, 2008).

Table IV.C-3 Job Categories, Major Activities, and Sources of Exposure of Workers in the Asphalt Roofing Materials Industry (NAICS 324122)							
Job Category*	Major Activities and Sources of Exposure						
Production Operator (coater, press,	Monitoring production line operations. Dust from drying and preheating mineral stabilizer.						
cooling section, and relief operator)	Dust from mineral surfacing (pressing minerals such as mica or talc into both sides of the base material).						
	Dust from mineral storage hoppers and bins in close proximity to the coater.						
Material Handler (slate assistant, granule assistant)	Handling and monitoring the use of granules and other minerals and loading the materials into hoppers.						
	Dust from manually loading materials into hoppers.						
	Dust from the mineral transfer system.						
	Dust from mixing silica-containing minerals with coating asphalt.						
	tended to represent job functions; actual job titles may differ and responsibilities may be epending on the facility.						
Source: FRG-GL 2008	8						

Baseline Conditions and Exposure Profile

The only available personal breathing zone (PBZ) respirable quartz monitoring data for the asphalt roofing industry are 12 samples from five NIOSH health hazard evaluations (HHE) conducted in the late 1970s at five different facilities (ERG-GI, 2008). These results are summarized in Table IV.C-4. In the absence of other exposure data, these reports provide the most complete information available on silica exposures and represent the best available data.

Because the NIOSH HHEs were all conducted in the 1970s, OSHA reviewed more recent silica exposure data from 1983 through 2001 from OSHA's Integrated Management Information System (IMIS). These data are difficult to interpret because information regarding worker activities, workplace conditions, engineering controls, personal protective equipment, non-detectable sample concentrations, and sample duration is not available. However, the IMIS data represent the only other source of more current information to date for this analysis and supplement the NIOSH evaluations.

Asphalt shingles and rolled roofing products are manufactured on high-speed, continuously operating machines. Worker exposure to dust and other particulate matter associated with mineral handling and storage operations is typically controlled through the use of process enclosures and local exhaust ventilation (LEV) hoods. During mineral surfacing, the application of granules and mineral-backing or parting agents generates dust in the mineral application and cooling process areas of the plant. All manufacturers reportedly use LEV and bag-type dust collectors. General dilution ventilation in the

¹⁹ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

²⁰ OSHA reviewed the IMIS data for this industry to supplement the NIOSH data, which, obtained in the 1970s, are considerably older than results available for other industries evaluated for this analysis. For each applicable silica result presented in IMIS as Exposure-Type "T" (time-weighted average), the silica concentration was calculated based on the reported 8-hour TWA PEL and the reported respirable dust exposure level.

cooling sections of the manufacturing line also contributes to lower contaminant exposures, although its effectiveness may vary within the industry (NIOSH 2001-127).

Baseline Conditions for Production Operators

The exposure profile for production operators is based on five PBZ silica samples obtained by NIOSH at four different asphalt roofing manufacturing facilities. The samples have a median exposure of 29 micrograms per cubic meter ($\mu g/m^3$), a mean of 56 $\mu g/m^3$, and a range from less than 28 $\mu g/m^3$ (below sample limit of detection [LOD]) to 131 $\mu g/m^3$.

To provide additional insight into the exposure profile for this job category, OSHA examined the IMIS database for relevant exposure information in Standard Industrial Classification (SIC) group 2952. The database contains 17 entries (between August 1983 and July 2001) for workers with job descriptions matching those in the production operator exposure profile. Ten (59 percent) of these samples had detectable silica with a median of 57 μ g/m³, a mean of 120 μ g/m³, and a range from 2 μ g/m³ to 739 μ g/m³. Only positive IMIS results are included in this descriptive analysis because the volume-adjusted reporting limit concentrations for the non-detectable samples are not available. The true median is likely to be lower because seven samples (41 percent) of the IMIS entries representative of roofing machine production line equipment operators are non-detectable.

OSHA has determined that the exposure profile derived from the NIOSH HHE reports is the best characterization of these workers' baseline exposure level. As indicated in Table IV.C-4, for production operators this HHE data has a median of $29~\mu g/m^3$, indicating that even in the 1970s the exposure level of most production operators was less than $50~\mu g/m^3$.

Asphalt roofing industry information for other air contaminants suggests that more recent silica exposure values could be lower. The asphalt roofing products manufacturing industry summarized exposure data collected during 1980 to 1997 at 53 plants of four companies. The data collected was composed of total particulate samples and benzene- or cyclohexane-soluble samples. A review of the data indicates that the average exposures, expressed as total particulates or as solubles, declined after 1990. Silica exposures are also likely to have declined since the successfully implemented engineering controls would also be effective for silica. This reduction is attributed to the following circumstances: 1) the elimination of the initial saturating process due to the introduction of fiberglass mats, which do not require this step; 2) the improvement of capture efficiency of exhaust hoods; 3) the conversion to process enclosures; and 4) the reduction of fugitive emissions associated with the requirements of the Clean Air Act Amendment of 1990 (NIOSH, 2001).

²¹ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-4
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Asphalt Roofing Materials Industry (NAICS 324122)

Job Category	Exposure Summary			Exposure Range		Exposure Profile					
	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Production Operators	5	56	29	28	131	0 (0%)	3 (60%)	1 (20%)	1 (20%)	0 (0%)	
Material Handlers	7	83	67	29	188	0 (0%)	2 (29%)	3 (43%)	2 (29%)	0 (0%)	
Totals	12	71	59	28	188	0 (0%)	5 (42%)	4 (33%)	3 (25%)	0 (0%)	

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

Internationally, the comparable German asphalt roofing felt and bitumen webs manufacturing industry saw a marked decline in worker quartz exposure over the decades between 1983 and 2004. The Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung (BGIA, 2006) reported that the mean respirable quartz exposure level fell from 150 μ g/m³ (average of more than 225 results from 22 plants for the years 1983 to 1988) to 40 μ g/m³ (average of 22 results from 10 plants between 1995 and 2004). Over the same periods, the median silica result was reduced from 40 μ g/m³ to 10 μ g/m³, and the 90th percentile value (representing the higher individual exposures) was cut by 62 percent to 100 μ g/m³ in the German asphalt roofing industry. Although reductions in the percent quartz in air samples accounted for much of the decline, over the decades the biggest change was in the measured concentration of respirable dust, indicating that improvements in equipment, materials, control technology, and work practices have effectively reduced exposure levels for even the dustiest jobs in this industry.

Similarly, Anttila et al. (2009) examined concentrations of respirable quartz dust from data collected at roofing membrane surfacing plants in Finland from 1975 to 2005. They estimated the mean to be 980 $\mu g/m^3$ (n=34) for the years 1975 to 1979. For the years 2000 to 2005, however, the mean for production workers was 380 $\mu g/m^3$ (n=27).²² The authors credit improvements in dust control and work methods implemented in the mid-1980s for reducing average exposures. Although approximately one-third of the data are from personal measurements and two-thirds are from area measurements, the data still demonstrate a greater than two-fold reduction in silica concentrations over a 30-year period.

OSHA believes that, given the implementation of more efficient technology and updated work practices since the NIOSH evaluations in the late 1970s, the U.S. trends and international experience are strong indications that silica exposures in the U.S. have also been reduced in the asphalt roofing materials manufacturing industry. As a result, OSHA estimates that current silica exposure levels are lower by half than those reported in the NIOSH HHE reports of the 1970s.

Baseline Conditions for Material Handlers

The exposure profile for material handlers is based on seven PBZ silica samples collected by NIOSH investigators during HHEs at five different roofing manufacturing facilities. As shown in Table IV.C-4, the exposure profile for these workers has a median of 67 μ g/m³, a mean of 83 μ g/m³, and a range from less than 29 μ g/m³ (below sample limit of detection) to 188 μ g/m³.

Just as it did with the previous job category, OSHA examined the IMIS database for relevant exposure information in SIC group 2952. The database contains 22 entries (December 1979 to July 2001) for workers with job descriptions most representative of material handlers in the roofing materials manufacturing industry. Twelve (55 percent) of the sample entries are positive for silica and have a median of $60~\mu\text{g/m}^3$, a mean of $105~\mu\text{g/m}^3$, and a range from $21~\mu\text{g/m}^3$ to $462~\mu\text{g/m}^3$. As indicated previously, only positive IMIS results are included in this descriptive analysis because the volume-adjusted reporting limit concentrations for the non-detectable samples are not available. The true median for this job category is likely to be lower than $60~\mu\text{g/m}^3$ because 45 percent (10 samples) of the sample entries are non-detectable.

OSHA has determined that the exposure profile derived from the HHE reports is the best characterization of material handlers' baseline exposure level. The median for this group of workers is 67 μ g/m³ (the exposure profile median level). Based on the same information from NIOSH (2001-127) and BGIA (2006) presented in the discussion of production operators, OSHA finds that the results for material

²² The liquid sedimentation technique used in Finland produces respirable quartz concentrations that are 2-fold greater than the commonly used cyclone separation method.

handlers generated from the NIOSH data might overestimate the baseline exposure level for this job category by greater than half.

Additional Controls

Additional Controls for Production Operators

OSHA estimates that 60 percent of production operators currently experience exposure levels of $29 \,\mu\text{g/m}^3$ or lower. This finding is based on five sample results from HHEs, a review of relevant exposure information in the IMIS database, and international trends for this industry. Based on the available data, additional exposure controls will be required for 20 to 40 percent of production operators. In those instances where elevated exposures occur (e.g., at the coater, cooling, and press areas), appropriate control options to reduce silica levels to $50 \,\mu\text{g/m}^3$ or less include adequate LEV and process enclosures, and less dusty housekeeping methods (e.g., high-efficiency particulate air [HEPA]-filtered vacuums). In addition, the use of washed sand can reduce exposure. In an analysis of respirable quartz exposures obtained at two Finnish roofing membrane plants from 1975 to 2005, worker exposure was significantly lower when washed quartz sand was used compared with unwashed quartz sand (Anttila et al., 2009).

Ventilation and Process Enclosures

During two HHEs at asphalt roofing products manufacturing facilities, NIOSH investigators recorded PBZ silica exposures of 131 $\mu g/m^3$ and 61 $\mu g/m^3$ (non-detectable/sample limit of detection) for one coater operator and one press operator, respectively. In both cases, NIOSH recommended that LEV be provided over the coater and press areas to reduce operator exposures (ERG-GI, 2008). At other roofing products facilities, NIOSH investigators recommended that process enclosures and ventilation systems be serviced/repaired to eliminate fugitive emissions associated with enclosure leaks and less-than-optimal hood capture (ERG-GI, 2008).

At present, the best way to remove process emissions at the coater is through adequate general and local exhaust ventilation in conjunction with full enclosure of the coating process or canopy hoods (over the process). Canopy hoods also can be extended from the coater to the press area to control emissions associated with mineral surfacing/granule application (NIOSH 2001-127).

OSHA does not have data specifically measuring the exposure reductions achieved with adequate ventilation and enclosures in the asphalt roofing products manufacturing industry; however, evidence from similar processes in other industries suggests the size of the reduction that may be achievable. The use of effective exhaust ventilation in controlling worker exposures to silica is illustrated by a Canadian study of a rock-crushing plant (Grenier, 1987). Area samples collected before and after installation of an LEV system with a wet dust collector demonstrated that operation of the system was associated with silica reductions ranging from 20 percent to 79 percent.

Additionally, silica levels below 50 $\mu g/m^3$ are reported for a pottery product manufacturing facility with properly enclosed and ventilated process equipment. OSHA reported an exposure level of 29 $\mu g/m^3$ for a worker who operated LEV-equipped mixers to which raw materials were transferred from bins by ventilated, automated conveyance equipment (OSHA SEP Inspection Report 300384435). OSHA also obtained a similar result (23 $\mu g/m^3$) for a worker who charged mixers, primarily using enclosed automated equipment (OSHA SEP Inspection Report 300180916).

Housekeeping

NIOSH and OSHA both recommend vacuuming with an approved HEPA-filtered vacuum (or the use of wet cleaning methods) as a method to minimize worker exposure to silica in the workplace. During five HHEs at asphalt roofing products manufacturing facilities, NIOSH recommended vacuuming as opposed to compressed air for cleaning fine dust out of process equipment (ERG-GI, 2008). Additionally, OSHA general industry standards for hazardous substances (such as asbestos and cadmium) specify that work surfaces are to be cleaned whenever possible by vacuuming and that HEPA-filtered vacuuming equipment must be used for vacuuming.

Implementing vacuuming as a cleaning method will contribute to lower worker exposure levels. A study of Finnish construction workers compared the silica exposure levels for workers dry sweeping and using alternate cleaning methods. Compared with dry sweeping, estimated worker exposures were approximately three times lower when the workers used squeegees to sweep surfaces, and approximately five times lower when workers used vacuums (Riala, 1988).

Additional Controls for Material Handlers

Based on the exposure profile (Table IV.C-4), OSHA estimates that the current exposure level for at least 29 percent of mineral material handlers is less than $50~\mu\text{g/m}^3$. This finding is based on seven sample results from NIOSH HHEs and a review of relevant exposure data from the OSHA IMIS database. Additional controls are required to reduce exposures to $50~\mu\text{g/m}^3$ or less for the remaining material handlers (up to 71 percent, but likely many fewer). These control options include local exhaust ventilation, preventive maintenance, and the use of less dusty housekeeping methods such as HEPA-filtered vacuuming.

Local Exhaust Ventilation

Adequate exhaust ventilation and process enclosures for the manufacture of asphalt roofing products have been described previously for the production operator job category and are equally applicable to mineral handling systems. NIOSH reports that LEV is generally installed at slate and dust drums, granule and backdust applicators, and transfer rolls to reduce dust exposure associated with mineral surfacing/handling activities (NIOSH 2001-127). Additionally, during four out of five HHEs conducted at asphalt roofing products manufacturing facilities, NIOSH investigators noted that mineral hoppers for talc, mica, and sand were ventilated (ERG-GI, 2008). In one case, the capture efficiency was less than optimal and in need of improvement.

During HHEs at the five asphalt roofing products manufacturing facilities (ERG-GI, 2008), NIOSH recommended the following engineering controls:

- Providing LEV at all mineral transfer points (five facilities).
- Repairing leaks in the mineral transfer system (four facilities).
- Providing all hoppers into which mineral products (such as sand and talc) are dumped with LEV (one facility) or increased LEV (one facility).

The highest exposures in the exposure profile (78 μ g/m³, 120 μ g/m³, and 188 μ g/m³) are associated with two facilities that did not have LEV at slate transfer points in the slate rooms (ERG-GI, 2008). The exposure of 120 μ g/m³ also was associated with a slate transfer system that leaked and required repairs.

OSHA does not have data specifically illustrating the exposure reductions achieved with adequate ventilation and enclosures in the asphalt roofing products manufacturing industry. However, the effectiveness of these engineering controls in reducing exposure levels below 50 μ g/m³ in other industries has been discussed in Section 1.3.1.1 (OSHA SEP Inspection Report 300384435, OSHA SEP Inspection Report 300180916).

Preventive Maintenance

Properly maintained mineral handling systems are necessary to ensure low exposures to silica-containing dusts during material transfer and other process-related operations. NIOSH investigators noted process leaks in and around enclosures and less-than-optimal LEV in one nonmetallic mineral processing facility manufacturing roofing granules (NIOSH HETA 91-0091-2418). NIOSH recommendations included: 1) implementing a preventive maintenance program, 2) designing and testing LEV systems according to recognized guidelines, and 3) replacing process enclosures that are removed for inspection or maintenance purposes as soon as the work is completed (NIOSH HETA 91-0091-2418).

Similarly, recommendations regarding specific operating and maintenance procedures were made by an engineering firm that completed ventilation improvements at a pottery clay manufacturer that mixed and packaged dry and de-aired moist clay products (OSHA SEP Inspection Report 116178096). The recommendations included: 1) sealing all holes in the elevators, pug mills, and other vessels holding or transporting product; and 2) performing routine preventive maintenance on equipment, including changing LEV filters.

Housekeeping

The effectiveness that low dust-producing cleaning methods (such as HEPA-filtered vacuuming) may have in reducing worker exposure to silica has been discussed earlier in this section.

Feasibility Finding

Feasibility Finding for Production Operators

Based on the best available information, OSHA estimates that the current exposure level for most production operators is $50~\mu g/m^3$ or less. This finding is based on information presented in Table IV.C-4 indicating that 60 percent (or more) of these workers already have exposure levels of $50~\mu g/m^3$ or below. In those instances where elevated exposure might occur, silica levels can be reduced to $50~\mu g/m^3$ or less through the use of adequate LEV, process enclosures, and the use of low dust-producing cleaning methods such as HEPA-filtered vacuuming. OSHA obtained results of $23~\mu g/m^3$ and $29~\mu g/m^3$ at two facilities that used enclosed and ventilated process equipment in another industry (pottery products) where workers oversee equipment that uses silica-containing mineral powders (OSHA SEP Inspection Reports 300384435 and 300180916).

Feasibility Finding for Material Handlers

OSHA estimates that more than 70 percent of material handlers require additional controls. This finding is based on seven sample results, presented in Table IV.C-4, and a review of the sample entries in the OSHA IMIS database (1979 to 2001) that are most representative of material handlers in the asphalt roofing products manufacturing industry. Where elevated exposures occur, additional controls will be required to reduce exposures to $50 \,\mu\text{g/m}^3$ or less for material handlers. Control options include properly enclosed, ventilated, and maintained mineral handling systems and the use of low dust-producing cleaning methods such as HEPA-filtered vacuuming. Though OSHA does not have data demonstrating

the effectiveness of engineering controls in asphalt roofing industry, their success in reducing exposure levels below 50 μ g/m³ in other industries has been previously discussed in the section on ventilation and process enclosures. Likewise, though OSHA does not have data documenting the effectiveness of preventive maintenance, both NIOSH and OSHA inspectors recommended preventative measures at asphalt roofing facilities (NIOSH HETA 91-0091-2418, OSHA SEP Inspection Report 116178096).

Overall Feasibility Finding for Asphalt Roofing Product Manufacturers

In summary, OSHA preliminarily concludes that by implementing additional controls for some workers, asphalt roofing facilities can achieve exposure levels of $50 \mu g/m^3$ or less for most of their workers most of the time.

Information published by BGIA (2006) suggests that exposure levels in the equivalent German industry have decreased by more than half since the early 1980s. OSHA believes that in the United States current exposure levels in this industry have also declined since the 1970s (when data used in the exposure profile was obtained by NIOSH). Thus, the exposure profile likely overestimates current exposures in the asphalt roofing industry. Additional information on full-shift PBZ silica results is needed for asphalt roofing industry employees to better characterize exposure for these workers in the United States.

REFERENCES

- Anttila, P., P. Heikkila, M. Makela, V. Schlunssen, and E. Priha, 2009. Retrospective exposure assessment for carcinogenic agents in bitumen waterproofing industry in Finland and Denmark. Annals of Occupational Hygiene (53)2:139–151. **OSHA-2010-0034-0529**
- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp OSHA-2010-0034-0553
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Grenier, M.G., 1987. Evaluation of a wet dust collector at an underground crushing operation. Fifty-Sixth Annual Technical Session, Mines Accident Prevention Association of Ontario, Canada. **OSHA-2010-0034-0717**
- [NIOSH 2001-127] National Institute for Occupation Safety and Health, 2001. Asphalt fume exposures during the manufacture of asphalt roofing products Current practices for reducing exposures. **OSHA-2010-0034-0837**
- [NIOSH HETA 91-0091-2418] National Institute for Occupational Safety and Health, 1991. Health hazard evaluation report: Minnesota Mining and Manufacturing (3M) Company, Little Rock, Arkansas. **OSHA-2010-0034-1377**
- [OSHA IMIS] Occupational Safety and Health Administration Integrated Management Information System. Electronic data from 1979 to 2002. **OSHA-2010-0034-1698**

- [OSHA SEP Inspection Report 116178096] OSHA Special Emphasis Program Inspection Report 116178096. **OSHA-2010-0034-0108**
- [OSHA SEP Inspection Report 300180916] OSHA Special Emphasis Program Inspection Report 300180916. **OSHA-2010-0034-0143**
- [OSHA SEP Inspection Report 300384435] OSHA Special Emphasis Program Inspection Report 300384435. Includes pages from related inspection 300384468. **OSHA-2010-0034-1436**
- Riala, R., 1988. Dust and Quartz Exposure of Finnish Construction Site Cleaners. Annals of Occupational Hygiene 32(2):215-220. **OSHA-2010-0034-1163**

Concrete Products

Description

Silica-containing materials are the main ingredients in the manufacture of concrete products, such as blocks, bricks, tanks, pipes, and dry mixes. Facilities manufacturing concrete products are classified in six-digit North American Industry Classification System (NAICS) codes 327331, Concrete Block and Brick Manufacturing; 327332, Concrete Pipe Manufacturing; 327390, Other Concrete Product Manufacturing; and 327999, All Other Miscellaneous Nonmetallic Mineral Product Manufacturing. OSHA has grouped together facilities in these industries based on the similarity of raw materials, processes, and worker activities associated with potential silica exposure. Another similar industry, NAICS 327320 – Ready-Mix Concrete Manufacturing, differs from those addressed here in many of the processes and job categories associated with silica exposure, and thus OSHA has created a separate section for it (see

IV.C.17 – Ready-Mix Concrete).

Concrete products are typically made by mixing cement (usually Portland cement), sand, and aggregate materials (such as gravel or crushed stone) with water in varying proportions depending on the final product. The mixed concrete is poured into forms or molding machines. The formed products are then allowed to harden (cure), and the forms are removed.²³ Certain products are finished by sawing, grinding, drilling, or abrasive blasting. Dry-mixed concrete is normally produced by drying the raw materials (cement, sand, and aggregate), mixing the dried materials, and then packaging the dry mixture (ERG-GI, 2008).

Based on the available literature and exposure monitoring data presented in NIOSH documents and OSHA Special Emphasis Program (SEP) reports, OSHA preliminarily concludes that workers in all phases of the production of concrete products have the potential for silica exposure. The primary job categories with potential for exposure are: material handler, mixer operator, forming operator, finishing operator, and packaging operator. Certain workers regularly perform tasks associated with multiple job categories. Table IV.C-5 presents a summary of the primary activities associated with silica exposure of workers in each job category. For detailed process descriptions, see ERG-GI (2008).

Table IV.C-5 Job Categories, Major Activities, and Sources of Exposure of Workers in the Concrete Products Industry (NAICS 327331, 327332, 327390, 327999)							
Job Category* Major Activities and Sources of Exposure							
Material Handler	Transferring silica-containing raw materials from storage silos to weigh hoppers via front-end loader; transferring product via fork lift or travel lift; manually stacking and palletizing product.						
	 Dust generated during transfer and dumping of raw material. Dust resuspended by heavy equipment operations. Dust from adjacent operations. 						

²³ "Curing" is the term for the chemical reaction that causes hardening of cement-based materials, such as concrete. Within hours of casting, most concrete products becomes firm enough to handle without the mold, but it can take days or weeks for the concrete to reach its full strength. "Uncured" concrete has recently become firm, but has not yet completed the hardening process.

Table IV.C-5 Job Categories, Major Activities, and Sources of Exposure of Workers in the Concrete Products Industry (NAICS 327331, 327332, 327390, 327999)							
Job Category*	Major Activities and Sources of Exposure						
Mixer Operator	Weighing and transferring silica-containing raw materials into mixing machines; operating and cleaning mixing machines.						
	 Dust generated during manual weighing and ingredient transfer. Dust generated during manual cleaning of mixers, especially dried concrete deposits. 						
Forming Operator	Transferring concrete into forms or molding machines manually or automatically; removing formed products; preparing and cleaning forms.						
	 Dust generated while removing forms from cast product and during cleaning of forms, especially dried concrete deposits. Dust from adjacent operations. 						
Abrasive Blasting Operator	Abrasive blasting on cured products.						
	 Dust from silica abrasive blasting media and concrete surface being abrasively blasted. 						
Finishing Operator	Grinding, chipping, coring, sawing, patching, or sanding on formed products.						
	 Dust generated during finishing activities on cured products. 						
Packaging Operator	Packaging dry, powdered concrete mixture.						
	 Dust released at bag nozzle. Dust in air displaced during filling or expelled when the bag is released from filling nozzle and drops to conveyer. Dust from low-quality bags breaking. 						
*Job categories are intended to allocated differently, depending	o represent job functions; actual job titles might differ and responsibilities might be g on the facility.						
Source: ERG-GI, 2008							

Baseline Conditions and Exposure Profile

To evaluate silica exposures of workers in concrete product manufacturing facilities, OSHA reviewed exposure monitoring data from 17 OSHA SEP inspection reports, five NIOSH case studies of concrete manufacturing, one contractor site visit, and one article in the published literature. ²⁴ These data have been previously described in ERG-GI (2008). ^{25, 26} OSHA also identified one additional article that contributes

²⁴ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

²⁵ One NIOSH report (NIOSH ECTB 233-101c, 1999), described in ERG-GI (2008) and included in the ERG-GI (2008) exposure profile, has now been excluded from data for this industry. Instead, the data from this NIOSH report are deemed more applicable to the exposure profile for the ready-mixed concrete industry and have been included in the technological feasibility analysis for the section covering that industry.

²⁶ Results from Fairfax (1998) (the article in the published literature) are described in ERG-GI (2008) but are not considered as part of the exposure profile due to a lack of sampling details (e.g., sample duration). The results are similarly excluded from this exposure profile.

to the exposure profile (Heitbrink, 2007). The facilities covered by these inspections, case studies, and articles produced a wide variety of concrete products ranging from precast concrete wall cladding and decorative concrete architectural elements, to water pipes and sacks of dry concrete and mortar mixes. Because of the richness of these data, OSHA restricted its analysis to observations obtained for workers performing single, well-defined tasks during the sampling period, thereby permitting a better characterization of the exposures associated with each job category. These exposure data are supplemented with qualitative process information from industry contacts and published literature.

OSHA identified three additional sources of information—NIOSH EPHB 282-11a (2003), Meijer et al. (2001), and BGIA (2008)—that are not described in the ERG-GI (2008) analysis and that do not contribute data to the exposure profile but provide relevant supporting information. Specifically, in NIOSH EPHB 282-11a (2003), though exposure data from a NIOSH investigation of a small business that fabricates concrete counter tops were not sufficiently documented (sample durations were not provided), the report indicates that three workers performing mixing and forming operations had trace 8-hour time weighted average (TWA) exposures (between the limit of detection [LOD] and the limit of quantification), and two workers performing patching and sanding operations in a room with general extraction and dilution ventilation and a ceiling mounted fan had a trace exposure and an exposure below the LOD.²⁷ This information demonstrates that establishments manufacturing concrete products can achieve low exposures for their workers.

Providing an international perspective, Meijer et al. (2001) reviewed silica exposure monitoring data from 96 workers at two Dutch concrete materials-producing factories and reported a mean of 59 micrograms per cubic meter (μ g/m³) and a range from 0.3 μ g/m³ to 186 μ g/m³ for samples averaging 8 hours in duration. Other international information, from the Institute for Occupational Safety and Health of the German Social Accident Insurance, indicates that silica exposure levels have been decreasing in German concrete products manufacturing facilities over recent decades. Based on more than 400 recent and historic samples, the mean silica result for German facilities manufacturing concrete products and precast components was 50 μ g/m³ during the decade ending in 2004, down from an average of 80 μ g/m³ for a similar period ending in 1984 (BGIA, 2008). BGIA (2008) attributed decreased exposure levels in this industry to improved (low-dust) production methods and increased use of enclosures, local exhaust ventilation (LEV), and wet methods to control dust.

Baseline Conditions and Exposure Profile for Material Handlers

As shown in Table IV.C-6, the median, full-shift personal breathing zone (PBZ) respirable quartz exposure reading for material handlers is $30~\mu g/m^3$ with a range of $11~\mu g/m^3$ to $620~\mu g/m^3$ and a mean of $80~\mu g/m^3$. These values represent the combined total of 31 readings reported for material handlers (ERG-GI, 2008). Eleven of the 31 exposure readings (35 percent) exceed $50~\mu g/m^3$, and five (16 percent) exceed $100~\mu g/m^3$.

All of the exposure readings for material handlers exceeding $50 \mu g/m^3$ were obtained in facilities where the majority of exposure readings for workers in all job categories also exceeded $50 \mu g/m^3$, suggesting poor dust control throughout these facilities. For example, OSHA obtained a result of $116 \mu g/m^3$ for a

²⁷ 8-hour TWA exposures are as reported by the investigator.

 $^{^{28}}$ The low reading of 0.3 $\mu g/m^3$ is as reported by the investigators. Samples for silica analysis were collected on cellulose acetate filters using Casella cyclones with airflow of 1.9 liters per minute (Meijer et al. 2001).

²⁹ At the time, Germany's Institute for Occupational Safety and Health of the German Social Accident Insurance was known as BGIA, but this organization is now called by the German acronym IFA.

material handler who operated a forklift to transport cast concrete products between various surface finishing stations at a facility that manufactured precast concrete siding. The report indicated that dust generated by various other processes in the facility was a contributing factor (OSHA SEP Inspection Report 300997012). This conclusion was supported by the fact that 9 of the 10 samples collected for workers in four job categories at the facility also exceeded $100~\mu\text{g/m}^3$. These circumstances suggest that material handlers at some facilities experience elevated silica exposure simply from passing through or working in areas where other workers' activities generate high concentrations of silica. If dust from these activities is permitted to accumulate, silica particles resuspended by passing forklifts can exacerbate the situation. The results for this industry also suggest that when dust is controlled for all job categories, material handler exposure levels are also reduced. In fact, most of the concrete products industry material handler exposure readings below $50~\mu\text{g/m}^3$ were obtained in facilities where the majority of exposure values for workers in all job categories also were less than $50~\mu\text{g/m}^3$.

At another concrete products facility, four samples for two material handlers evaluated on two consecutive days resulted in values of $48~\mu g/m^3$, $54~\mu g/m^3$, $57~\mu g/m^3$, and $73~\mu g/m^3$ while the workers inspected and prepared to palletize concrete blocks exiting an automated de-hacking machine used to unload blocks from a curing kiln (NIOSH ECTB 233-112c, 1999) and also performed a variety of other tasks, including dry sweeping. NIOSH noted that "most of the facility has 1/8-inch dust on the floor." The investigators concluded that the dry sweeping might have had a notable effect on worker exposure and that as an alternative the facility could eliminate dry sweeping by switching to either a centralized or portable HEPA-filtered vacuum system.

Table IV.C-6
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Concrete Products Industry (NAICS 327331, 327332, 327390, 327999)

Job Category	Exposure Summary			Exposure Range		Exposure Profile					
	Number of Samples	Mean (µg/m³)	Median (μg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Material Handlers ^A	31	80	30	11	620	13	7	6	3	2	
						41.9%	22.6%	19.4%	9.7%	6.5%	
Mixer Operators ^B	13	69	25	10	281	6	2	0	4	1	
						46.2%	15.4%	0.0%	30.8%	7.7%	
Forming Operators	42	22	14	11	107	35 83.3%	3 7.1%	3 7.1%	1 2.4%	0 0.0%	
Abrasive Blasting Operators ^C	15	2,484	126	10	26,826	2 13.3%	1 6.7%	3 20.0%	4 26.7%	5 33.3%	
Finishing Operators	37	82	29	11	347	17 45.9%	6 16.2%	4 10.8%	6 16.2%	4 10.8%	
Packaging Operators	6	117	84	11	370	2 33.3%	0 0.0%	2 33.3%	1 16.7%	1 16.7%	
Totals	144	315	24	10	26826	75	19	18	19	13	
						52.1%	13.2%	12.5%	13.2%	9.0%	

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Two results for mixer operator from NIOSH ECTB 233-101c (1999), previously described in ERG-GI (2008), were excluded from this exposure profile because they are more appropriately categorized in Section IV.C.17 – Ready-Mix Concrete of this feasibility analysis.

Sources: ERG-GI, 2008; Heitbrink, 2007.

A Four results for material handlers (no yard maintenance) from NIOSH ECTB 233-101c (1999), previously described in ERG-GI (2008), were excluded from this exposure profile because they are more appropriately categorized in Section IV.C.17 – Ready-Mix Concrete of this feasibility analysis.

^{C.}Three results for workers performing abrasive blasting (one result from ERG-concrete-fac-C [2002] and two results from OSHA SEP 300236882), previously described in the ERG-GI (2008) exposure profile, were excluded from this exposure profile due to short sample durations (less than 360 minutes).

Although the exposure of many material handlers appears to have been influenced by the activities of other job categories, in a few cases material handlers were performing tasks that generated substantial dust. The two highest results available to OSHA for this job category, $610 \, \mu g/m^3$ and $620 \, \mu g/m^3$, were obtained in a packaging area with ineffective ventilation where one material handler palletized sacks of dry concrete mix and the other used a front-end loader to transfer sand to a hopper feeding the dry mix blending equipment (OSHA SEP Inspection Report 108738295). Results of $60 \, \mu g/m^3$ (palletizing job) and $193 \, \mu g/m^3$ (loader operator moving sand and gravel) had been obtained in the same part of the plant the previous year (the report provides no explanation for the difference in exposure levels from one year to the next). OSHA did note that forced-air jets, intended to slightly levitate 80-pound sacks of dry mix concrete as the worker slid the sacks off the conveyer, blew dust (emitted from the bags during the transfer) into the workers' breathing zone. These results comprise three of the four values above $100 \, \mu g/m^3$ (among a total of 31 results for this job category), indicating that most material handlers at other concrete product facilities work under less extreme conditions. In this facility, however, both material handlers and packaging operators contributed to the substantial airborne silica in the area, where the material handlers were usually the most highly exposed workers.

For material handlers operating in outdoor work areas and product storage yards, thirteen results (42 percent) are associated with some variety of yard maintenance to control dust (not necessarily effectively), including the use of water spray, dust suppressants, crushed aggregate ground cover, or regular power-sweeping of paved surface. These results range from $11~\mu g/m^3$ to $110~\mu g/m^3$ and have a median of $24~\mu g/m^3$ and a mean of $34~\mu g/m^3$. The highest of these outdoor readings, $110~\mu g/m^3$, is associated with a yard that had been previously watered but let dry. Other watered yards (presumably not dried) and yards using a dust suppressant are associated with very low exposure readings, including five readings at or below the LOD and one reading of $21~\mu g/m^3$.

OSHA has preliminarily determined that the baseline conditions are best represented by the range of working conditions associated with the results summarized in Table IV.C-6. Therefore, the median value for all material handlers (30 μ g/m³), shown in Table IV.C-6, is also the median baseline value.

Baseline Conditions and Exposure Profile for Mixer Operators

As shown in Table IV.C-6, the median, full-shift PBZ respirable quartz exposure reading for mixer operators is 25 μ g/m³ with a range of 10 μ g/m³ to 281 μ g/m³ and a mean of 69 μ g/m³. These values are based on 13 readings for mixer operators (ERG-GI, 2008). Of the 13 mixer operator exposure samples, five results (38 percent) exceed 100 μ g/m³, and the remaining eight results are 25 μ g/m³ or less.

Two of the highest readings, $281 \,\mu\text{g/m}^3$ and $122 \,\mu\text{g/m}^3$, were obtained for mixer operators who cleaned the interior of a concrete mixer using handheld jackhammers to chip dried concrete residue. Other elevated readings— $134 \,\mu\text{g/m}^3$, $108 \,\mu\text{g/m}^3$, and $107 \,\mu\text{g/m}^3$ —were obtained for operators manually dumping bags of silica-containing materials at hoppers equipped with ineffective LEV systems (ERG-GI, 2008).

 $^{^{30}}$ The packaging operator working in the same area also had elevated exposures (370 $\mu g/m^3$ and 142 $\mu g/m^3$ in the two respective years) (OSHA SEP Inspection Report 108738295).

³¹ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Several low exposure readings include operators controlling enclosed mixers from ventilated control rooms. One low exposure result, $24 \mu g/m^3$, is for an operator who used a pneumatic chipping hammer and a compressed air wand to remove dried concrete from the interior of the mixer. This result, along with the two high exposure results described in the previous paragraph, indicates a wide variability in exposure for operators removing concrete from mixing drums, possibly due to variations in work practices, the amount of concrete being removed, and the amount of time spent on the task (a function of how frequently cleaning is performed).

Information from industry contacts suggests that common controls for mixer operators include enclosed mixers, automated weighing and charging of raw materials, and wet methods to clean mixing equipment. Facilities in this industry commonly use at least one of these controls, but no single control is consistently used throughout the industry (i.e., the baseline condition includes use of any one of several controls) (ERG-GI, 2008). Examples of results associated with these conditions include $12 \mu g/m^3$, $24 \mu g/m^3$, and $25 \mu g/m^3$. Mixer operators at some facilities, however, continue to manually charge mixers and clean mixing equipment using dry methods and experience higher exposure levels (ERG-GI, 2008).

OSHA has preliminarily determined that the baseline conditions for this job category are best represented by the range of situations under which results summarized in Table IV.C-6 were obtained. Thus, the median value for mixer operators in the Table IV.C-6 exposure profile (25 $\mu g/m^3$) also represents the median value for this job category under baseline conditions.

Baseline Conditions and Exposure Profile for Forming Operators

As shown in Table IV.C-6, the median, full-shift PBZ respirable quartz exposure reading for forming operators is 14 μ g/m³ with a range of 11 μ g/m³ to 107 μ g/m³ and a mean of 22 μ g/m³. These values are based on 42 readings for forming operators obtained from six OSHA SEP inspection reports and four NIOSH case studies (ERG-GI, 2008). Just four of the 42 full-shift PBZ respirable quartz readings for forming operators (10 percent) exceed 50 μ g/m³, and only one reading (2 percent) exceeds 100 μ g/m³. Thirty-five (83 percent) of the readings are 25 μ g/m³ or lower.

The highest reading, $107 \,\mu\text{g/m}^3$, was associated with a forming operator removing concrete siding from forms and palletizing it at an unventilated workstation. At this facility, 9 of 10 full-shift PBZ respirable quartz readings for workers in four job categories exceeded $100 \,\mu\text{g/m}^3$, indicating poor control of silica throughout (OSHA Inspection Report 300997012). OSHA notes that secondary exposure from activities of other workers might have contributed to the silica exposure of this forming operator.

Other exposures between 50 $\mu g/m^3$ and 100 $\mu g/m^3$ are associated with similar, widespread dust control problems (ERG-GI, 2008). Two such results were obtained at a facility for a worker controlling a concrete block-making machine. The worker stood 10 feet from the machine, which generated dust, and a dry sweeping activity. Additionally, this worker was 20 feet from a mixing machine, which emitted dust during hopper loading (NIOSH ECTB 233-112c, 1999).

Among the lowest results are six readings, ranging from less than or equal to $12 \mu g/m^3$ (LOD) to less than or equal to $14 \mu g/m^3$ (LOD), which were obtained for four operators at a facility visited by NIOSH. Three of the operators formed concrete products using computer-controlled molding machines. The operators used water spray, shovels, and mold vibrators to evenly distribute the wet concrete in the molds. The fourth operator manually assembled forms and then cleaned them by brushing and grinding (ERG-GI, 2008).

Based on OSHA SEP and NIOSH reports and discussions with concrete product manufacturers, OSHA finds that current or baseline conditions for forming operators involve the same range of working

conditions represented by the results for this job category summarized in Table IV.C-6. Thus, the overall median for that group is also the median baseline level for forming operators.

Baseline Conditions and Exposure Profile for Abrasive Blasting Operators

As shown in Table IV.C-6, the median, full-shift PBZ respirable quartz exposure reading for abrasive blasting operators is $126 \,\mu\text{g/m}^3$ with a range of $10 \,\mu\text{g/m}^3$ to $26,826 \,\mu\text{g/m}^3$, with a mean of $2,484 \,\mu\text{g/m}^3$. These values, generally higher than other job categories, are based on 15 results for abrasive blasting operators reported by OSHA, NIOSH, and ERG (described in ERG-GI, 2008), and an article from the Center to Protect Workers' Rights (Heitbrink, 2007). Eighty percent of the abrasive blaster results exceed $50 \,\mu\text{g/m}^3$.

The three highest exposure readings $(26,826~\mu\text{g/m}^3, 6,482~\mu\text{g/m}^3, \text{ and } 2,303~\mu\text{g/m}^3)$ were obtained at two facilities, where operators performed abrasive blasting of concrete panels in unenclosed, outdoor workstations. The operators at both facilities used silica sand blast media containing 87 percent to 99.9 percent quartz, according to the media manufacturer material safety data sheets (ERG-GI, 2008). Among the workers performing abrasive blasting, some of the lowest results were associated with outdoor blasting on concrete panels using coal slag blast media $(20~\mu\text{g/m}^3, 30~\mu\text{g/m}^3, \text{ and } 54~\mu\text{g/m}^3)$, although values as high as $(473~\mu\text{g/m}^3)$ were also reported. Results of $(20~\mu\text{g/m}^3)$ and $(20~\mu\text{g/m}^3)$ were obtained at a facility using silica sand blasting media with a dust suppressant additive (ERG-GI, 2008). A study described by Heitbrink (2007) used silica sand media with less than 3 percent fines by weight (screened with 100-mesh) in conjunction with a water induction nozzle using water at a rate of 13 pounds per minute (approximately 1.5 gallons per minute). The wet abrasive blasting was performed outdoors and exposed the underlying aggregate of precast concrete building panels. Under these working conditions, the investigator obtained two full-shift silica exposures of $(20~\mu\text{g/m}^3)$ and $(20~\mu\text{g/m}^3)$.

Manual abrasive blasting of concrete products is most often conducted outdoors as a dry process; however, as indicated previously, some concrete product manufacturers are attempting alternate methods. Therefore, OSHA has preliminarily determined that together the various working conditions represented by data summarized for abrasive blasting operators in Table IV.C-6 best describe the baseline conditions for all abrasive blasting operators in this industry. Thus the median value for this job category shown in Table IV.C-6 also represents the median baseline silica exposure level for abrasive blasting operators.

Baseline Conditions and Exposure Profile for Finishing Operators

As shown in Table IV.C-6, the median, full-shift PBZ respirable quartz exposure reading for 37 finishing operators is 29 μ g/m³ with a range of 11 μ g/m³ to 347 μ g/m³ and a mean of 82 μ g/m³. Thirty-eight percent of the hand tool worker results exceed 50 μ g/m³. The values for finishing operators were reported by OSHA and NIOSH as described in ERG-GI (2008).

³² OSHA presumes that these workers were wearing the OSHA-required abrasive blasting airline helmetstyle respirators (required under 29 CFR 1910.94 – ventilation).

³³ A low-silica abrasive blasting media.

³⁴ "Fines" is a general term referring to very small particles in a mixture of varying sizes. A 100-mesh screen is defined as having 100 openings per linear inch, meaning that the screen openings are 149 microns in size and will separate out particles of smaller size.

Elevated exposures for workers performing finishing activities other than abrasive blasting are associated with workers using an inadequately ventilated surfacing machine 35 (210 µg/m 3 , 240 µg/m 3 , 281 µg/m 3 , and 318 µg/m 3), a punch press operator located in a facility with widespread dust control problems (96 µg/m 3), and workers using handheld power tools to grind concrete panels (308 µg/m 3 and 69 µg/m 3) (ERG-GI, 2008). An exposure level of 347 µg/m 3 was recorded for another finishing operator performing patching of finished panels in the sandblasting area at the same facility. Some of the lowest exposures for hand tool workers include two exposure readings of less than or equal to 12 µg/m 3 (LOD) for finishing operators who cut or scored uncured precast concrete products. This cutting was performed using non-powered hand tools while the "zero-slump" concrete was still wet, thus eliminating the need for power tools, which are required after the concrete has dried (ERG-GI, 2008). Zero slump concrete lacks any fluidity and retains its shape prior to curing, thus enabling finishing operations to be performed on still-damp concrete. At this site, none of the 17 results for three of the other job categories exceeded 21 µg/m 3 , indicating that dust was well controlled throughout the facility.

Activities and associated conditions vary greatly for finishing operators. Based on a review of OSHA SEP and NIOSH reports, ERG-GI (2008) noted that baseline conditions for manual finishing operations involve outdoor, dry work performed on cured concrete, while automated finishing operations typically are conducted indoors with some form of control (one-third use wet methods, two-thirds use LEV). Nevertheless, OSHA has preliminarily determined that together the various working conditions represented by data summarized for finishing operators in Table IV.C-6 best describe the baseline conditions for all finishing operators in this industry. Thus the median value for this job category shown in Table IV.C-6 also represents the median baseline silica exposure level for finishing operators.

Baseline Conditions and Exposure Profile for Packaging Operators

As shown in Table IV.C-6, the median, full-shift PBZ respirable quartz exposure reading for packaging operators is 84 μ g/m³ with a range of 11 μ g/m³ to 370 μ g/m³ and a mean of 117 μ g/m³. These results are based on six readings for packaging operators obtained from four OSHA SEP inspection reports for facilities where workers used bag-packing machines to fill sacks with dry concrete mix (ERG-GI, 2008). Four of the six full-shift PBZ respirable quartz readings for packaging operators (67 percent) exceed 50 μ g/m³, and two (33 percent) exceed 100 μ g/m³.

The two highest exposure readings were obtained for packaging operators at a facility inspected by OSHA. OSHA obtained a reading of $142~\mu g/m^3$ for a worker who used a bag-filling machine to load 80-pound bags of dry-mix concrete, with general exhaust ventilation fans located near the workstation. After the inspection, the facility installed an LEV system for the packaging operation, but an industrial hygiene consultant later obtained a reading of $370~\mu g/m^3$ for the packaging operator even with the new ventilation system in place. The consultant found that the system did not effectively remove dust generated by the packaging operation but offered no explanation (ERG-GI, 2008). These results demonstrate the value of conducting followup sampling to confirm that installed engineering controls have produced the desired effect.

The lowest reading for this job category, less than or equal to $11 \mu g/m^3$ (the reported LOD), was obtained for a packaging operator at a facility that had upgraded its dust controls following an OSHA SEP

³⁵ The surfacing machine action is not specified but presumably involves automated grinding to level the surface or modify texture.

³⁶ The inspection report associates the exposures readings with cement packaging. OSHA, however, described the facility as a concrete packaging plant, and the percentage of quartz (6 percent) found in the sample suggest that the reading is associated with concrete packaging.

inspection. The facility had improved the LEV system for the packaging operation by relocating hoods closer to the operator's position while filling bags. The facility also had rebuilt the LEV system to generate greater airflow and installed a new filter bag. In addition, daily housekeeping for the workstation had been implemented after the inspection (OSHA SEP Inspection Report 300114378). Unfortunately, no exposure information is available to OSHA regarding exposure levels prior to the implementation of these controls.

Based on the available reports, ERG-GI (2008) found that typical conditions for packaging operators include manual insertion of empty bags into bag-filling machines equipped with LEV; however, the exhaust ventilation systems often are poorly maintained or function inefficiently. Dust is generated when filled bags expel product as they are released from bag-filling machines and when filled bags covered with spilled product are dropped onto conveyors (ERG-GI, 2008). ERG considered this scenario to also be a baseline condition for most packaging operators (ERG-GI, 2008). However, OSHA disagrees and preliminarily finds that the results summarized in Table IV.C-6 provide a better description of conditions for this job category. These data were collected under a range of situations and serve as a representation of current conditions in the industry. As a result, the median for packaging operators represents the median baseline value for this group of workers.

Additional Controls

Additional Controls for Material Handlers

Table IV.C-6's exposure profile indicates that additional controls are required for 35 percent of material handlers. Appropriate control measures include adding or improving LEV at raw material receiving hoppers (particularly in the dry bagged concrete mixing area), making changes to the area where material handlers transfer finished sacks from conveyers onto pallets, suppressing dust in storage yards, and using equipment cabs where exposures continue to be elevated. Other adjacent operations also need to be controlled in order to reduce most material handler exposures. Specifically, changes described later under additional controls for packaging operators (e.g., improved LEV for bag-filling machines and switching to bags designed to emit less dust) will also help reduce the exposure of material handlers who work in the area or eventually handle the same bags.

Local Exhaust Ventilation

Ineffective LEV contributed to the exposures of a front-end loader operator transferring sand and aggregate into a hopper feeding a concrete dry-mix blender at a concrete products facility. A good description of how this activity releases silica dust appears in Section IV.C.15 – Pottery in this technological feasibility analysis and is reproduced here. A pottery industry source document, NIOSH HETA-84-066-1883 (1988), indicates that samples were obtained on two consecutive days for a worker operating an unenclosed front-end loader to scoop dry flint, ball clay, and feldspar (other silica-containing mineral powders) into enclosed, ventilated weigh hoppers feeding an open system that conveyed raw materials to mixing equipment. The report suggests that housekeeping was poor, based on a comment that settled dust was disturbed by the loader activity. Additionally, the NIOSH investigator noted that the LEV at the hoppers (with air flow velocity of 155 feet per minute across the enclosure) was "overwhelmed" by the amount of dust released during the material transfer. Based on descriptions of exhausted enclosures for material transport recommended by the American Conference of Governmental Industrial Hygienists (ACGIH, 2010), OSHA preliminarily determined that, in this case, the LEV system was not designed and used to the best advantage; the LEV system could be upgraded to increase dust capture, and work practices could be improved to transfer raw materials in a manner that reduces airborne dust.

ACGIH (2010, Chapter 13.50) provides design recommendations for ventilated hoppers receiving dusty materials. This document recommends a minimum air flow of 150 feet per minute (fpm) across bin and hopper openings for manual loading operations. However, for other loading methods that cause material enters the hopper in a manner different than manual loading (e.g., using a front-end loader, or during high-speed automated loading operations), ACGIH recommends an air velocity of one-and-a-half to two times that air flow rate. The recommended velocity depends on the material flow rate (a front-end loader adds materials at a much greater material flow rate than manual transfers), dustiness (the material at this site was apparently very dusty), and the height the material falls (influenced by either hopper design or by material handler work practices). Furthermore, ACGIH recommends that the enclosure be "large enough to accommodate the 'splash' effect" that occurs when a load is dumped into the hopper.

OSHA has preliminarily determined that concrete product loader operator exposures can be reduced by using a redesigned hopper enclosure of adequate size to accommodate the loader scoop and resulting "splash" effect. Air must be exhausted from the enclosure at a rate commensurate with the material flow rate and dustiness (potentially up to two times the minimum recommended rate of 150 fpm, equal to a rate of 300 fpm across the enclosure opening). Again drawing on information from the pottery industry, OSHA notes that although some pottery facility material handler results remain above the proposed permissible exposure limit (PEL) of 50 μ g/m³, when workers have access to LEV described as functional, the results are markedly lower (median exposure level 27 μ g/m³) than when workers use material transfer stations where LEV is clearly inadequate or missing (median exposure level 530 μ g/m³). Based on the similarity of hoppers, conveyers, and mixing equipment used to blend the similar mineral powders used by both industries, OSHA has preliminarily determined that LEV at material transfer stations is just as effective in the concrete product industry as in the pottery industry.

Yard Dust Management

Exposure observations at facilities that implemented yard dust management controls show that levels at or below 50 μ g/m³ are achieved in almost all cases (85 percent of the readings). These observations include four readings of less than 21 μ g/m³ for facilities using dust suppressants, two readings of less than 19 μ g/m³ for those that consistently wetted yard dust, a reading of less than 40 μ g/m³ for a facility using an aggregate bed, and four readings of less than 57 μ g/m³ for facilities using power sweeping of a paved yard (NIOSH ECTB 233-112c, NIOSH ECTB 233-125c). In contrast, and as previously noted, a reading of 110 μ g/m³ was obtained at a facility where wetted yards were allowed to dry (ERG-GI, 2008). Additional support for the application of dust suppressants includes a study by Addo and Sanders (1995) that examined three chemical dust suppressants (lignosulfate, calcium chloride, and magnesium chloride) applied to an unpaved roadway for four and a half months. The study found that compared to an untreated roadway, the suppressants reduced fugitive dust emissions by 50 to 70 percent.

Wet dust suppression methods also may be used to minimize exposure during raw materials transfer. One industry contact reported use of dampened aggregate to minimize dust release as materials are dumped into hoppers (ERG-GI, 2008). Although the effectiveness of this control has not been quantified, wetting the material effectively prevents fine particles mixed with the aggregate from becoming airborne.

Control of yard dust offers the best results when used in conjunction with other efforts to control silica dust. One facility, for example, controlled exposures through the use of worker training and regularly applied dust suppressants, enclosed equipment, wet methods, and rigorous housekeeping as elements of a comprehensive dust control program. The three exposure readings for the material handlers at this facility were all less than 13 μ g/m³ (LOD) (ERG-GI, 2008).

Improved Housekeeping

Poor housekeeping contributes substantially to worker exposure levels in material handling areas, and a thorough, professional-level cleaning in association with improved housekeeping procedures (to maintain cleanliness) can reduce exposures where dust has been allowed to accumulate. Exposure levels ranged from 48 to 73 for concrete product facility material handlers who performed dry sweeping during their shifts where "most of the facility has 1/8-inch of dust on the floor" (NIOSH ECTB-233-112, 1999).

In the structural clay industry, another industry with similar material handling requirements, professional cleaning of a brick manufacturing facility dramatically reduced exposure levels (by 90 percent or more in some cases) for workers in areas where raw materials were transported or handled (raw material storage, near grinding equipment and conveyers, during bag dumping, and at raw material hoppers) (see Section IV.C.21 – Structural Clay in this technological feasibility analysis). In these areas, most worker exposures were reduced to less than $50 \,\mu\text{g/m}^3$ without other abatement efforts (ERG-GI, 2008).

Enclosed Operator Cabs

Enclosed operator cabs offer another option for reducing the exposure of material handlers. OSHA estimates that only a quarter of concrete product manufacturing facilities use well-enclosed cabs equipped with air filtration and air conditioning to effectively control exposures of material handlers operating mobile equipment in dusty areas (ERG-GI, 2008). A reading of $21 \,\mu\text{g/m}^3$ was obtained at a precast concrete facility for a material handler who used a front-end loader with an air-conditioned cab enclosure to transport raw materials across a water and dust suppressant-treated yard (NIOSH ECTB 233-127c).

NIOSH recommends several cab design features and emphasizes the importance of maintenance and cleanliness (NIOSH 2009-123, 2009). Cabs employing several of these recommendations regularly achieve exposure reductions (inside versus outside the cab) exceeding 90 percent (Cecala et al., 2005; NIOSH 528, 2007).

Multiple silica exposure control strategies (e.g., enclosed cab, plus dust suppressant on the ground as described in the example above) can be used simultaneously if a single method is inadequate to reduce the exposure levels.

Additional Controls for Mixer Operators

Although the exposure data suggest that most (62 percent) mixer operators have silica exposure less than or equal to $50 \,\mu g/m^3$, Table IV.C-6 shows that additional controls are required for the remaining 38 percent of mixer operators with exposures above $100 \,\mu g/m^3$. Operators in the group requiring additional controls experience elevated exposure while performing two activities: chipping residual concrete from mixing barrels and emptying bags of raw materials into the mixer during manual mixer charging. Additional controls for these two activities are discussed in more detail in the following sections.

In the concrete products industry, the chipping activity is usually performed once daily (and at least weekly), typically for brief periods, during which the airborne silica levels in operators' breathing zones are substantial and warrant control. Controls include wet methods for cleaning mixing equipment before residual concrete has dried, as well as use of wet methods and LEV when chipping is required.

Other control measures are necessary when mixer operators are exposed to elevated levels of silica during manual mixer charging and raw material mixing. Use of ventilated bag dumping stations or automated mixer charging, and operator isolation in a control room or booth, also can reduce mixer operators' silica

exposures to levels below 50 $\mu g/m^3$. These control options are discussed in more detail in the following paragraphs.

Controls for Chipping Operations

Chipping activity to clean hardened concrete from in-plant mixing drums is essentially the same task that workers perform to remove hardened concrete from ready-mixed concrete truck drums. Work on truck drums, however, represents the worst-case scenario. That activity occurs in a more challenging (more enclosed) environment, takes longer (several hours compared to several minutes), and usually involves a notably heavier concrete buildup on the mixer drum walls because, according to the National Ready Mixed Concrete Association (NRMCA, 2009), truck drums are typically only cleaned twice per year compared with the daily or weekly cleaning schedule for in-plant mixer barrels. Based on the similarities between the two processes, OSHA has preliminarily determined that exposure controls for ready-mixed concrete truck drum cleaning (the worst-case condition) will be at least as effective for cleaning in-plant mixer barrels. Options for controlling worker exposure during ready-mix truck drum cleaning are discussed in detail in Section IV.C.17 – Ready-Mix Concrete in this technological feasibility analysis and in ERG-GI (2008). For convenience, the control methods discussed there are summarized briefly in the following paragraphs.

After reviewing the information presented in Section IV.C.17 – Ready-Mix Concrete in this technological feasibility analysis and in ERG-GI (2008), OSHA has preliminarily determined that LEV, wet methods, and more careful and frequent rinsing of the barrel will reduce mixer operator silica exposure in the concrete products industry as well.

Investigators have found that the following control methods used for ready-mixed concrete truck drum cleaning offer exposure reductions of at least 70 percent compared with uncontrolled levels (typically up to approximately $1{,}000~\mu\text{g/m}^3$). 37

- *LEV-equipped chipping tool plus general exhaust ventilation:* Silica levels reduced to 220 µg/m³ (NIOSH EPHB-247-19, 2001).
- Water misting device and push/pull ventilation system: Silica levels reduced to 128 µg/m³ (Strelec, 2008).
- Periodic spraying of the interior surface of the drum and directing continuous water spray at the chisel point during chipping: Silica levels reduced to "less than the PEL" (100 μg/m³ or somewhat less, calculated using OSHA's general industry standard for respirable dust containing silica) (Williams and Sam, 1999).

OSHA notes that for the concrete products industry, information included in the discussion of the mixer operator exposure profile indicated that the highest result available to OSHA for this job category is 281 $\mu g/m^3$. The second highest result associated with mixer barrel cleaning is 122 $\mu g/m^3$ and all other results are lower. A 70-percent reduction would lower the second highest result to a level of 37 $\mu g/m^3$ and reduce to levels less than 37 $\mu g/m^3$ all the other results included in the mixer operator exposure profile summarized in Table IV.C-6, except the highest value of 281 $\mu g/m^3$.

³⁷ The exposure levels shown in the bulleted list are for workers who spent at least half of the sampling period (and usually the entire period) chipping concrete from inside truck mixing drums (the worst-case scenario).

Controls for Mixer Charging

Manual mixer charging is potentially another source of mixer operator exposure for mixer operators in non-automated plants. Control options include ventilated bag dumping stations, automatic mixer charging systems, and operator control booths. The following paragraphs describe these options.

Bag Dumping Stations

Bag-dumping stations can potentially control dust generated by bag emptying and disposal. While data from concrete product facilities using ventilated bag dumping stations are not available, a bag dumping station with fully functioning LEV was found to reduce silica exposure by at least 95 percent in a paint manufacturing facility where workers emptied 50-pound bags of silica-containing materials (ERG-paint-fac-A, 1999). The stations consist of hoppers topped with grates enclosed by LEV hoods. After each bag is emptied, the worker releases it and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area. Because ventilation system performance is the ultimate test of effectiveness, OSHA anticipates that other styles of ventilated bag dumping and disposal units would also be as effective as the one just described. Ventilated bag dumping and disposal stations are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a; Whirl-air, 2003).

Automatic Mixer Charging

Automatic mixer charging equipment reduces operator exposure by allowing the worker to stand at a distance from the mixer while controlling the flow of raw materials into the mixer. Automated systems are widely used in many industries and are readily available from commercial sources. A result of less than or equal to $12~\mu g/m^3$ (the LOD) was reported for a mixer operator using an automated charging system at a precast concrete architectural panel facility (ERG-concrete-fac-C, 2002). In a related industry, an 86-percent reduction in respirable quartz exposure readings occurred at a structural clay product facility after a manual bag dumping station was replaced with an enclosed, automated sand transfer system (OSHA SEP Inspection Report 300523396). Like mixer operators in the concrete products industry, workers in the structural clay industry handle silica-containing dry ingredients (clay, sand, and other ground minerals), which they mix with water to create wet clay to form into products. Because the structural clay industry workers use a wider range of silica-containing materials, potentially milled to smaller particle sizes, OSHA has preliminarily determined that control measures that are effective in the structural clay industry will be at least as effective in the concrete products industry.

Operator Control Booths

When exposures continue to be elevated during automated mixer charging, the charging system controls can be placed in an enclosed operator booth. To effectively control silica exposure, the operator booth must be maintained to exclude dust through tight seals at doors and windows and must provide clean air that keeps the booth under slight positive pressure to help exclude dust. At a structural clay facility visited twice by OSHA, an area sample collected inside a poorly sealed ventilated control room resulted in an average silica concentration of 111 μ g/m³ (OSHA SEP Inspection Report 300523396). Before OSHA's next visit, the facility sealed gaps around the main entrance door to the control room. This modification reduced airborne silica levels inside the room to 11 μ g/m³, a 90-percent reduction compared to the earlier sample. The reduced level likely represented an even greater percent reduction compared to the dusty grinding equipment area outside the control room. OSHA notes that low silica levels inside the control room suggest that the room provides a substantial level of protection for any worker inside. At the same facility, OSHA obtained a reading of 23 μ g/m³ for a worker who operated a computer-controlled mixer operation and charging equipment from an enclosed booth (OSHA SEP Inspection Report 300523396).

Additional Controls for Forming Operators

The data summarized in Table IV.C-6 show that 83 percent of forming operators' exposures are 25 $\mu g/m^3$ or less, and 90 percent have exposures of 50 $\mu g/m^3$ or less. OSHA does not anticipate that routine activities of forming operators generate silica concentrations that exceed 50 $\mu g/m^3$ and notes that controlling adjacent sources of silica dust (e.g., chipping in mixer barrels, finishing processes that are performed near the forming area) will reduce the exposure levels of those few forming operators (10 percent) that have elevated exposures. As noted previously, the highest result (107 $\mu g/m^3$) was associated with a worker who emptied and palletized forms at a facility where 9 out of 10 quartz results in four job categories exceeded 100 $\mu g/m^3$.

In the event that additional controls are needed after adjacent sources of exposure have been controlled, concrete product facilities can improve housekeeping and add LEV to work stations, particularly those stations associated with automated processes. Two of the results between 50 μ g/m³ and 100 μ g/m³ were associated with both adjacent sources of exposure and a block-forming machine that emitted dust (NIOSH ECTB 233-112c, 1999).

Forming operators can also use cleaning techniques that limit dust released when they clean forms and work areas. HEPA-filtered vacuums used in place of dry brushing or sweeping will minimize worker exposure to silica during these activities. Thorough professional-level cleaning will help reduce exposure from settled dust that might have accumulated in the work area. Disturbed dust is another likely contributor to the silica exposure for all three of the workers with results above $50~\mu g/m^3$ discussed in the previous paragraphs.

Additional Controls for Abrasive Blasting Operators

As indicated in Table IV.C-6 80 percent of abrasive blasting operators currently experience silica exposures in excess of $50 \,\mu\text{g/m}^3$. One alternative to abrasive blasting, surface retarding, can eliminate exposure to silica, while exposing aggregate on concrete surfaces (a primary objective of some abrasive blasting tasks). Other exposure control methods do not reduce silica exposure to the same extent but do provide some benefit. Wet abrasive blasting can suppress dust considerably, provided sufficient water is added to the abrasive media. Additionally, compared to abrasive blasting with silica sand, use of low-silica abrasive blasting media that are less toxic than quartz sand also reduces worker silica exposure. The concrete surfaces that workers abrasively blast contribute to the silica dust released during abrasive blasting, however, so some exposure can occur even if the media contains no silica. These methods are reviewed in the following paragraphs. For a more in-depth discussion of alternatives to abrasive blasting, see Section IV.C.22 – Abrasive Blasters in this technological feasibility analysis, which covers abrasive blasting in the construction industry.

Alternatives to Abrasive Blasting – Surface Retarding

Operators creating certain product finishes can use a surface retarder to inhibit curing and allow an outer layer of concrete to be washed or brushed away as an alternative to abrasive blasting. The chemical retarder applied to the mold for concrete panels allowed finishing operators to remove the outer layer of concrete by pressure-washing the surface with water. Use of the retarder reduces the need for abrasive blasting by as much as 40 percent (NIOSH ECTB 233-127c]. An industry representative indicated that use of retarders is rapidly becoming the preferred method of finishing concrete (Concrete Product Industry Representative A, 2000). A wide range of finishes can be achieved using different surface retarder and acid wash products, ranging from the look of exposed aggregate to the appearance of a smooth sand-blasted surface (ERG-GI, 2008).

Wet Methods

Wet abrasive blasting and hydro-blasting are effective controls. During outdoor abrasive blasting of a parking garage to remove the outer layer of cured concrete (e.g., to expose the aggregate), workers using a mix of 80 percent dry sand and 20 percent water had a geometric mean silica exposure of 200 µg/m³ (Mazzuckelli et al., 2004). Another facility that produced precast concrete used a water induction nozzle to control silica exposure (Heitbrink, 2007). The nozzle combines water with the abrasive-media-and-air mixture so that atomized liquid droplets are added to the abrasive blasting stream. Operators performed three different activities outdoors: light blasting of wall units to even the color, light blasting of fire stairs to roughen the texture, and heavier blasting of building panels to expose the aggregate. The geometric mean personal silica exposure for 10 samples was 62 μg/m³, with a range of 20 μg/m³ to 130 μg/m³ (Heitbrink, 2007). OSHA notes that in addition to the water nozzle, this facility also used pre-screened silica sand media from which most of the fines had been removed (rendering the new abrasive media less dusty). The beneficial effect of the pre-screened media cannot be separated from the effect of the water induction nozzle (both likely reduced silica exposure). Although many exposures reported in Mazzuckelli et al. (2004) and Heitbrink (2007) still exceed the proposed PEL of 50 µg/m³, they are much lower than the highest exposures reported in the exposure profile for uncontrolled, outdoor abrasive blasting with sand in this industry (e.g., $26,826 \mu g/m^3$, $6,482 \mu g/m^3$, and $2,303 \mu g/m^3$).

ERG-concrete-fac-C (2002) evaluated wet abrasive blasting at the precast concrete architectural panel manufacturing facility that also used coal slag abrasive blasting media. Results are provided in the paragraphs that follow in the discussion on alternate abrasive blast media. Water flow rate measurements showed that the rate of water application was a fraction of the amount recommended by the water-fed abrasive blasting nozzle manufacturer.³⁸ The application rate, approximately one-half fluid ounce per minute (a steady rapid drip), was less than 2 percent of the 0.75 quart (24 ounces) to 6 quarts (192 ounces) per minute range recommended by the nozzle manufacturer (ERG-concrete-fac-C, 2002). Split-shift results (two hours of dry abrasive blasting and subsequent hours wet abrasive blasting) showed that this low-moisture wet method did not consistently provide lower silica exposure results compared to the same worker performing dry abrasive blasting with the same media.

Another alternative is hydroblasting, which uses high-pressure water without added abrasive. After reviewing other published and unpublished work, Lahiri et al. (2005) estimated that silica exposure associated with sand blasting can be eliminated by using hydroblasting, even when the surface being hydroblasted contains silica, such as with concrete. OSHA recognizes, however, that this method cannot replace abrasive media blasting under all circumstances.

Alternate Abrasive Blast Media

Using alternate types of abrasives that are low in silica or silica-free will reduce abrasive blasting operator silica exposure levels but not eliminate exposure when blasting is performed on silica-containing substrates, such as concrete. Outdoor abrasive blasting at two concrete product facilities using silica sand media was associated with exposure readings of 26,826 μ g/m³, 6,482 μ g/m³, 2,303 μ g/m³, 371 μ g/m³, and 56 μ g/m³. By contrast, outdoor abrasive blasting at a concrete product facility using coal slag (low-silica) blast grit (mixed with a small amount of water) was associated with exposure readings of 54 μ g/m³ and 30 μ g/m³ (OSHA SEP Inspection Report 116200940). Outdoor abrasive blasting with coal slag media in a strong wind at another facility was associated with a reading of 20 μ g/m³ (OSHA SEP Inspection Report 300096930).

³⁸ The nozzle is fitted with a water hose that provides low pressure tap water. The compressed air and media stream creates negative pressure at the nozzle, which causes water from the hose to be sucked into and distributed through the blast media stream (ERG-concrete-fac-C, 2002).

At a third facility that produced concrete architectural panels, silica levels of $133 \,\mu\text{g/m}^3$ (a less-than full-shift sample of $319 \,\text{minutes}$), $149 \,\mu\text{g/m}^3$ and $473 \,\mu\text{g/m}^3$ were measured during a combination of wet and dry abrasive blasting using coal slag blasting media. Company exposure data indicated that prior to switching to coal slag media, silica exposure levels during dry abrasive blasting ranged from $430 \,\mu\text{g/m}^3$ to $5,400 \,\mu\text{g/m}^3$ with three of four quartz results above $2,000 \,\mu\text{g/m}^3$ (ERG-concrete-fac-C, 2002).

Use of a ventilated booth for abrasive blasting of granite monuments (another silica-containing substrate) using alternate low-silica media was associated with a median exposure reading of 51 μ g/m³ (ERG-GI, 2008). Employers will need to consider the possible hazards of abrasive media substitutes, however, if switching from silica. For example, depending on the abrasive, alternative media can result in elevated levels of other hazardous air contaminants such as metals (KTA-Tator-Phase-2, 1998). For further discussion on abrasive blasting in the construction industry, see Section IV.C.22 – Abrasive Blasters in this technological feasibility analysis.

Enclosure and Local Exhaust Ventilation

Complete isolation of the operator from the blasting operation (i.e., use of a glove box-type ventilated blasting cabinet) can reduce silica exposure during abrasive blasting of smaller pieces. For example, ventilated blasting cabinets used by three operators in Georgia granite sheds (using either silica sand or an alternate media) generated exposure results of $15~\mu g/m^3$ to $77~\mu g/m^3$ with a mean of $41~\mu g/m^3$ (Wickman and Middendorf, 2002). OSHA estimates that exposure levels associated with blasting cabinets can be reduced to levels consistently below $50~\mu g/m^3$ by using silica-free blast media that is less toxic than sand and a combination of other engineering and work practice controls. These controls include enclosed and ventilated media recycling systems, interlocks to prevent operators from opening doors before the cabinet has been exhausted, and use of HEPA-filtered vacuums instead of dry sweeping or compressed air to clean in and around the cabinet. Ventilated abrasive blasting enclosures (booths) also are effective in limiting the exposure of adjacent workers where blasting must be performed.

Large, glove box-style cabinets for abrasive blasting oversize or awkward shape objects are available commercially (Media Blast, 2009). For example, one manufacturer produces ventilated cabinets that have reportedly been used for abrasive blasting of granite tombstones (Pauli, 2001a; Pauli, 2001b). This size box is interlocked, to prevent operation unless the unit is sealed, and ventilated at 840 cubic feet per minute (cfm). In addition, the boxes are fitted with a dust collector (99.9 percent filter efficiency for 0.3 micron particles available for some models) and a completely enclosed, ventilated media reclamation system. A larger ventilation system is required when two or more of these cabinets are linked together to provide a larger internal workspace (Pauli, 2001b).

Large items that cannot fit in a blast cabinet might be better controlled by another commercially available option: a gauntlet glove panel and window that can be inserted into the wall of a walk-in sized sealed and ventilated abrasive blast booth (Pauli, 2009).

Combination of Controls

As noted previously, workers used a combination of wet and dry abrasive blasting methods outdoors with coal slag abrasive blasting media at a facility that produced precast concrete architectural panels. The wet methods, however, used a fraction of the water flow rate recommended by the wet abrasive blasting nozzle manufacturer. Under these conditions, silica levels of 133 μ g/m³ (less-than full-shift sample of 319 minutes), 149 μ g/m³, and 473 μ g/m³ were measured during a combination of wet and dry abrasive blasting using coal slag blasting media (ERG-concrete-fac-C, 2002). Based on results reported by

³⁹ The less-than-full-shift and company-reported results are not included in the exposure profile.

Heitbrink (2007), described in the discussion of the exposure profile, OSHA anticipates that using a greater flow rate would have resulted in somewhat lower silica levels.

German concrete products and precast component manufacturing plants have reduced abrasive blasting operator exposures through a combination of abrasive blasting in enclosed, recirculating systems with dust collection and using conditioned abrasive blasting media. Exposure levels are approximately 100 µg/m³ using these methods (BGIA, 2008).

Additional Controls for Finishing Operators

Table IV.C-6 indicates that 62 percent of finishing operators currently have exposure levels of 50 μ g/m³ or less; however, additional controls are required to reduce the remaining exposures. As described in the following paragraphs, available controls include the use of wet finishing methods, LEV, non-silica blast media, and changes in work practices to perform more finishing operations on uncured concrete. Workers can use a combination of control measures for most activities.

Wet Methods

A number of finishing tools use wet methods to help control dust. These tools include water-fed drilling, grinding, cutting, and chipping equipment and automated wet process finishing equipment. ERG-GI (2008) describes several types of water-fed tools used for concrete finishing. For example, at a facility that manufactured precast concrete structural and utility products, workers used a horizontal coring machine (for holes 2 to 31 inches in diameter) with a water-fed bit. The measured silica exposures of these workers were less than or equal to $12 \mu g/m^3$ (LOD) and $31 \mu g/m^3$ (NIOSH ECTB 233-127c).

OSHA has also located additional studies on wet dust control methods for the construction industry, in which workers use similar (and often identical) equipment to finish concrete at construction sites. Because concrete product manufacturers work at fixed locations, typically with unlimited water supplies, and can modify the work area to control runoff, OSHA believes that there are no limitations to using dust control methods available for construction work and that these methods should be at least as effective at concrete product facilities as on construction sites.

In one experiment at an indoor field laboratory, the use of a wet grinder (a water hose attached to the grinder providing water at 3 liters per minute [L/min]) reduced the geometric mean silica exposure by 98.2 percent during brief periods of intensive concrete surface grinding compared to uncontrolled grinding (Akbar-Khanzadeh et al., 2007). During this test, however, the mean silica exposure during wet grinding was still extremely high: 896 μ g/m³. An additional study examined the exposures associated with the use of a handheld abrasive cutter to make cuts through concrete blocks (NIOSH EPHB 282-13, 2007). The use of a water spray attachment (providing water at 1.4 L/min) reduced silica exposures by an average of 90 percent compared to uncontrolled cutting. Again, however, quartz exposures were still extremely high, ranging from 1,100 μ g/m³ to 2,400 μ g/m³. In both of these studies, test periods were extremely brief (5 to 10 minutes), during which intensive grinding took place without the normal frequent pauses to change the work angle, change concrete blocks, take measurements, or reposition materials. The conditions in this environment are much different from those during typical grinding operations. Samples collected during these conditions typically produce higher results. They are valuable for evaluating control methods, but do not represent 8-hour TWA exposure levels.

Lahiri et al. (2005) described unpublished data reporting reductions of 81 and 82 percent during chipping and sawing concrete using wet methods. Further details on the type of intervention and data collected are not available, however. OSHA notes that many electric grinder housings might not be sufficiently sealed to permit safe use in wet environments. To minimize the hazard of electric shock, the stone and stone

products industry uses pneumatic hand-held grinding tools to grind high-silica stone such as granite (Simcox et al., 1999).

When considering the use of wet methods, it is important to note that wet grinding can create safety hazards, such as slippage and electrocution, and might be unsuitable for indoor or freezing environments. In addition, wet methods can cause aesthetic problems (e.g., water marks) if appearance is an important component of the final product (e.g., architectural elements).

Local Exhaust Ventilation

LEV or ventilated enclosures might be required for facilities finishing architectural concrete products and where wet methods are infeasible for surface finishing. Handheld grinders equipped with LEV are widely available and can help control operator and bystander exposures. No data are available quantifying the effectiveness of LEV or ventilated enclosures for reducing exposures associated with finishing operations in the concrete products industry. Studies of concrete finishers in the construction industry, however, provide substantial data on analogous activities. The use of vacuum dust collection systems for concrete grinders reduced workers' silica exposures by 74 to 93 percent (ERG-GI, 2008). Another comparative study evaluating an abrasive cutter (on concrete) found an average reduction in silica of 95 percent with an LEV shroud and vacuum cleaner (NIOSH EPHB 282-13, 2007). Finally, the use of four different hood-vacuum combinations on a hammer-drill being used to drill concrete reduced silica concentrations from 308 μ g/m³ (no LEV) to between 6 μ g/m³ and 28 μ g/m³ (overall reduction of 94 percent) (Shepherd et al., 2009).

Even when substantial exposure reductions are reported with LEV shrouds and vacuum attachments, however, worker exposure levels often still exceed $100~\mu g/m^3$ and are sometimes several times higher (Akbar-Khanzadeh et al., 2007; Flynn and Susi, 2003; Echt and Sieber, 2002; NIOSH EPHB 282-13, 2007). These levels can result from inadequate air flow rates. Although investigators in the cited studies considered vacuum capacity when matching suction equipment to grinding shrouds, based on information presented in the following paragraph, OSHA estimates that actual vacuum cleaner air flows were likely less than the published, nominal air flows (specified with zero static pressure at the air inlet) due to pressure losses attributed to the hood, hose, bends in the hose, vacuum cleaner body, vacuum cleaner filters, and debris accumulation on filters. Echt and Sieber (2002) reported that 36 pounds of debris were collected in a vacuum cleaner during one shift of concrete grinding.

In addition, the vacuum cleaners used for dust control during concrete grinding and cutting might have been undersized. In Akbar-Khanzadeh et al. (2007), the grinder used with LEV had a diameter of 6 inches. Based on criteria in the ACGIH ventilation manual (25 cfm/inch of blade diameter), an air flow of 150 cfm is recommended (ACGIH, 2010). The vacuum cleaner models used in Akbar-Khanzadeh et al. (2007) had a free air flow rating of only 106 cfm. Considering system pressure losses, the actual air flow was likely substantially lower for the reasons discussed previously. To optimize performance, a vacuum system should include cyclonic pre-separation, large (2-inch) diameter hoses, a gauge indicating filter pressure, a high-efficiency filter with a large surface area, and a powerful motor (sufficient to move the required air flow even as filter loading begins to occur) (Collingwood and Heitbrink, 2007; Heitbrink and Santalla-Elias, 2009). For additional discussion of issues surrounding air flow rates and vacuums, refer to Section IV.C.32 – Tuckpointers and Grinders in this technological feasibility analysis.

⁴⁰ "Free air flow" is air flow without accounting for various pressure losses including debris accumulation on the filters, resistance in the vacuum hose, and static pressure losses throughout the vacuum.

Finishing Uncured Concrete

Silica exposures can be reduced if operators perform finishing operations on uncured concrete. Some facilities in the concrete products industry currently use two such methods, as summarized in ERG-GI (2008). For example, workers cutting, scoring, and adjusting the finish on uncured concrete products eliminated the need for power-grinding and air-hammering (which typically produce large quantities of dust). This work on uncured concrete was associated with silica readings of less than or equal to $12 \, \mu g/m^3$ (LOD) (NIOSH ECTB 233-125c, 2000).

Combination of Controls

Finishing operators' respirable dust and silica exposure levels have decreased in German concrete products and precast component manufacturing plants as the facilities have implemented targeted controls, often in combination (BGIA, 2008). Examples include:

- Abrasive blasting in enclosed, recirculating systems with dust collection and conditioned abrasive blasting media (exposure levels around 100 µg/m3).
- Wet grinding.
- Dry grinding with dust collection (exposure levels around 50 µg/m3).
- Sawing wet or dry with LEV (which reduces exposure levels by at least 50 percent below wet sawing alone).
- Using clean water for wet sawing to minimize silica aerosols generated by dustbearing recirculated water.

Although these German facilities encounter some results above 150 $\mu g/m^3$ during certain tasks, the median silica value obtained during finishing and treating of concrete products was 20 $\mu g/m^3$ (BGIA, 2008).

Additional Controls for Packaging Operators

As shown in Table IV.C-6, additional controls are required to reduce the silica exposure of two-thirds (66 percent) of packaging operators. Dust is generated during several parts of the packaging process: when bags are filled, when filled bags drop from the filling equipment onto the conveyor, and when workers use compressed air for cleaning (ERG-GI, 2008). Control options include installing or adding effective ventilation systems, improving existing ventilation equipment, and using alternate bag and bag valve designs to minimize dust release.

Local Exhaust Ventilation

OSHA SEP inspection report results illustrate the effectiveness of well-designed LEV for concrete packaging tasks. At one facility, installing a more powerful fan motor and new filter bag for the bag-filling machine LEV and moving the hoods closer to the packaging operator's position reduced respirable dust exposure by 92 percent. After these improvements, a concrete packaging operator had a full-shift silica exposure below the LOD (in this case, $11 \mu g/m^3$). OSHA obtained a similar result ($12 \mu g/m^3$, the

 $^{^{41}}$ Respirable dust was reduced by 92 percent from an initial level of 15,500 $\mu g/m^3$ (15.50 mg/m^3) to 1,150 $\mu g/m^3$ (1.15 mg/m^3) after these modifications (OSHA SEP Inspection Report 300114378). Silica was only evaluated after the modifications were made, however, at which point the worker exposure level was 11 $\mu g/m^3$.

LOD) at another facility that also had installed dust collection equipment on the concrete bagging equipment (OSHA SEP Inspection Report 116007451). Another type of ventilation for bag-filling operations, an overhead air supply island system (OASIS) (described in ERG-GI, 2008), has been shown to reduce respirable dust exposure by 98 percent and 82 percent for packaging operators at two mineral processing facilities. OSHA believes that OASIS would be similarly effective at reducing silica exposures of packaging operators in the concrete products industry because dry concrete is a form of mineral dust.

A dual concentric nozzle system for bag-filling machines also can reduce exposures for packaging operators. This system consists of an inner-fill nozzle (to load the bag with material) surrounded by an outer nozzle (to depressurize the filled bag and remove dust from bag valve, thereby preventing dust release). A study conducted by Cecala et al. (2000) at a mineral processing facility (described in more detail in ERG-GI, 2008) found that this type of system reduced respirable dust levels by 83 percent compared to unvented nozzles.

Bag Design and Quality

The use of bags with valves that seal effectively and prevent product leakage from filled bags is another way to control exposure. In addition to studying nozzles, Cecala et al. (2000) found that the use of 6-inch extended polyethylene valves reduced respirable dust exposures by more than 60 percent compared with standard paper valves, and the use of 4-inch foam valves reduced exposures by more than 45 percent. Because the concrete products industry, like the mineral processing industry, packs mineral powders, OSHA believes that a dual-nozzle system and effective bag valves will be as effective in the concrete products industry as these studies have shown it is in the mineral processing industry.

Alternate bag designs that minimize spillage and leaks reduce levels of airborne silica in the workplace. Bags that break during filling can be a notable source of silica dust and can contribute to operator exposures of two to three times the current PEL (Concrete Product Industry Associate, 2001). On a busy production line, improperly handled or low-quality bags might break frequently, up to 10 to 20 times an hour, releasing dust in the air as the contents spill and while workers clean up spilled material (ERG-GI, 2008). In addition, leakage from bags that do not fully contain the product during filling also can be a major source of exposure. Workers should be trained on proper techniques for filling and handling bags and should be provided with high-quality bags, filling equipment, and subsequent handling requirements that together minimize dust release (ERG-GI, 2008). One dry concrete bagging facility reduced worker respirable dust and silica exposure levels by changing product packaging from a three-ply bag perforated throughout, to a two-ply bag perforated only on the inner layer. This change alone reduced respirable dust by 83 percent and caused silica levels to fall from 180 μ g/m³ to 83 μ g/m³ (Klein, 2009, 2010). A subsequent adjustment to the ventilation system (temporarily repositioning the ductwork directly over the filling area) further reduced respirable dust by an additional 48 percent. A somewhat less effective variation of the ventilation system was later made permanent.

⁴² Dusty displaced air from the filling process was released from points all over the sack through the perforations in the three-ply bags. In contrast, only the inner layer of the two-ply bags was perforated and displaced air passed inside the solid outer layer to a single relief point at the sack opening (i.e., nozzle entry point). Dusty air exiting from between layers at the relief point was captured by LEV associated with the filling nozzle.

⁴³ With each additional exposure control, the consultant also documented a progressively lower percent of silica in respirable dust samples (all of which were confirmed to be associated with concrete dry mix packaging). Although no explanation was given for this phenomenon, OSHA notes that using sand consisting of larger particles or cleaned sand from which much of the fines have been removed could achieve this result. Thus, the change in respirable dust likely provides the most accurate assessment of control method effectiveness. Hood position and capture velocity at the nozzle turned out to be more critical than anticipated, however. After temporary ductwork was formalized as a permanent, flanged hood, the extra 48 percent reduction in respirable dust level was no longer observed (perhaps due to a decrease in capture velocity with the wider hood). Nevertheless, because the silica

the last two changes ranged from $10 \mu g/m^3$ to $23 \mu g/m^3$, representing an 87- to 94-percent reduction compared to the original silica level of $180 \mu g/m^3$. The samples for which durations are available were obtained over 4-hour periods (morning, afternoon) before and after modifications (midday) and so are not of sufficient duration to include in the exposure profile.

If the exposures of all packaging operators with currently elevated exposures were reduced by 83 percent (achieved by changing the type of bag being filled), then the percentage of packaging operators with results above $50~\mu g/m^3$ in Table IV.C-6 would be reduced from 66 percent to 17 percent. If the highest result for a packaging operator from Table IV.C-6 (370 $\mu g/m^3$) were reduced by 87 to 94 percent by modifying bags and improving LEV, this worker's silica exposure level would be reduced to a value between $22~\mu g/m^3$ and $48~\mu g/m^3$.

Feasibility Finding

Feasibility Finding for Material Handlers

Exposure data collected by OSHA and NIOSH, presented in Table IV.C-6, shows that 65 percent of the material handlers in this industry currently experience silica exposures of 50 $\mu g/m^3$ or less. Because these levels have already been achieved for the majority of material handlers, OSHA preliminarily concludes that levels of 50 $\mu g/m^3$ or less can also be achieved for most of the remaining 35 percent of workers in this job category by using appropriately designed, well-maintained ventilation systems; implementing more consistent housekeeping and yard dust management programs; and reducing the exposures of workers in other job categories to levels of 50 $\mu g/m^3$ or less. All of these control measures will be required for the most highly exposed workers.

Among the data available to OSHA for this job category, the five results above 100 µg/m³ (summarized in Table IV.C-6) were associated with material handlers for whom adjacent operations contributed to worker exposure. Additionally, three of the same four results were also dramatically affected by ineffective LEV. Although information from the concrete products industry is insufficient to confirm the benefit of LEV for this job category, information for material handlers in the pottery industry indicates that when workers have access to functional LEV, the results are markedly lower (median exposure level 27 µg/m³) than when workers use material transfer stations where LEV is clearly inadequate or missing (median exposure level 530 µg/m³). Based on the similarity of front-end loaders, hoppers, and mixing equipment used to blend mineral powders used by both industries, OSHA has preliminarily determined that LEV at material transfer stations will be just as effective in the concrete product industry as in the pottery industry. OSHA preliminarily concludes that installing or upgrading LEV to meet ACGIH (2010) recommendations, particularly at blender hoppers charged by material handlers operating front-end loaders, will reduce even the highest results reported for material handlers in the concrete products industry to levels in the range of $100 \mu g/m^3$. ⁴⁴ OSHA also notes that controlling adjacent operations to levels of 50 µg/m³, in addition to upgrading the LEV, could reduce exposure levels to even lower levels (e.g., the median of 27 µg/m³ calculated for the pottery industry), providing that yards and floors do not contribute airborne silica.

percentage was reduced concurrently, silica declined with each modification and ultimately reached a level "less than 40 percent of the ACGIH threshold limit value (TLV)" (Klein, 2009). Forty percent of the TLV of 25 μ g/m³ equals 10 μ g/m³.

⁴⁴ This conclusion is based on the apparent prevalence of secondary exposure for this job category noted above (improved ventilation will reduce exposure levels, but will continue to be elevated until adjacent sources of exposure are also controlled).

In order to achieve levels of 50 μ g/m³ or less for all material handlers, silica emissions from yard dust and poor housekeeping practices (e.g., dry sweeping and disturbing dust settled in the plant) also need to be controlled. Exposures at facilities that implemented yard dust management controls include four readings of less than 21 μ g/m³ for facilities using dust suppressants, and two readings of less than 19 μ g/m³ for those that consistently wetted yard dust (NIOSH ECTB 233-112c, NIOSH ECTB 233-125c). In contrast, a material handler result of 110 μ g/m³ was associated with a yard that had been previously watered, but let dry. Furthermore, material handler exposure levels ranged from 48 to 73 for material handlers who performed dry sweeping during their shifts where "most of the facility has 1/8-inch of dust on the floor" (NIOSH ECTB-233-112, 1999). In the structural clay industry, another industry with similar material handling requirements, professional cleaning of a brick manufacturing facility dramatically reduced exposure levels (by 90 percent or more in some cases). In material handling areas where the professional cleaning was performed, most worker exposures were reduced to less than 50 μ g/m³ without other abatement efforts (ERG-GI, 2008). Where dust does accumulate, facilities can switch from brooms to HEPA-filtered vacuums to eliminate dry sweeping as a source of exposure.

In the event that some material handlers continue to experience elevated exposure, other control options are also available, such as enclosed, sealed, filtered and air-conditioned cabs, which can reduce the driver's exposure level by more than 90 percent. When this control is combined with the benefits of LEV, dust-suppressing yard maintenance, and reduced exposures associated with other job categories, OSHA preliminarily concludes that an exposure level of $50 \,\mu\text{g/m}^3$ could be achieved for most material handlers most of the time. For example, NIOSH obtained an exposure of $21 \,\mu\text{g/m}^3$ for an operator who used a front-end loader with an air-conditioned cab to transport raw materials across a water and dust suppressant-treated yard (NIOSH ECTB 233-127c).

Feasibility Finding for Mixer Operators

Based on Table IV.C-6, OSHA preliminarily concludes that 62 percent of all mixer operators currently have exposures of 50 $\mu g/m^3$ or less (46 percent have exposures less than 25 $\mu g/m^3$). To achieve that level, the remaining 38 percent of operators require additional controls during mixer drum chipping and manual bag dumping. Appropriate controls include frequent and conscientious rinsing of mixing equipment before residual concrete hardens on the barrel and using wet methods with chipping equipment when it becomes necessary to remove hardened concrete. During mixing activity, exposures can be controlled through ventilated bag dumping stations or automated mixer charging. In the event that results remain elevated, ventilated control rooms or booths can offer additional protection. The effectiveness of these controls is discussed in the following paragraphs.

Based on information presented earlier in the discussion of additional controls for mixer operators, OSHA preliminarily concludes that for truck drum cleaning, LEV-equipped chipping tools, water misting devices used with push-pull ventilation, or wetting the barrel interior and directing continuous water spray to the chipping point offer exposure reductions of *at least* 70 percent compared with uncontrolled levels typically up to approximately 1,000 $\mu g/m^3$. OSHA preliminarily concludes that a 70-percent reduction in silica exposure would lower the second highest result available to OSHA for this job category (as identified in the discussion of the exposure profile for mixer operators performing barrel chipping in this industry) from 122 $\mu g/m^3$ to a level of 37 $\mu g/m^3$ and reduce to levels less than 37 $\mu g/m^3$ all the other results included in the mixer operator exposure profile summarized in Table IV.C-6, except the highest value of 281 $\mu g/m^3$.

For those mixer operators who experience elevated exposure while manually charging mixers, OSHA preliminarily concludes that ventilated bag dumping stations will reduce even the highest exposures associated with manual mixer charging to levels of $50 \,\mu\text{g/m}^3$ or less. While data from concrete product facilities using ventilated bag dumping stations are unavailable, workers at a paint manufacturer, which

also charged mixers with high-silica powdered mineral products, utilizing a bag dumping station with fully functioning LEV experienced a reduction in silica exposure of at least 95 percent (ERG-paint-fac-A, 1999).

Additionally, automated mixer charging reduces mixer operator exposure levels. An exposure of less than or equal to 12 $\mu g/m^3$ (LOD) was reported for a mixer operator using an automated charging system at a precast concrete panel facility (ERG-concrete-fac-C, 2002). OSHA reiterates that nearly half (46 percent) of mixer operators currently have exposure levels of 25 $\mu g/m^3$ or less; most of these values are associated with automatic mixer charging.

In the event that mixer operator exposure continues to occur during automated mixer charging, ventilated control rooms are also effective in maintaining a low exposure. OSHA obtained a reading of $23 \mu g/m^3$ for a worker who operated a computer-controlled mixer operation and charging equipment from an enclosed booth (OSHA SEP Inspection Report 300523396).

Because the evidence indicates that such controls will individually bring exposures well below 50 μ g/m³, not all controls will be needed at all plants.

Feasibility Finding for Forming Operators

Table IV.C-6 indicates the vast majority (90 percent) of results for forming operators are 50 $\mu g/m^3$ or less, leading OSHA to preliminarily conclude that facilities can achieve exposures of 50 $\mu g/m^3$ or less for all forming operators. This goal can be accomplished primarily by controlling the exposure levels of adjacent workers. OSHA bases this conclusion on information indicating that among the data available to OSHA for this job category, the forming operators associated with silica values exceeding 50 $\mu g/m^3$ or 100 $\mu g/m^3$ were subject to silica dust from adjacent sources and from the activities of other workers that had exposure levels above 100 $\mu g/m^3$ (NIOSH ECTB 233-112c, 1999). The highest result summarized in Table IV.C-6 for this job category (107 $\mu g/m^3$) was obtained under these conditions at a facility where 9 of 10 results exceeded 100 $\mu g/m^3$ (OSHA SEP Inspection Report 300997012).

In the event that additional controls are required for forming operators (after the exposures of other job categories are controlled to levels of $50~\mu g/m^3$ or less), available measures include adding LEV to forming operator workstations, particularly those with automated processes, and improving housekeeping, starting with a professional level cleaning to remove accumulated dust and continuing with the benefit of HEPA-filtered vacuums to clean forms and the facility. OSHA preliminarily concludes that these control measure could benefit workers in this job category because a forming operator with results exceeding $50~\mu g/m^3$ on two consecutive days controlled a concrete block-forming machine that emitted dust. That forming operator's location was near the mixing area, from which dust was emitted during mixer charging. Another worker performed dry sweeping nearby (CITE). OSHA preliminarily concludes that controlling these sources of exposure will reduce forming operators' overall exposure.

Feasibility Finding for Abrasive Blasting Operators

OSHA preliminarily concludes that just 20 percent of abrasive blasting operator silica exposures are already 50 $\mu g/m^3$ or less, as indicated in Table IV.C-6. More than half of the workers in this job category (60 percent) experience exposure levels that exceed 100 $\mu g/m^3$, and many results are extremely high. Among the results available to OSHA, the maximum exposure level for an abrasive blasting operator in this industry is 26,826 $\mu g/m^3$. Although abrasive blasting has historically been associated with very high silica levels, OSHA has preliminarily determined that these exposure levels can be reduced (although not eliminated) by using alternative abrasive blasting media that is less toxic than silica or by switching to wet abrasive blasting (or a combination of both).

The primary method for reducing the exposure of those abrasive blasters with the highest exposures is using retarders and water spray to wash away incompletely cured concrete and expose aggregate. Where abrasive blasting must be performed, wet methods used outdoors or in a ventilated environment will substantially reduce silica exposure levels. However, the use of appropriate respiratory protection and proper ventilation, especially within enclosures, will still be needed to protect workers from hazardous levels of contaminants that can be generated during abrasive blasting, from either the abrasive or the substrate, or both. To ensure protection, ventilation and respiratory protection must meet the requirements of 29 Code of Federal Regulations (CFR) 1910.94 and 1910.134, respectively (29 CFR 1910.94 and 1910.134).

As an alternative exposure reduction method, low-silica abrasive blast media that is less toxic than silica sand can also reduce exposure levels for abrasive blasting operators in this industry. Although concrete surfaces remain a source of silica dust during abrasive blasting even when low- or non-silica media are used, these levels are often notably lower than silica concentrations measured during abrasive blasting with quartz sand. For example, three readings, $54 \, \mu g/m^3$, $30 \, \mu g/m^3$, and $20 \, \mu g/m^3$, were obtained from two facilities at which finishing operators performed abrasive blasting of concrete products outdoors with coal slag media (OSHA SEP Inspection Report 116200940, OSHA SEP Inspection Report 300096930). Employers must consider the possible hazards of substitutes if switching from silica sand, however. For example, depending on the abrasive, alternative media can result in elevated levels of other hazardous air contaminants such as heavy metals (KTA-Tator-Phase-1, 1998; KTA-Tator-Phase-2, 1998; KTA-Tator-Phase-3, 1999). Furthermore, total and respirable dust levels will continue to be a concern even with alternate abrasive blasting media.

OSHA has reviewed the information contained in the discussion of additional controls for abrasive blasting operators in this industry and in the related section of this technological feasibility analysis covering abrasive blasting in the construction industry (Section IV.C.22 – Abrasive Blasters). Based on this information, OSHA preliminarily concludes that by using wet methods or alternative abrasive blasting media, the exposure of abrasive blasting operators working outdoors can be reduced to levels consistently below $500 \, \mu \text{g/m}^3$.

Feasibility Finding for Finishing Operators

Based on Table IV.C-6, OSHA preliminarily concludes that 62 percent of finishing operators have exposure levels at or below 50 $\mu g/m^3$. By using water-fed equipment, LEV, and modified work practices (e.g., finishing of uncured products), the exposure levels of most finishing operators can be brought below 50 $\mu g/m^3$ most of the time. This finding is based on four exposure readings, ranging from less than or equal to 12 $\mu g/m^3$ (LOD) to 31 $\mu g/m^3$, obtained for finishing operators at two concrete product facilities using these additional controls. Two of the readings, obtained for finishing operators who used hand and power tools to work on uncured concrete products, were both less than or equal to 12 $\mu g/m^3$ (LOD) (NIOSH ECTB 233-125c). Two other readings, less than or equal to 12 $\mu g/m^3$ (LOD) and 31 $\mu g/m^3$, were obtained for a finishing operator who used a water-fed coring machine to drill concrete products (NIOSH ECTB 233-127c).

Feasibility Finding for Packaging Operators

OSHA preliminarily concludes that 33 percent of packaging operator exposure levels are already 50 $\mu g/m^3$ or less, as indicated in Table IV.C-6. Exposures of the remaining 67 percent of packaging operators can be controlled to 50 $\mu g/m^3$ or less by switching to package (bag) designs that release less dust and by improving or adding adequate workstation ventilation. Exposure readings of less than or equal to 12 $\mu g/m^3$ (LOD) and less than or equal to 11 $\mu g/m^3$ (LOD) were obtained at two facilities for packaging operators who loaded bags of dry-mixed concrete using bag-filling machines equipped with effective

LEV systems (OSHA SEP Inspection Report 300114378, OSHA SEP Inspection Report 116007451). A third concrete products facility reduced silica exposure levels from 180 $\mu g/m^3$ to 10 $\mu g/m^3$ and 23 $\mu g/m^3$ by changing the bag design (to reduce dust emissions) and improving LEV to capture residual dust (Klein, 2009, 2010).

Overall Feasibility Finding

OSHA preliminarily concludes that by implementing the controls described in this section, silica exposure levels of $50 \mu g/m^3$ or less can be achieved most of the time for most workers in all job categories in this industry, except the abrasive blasting operator job category. Workers performing abrasive blasting will continue to require respiratory protection under 29 CFR 1910.94.

REFERENCES

- [29 CFR 1910.94 and 1910.134] Title 29 Code of Federal Regulations, Occupational Safety and Health Administration. Part 1910.94 Ventilation and Part 1910.134 Respiratory Protection. **OSHA-2010-0034-1351**
- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- Addo, J.Q., and T.G. Sanders, 1995. Effectiveness and environmental impact of road dust suppressants. Mountain-Plains Consortium Report No. 95-28A. **OSHA-2010-0034-0516**
- Akbar-Khanzadeh, F., S. Milz, A. Ames, P. Susi, M. Bisesi, S.A. Khuder, and M. Akbar-Khanzadeh, 2007. Crystalline silica dust and respirable particulate matter during indoor concrete grinding—wet grinding and ventilated grinding compared with uncontrolled conventional grinding. Journal of Occupational and Environmental Hygiene 4(10):770-779. **OSHA-2010-0034-0522**
- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp OSHA-2010-0034-0553
- Carolina Conveying, 2010. Bag dump stations. Available at: http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0034-0581**
- Cecala, A.B., R.J. Timko, E.D. Thimons, 2000. Methods to lower the dust exposure of bag machine operators and bag stackers. Applied Occupational and Environmental Hygiene 15(10):751-765. **OSHA-2010-0034-1326**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-1563**

- Chicago Conveyor, 2004. Bag dump stations. Available at:
 http://www.chicagoconveyor.com/bagdump.html;
 http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010.
 OSHA-2010-0034-1429
- Concrete Product Industry Associate, 2001. Personal communication between Concrete Product Industry Associate and Eastern Research Group, Inc. October 4. **OSHA-2010-0034-0587**
- Concrete Product Industry Representative A, 2000. Personal communication between Concrete Product Industry Representative A and Eastern Research Group, Inc. August 17. **OSHA-2010-0034-0601**
- Echt, A., and Sieber, W., 2002. Control of silica from hand tools in construction: grinding concrete (D. Tharr, ed.). Applied Occupational and Environmental Hygiene 17(7):457-461. **OSHA-2010-0034-0632**
- [ERG-concrete-fac-C] Eastern Research Group, Inc., 2002. Site visit to precast concrete manufacturing facility B. September. **OSHA-2010-0034-0204**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July **OSHA-2010-0034-0199**
- Fairfax, R. (ed.), 1998. Exposure to crystalline silica in a concrete packaging operation. Applied Occupational and Environmental Hygiene, 13(1):7-8. **OSHA-2010-0034-1689**
- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-0680**
- Flynn, M.R., and P. Susi, 2003. Engineering controls for selected silica and dust exposures in the construction industry a review. Applied Occupational and Environmental Hygiene 18(4):268-277. **OSHA-2010-0034-0681**
- Heitbrink, W.A., 2007. Field tests of a water induction nozzle as a dust control for abrasive blasting. Silver Spring, MD: Center to Protect Workers' Rights. **OSHA-2010-0034-0733**
- Klein, P., 2009. Controlling silica dust exposure during dry concrete product bag filling. Poster No. 331, American Industrial Hygiene Conference and Exposition (AIHCe), Toronto, Canada. 2 June. **OSHA-2010-0034-0765**
- Klein, P., 2010. Personal communication between P. Klein, CSP, CIH, author of Klein (2009), a poster presented at AIHce, and Eastern Research Group, Inc. February 18. **OSHA-2010-0034-0766**

- [KTA-Tator-Phase-1] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. September. **OSHA-2010-0034-0772**
- [KTA-Tator-Phase-2] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. December. **OSHA-2010-0034-0773**
- [KTA-Tator-Phase-3] KTA-Tator, Inc., 1999. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. March. **OSHA-2010-0034-0774**
- Lahiri, S., C. Levenstein, D.I. Nelson, and B.J. Rosenberg, 2005. The cost effectiveness of occupational health interventions: Prevention of silicosis. American Journal of Industrial Medicine 48:503–514. **OSHA-2010-0034-0776**
- Mazzuckelli, L., V. Golla, and W. Heitbrink, 2004. Case studies. Journal of Occupational and Environmental Hygiene 1(3):D26-D32. **OSHA-2010-0034-0795**
- [Media Blast] Media Blast and Abrasive, Inc., 2009. Dictionary of Terms. Available at: http://www.mediablast.com/dictionary.php OSHA-2010-0034-0801
- Meijer, E., H. Kromhout, and D. Heederik, 2001. Respiratory effects of exposure to low levels of concrete dust containing crystalline silica. American Journal of Industrial Medicine 40:133-140. **OSHA-2010-0034-0804/OSHA-2010-0034-1093/OSHA-2010-0034-1243**
- [NIOSH 528] National Institute for Occupational Safety and Health, 2007. Recirculation filter is key to improving dust control in enclosed cabs. NIOSH 2008-100. Technology News 528:1-2. **OSHA-2010-0034-0844**
- [NIOSH 2009-123] National Institute for Occupational Safety and Health, 2009. Reducing hazardous dust in enclosed operator cabs during construction. **OSHA-2010-0034-0839**
- [NIOSH ECTB 233-101c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 01 A ready-mix concrete plant. **OSHA-2010-0034-0214**
- [NIOSH ECTB 233-112c] National Institute for Occupational Safety and Health, 1999b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 12 Concrete block manufacturing. **OSHA-2010-0034-0220**

- [NIOSH ECTB 233-125c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 25 Concrete pipe manufacturing. **OSHA-2010-0034-0234**
- [NIOSH ECTB 233-127c] National Institute for Occupational Safety and Health, 2000b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 27 Pre-cast concrete shape manufacturing. **OSHA-2010-0034-0898**
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0862**
- [NIOSH EPHB 282-11a] National Institute for Occupational Safety and Health, 2003. In-depth survey report of control of respirable dust and crystalline silica from breaking concrete with a jackhammer at Bishop Sanzari companies, North Bergen, New Jersey. **OSHA-2010-0034-0865**
- [NIOSH EPHB 282-13] National Institute for Occupational Safety and Health, 2007a. In-depth survey of dust control technology for cutting concrete block and tuckpointing brick at the International Masonry Institute Bordentown Training Center, Bordentown, New Jersey. **OSHA-2010-0034-0868**
- [NIOSH HETA 84-066-1883] National Institute for Occupational Safety and Health, 1988. Health hazard evaluation report: Artesian Industries, Mansfield, Ohio. **OSHA-2010-0034-1372**
- [NRMCA] National Ready Mixed Concrete Association, 2009. An examination of the results of the Eleventh Annual NRMCA Fleet Benchmarking and Costs Survey. Concrete Infocus Magazine 8(5):7–11. **OSHA-2010-0034-0922**
- [OSHA SEP Inspection Report 108738295] OSHA Special Emphasis Program Inspection Report 108738295. **OSHA-2010-0034-0013**
- [OSHA SEP Inspection Report 116007451] OSHA Special Emphasis Program Inspection Report 116007451. **OSHA-2010-0034-0073**
- [OSHA SEP Inspection Report 116200940] OSHA Special Emphasis Program Inspection Report 116200940. **OSHA-2010-0034-0055**
- [OSHA SEP Inspection Report 300096930] OSHA Special Emphasis Program Inspection Report 300096930. **OSHA-2010-0034-0011**
- [OSHA SEP Inspection Report 300114378] OSHA Special Emphasis Program Inspection Report 300114378. **OSHA-2010-0034-0126**
- [OSHA SEP Inspection Report 300236882] OSHA Special Emphasis Program Inspection Report 300236882. **OSHA-2010-0034-0012**

- [OSHA SEP Inspection Report 300523396] OSHA Special Emphasis Program Inspection Report 300523396. Includes pages from related inspections 300530805, 302005772, and 302547674. **OSHA-2010-0034-0161**
- [OSHA SEP Inspection Report 300997012] OSHA Special Emphasis Program Inspection Report 300997012. **OSHA-2010-0034-0039/OSHA-2010-0034-0110**
- Pauli, 2001a. Product information for RAM 31 Dry Stripping Cabinet. Pauli Systems, Fairfield, California. **OSHA-2010-0034-1693**
- Pauli, 2001b. Personal communication between representative of Pauli Systems, Fairfield, California, and Eastern Research Group, Inc. At SSPC2001 Industrial protective coatings conference and exhibit. November 13. **OSHA-2010-0034-0953**
- Pauli, 2009. Web site for Pauli Systems, Inc., external workstation kit (Gauntlet glove fittings and external controls for large abrasive blasting booth). Available at: http://paulisystems.thomasnet.com/item/all-categories/abrasive-blast-accessories-2/external-work-station-kit?&seo=1&bc=100|1002|1007|1011. **OSHA-2010-0034-0954**
- Shepherd, S., S.R. Woskie, C. Holcroft, and M. Ellenbecker, 2009. Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills. Journal of Occupational and Environmental Hygiene 6(1):42-51. **OSHA-2010-0034-1142**
- Simcox, N., D. Lofgren, J. Leons, and J. Camp, 1999. Silica exposure during granite countertop fabrication. Applied Occupational and Environmental Hygiene 14(9):577-582. **OSHA-2010-0034-1146**
- Strelec, F., 2008. OSHA compliance issues: Control of silica exposures in cement mixer drum cleaning operations. Journal of Occupational and Environmental Hygiene (5):D121-D123. **OSHA-2010-0034-1157**
- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1212**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**
- Wickman, A. R. and P.J. Middendorf, 2002. An evaluation of compliance with occupational exposure limits for crystalline silica (quartz) in ten Georgia granite sheds. Applied Occupational and Environmental Hygiene 17(6):424-429. **OSHA-2010-0034-1225**
- Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**

Cut Stone

Description

Slabs of silica-containing dimension stones are cut, shaped, and often polished to form a diverse range of products including floor tile, countertops, roofing slates, building cladding, and funeral monuments. The most commonly used dimension stones with the highest percentage of free quartz are granite (up to 45 percent quartz), sandstone (42 to 95 percent quartz), high-silica limestone (9 to 67 percent quartz), and slate (31 to 45 percent quartz) (ERG-GI, 2008). In 2003, the U.S. Geological Survey reported that granite comprised 41 percent of the dimension stone used in the United States; sandstone contributed another 9 percent; and slate comprised 6 percent (ERG-GI, 2008). Although many other stones contain silica, most have less desirable physical characteristics and are not cut for commercial purposes. Two of the other most commonly used dimension stones, marble and low-silica limestone, occasionally contain low levels of silica as impurities, but do not contribute significantly to worker exposure (ERG-GI, 2008).

Fabricating facilities that produce cut stone and stone products are classified in the six-digit North American Industry Classification System (NAICS) 327991, Cut Stone and Stone Products Manufacturing. In contrast, the manufacture of man-made stone is classified separately as NAICS 327999, All Other Miscellaneous Nonmetallic Mineral Product Manufacturing, and is discussed in Section IV.C.7 – Engineered Stone Products in this technological feasibility analysis. Once manufactured, however, these engineered stones are cut to shape and finished by the stone and stone products industry.

The essential steps used in the fabrication of stone products vary little across the industry. Natural stone is delivered as blocks that workers cut into slabs or, more frequently, stone is delivered as slabs precut to the approximate thickness of the ultimate product. Sawyers cut slabs to appropriate dimensions for the product. Fabricators change the contours and finish and assemble the pieces. Additional specialized steps can include manual chipping or splitting; mechanical trimming or milling; and abrasive blasting. Table IV.C-7 identifies and describes the five job categories with sources of exposure for workers in the stone and stone products industry.

Baseline Conditions and Exposure Profile

Stone industry workers can be exposed to silica when they saw large blocks and slabs of stone; grind or chip the stone; finish the pieces by smoothing, polishing, or abrasive blasting the surface; and handle or transport stone. There is significant potential for worker and bystander exposure to silica at each step in the process; however, the actual exposure varies enormously with the silica content of the stone, the work practices, and the equipment used.

Job Cate	Table IV.C-7 egories, Major Activities, and Sources of Exposure of Workers in the Cut Stone Industry (NAICS 327991)
Job Category*	Major Activities and Sources of Exposure
Sawyer	Operates large water-fed stationary bridge or gantry-type saws.
	Dust from wet-sawing stone.
	 Dust disturbed from stone and work surfaces.
	Dust from adjacent activities.
Fabricator	Produces finished stone products from slabs.
	Dust from dry grinding, edging, milling, contouring, and polishing stone.
	 Dust disturbed from stone and work surfaces.
	Dust from adjacent activities.
Splitter/Chipper (Splitter, Stone Cutter, Sculptor)	Uses hand-held equipment to change the shape of the stone.
	Dust from dry chipping, splitting, and cleaving stone using hammer and chisel.
	 Dust generated while operating power tools for drilling and chipping.
	 Dust disturbed from stone and work surfaces.
	Dust from adjacent activities.
Machine Operator	Operates trimming, punching, gauging, or planing machines.
(Trimmer, Gouger, Puncher, Planer)	Dust emitted from unventilated, unenclosed trimming, punching, gauging, or
r dilonor, r landry	planning machines.
	Dust disturbed from stone and work surfaces.
	Dust from adjacent activities.
Abrasive Blasting Operator	Operates blasting equipment.
	Dust generated during blasting with silica sand or alternative media on silica-
	containing stone.
	Dust from using compressed air for cleaning stone. Dust disturbed from stone and work outflood.
	Dust disturbed from stone and work surfaces.
*Job categories are intended allocated differently, depend	I to represent job functions; actual job titles might differ, and responsibilities might be ing on the facility.
Source: ERG-GI, 2008.	

Yassin et al. (2005) analyzed OSHA's Integrated Management Information System (IMIS) data for the period 1988–2003 and found a downward trend in exposure levels for cut stone and stone products workers compared with earlier IMIS data. This industry had geometric mean silica exposure levels 9.8 times higher in 1979–1987 than in 1988–2003 (619 micrograms per cubic meter $[\mu g/m^3]$ to 63 $\mu g/m^3$), suggesting modern equipment and work practices are having a beneficial effect on worker exposures. This finding is in contrast to the experience of stone workers in Germany, who as an industry experienced very little reduction in silica exposure over the past four decades. The Institute for Occupational Safety and Health of the German Social Accident Insurance⁴⁵ (BGIA, 2008) attributed these intractable silica exposure levels to the increased popularity of granite (rather than the previously popular and virtually silica-free marble) as a decorative building material in Europe over this same time period. Increased demand for the higher silica granite offset improvements in local exhaust ventilation (LEV) and water-fed stone working equipment at stone product fabricating plants. Attfield and Costello (2004) evaluated older data for Vermont granite workers and found average measured personal and area silica levels were lower

⁴⁵ In 2008 Germany's Institute for Occupational Safety and Health of the German Social Accident Insurance was known as BGIA, but this organization is now called by the German acronym IFA.

after 1950 compared with earlier years for several job categories applicable to the stone and stone products industry. This could have been due to either improved dust control (including increased automation) or increased use of lower silica stone (e.g., marble).

The following sections describe baseline conditions and the exposure data for each affected job category based on more than one dozen OSHA Special Emphasis Program (SEP) inspection reports and several NIOSH reports, previously described in ERG-GI (2008). Table IV.C-8 summarizes the exposure information for the affected job categories.⁴⁶

Baseline Conditions and Exposure Profile for Sawyers

Sawyers typically operate large, powerful stationary bridge or gantry-type saws, with single or multiple heads. All of the results included in the exposure profile are associated with water-fed saws of these general varieties. OSHA reviewed 23 exposure results for sawyers from 10 OSHA SEP Inspection reports and one NIOSH report (ERG-GI, 2008). The results have a full-shift median exposure of 54 μ g/m³, a mean of 62 μ g/m³, and a range of 15 μ g/m³ to 134 μ g/m³. Thirteen results (57 percent) exceed 50 μ g/m³, and four results (17 percent) exceed 100 μ g/m³.

OSHA inspection reports indicate that sawyers generally cut stone from 30 minutes to 4 hours per day, but might work at the task up to 8 hours per day. A typical shop will employ approximately 25 percent of the production work force as saw operators, although the percentage might be higher in mass production shops, such as floor tile or slate roof manufacturing facilities (ERG-GI, 2008).

An extremely high-pressure water jet, often containing abrasives, can also be used to cut stone. A small but growing number of facilities are using water jet equipment to cut specialty shapes (e.g., sink openings in countertops) in smaller pieces of stone. The operator programs the automated equipment and positions the stone inside an enclosed space, and a fine, high-pressure water spray (computer controlled) is directed along the cutting line (ERG-GI, 2008).

Baseline Conditions and Exposure Profile for Fabricators

Fabricators produce finished stone products from the sawn slabs or shapes. Fabricators use both electric and pneumatic tools, including hand-held dry circular saws and angle-grinders, hand-held or hand-guided grinders and routers, and higher speed polishing tools. OSHA reviewed 24 full-shift respirable quartz monitoring results for fabricators from eight OSHA SEP inspection reports and two NIOSH reports (ERG-GI, 2008). The results have a median of 49 $\mu g/m^3$, a mean of 126 $\mu g/m^3$, and a range of 12 $\mu g/m^3$ (limit of detection [LOD]) to 460 $\mu g/m^3$. Twelve results (50 percent) exceed 50 $\mu g/m^3$, and 10 (42 percent) exceed 100 $\mu g/m^3$.

Although both grinding and polishing might be performed as wet processes, the typical shop uses primarily dry methods. A study conducted in the state of Washington found that fabricators in one-third

⁴⁶ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

⁴⁷ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

of the facilities evaluated were primarily using wet methods at the time of the initial visit (Simcox, 1999). Sixty to 100 percent of production workers in typical custom architectural component (e.g., kitchen countertop) manufacturing facilities are classified as fabricators. Workers typically grind stone 20 minutes to 4 hours per day, and spend the balance of the day polishing, filling defects, waxing, inspecting work, performing housekeeping activities, and helping other workers (ERG-GI, 2008).

Baseline Conditions and Exposure Profile for Splitters/Chippers

Splitters/chippers typically use hand-held hammers and chisels, working within arm's length of their breathing zones, to change the shape of stone. OSHA reviewed 29 full-shift personal breathing zone (PBZ) results for chippers from eight OSHA SEP inspection reports and two NIOSH reports (ERG-GI, 2008). The results have a range of less than or equal to 13 μ g/m³ (LOD) to 208 μ g/m³, with a median of 98 μ g/m³ and a mean of 90 μ g/m³. Twenty results (69 percent) exceed 50 μ g/m³, and 14 (48 percent) exceed 100 μ g/m³. Four of the highest results, ranging from 134 μ g/m³ to 181 μ g/m³, are associated with dry splitting of slate (a high silica stone, therefore a worst case condition). These scenarios, which involve inadequately implemented controls or no attempt to control exposure, are typical of the slate-splitting work areas described by OSHA. Splitters/chippers typically work at this task for the full shift but might rotate to other tasks if the need arises. Typical slate tile manufacturing facilities employ approximately 30 percent of their production force as splitters (ERG-GI, 2008).

Baseline Conditions and Exposure Profile for Machine Operators

Machine operators are typically employed in facilities that mass produce large quantities of identical stone products (e.g., tiles). For the purposes of this discussion, machine operators are considered to operate stationary equipment. The stone is conveyed through the machine, processed, and conveyed out the back or side of the machine to be manually or automatically stacked on a pallet (ERG-GI, 2008). Typical machine functions include trimming, gouging, punching, and planning.

OSHA reviewed 17 full-shift PBZ results for machine operators from seven OSHA SEP inspection reports and one NIOSH report (ERG-GI, 2008). The results have a range of less than or equal to 13 μ g/m³ (LOD) to 314 μ g/m³, with a median of 69 μ g/m³ and a mean of 125 μ g/m³. Twelve results (71 percent) exceed 50 μ g/m³, and eight (47 percent) exceed 100 μ g/m³. Three of the highest results were collected from two slate trimming machine operators and a punching machine operator where controls (e.g., ventilation) were absent or ineffective or equipment was malfunctioning. These higher results (and the associated controls) are representative of those typically seen in facilities prior to abatement efforts instigated by an OSHA inspection (ERG-GI, 2008). The processes are performed dry and, at the time of OSHA's initial visits, were typically unventilated. In these facilities, machine operators make up 20 to 30 percent of the production workforce and work at their tasks approximately 8 hours per day (ERG-GI, 2008).

Baseline Conditions and Exposure Profile for Abrasive Blasting Operators

Abrasive blasting operators in this industry typically use traditional dry abrasive blasting methods to etch patterns, such as lettering or decorations, into stone. OSHA reviewed seven full-shift PBZ respirable quartz monitoring results for abrasive blasting operators from one OSHA SEP Inspection Report and three NIOSH reports (ERG-GI, 2008). The results have a range of 22 μ g/m³ to 309 μ g/m³, with a median of 55 μ g/m³ and a mean of 137 μ g/m³ (ERG-GI, 2008). Four results (57 percent) exceed 50 μ g/m³, and three (43 percent) exceed 100 μ g/m³.

At all six facilities considered in the exposure profile, the abrasive blasting media consisted of various grit sizes of aluminum oxide or bauxite. Aluminum oxide contains little or no silica, and bauxite can contain 2

to 9 percent quartz. Some operators also use silica sand to finish or "whiten" the blasted surface (ERG-GI, 2008).

Abrasive blasting operators might spend 1 to 7 hours per 8-hour shift operating blasting equipment. In addition to blasting, operators spend substantial amounts of time applying masking materials to protect portions of the stone from the effects of blasting. Operators' other activities include cleaning dust from stone, usually with compressed air, and removing spent media and stone dust from the blasting area using shovels and brooms. In memorial production facilities, 10 to 30 percent of production workers are abrasive blasting operators (ERG-GI, 2008).

NIOSH evaluated blasting booths at two of the three establishments they visited and found that the ventilation rate measured less than half the rate recommended by the American Conference of Industrial Hygienists (ACGIH) (2001): 100 cubic feet per minute per square foot (cfm/ft²). OSHA also reviewed four less than full-shift PBZ results collected by NIOSH for abrasive blasting operators at a stone monument manufacturer. Although these data are less than full shift and thus are not included in Table IV.C-8, they provide additional insight into the ventilation controls experienced by these workers. The sample times range from 4 to nearly 6 hours, and all results are below 50 μ g/m³ for the periods (mean of 29 μ g/m³) sampled. Three of the operators performed automated blasting in ventilated abrasive blasting booths, and one used both the ventilated blasting booth and a manual blasting cabinet contained within an enclosure with a rubber curtain that acted as a barrier for dust. Although the type of media used was not reported, the percent of silica in total respirable dust for these samples ranged from 14 percent to 33 percent. The measured face velocity at the screen was 160 feet per minute (fpm) for the automated blasting operation, and 100 fpm at the curtain for the manual blasting operation (NIOSH EPHB 247-22, 2003).

Table IV.C-8
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Cut Stone Industry (NAICS 327991)

Job Category	Expos	Exposure Summary			e Range	Exposure Profile						
	Number of Samples	Mean (µg/m³)	Median (μg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (µg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)		
Sawyer	23	62	54	15	134	4	6	9	4	0		
						17%	26%	39%	17%	0%		
Fabricator	24	126	49	12	460	4	8	2	6	4		
						17%	33%	8%	25%	17%		
Splitter/Chipper	29	90	98	13	208	5	4	6	14	0		
						17%	14%	21%	48%	0%		
Machine Operator	17	125	69	13	314	2	3	4	6	2		
						12%	18%	24%	35%	12%		
Abrasive Blaster	7	137	55	22	309	1	2	1	1	2		
						14%	29%	14%	14%	29%		
Totals	100	101	67	12	460	16	23	22	31	8		
						16%	23%	22%	31%	8%		

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

Additional Controls

Additional Controls for Sawyers

Additional controls are required for the 57 percent of sawyers whose exposures exceed $50 \,\mu\text{g/m}^3$. These controls include LEV, and thorough housekeeping to prevent the accumulation of dried slurry and other dust that can be re-suspended. Increased water flow to the saw and saw enclosures might be required in some facilities.

OSHA SEP inspection reports suggest that a combination of housekeeping and other measures can reduce silica levels. For example, the median full-shift PBZ silica exposure level was 30 μ g/m³ for eight sawyers at four facilities that implemented housekeeping in combination with other control measures, such as enclosing the saw in a booth with a fan, pre-washing stone, managing slurry, increasing water flow for wet processes, and controlling dust from adjacent processes (ERG-GI, 2008). This level is more than 40 percent lower than the median result for all sawyers reported in the exposure profile (54 μ g/m³). It is also lower than the median of 100 μ g/m³ for sawyers in three facilities using some form of additional controls, but where rigorous housekeeping was not reported (ERG-GI, 2008).

Housekeeping activities at the four low-exposure facilities included steps that minimized dust accumulation on surfaces and kept floors damp. In the event that recirculating water for saws is becoming laden with stone dust (as occurs with brick dust during masonry cutting in the construction industry), changing the water more frequently could also reduce the amount of silica in mist and dried slurry. OSHA was unable to obtain information identifying the specific benefits of housekeeping because most facilities improve housekeeping at the same time that they implement other control methods.

The value of combining LEV with whole-shop exposure control efforts is illustrated by exposure monitoring data obtained by OSHA at a facility where efforts to augment housekeeping, enclose the saw, and control other sources of silica dust in the shop had already reduced the sawyers' median exposure from $84 \mu g/m^3$ to $49 \mu g/m^3$ (ERG-GI, 2008). After management modified the ventilation to exhaust directly from the top of the saw, the silica median exposure for sawyers was further reduced to $22 \mu g/m^3$.

Stand-alone fan-powered dust collectors are a feasible method to lower dust levels in small dimension stone processing shops, especially during times when windows cannot be opened. Air cleaning units, however, must be properly sized to clean dust loads and keep acceptable dust levels low.⁴⁸

Additional Controls for Fabricators

The 50 percent of fabricators whose exposure level exceeds 50 μ g/m³ will require additional controls. The primary controls for fabricators include wet methods when polishing and grinding stone and rigorous housekeeping throughout the facility.

The exposure level for fabricators can be reduced substantially by converting to water-fed equipment and switching to wet methods. According to Simcox et al. (1999), exposures of fabricators at granite handling facilities were reduced from a mean of 490 μ g/m³ to 60 μ g/m³ (88 percent) when all dry grinding tools used on granite were either replaced or modified to be water fed. The same study reported similar

⁴⁸Chekan, et al. (2008) demonstrate that a 2.24 kilowatt (kW) motor cleaning unit cleaned 19 percent more air and captured 32 percent more respirable dust than the 0.56 kW unit. The study also discussed cost-effective retrofit options. Although dust collectors are practical means to reduce respirable dust, reliable data do not exist to determine their effectiveness.

reductions in exposure at other fabricating facilities when wet grinding, polishing, and cutting methods were adopted.

Results obtained from NIOSH and OSHA SEP inspection reports also show a substantial reduction in fabricator exposure levels associated with wet methods. All seven full-shift PBZ silica results for fabricators using water-fed equipment exclusively are $51~\mu g/m^3$ or less (ERG-GI, 2008). In six of these instances of wet-method use, the fabricator was polishing granite; in one case, the fabricator was working with marble in a facility that also handled granite.

Rigorous control of water from wet processes prevents dust left by evaporated water from being disturbed and becoming airborne. The following methods, combined with water-fed equipment, are associated with reduced exposure levels for fabricators: frequent replacement or filtration of recirculated water for milling machines, adequate collection of used water from hand-held equipment, and frequent washing of floors and surfaces where dust-laden water might evaporate or dust might accumulate.

OSHA also considered grinding equipment fitted with shrouds attached to vacuums as a means of reducing exposure. This type of equipment has been shown to reduce exposure levels of concrete finishers by 75 to 93 percent (Akbar-Khanzadeh and Brillhart, 2002; Croteau et al., 2002; NIOSH ECTB 247-21c, 2002; NIOSH-construction-site-16, 1998); however, shrouds work best on flat surfaces and are less effective when workers use these tools on edges and corners, which constitute most of a granite fabricator's work with hand-held tools.

Stand-alone fan-powered dust collectors, discussed previously as an additional control for sawyers, also are a feasible method to lower dust levels in small-dimension stone processing shops.

Additional Controls for Splitters/Chippers

Additional controls are needed to reduce exposures for the 69 percent of splitters/chippers whose exposures exceed 50 μ g/m³. Available controls include LEV at workstations, rigorous housekeeping, and wet methods. Based on the similarity of tools and exposures, OHSA anticipates that splitters and chippers benefit similarly from the controls discussed in this section.

OSHA does not possess data that quantifies the benefits of LEV or water fed tool attachments, as individual controls or in combination, in the stone products industry. However, there is evidence that demonstrates that a combination of LEV, wet methods, and other efforts can be very effective in reducing exposures. For example, at a facility visited by OSHA, workers also used a combination of housekeeping, LEV, and wet methods to control splitter/chipper exposure. In this case, workers washed stone with a constant stream of water (rather than a spray). The single full-shift PBZ splitter/chipper exposure result was 31 μ g/m³. Previous silica results for chippers/splitters at the facility had been 132 μ g/m³, 124 μ g/m³, and less than 13 μ g/m³ (no quartz detected in the 13 μ g/m³ sample) (ERG-GI, 2008). Both these facilities also found that individual exposure reduction efforts alone failed to maintain exposures below 100 μ g/m³, but were successful when jointly employed.

At another facility OSHA visited, the workers wet stone with a hose before and between each operation, washed floors daily with a fire hose and kept them damp at all times, and controlled dust from the saws by modifying ventilation to exhaust directly from the top of the saws. Additionally, the facility retrofitted splitting stations with LEV. Under these conditions, the full-shift respirable quartz exposures for splitters were reduced from $104 \, \mu g/m^3$, $109 \, \mu g/m^3$, and $137 \, \mu g/m^3$ (a mean of $117 \, \mu g/m^3$) to levels of 17 and 19 $\mu g/m^3$ (a mean of $18 \, \mu g/m^3$) (ERG-GI, 2008).

Other dust control options for power chipping tools include LEV fitted directly to the chipping bit and water feeds that spray mist at the chipping point. Although neither control is commercially available, shop-made versions have been assembled from materials available at hardware stores (NIOSH ECTB 247-19c, 2001; Sam, 2000). In short-duration tests, both LEV and water-fed attachments reduced the silica exposure of workers removing hardened concrete from the interior of concrete-mixer drums. For example, NIOSH reported a 69 percent reduction in worker exposure levels when the suction fitting was used with jack hammers. During controlled, short-duration tests, the geometric mean PBZ silica concentration was 300 μ g/m³ with the LEV, compared with 970 μ g/m³ when no controls were used (NIOSH ECTB 247-19c, 2001). Silica levels decreased further when general exhaust ventilation was used in addition to LEV. The combined controls provided a net reduction of 78 percent (from 970 μ g/m³ to 213 μ g/m³).

Wet methods also can reduce the exposure levels associated with hand-held power chipping equipment. The automatic water spray attachment for pneumatic chippers described by Williams and Sam (1999), used in combination with general exhaust ventilation, reduced worker respirable dust exposures by 70 percent compared with uncontrolled chipping in concrete-mixer drums.

Stand-alone fan-powered dust collectors, discussed previously as an additional control for sawyers, also are a feasible method to lower dust levels in small dimension stone processing shops.

Additional Controls for Machine Operators

As indicated in the exposure profile, more than half (71 percent) of the full-shift PBZ results for this job category exceed 50 μ g/m³. Thus, OSHA finds that additional controls are required for workers in this job category. Appropriate controls include enclosing machines, adding exhaust ventilation close to the point where dust is generated, converting to water-fed equipment, employing rigorous housekeeping, and frequently washing stone and floors.

Facilities that use a combination of these controls can reduce machine operator exposure substantially. For example, a slate-working establishment exhausted the machine at the point where dust was generated, pre-wet the stone, installed spray mister nozzles to keep the stone wet, and took steps to reduce dust released from the adjacent saws. Under these conditions, the operator exposure level dropped from 220 $\mu g/m^3$ to 26 $\mu g/m^3$ (ERG-GI, 2008). At another facility, OSHA reported two full-shift PBZ silica results of 44 $\mu g/m^3$ and 314 $\mu g/m^3$ around the time of the initial compliance inspection. The facility implemented procedures to pre-wash stone, controlled dust from other operations, and enclosed trimmers in exhausted plastic housing. After the modifications, full-shift silica results for operators were more consistent, at 60 $\mu g/m^3$ and 69 $\mu g/m^3$ (ERG-GI, 2008). Although these results are more consistent and have a much lower average (65 $\mu g/m^3$ vs. 179 $\mu g/m^3$) than those collected before the modifications, they are still above 50 $\mu g/m^3$.

The respirable quartz exposures of machine operators can be reduced significantly by the use of wet process rather than dry process machines and by manufacturer-designed, adequately exhausted machine housing. Stone Working Equipment Distributor A (2000) indicated that most new machines sold to high-volume production facilities come with LEV dust collectors and/or enclosures as standard equipment. New water-fed machines and machines using ultra-high pressure water or laser instead of abrasive action also are increasingly available. New equipment has the added advantage of increased automation, allowing the operator to work at a greater distance from the dust source.

Machine operators with exposures currently greater than $100~\mu g/m^3$ will require the entire range of controls described above to be increase the likelihood of maintaining exposure values below this level. Although there is one example of a machine operator whose exposure dropped from $220~\mu g/m^3$ to 26

 $\mu g/m^3$ with a combination of controls, data are not sufficient to demonstrate that all exposures can be reduced below $100 \ \mu g/m^3$ with any subset of the controls.

Additional Controls for Abrasive Blasting Operators

Full-shift PBZ silica exposure results for more than half (57 percent) of abrasive blasting operators exceed 50 μ g/m³. Additional controls are required for this job category, including improved maintenance of blasting cabinets, adequate ventilation, and alternative low-silica or silica-free blasting media that is less toxic than silica sand.

Complete isolation of the operator from the blasting operation (i.e., use of a glove box-type ventilated blasting cabinet) can reduce silica exposure during abrasive blasting. Also, ventilated blasting cabinets used by three operators in Georgia granite sheds (using either silica sand or an alternate media) generated exposure results of 15 μ g/m³ to 77 μ g/m³ with a mean of 41 μ g/m³ (Wickman and Middendorf, 2002). OSHA estimates that exposure levels associated with blasting cabinets can be reduced to levels consistently below 50 μ g/m³ by using silica-free blast media and a combination of other engineering and work practice controls. These controls include enclosed and ventilated media recycling systems, interlocks to prevent operators from opening doors before the cabinet has been exhausted, and use of high-efficiency particulate air (HEPA)-filtered vacuums instead of dry sweeping or compressed air to clean in and around the cabinet. A well-sealed blast cabinet (a type of containment) isolates a worker from the dust generated inside and the interlock and ventilation systems ensures that the cabinet is free of airborne dust before the operator opens it. When well constructed, maintained, and used as intended, evidence from the pharmaceutical industry indicates that containment devices that operate on this principle can maintain worker exposures to pharmaceutical chemicals at levels below pharmaceutical potent active ingredient (API) occupational exposure limits of 10 μ g/m³ or less (Axon et al. (2008).

Large, glove box-style cabinets for abrasive blasting oversize or awkward shape objects are available commercially (Media Blast, 2009). For example, one manufacturer produces ventilated cabinets that have reportedly been used for abrasive blasting of granite tombstones (Pauli, 2001a; Pauli, 2001b). This size box is interlocked, to prevent operation unless the unit is sealed, and ventilated at 840 cfm. In addition, the boxes are fitted with a dust collector (99.9 percent filter efficiency for 0.3 micron particles available for some models) and a completely enclosed, ventilated media reclamation system. A larger ventilation system is required when two or more of these cabinets are linked together to provide a larger internal workspace (Pauli, 2001b).

For large items that cannot fit in a blast cabinet, improving ventilation to at least the ACGIH-recommended air flow rate of 100 cfm per square foot of face area (equivalent to 5,000 cfm for a 7-by-7-foot booth) is likely to decrease the exposure of blasting operators. Alternatively, using an abrasive blasting booth that includes an incompletely sealed partition to separate the operator from the blasting activity (for example roll-up doors with an access slot and window) may provide an additional level of protection, if negative pressure is maintained in the blasting enclosures. For example, ventilated blasting booths used by three operators at a stone monument manufacturer resulted in exposures of less than 50 $\mu g/m^3$ (mean of 29 $\mu g/m^3$) for all three workers. Silica content ranged from 14 percent to 20 percent. Although the 4- to 6-hour sample times for these exposures are less than full shift, these durations are typical of the industry (NIOSH EPHB 247-22, 2003).

In addition, this type of equipment (abrasive blasting booth that includes an incompletely sealed partition) was used by two of the three granite working facilities in which NIOSH conducted control technology assessments (NIOSH ECTB 233-106c, 1999; NIOSH ECTB 233-131c, 2000; Ruemelin, 2000). Exposure monitoring data associated with these partitions at one of the sites, however, showed mixed results, with full-shift PBZ exposures of 22 μ g/m³ and 252 μ g/m³ (NIOSH ECTB 233-106c, 1999). Although

investigators indicated that the ventilation system was not operating for part of the sampling period, the available documentation is inadequate to correlate worker exposure and properly operating equipment.⁴⁹ The partitions were not evaluated at the other site. Air pressure and turbulence introduced during blasting might limit the reliability of this control option. The intermittent elevated exposure evident with this style of enclosure (access slot in door) might be better controlled by another commercially available option: a gauntlet glove panel and window that can be inserted into the wall of a walk-in size sealed and ventilated abrasive blast booth (Pauli, 2009).

More extensive use of silica-free blast media also might reduce operator exposures. Bauxite can contain up to 9 percent silica and might contribute to worker exposure (ERG-GI, 2008). Aluminum oxide and steel shot, which also are used as blast media, contain little to no silica.

As noted previously, the use of stand-alone fan-powered dust collectors also is a feasible method for lowering dust levels in small-dimension stone processing shops.

Wet abrasive blasting methods are widely available and work well on all structural and most decorative concrete surfaces. OSHA preliminarily concludes that these methods may be similarly effective on stone (stone aggregate is a major component of concrete). Abrasive blasters in this industry can use wet methods as an alternative to ventilated process enclosures that separate workers from the abrasive blasting area.

Although the silica exposure levels for abrasive blasting operators performing open blasting can exceed OSHA's permissible exposure limit (PEL), OSHA already requires that employers provide these workers with respiratory protection and, when the work is in an abrasive blasting booth, ensure that they have the benefit of exhaust ventilation. For more information on these requirements, see 29 CFR 1910.94—Ventilation and 1910.134—Respiratory Protection.

Feasibility Finding

Feasibility Finding for Sawyers

Based on the information reviewed above, OSHA preliminarily concludes that the respirable quartz exposures of most sawyers can be controlled to levels of $50~\mu g/m^3$ or less by implementing a combination of engineering and work practice controls. For example, the median full-shift PBZ silica exposure level for sawyers was $30~\mu g/m^3$ at facilities that implemented housekeeping as well as other control measures (enclosing the saw, pre-washing stone, managing slurry, and controlling dust from adjacent processes) (ERG-GI, 2008). Although these examples are from slate product manufacturers, OSHA concludes that the same controls would be similarly effective in facilities that process granite and other stone.

Feasibility Finding for Fabricators

Based on information summarized in Table IV.C-8, OSHA preliminarily concludes that the exposure of fabricators can be reduced below 50 $\mu g/m^3$ through the use of wet processes and rigorous housekeeping. All seven full-shift PBZ silica results for fabricators using water fed-equipment exclusively are 51 $\mu g/m^3$ or less (ERG-GI, 2008). Additionally, Simcox reported a mean silica worker exposure of 60 $\mu g/m^3$ after wet method controls were implemented. Note that all the data are results of applying wet methods (other controls not implemented). OSHA anticipates that improved housekeeping will reduce exposures similar to these to levels below 50 $\mu g/m^3$ since resettled dust contributes significantly to worker exposures in this

 $^{^{49}}$ The NIOSH ECTB 233-106c (1999) report does not indicate which sampling period is associated with the functioning ventilation system.

industry. Additionally the most successful exposure reductions have all originated from efforts to complement engineering controls with housekeeping measures. Controlling water from wet processes prevents dust left by evaporated water from being disturbed and becoming airborne. Managing dust from adjacent operations also should help maintain exposures of fabricators below $50 \mu g/m^3$.

Feasibility Finding for Splitters/Chippers

Based on the available information, OSHA preliminarily concludes that the silica exposure of most splitters/chippers can be controlled to levels below 50 $\mu g/m^3$ by implementing a combination of engineering and work practice controls similar to those used for sawyers. The combination of rigorous housekeeping, daily floor washing, wetting of the stone before and between operations, and controlling dust from adjacent operations has been shown to be effective for splitters (note the full shift mean respirable quartz reduction from 117 $\mu g/m^3$ to $18\mu g/m^3$ at a facility visited by OSHA reported in ERG-GI, 2008)

More rigorous controls will also be necessary for some workers, including the 48 percent of splitters/chippers who are currently exposed at levels exceeding $100 \,\mu\text{g/m}^3$. These workers are typically employed at slate facilities and some facilities manufacturing memorials, which will need to install LEV at splitter/chipper stations. A facility using a combination of housekeeping, LEV, and wet methods (constant water flow) to control splitter/chipper exposures reduced the splitter/chipper exposure level to $31 \,\mu\text{g/m}^3$ (ERG-GI, 2008). Facilities also might need to improve drainage to allow frequent washing of stone and floors.

Exposure results for splitters/chippers suggest that memorial manufacturers might require supplemental exhaust trunks to ensure that LEV is readily accessible to all points around large three-dimensional products. Furthermore, those establishments where chipper/splitters use power tools (e.g., pneumatic chipping equipment) will need to implement task-specific controls. Options include tool-mounted waterfed or tool-mounted LEV devices as described by NIOSH (NIOSH ECTB 247-19c, 2001) and Williams and Sam (1999). These controls are discussed in more detail in Section IV.C.26 – Jackhammer and Impact Drillers in this technological feasibility analysis.

Feasibility Finding for Machine Operators

Based on information presented in this section, OSHA preliminarily concludes that stone product facilities can achieve silica exposure levels of $50~\mu g/m^3$ or less for all machine operators in this industry. Thirty percent of machine operators already experience exposures below this level. OSHA finds that by using a combination of controls the exposures for the remaining workers in this job category can also be reduced to $50~\mu g/m^3$ or less. Appropriate controls include enclosing machines, adding exhaust ventilation close to the point where dust is generated, converting to water-fed equipment, and rigorous housekeeping, as well as frequently washing stone and floors.

To consistently achieve levels of 50 μ g/m³ or less, OSHA anticipates that facility may have to employ the full extent of available controls. For example, a facility visited by OSHA implemented procedures to prewash stone, controlled dust from other operations, and enclosed trimmers in exhausted plastic housing. After the modifications, exposures were reduced from a mean of 179 μ g/m³ to 65 μ g/m³. The facility did not modify the equipment to include a water delivery system, and the Agency estimates that exposures could have been further reduced if dust originating from the machine was suppressed by water. This determination is based the exposure reduction obtained at a slate-working establishment, which exhausted the machine at the point where dust was generated, pre-wet the stone, installed spray mister nozzles to keep the stone wet, and took steps to reduce dust released from the adjacent saws. Under these conditions, the operator exposure level dropped from 220 μ g/m³ to 26 μ g/m³.

Incremental improvements will reduce exposures sufficiently for some workers; however, for the most highly exposed machine operators (e.g., the 47 percent who experience exposures in excess of $100 \,\mu g/m^3$ per Table IV.C-8), a more extensive range of controls will be necessary to achieve operator exposures of $50 \,\mu g/m^3$ or less. OSHA preliminarily concludes that wet dust suppression methods or LEV (or both) will usually be required. Machine operators' exposure levels dropped from $179 \,\mu g/m^3$ to $65 \,\mu g/m^3$ after one facility began pre-washing stone, controlled dust from other operations, and enclosed trimmers (ERG-GI, 2008). Although the facility achieved a marked decrease in silica exposure, additional controls, such as applying water at the point of operation or adding exhaust ventilation to the machine enclosure, would be needed to reduce silica concentrations to levels of $50 \,\mu g/m^3$ or lower.

Another slate-working establishment used both LEV and wet methods to control machine operator exposures. This facility applied exhaust ventilation to the machine at the point where dust was generated, pre-wet the stone, installed spray mister nozzles to keep the stone wet, and took steps to reduce dust released from the adjacent saws. Under these conditions, the operator exposure level was reduced from $220 \ \mu g/m^3$ to $26 \ \mu g/m^3$. Employers in the stone products industry will also need to put programs in place to ensure that controls for machine operators are functioning optimally (ERG-GI, 2008).

Feasibility Finding for Abrasive Blasting Operators

Based on information contained in this analysis, OSHA preliminarily concludes that the exposure of most abrasive blasting operators can be controlled to levels of $50~\mu\text{g/m}^3$ or less through the use of HEPA-filtered vacuum cleaning and sealed, ventilated, and interlocked blasting cabinets. These controls are appropriate for small to medium-size stone objects, including all modest memorials. Properly maintained blast cabinets can offer complete isolation from exposures and are commonly used for this purpose. Ventilated blasting cabinets used by three operators in Georgia granite sheds (using either silica sand or an alternate media) generated a mean exposure result of $41~\mu\text{g/m}^3$ (Wickman and Middendorf, 2002). Although a high result of $77~\mu\text{g/m}^3$ was recorded by these investigators, OSHA estimates that exposure levels associated with blasting cabinets can be reduced to levels consistently below $50~\mu\text{g/m}^3$ by using silica-free blast media that is less toxic than silica sand or a combination of other engineering and work practice controls. These controls include enclosed and ventilated media recycling systems, interlocks to prevent operators from opening doors before the cabinet has been exhausted once blasting is complete, and use of HEPA-filtered vacuums instead of dry sweeping or compressed air to clean in and around the cabinet.

For larger stone objects, OSHA believes that ventilated blasting booths might be used to control exposures to levels of $50~\mu\text{g/m}^3$ and below. For example, ventilated blasting booths used by three operators at a stone monument manufacturer resulted in exposures of less than $50~\mu\text{g/m}^3$ (mean of $29~\mu\text{g/m}^3$) for all three workers. Although the 4- to 6-hour sample times for these exposures are less than full shift, these durations are typical of the time spent performing abrasive blasting in this industry (NIOSH EPHB 247-22, 2003).

Overall Feasibility Finding for Cut Stone Products Manufacturers

In summary, using the controls described in this section (LEV, wet methods – including water delivery systems at the point of operation, and rigorous housekeeping), OSHA preliminarily concludes that cut stone product manufacturers can achieve exposure levels of 50 μ g/m³ or less for most of their workers most of the time.

REFERENCES

- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- Akbar-Khanzadeh, F., and R. L. Brillhart, 2002. Respirable crystalline silica dust exposure during concrete finishing (grinding) using hand-held grinders in the construction industry. Annals of Occupational Hygiene 46(3):341–346. **OSHA-2010-0034-0521**
- Attfield, M.D., and J. Costello, 2004. Quantitative exposure-response for silica dust and lung cancer in Vermont granite workers. American Journal of Industrial Medicine 45(2):129–38. **OSHA-2010-0034-0543**
- Axon, M.W., J.P. Farris, and J. Mason, 2008. Handling highly potent active pharmaceutical ingredients equipment containment performance. Chemistry_Today. March-April. OSHA-2010-0034-0544
- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp OSHA-2010-0034-0553
- Chekan, G.J., A.B. Cecala, D.E. Pollock, and J.A. Zimmer, 2008. Improving the performance of fan-powered dust collectors in stone cutting applications. 12th U.S./North American Mine Ventilation Symposium 2008:367–373. **OSHA-2010-0034-0593**
- Croteau, G.A., S.E. Guffey, M.E. Flanagan, and N. S. Seixas, 2002. The effect of local exhaust ventilation controls on dust exposures during concrete cutting and grinding activities. American Industrial Hygiene Association Journal 63(4):458–467. **OSHA-2010-0034-0611**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [Media Blast] Media Blast and Abrasive, Inc., 2009. Dictionary of Terms. Available at: http://www.mediablast.com/dictionary.php **OSHA-2010-0034-0801**
- [NIOSH-construction-site-16] National Institute for Occupational Safety and Health, 1998. Environmental surveillance report: Construction site #16, Covington, Kentucky. **OSHA-2010-0034-1385**
- [NIOSH ECTB 233-106c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 06 Monument manufacture. **OSHA-2010-0034-0218**

- [NIOSH ECTB 233-131c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 31 A granite shed. **OSHA-2010-0034-0240**
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0862**
- [NIOSH EPHB 247-21c] National Institute for Occupational Safety and Health, 2002. In-depth survey report of control of respirable dust and crystalline silica from grinding concrete a Messer Construction, Newport, Kentucky and Baker Concrete Construction, Dayton, Ohio. **OSHA-2010-0034-0247**
- [NIOSH EPHB 247-22] National Institute for Occupational Safety and Health, 2003. Control technology and exposure assessment for occupational exposure to crystalline silica: Stone monument manufacturing. **OSHA-2010-0034-1361**
- Pauli, 2001a. Product information for RAM 31 Dry Stripping Cabinet. Pauli Systems, Fairfield, California. **OSHA-2010-0034-1693**
- Pauli, 2001b. Personal communication between representative of Pauli Systems, Fairfield, California, and Eastern Research Group, Inc. At SSPC2001 Industrial protective coatings conference and exhibit. November 13. **OSHA-2010-0034-0953**
- Pauli, 2009. Web site for Pauli Systems, Inc., external workstation kit (Gauntlet glove fittings and external controls for large abrasive blasting booth). Available at:

 http://paulisystems.thomasnet.com/item/all-categories/abrasive-blast-accessories-2/external-work-station-kit?&seo=1&bc=100|1002|1007|1011. **OSHA-2010-0034-0954**
- [Ruemelin] Ruemelin Mfg. Co., Inc., 2000. Personal communication between representative of Ruemelin Mfg. Co., Inc., Milwaukee, Wisconsin, and Eastern Research Group, Inc. September 25. **OSHA-2010-0034-1363**
- Sam, K., 2000. Personal communication between Kwasi Sam and Eastern Research Group, Inc. August 30. **OSHA-2010-0034-1136**
- Simcox, N., D. Lofgren, J. Leons, and J. Camp, 1999. Silica exposure during granite countertop fabrication. Applied Occupational and Environmental Hygiene 14(9):577-582. **OSHA-2010-0034-1146**
- Stone Working Equipment Distributor A, 2000. Personal communication between Stone Working Equipment Distributor A and Eastern Research Group, Inc. May 31. **OSHA-2010-0034-1156**
- Wickman, A. R. and P.J. Middendorf, 2002. An evaluation of compliance with occupational exposure limits for crystalline silica (quartz) in ten Georgia granite sheds. Applied Occupational and Environmental Hygiene 17(6):424-429. **OSHA-2010-0034-1225**

- Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**
- Yassin, A., F. Yebesi, and R. Tingle, 2005. Occupational exposure to crystalline silica dust in the United States, 1988–2003. Environmental Health Perspectives 113(3):255–260. **OSHA-2010-0034-1236**

Dental Equipment and Supplies Description

Certain establishments that manufacture dental equipment and supplies produce silica-containing filling materials, for dentists to use in teeth, and investment materials, for dental laboratories to create the mold into which metal is poured during metal casting. Some dental supply manufacturers also operate small sand-casting foundries to produce dental metal alloys (ERG-GI, 2008). Producers of supplies and equipment for dental offices and laboratories are classified in the six-digit North American Industry Classification System (NAICS) code 339114, Dental Equipment and Supplies Manufacturing.

Workers at dental equipment and supply manufacturers (production operators) process silica-containing materials when they blend batches of restorative materials, porcelains, plasters, and refractory investment materials. Both quartz and cristobalite are found in these materials, which can contain up to 100 percent silica. The same or different workers package the resulting dry powdered products. Other workers, in facilities that produce metal alloys for the dental industry, might encounter silica if they use sand molds to cast ingots as part of a small foundry operation; however, the extent of foundry work in the dental equipment and supply industry is unknown (ERG-GI, 2008).

Production operators (blenders, compounders, and packaging operators) oversee all phases of silica handling, including receiving raw ingredients, product blending, and packaging. Dry, powdered quartz and/or cristobalite are typically received in sacks (e.g., 50-pound bags) or larger containers, such as tanker trucks. The silica ingredients arrive at the facility in a ready-to-use form and typically do not require additional processing to reduce particle size. Large-scale operations use automated processes (e.g., pneumatic material handling equipment) to transfer silica-containing material between tankers, storage tanks, and hoppers, while workers involved in low-volume operations manually empty sacks of materials into hoppers or use a hand-held scoop to transfer materials from bags to weighing equipment (ERG-GI, 2008). From hoppers or weighing equipment, production operators add silica-containing ingredients and other dry, viscous, or liquid ingredients to mixing tanks where the products are blended.

In some facilities, production operators also control automated or semi-automated equipment that fills sacks, barrels, boxes, buckets, or small single-use envelopes (containing a few ounces of product) with dry, powdered product for distribution to customers (ERG-GI, 2008). Some operators monitor mostly-enclosed, automated machinery; others manually place buckets under spouts or put bags on filling nozzles within arms-length of the packaging equipment (ERG-GI, 2008).

Table IV.C-9 summarizes the major activities and primary sources of silica exposure for this industry.

⁵⁰ "Investment material" is a ceramic-type, heat-resistant (refractory) material used to enclose a three-dimensional pattern during investment casting (lost-wax casting is an example of investment casting) (ILO, 1983). These refractory materials can contain up to 70 percent crystalline silica (ERG-dental-lab-A, 2000).

Table IV.C-9

Job Categories, Major Activities, and Sources of Exposure of Workers in the Dental Equipment and Supplies Manufacturing Industry (NAICS 339114)

Job Category*

Major Activities and Sources of Exposure

Production Operator (blender, compounder, packaging operator) Preparing and packaging batches of silica-containing restorative materials, porcelains, plasters, and refractory investment materials.

- Dust released during transfer of raw materials from delivery vehicles to storage areas and from storage to mixing areas.
- Dust released during weighing or metering raw materials into mixers (from hoppers, by dumping bags, or pouring by hand).

Operating mixing and filling equipment, including manual placement of containers on filling equipment.

- Dust escaping from mixing/blending equipment.
- Dust escaping from packaging equipment used to fill product containers (envelopes, bags, barrels).
- Dust disturbed during use of vibrating equipment used to compact powdered product in containers.

Housekeeping

• Dry sweeping and vacuuming silica-containing materials.

Source: ERG-GI, 2008.

Baseline Conditions and Exposure Profile

The exposure information for production operators is limited to only three personal breathing zone (PBZ) samples: two obtained from an OSHA Special Emphasis Program (SEP) inspection report of a dental alloy supplier, and one from a manufacturer of silica-containing dental restorative material (OSHA SEP Inspection Report 122252281; Dental Equipment and Supplies Manufacturer A, 2000). Data from another facility, though informative, was not specific enough to include in the exposure profile (Dental Equipment and Supplies Manufacturer B, 2000).

Although 11 exposure results were recorded from four inspections of the dental alloy supplier conducted over several months (October 1995 to March 1996), only two of the 11 samples were collected over a full shift. OSHA excluded the other nine results from the exposure profile because of their short duration (less than 360 minutes) and because worker rotation was used to control exposure. After the initial two full-shift samples were collected, the employer initiated an administrative control by limiting worker exposures to no more than 4 hours in the investment production area—the primary area where silica dust occurred (OSHA SEP Inspection Report 122252281). Although limited, these data represent the best data available to OSHA for workers in this industry and provide information on engineering controls the facility implemented to control dust from the refractory blending and packaging operation.

^{*} Job categories are intended to represent job functions; actual job titles might differ, and responsibilities might be allocated differently, depending on the facility.

⁵¹ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

The exposure profile for the dental equipment and supplies industry is shown in Table IV.C-10. Sample results range from 10 micrograms per cubic meter ($\mu g/m^3$) to 214 $\mu g/m^3$, with a median of 90 $\mu g/m^3$ and a mean of 105 $\mu g/m^3$. Thirty-three percent of the results are less than the proposed permissible exposure limit (PEL) of 50 $\mu g/m^3$.

Local exhaust ventilation (LEV) was available on mixing and packaging equipment at all three facilities for which ERG obtained information (ERG-GI, 2008). Baseline conditions at the dental alloy supplier, however, included excessively sharp or 90 degree bends in the ventilation hoses; inefficient fans; poorly designed, inappropriately positioned, or missing hoods; and generally low exhaust rates. Additionally, work practices were poor (e.g., LEV was positioned so the worker was between the LEV and dust generated by mixer charging), and workers reportedly routinely spilled material. The respirable quartz levels associated with these conditions are 90 μ g/m³ and 214 μ g/m³ (OSHA SEP Inspection Report 122252281).

At the second manufacturing facility, an elevated exposure ($200 \,\mu\text{g/m}^3$) was also attributed to poor work practices, such as a worker leaning into the mixer to monitor the process (Dental Equipment and Supplies Manufacturer B, 2000). Information provided was not specific enough to include this result in the exposure profile (e.g., the sample duration was not provided), but the value is offered as supporting material.

Additional Controls

The exposure profile indicates that silica exposure levels for one-third of all production operators are already $50 \,\mu\text{g/m}^3$ or less. To achieve this level for the remainder of the production operators, dental supply manufacturers will need to use a combination of improvements or upgrades in existing LEV systems and modified work practices to reduce the amount of dust that becomes airborne.

Table IV.C-10 Respirable Crystalline Silica Exposure Range and Profile for Workers in the Dental Equipment and Supplies Industry (NAICS 339114)

	Expos	sure Sumn	nary	Exposu	re Range	Exposure Profile						
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (µg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)		
Production Operator	3	105	90	10	214	1 (33%)	0 (0%)	1 (33%)	1 (33%)	0 (0%)		

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

From 1994 to 1996, OSHA compliance and consultation officers tracked a facility that achieved substantial exposure reduction through a combination of efforts (OSHA SEP Inspection Report 122252281). Extensive real-time airborne dust monitoring indicated that both mixing (including bag dumping and charging) and packaging activities generated substantial amounts of airborne dust. Peak periods of dust release occurred when workers broke bags or spilled material, loaded and operated the mixer, dropped empty bags (from a height, releasing visible dust), and used vibrating equipment to compact product in containers. Short-term PBZ monitoring showed that worker exposures dropped dramatically when the facility implemented the following improvements:

- 1. Improved LEV systems, including enhanced hood designs and realigned ventilation exhaust points to provide better capture at the bag dumping station, mixer charging area, and packaging area. Added a high-efficiency particulate air (HEPA)-filtered exhaust system to a bag dumping station and upgraded the bag houses. Improved duct angles and upgraded fans to increase air flow through the ventilation systems (reportedly achieving a five-fold increase on one system).
- 2. Reduced leaks in the mixer and packaging systems and enclosed a portion of the packaging operation.
- 3. Added a partially enclosed and ventilated sleeve at the mixer charging port (to guide ingredients during mixer charging).
- 4. Changed workstation designs to limit the drop distance for empty raw material bags (a source of dust) and product overflow from packaging activities.
- 5. Encouraged work practices that minimized spilled material and maintained the LEV between the workers' breathing zone and the point where dust was released.
- 6. Improved housekeeping and used a sweeping compound to reduce dust during all clean-up activities.

After the facility implemented this combination of controls, OSHA obtained five short-term silica results below the limit of detection (LOD) ($24 \mu g/m^3$, $26 \mu g/m^3$, $29 \mu g/m^3$, $32 \mu g/m^3$, and $40 \mu g/m^3$) and one short-term result of $66 \mu g/m^3$ during two visits to the facility. The median for these six results is $31 \mu g/m^3$. Prior to the improvement, OSHA obtained three short-term results of $885 \mu g/m^3$, $430 \mu g/m^3$, and $372 \mu g/m^3$. Although all of these data represent samples collected over less than four hours, OSHA believes that these data demonstrate the success of the engineering controls.

A full-shift exposure level of $10~\mu\text{g/m}^3$ was reported at Manufacturer A, a facility that blends a silicacontaining powder with other ingredients to form a paste product. At this facility, worker exposures are controlled by a combination of careful work practices, LEV at the weighing station, and a sealing (airtight) cover on the mixer (Dental Equipment and Supplies Manufacturer A, 2000). In addition, the worker who hand-scoops material to a weigh bucket is required to position an 8-inch exhaust trunk with a conical hood as close as feasible to the raw material bag opening before hand-scooping. The bag, bucket, and scale are under a hood/enclosure (ventilated by the 8-inch duct). A company representative quoted reports of annual air sampling results going back more than five years that indicate consistently low silica exposures.

⁵² Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Comparable information regarding the effectiveness of properly designed and maintained equipment for controlling dust generated during bag dumping and disposal exists for other industries that handle similar materials. For example, ERG obtained respirable quartz exposure monitoring data for workers at a paint manufacturing facility who use bag-dumping stations with automated bag disposal features to empty 50-pound bags of a silica-containing material (ERG-paint-fac-A, 1999). The stations consist of hoppers topped with grates enclosed by LEV hoods. After each bag is emptied, the worker releases it and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area. Results of five full-shift PBZ exposure readings were less than or equal to $12 \,\mu\text{g/m}^3$ (LOD) for five workers who emptied bags at these stations. By contrast, a full-shift PBZ exposure reading of $263 \,\mu\text{g/m}^3$ was obtained for a worker who used a bag-dumping station at which the LEV system failed to operate for approximately two hours. While the LEV system was inoperative, the worker was required to manually stack and compress empty bags adjacent to the station, which generated visible dust (ERG-paint-fac-A, 1999).

A NIOSH report (NIOSH CT-144-19a, 1983) also describes an effective bag-dumping station. This system is equipped with an enclosure; empty bag compactor; bag disposal chute; and LEV system consisting of a fan, baghouse, and plenum. The LEV system ventilates both the enclosure and compactor. NIOSH evaluated the unit by measuring PBZ respirable dust levels with real-time aerosol monitors before and while workers emptied bags of crushed limestone and found no statistically significant elevation of PBZ respirable dust over background levels. Ventilated bag-dumping stations that include a ventilated bag compactor are readily available from commercial sources (Whirl-air, 2003).

Feasibility Finding

Based on the available information, OSHA preliminarily concludes that manufacturers of silicacontaining dental products can limit the silica exposure of most workers to $50~\mu g/m^3$ or less most of the time by implementing a combination of controls that reduce the amount of dust that becomes airborne and using LEV to capture dust that is released. Such controls include replacing or improving existing ventilation systems (at bag dumping stations, weighing and mixing equipment, and packaging machinery) and designing workstations to minimize opportunities for silica materials to spill, fall, or drop (e.g., adding a sleeve to guide raw materials into an open mixer). Additionally, it will be necessary for facilities to ensure that workers properly use the LEV systems and encourage work practices that minimize spills and release of airborne silica dust. For a facility implementing these controls, OSHA obtained a median of $31~\mu g/m^3$ for six short-term (less than four hours) silica results ($24~\mu g/m^3$, $26~\mu g/m^3$, $29~\mu g/m^3$, $32~\mu g/m^3$, $40~\mu g/m^3$, and $66~\mu g/m^3$). Prior to the improvements, OSHA obtained three short-term (less than four hours) results of $885~\mu g/m^3$, $430~\mu g/m^3$, and $372~\mu g/m^3$ (OSHA SEP Inspection Report 122252281).

REFERENCES

- Dental Equipment and Supplies Manufacturer A, 2000. Personal communication between a representative of Dental Equipment and Supplies Manufacturer A and Eastern Research Group, Inc. June 13. **OSHA-2010-0034-0620**
- Dental Equipment and Supplies Manufacturer B, 2000. Personal communication between a representative of Dental Equipment and Supplies Manufacturer B and Eastern Research Group, Inc. August 3. **OSHA-2010-0034-0619**
- [ERG-dental-lab-A] Eastern Research Group, Inc., 2000. Site Visit to Dental Laboratory A. August 3. **OSHA-2010-0034-0201**

- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- [ILO] International Labour Office, 1983. Entry for foundries, in Encyclopedia of Occupational Health and Safety, volume 1. Pages 916-917. **OSHA-2010-0034-1357**
- [NIOSH CT-144-19a] National Institute for Occupational Safety and Health, 1983. An evaluation of control technology for bag opening, emptying and disposal the self contained filter/bag dump station, The Young Industries, Inc., Muncy, Pennsylvania. OSHA-2010-0034-1369
- OSHA SEP Inspection Report 122252281] OSHA Special Emphasis Program Inspection Report 122252281. **OSHA-2010-0034-0043**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Dental Laboratories Description

Dental laboratories use silica-containing materials both as a component of dental appliances (crowns, bridges, orthodontic appliances, and dental prostheses) and as an abrasive material for finishing these products. Dental laboratories are classified in the six-digit North American Industry Classification System (NAICS) 339116, Dental Laboratories. Dental technicians produce custom dental appliances, first by constructing plaster models of dental impressions, and then using the models as templates to make metal, plastic, or ceramic castings. The four steps in dental product manufacture that can involve silica include plaster model and mold production, investment casting, ⁵³ finishing of metal castings, and coating dental appliances with porcelain enamel.

Depending on the size and configuration of the facility, a single dental technician may perform all of the activities described above, or a technician may perform one activity repeatedly, such as abrasive finishing. Table IV.C-11 summarizes the major activities and primary sources of silica exposure in this industry.

Baseline Conditions and Exposure Profile

Using the best available data, OSHA evaluated 31 full-shift personal breathing zone (PBZ) silica results for dental technicians obtained by ERG from one dental lab and by the New Jersey Department of Health and Senior Services (NJDHSS) from 13 dental labs (ERG-dental-lab-A, 2000; NJDHHS, 2006). The data from these two sources, previously described by ERG (2008-GI), form the basis of the exposure profile for dental technicians and are summarized in Table IV.C-12. ERG's prior analysis included review of the available published silica exposure monitoring data described here and several reports of elevated exposure levels for dental technicians thought to represent dated, and poorly controlled conditions in dental laboratories. The reports indicate the potential for elevated exposure and suggest that past silica exposures were significantly higher in some dental laboratories.

⁵³ Investment casting is a form of metal casting that involves enclosing a three-dimensional pattern in a heat-resistant ceramic mold called investment material. Lost-wax casting is an example of a type of investment casting commonly used in the dental laboratory industry (ERG-dental-lab-A, 2000).

⁵⁴ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-11 Job Categories, Major Activities, and Sources of Exposure of Workers in Dental Laboratories (NAICS 339116)										
Job Category*	Major Activities and Sources of Exposure									
Dental Technician	Constructing plaster models of dental impressions.									
	 Manual mixing of plasters, some of which can contain silica (e.g., 30% quartz). Molding and grinding of dry plaster models. Casting of dental products using plaster models. Dry sweeping or using compressed air to clean work areas 									
	Using investment casting techniques to produce metal dental appliances.									
	 Manual mixing of powdered investment material containing up to 70% silica as quartz and cristobalite. Breaking investment materials to release metal castings. 									
	Finishing cast metal appliances.									
	 Grinding metal castings to remove adhered investment material. Abrasive blasting of castings to remove embedded investment material (typically in a ventilated glove box). 									
	Applying and finishing porcelain coatings on dental appliances.									
	Grinding and polishing porcelain coatings.Abrasive blasting of porcelain coatings (typically in a ventilated glove box).									

*Job categories are intended to represent job functions; actual job titles may differ and responsibilities may be allocated differently, depending on the facility.

Source: ERG, 2008-GI.

As shown in Table IV.C-12, the 31 sample results range from less than or equal to 5 micrograms per cubic meter (µg/m³) (the limit of detection [LOD]) to 58 µg/m³, with a median of 8 µg/m³ and a mean of 13 μg/m^{3.55} Ninety-seven percent of the sample results are less than the proposed permissible exposure limit (PEL) of 50 µg/m³, with 17 (55%) below the LOD. The single result that exceeded 50 µg/m³ (58 μg/m³) was obtained for a dental technician trainee divesting castings, working with wax, and performing abrasive blasting. The next highest result, 40 µg/m³, represents the exposure of a dental technician at a different laboratory performing investing, casting, sandblasting, grinding, and polishing. The other results for dental technicians performing various combinations of similar activities range from 5 µg/m³ to 32 µg/m³. Silica was detected in at least one sample from 10 of the 14 total laboratories evaluated (71 percent) and 14 of the 31 total full-shift PBZ samples (45 percent). These data suggest that silica continues to be present in dental laboratories; however, the work practices and controls currently used by these technicians produce exposures less than 50 µg/m³ the vast majority of the time. Additionally, the generally low silica exposures of dental technicians may result from the small quantities of silicacontaining materials in use and the brief duration of exposure. For example, during ERG's visit to a dental laboratory, a technician performed abrasive blasting for less than 5 minutes during the 8-hour work shift (ERG-dental-lab-A, 2000).

⁵⁵ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Based on descriptions of dental technician's activities discussed in the ERG report (ERG-dental-lab-A, 2000), OSHA finds that baseline conditions for this group of workers typically include the use of ventilated work benches; enclosed, ventilated equipment for blasting; and ventilated or water-fed grinders. These conditions, in conjunction with the small amounts of silica-containing materials handled and the short duration of use, are associated with a median exposure level of 8 μ g/m³. This finding is supported by a Korean study by Kim et al. (2002) that showed sample means less than 25 μ g/m³ for two groups of dental technicians working in dental laboratories equipped with local exhaust ventilation (LEV) systems.

The Korean investigators obtained 41 full-shift PBZ silica samples for dental technicians categorized as either polishing workers (model making, wax-up, investing, burn-out, casting, divesting, abrasive blasting, and polishing) or porcelain workers (metal trimming, porcelain buildup, porcelain firing, and porcelain grinding). Twenty-two samples collected on polishing workers ranged from 3 μ g/m³ to 51 μ g/m³, with a mean of 15 μ g/m³; and 19 samples collected on porcelain workers ranged from 1 μ g/m³ to 19 μ g/m³, with a mean of 7 μ g/m³. These results are in line with the dental workers' exposure summary shown in Table IV.C-12.

Based on the available information, OSHA preliminarily concludes that most dental laboratory technicians are currently exposed to silica at levels well below $50 \mu g/m^3$.

Additional Controls

Several publications reviewed by ERG (ERG-GI, 2008) indicate the potential for dental technicians to be exposed to elevated levels of silica at least occasionally. Monitoring data summarized in Table IV.C-12 show that one out of 31 dental technicians (3 percent) was exposed full-shift at a level greater than 50 μ g/m³. For these 3 percent of workers, improved engineering controls and work practices will be necessary to reduce exposure. Options for additional controls include the following:

- Substitution of silica sand with alternative low-silica or silica-free blast media (e.g., glass beads or various grades of aluminum oxide) (ERG-dental-lab-A, 2000). In some cases it also may be possible to substitute non-silica or low silica plaster and investment materials for casting.
- Improved LEV/enclosures (e.g., use of a properly designed abrasive blasting cabinet, installation of properly designed and operating laboratory hoods, improved filtration of air exhausted from hoods and blasting cabinets [if not exhausted outdoors]) (ERG-dental-lab-A, 2000).

⁵⁶ Low sample results are the values reported by the investigator.

Table IV.C-12	
Respirable Crystalline Silica Exposure Range and Profile for Workers in Dental Laboratories (NAICS 339116)	

	Expo	sure Sumn	nary	Exposure Range			ange Exposure Profile							
Job Category	Numbe r of Sample s	Mean (μg/m	Media n (μg/m	Min (μg/m ³)	Max (μg/m³)		<25 (μg/m³)	≥25 and ≤50 (µg/m ³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m ³)	>250 (μg/m ³)			
Dental Technicians	31	13	8	≤ 5	58		26 (84%)	4 (13%)	1 (3%)	0 (0%)	0 (0%)			

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

- Wet methods (e.g., breaking molds under a water stream or mist, wet grinding using a ventilated grinder) (ERG-dental-lab-A, 2000).
- Elimination of dry sweeping and compressed air for cleaning.
- Use of clean blast media for each session (to avoid recycling media contaminated with refractory material unless it can be cleaned).
- Improved work practices (e.g., allowing the blasting cabinet ventilation to clear the equipment of dust before opening the cabinet).
- Improved housekeeping (e.g., use of high-efficiency particulate air (HEPA) filter-equipped vacuums, daily where necessary).

Although there is no available information quantifying the effectiveness of each additional control in reducing silica exposures, the dental laboratory surveyed by ERG used several of these controls including LEV for mixing, abrasive blasting, and finishing operations, and enclosures and ventilation for mixing dry ingredients. The results of all five exposure samples were below the limit of detection ($12 \mu g/m^3$) (ERG-dental-lab-A, 2000). This dental lab used several modeling plasters, one of which contained 30 percent quartz. The lab also cast dental appliances using investment material containing up to 70 percent silica. Although workers frequently used silica-containing materials, the equipment and work practices effectively controlled silica exposures.

OSHA also notes that these controls have proven successful in other sectors, where contact with silica is much more frequent and the volumes of silica-containing materials encountered are much greater than in this sector (see Sections IV.C.8 – Foundries and IV.C.22 – Abrasive Blasters).

Feasibility Finding

Based on the available information, OSHA preliminarily concludes that using currently available technology, dental laboratories can limit the silica exposure of most workers to $50~\mu g/m^3$ or less. Most dental technicians are currently exposed to silica at levels less than $50~\mu g/m^3$. OSHA estimates that facilities will need to add or improve controls at the workstations of 3 percent of dental technicians. Where exposures exceed $50~\mu g/m^3$, facilities have several options for reducing exposure, including improved housekeeping and work practices, enhanced LEV, further worker isolation, and the use of wet methods. In a dental laboratory surveyed by ERG that used several of these controls, all five exposure measurements were below $12~\mu g/m^3$ (ERG-dental-lab-A, 2000). The dental laboratory used alternate methods for cleaning (other than compressed air) and alternate materials for blasting (other than silicacontaining).

These techniques have proven successful in controlling exposures in other sectors with much higher exposures and larger volume silica use. Additionally, substitutes for silica are gaining acceptance and may be used to reduce or eliminate silica exposure in some dental laboratories.

REFERENCES

[ERG-dental-lab-A] Eastern Research Group, Inc., 2000. Site Visit to Dental Laboratory A. August 3. **OSHA-2010-0034-0201**

[ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**

- Kim, T.S., H.A. Kim, Y. Heo, Y. Park, C.Y. Park, and Y.M. Roh, 2002. Levels of silica in the respirable dust inhaled by dental technicians with demonstration of respirable symptoms. Industrial Health 40:260-265. **OSHA-2010-0034-0763**
- [NJDHSS] State of New Jersey Department of Health and Senior Services, 2006. Results of air monitoring for airborne respirable crystalline silica dust (in 13 dental studios 2003-2005). Facsimile transmitting summary data sheets from NJDHSS to the U.S. Occupational Safety and Health Administration. February 9. **OSHA-2010-0034-0913**

Engineered Stone Products Description

Engineered stone (also called compound stone) is made by compacting a stone mix using a combination of vibration and compression, while holding the mix under a vacuum (ERG-GI, 2008). The stone mix typically consists of natural stone aggregates, fine mineral particles, and bonding agents. The engineered stone products produced in the United States are made of 93 percent ground quartz and 7 percent resin and pigments. The resulting engineered stone slabs are used as an alternative to granite in applications such as custom countertops (ERG-GI, 2008). In the United States, this industry is made up of a single manufacturer with a total of approximately 60 workers who might experience silica exposure at one time or another.⁵⁷

The engineered stone production process involves receiving bulk raw materials, primarily as a high-quartz ground mineral product, mixing bonding resin and mineral components to form a dry blend, molding the blended materials by compressing them under vacuum pressure, then grinding and polishing the surface to achieve the desired finish. The finished engineered stone slabs are shipped to fabrication facilities (covered under the Stone and Stone Products industry addressed elsewhere in this technological feasibility analysis) where they are cut and shaped (ERG-GI, 2008).

Workers who might be exposed to silica during the slab production process include production workers who operate automated equipment and perform related activities to support production (e.g., moving bulk materials, collecting samples, cleaning the work area) (ERG-GI, 2008). The primary job category, major activities, and sources of exposure are summarized in Table IV.C-13.

Engineered stone product manufacturing is classified under the six-digit North American Industry Classification System (NAICS) code 327999, All Other Miscellaneous Nonmetallic Mineral Product Manufacturing. In addition to engineered stone, there are other products made in the United States in this and other industries using a combination of plastic resin and minerals. Cultured stone is one example of such a product. ERG (ERG-GI, 2008) investigated these industries and found no evidence of silica exposure because these industries use low- or non-silica-containing mineral fillers such as calcium carbonate.

⁵⁷ Engineered stone is produced more frequently in other countries, which distribute it as a functional substitute for granite in flooring, shower and tub enclosures, fireplace surrounds, wet bars, furniture, and internal and external cladding for buildings. The United States imports more engineered stone than it makes.

Table IV.C-13 Job Categories, Major Activities, and Sources of Exposure of Workers in the Engineered Stone Products Industry (NAICS 327999)						
Job Category*	Major Activities and Sources of Exposure					
Production Worker (operators, inspectors, quality control, maintenance,	Performing intermittent manual production and maintenance tasks (e.g., receiving and storing raw materials, performing housekeeping and maintenance).					
housekeeping)	 Dust from manually opening sacks of ground quartz and moving bulk raw materials. 					
	Dust from cleaning and scraping the mixer.					
	Dust from cleaning baghouses or using compressed air for cleaning.					
	Monitoring automated processes (weighing, dispensing, mixing raw materials, slab finishing).					
	 Dust from raw material hoppers. Dust associated with raw material conveyance ductwork and dust collection systems (difficult to maintain because of the abrasive nature of concentrated silica powder). 					
*Job categories are intended to r allocated differently, depending of	represent job functions; actual job titles might differ, and responsibilities might be on the facility.					
Source: ERG-GI, 2008.						

Baseline Conditions and Exposure Profile

OSHA conducted a compliance inspection of a slab plant in April 2007 and observed that, as a baseline condition, the slab production process is highly automated and many potential exposure points are fully enclosed (ERG-GI, 2008).

OSHA also reviewed the company's silica exposure database; however, the individual results were not available to ERG for analysis (ERG-GI, 2008). ERG also reviewed the OSHA Integrated Management Information System (IMIS) database for observations of silica exposure pertaining to Standard Industrial Classification (SIC) 3299, Nonmetallic Mineral Products, Not Elsewhere Classified, and found no exposure results that pertain to this industry. The summary information available is deemed insufficient to generate an exposure profile.

Because of the extremely limited nature of the industry (comprising just one facility) the following descriptive information is considered adequate for this analysis.

In the absence of individual exposure results, OSHA relied on the available information from individuals familiar with exposure levels at the facility visited by OSHA (a U.S. company that manufactured quartz slabs) and described in ERG-GI (2008). OSHA conducted a compliance inspection of one of this company's plants in April 2007 (OSHA SEP Inspection Report 311079172), reviewed the company's recent silica exposure data, and interviewed personnel. The historic total number of samples in the company database was not made available; however, the OSHA inspector described the dataset for recent years as extensive. The 8-hour time-weighted average (TWA) exposure levels for all production workers were most typically slightly below the calculated permissible exposure limit (PEL). However, during some intermittent tasks (maintenance, housekeeping, and other manual processes performed by the production workers), exposures were occasionally elevated, and the facility required workers to wear respiratory protection for these activities (ERG-GI, 2008).

Based on this information and the percentage of quartz in the product (93 percent), ERG used OSHA's general industry PEL equation to estimate the PEL for respirable dust containing silica in this facility (105 μ g/m³ as respirable dust). As noted above, exposure levels are typically slightly below this PEL; therefore, ERG multiplied the estimated respirable dust level (105 μ g/m³) by the percent silica in the dust (93 percent) to derive a typical respirable quartz level of 98 μ g/m³ (ERG-GI, 2008).⁵⁸

This generalization, based on the best information currently available to OSHA, might underestimate or overestimate silica exposures in this industry.

Additional Controls

Additional Controls for Engineered Stone Workers

The engineered quartz slab manufacturing plant evaluated by OSHA was a new purpose-built plant (constructed around the turn of the millennium) with many existing engineering controls to minimize exposure to silica. Nevertheless, as noted previously, worker exposures reportedly are just below the current OSHA PEL along the entire production line, and elevated exposures levels are associated with cleaning, housekeeping, and maintenance activities performed intermittently by production workers. Control technology exists for some sources of exposure, as evidenced by a new second production line that incorporates (undisclosed) improvements in the design of the line. The new mixing area in particular reportedly should further control silica exposures during production operations and mixer maintenance; however, supporting exposure data are not available to OSHA (ERG-GI, 2008).

Additional controls to reduce exposures on the original production line are reportedly feasible. Worker exposures can be reduced through increased inspection and maintenance of pneumatic conveying systems (including the exhaust ventilation system). Silica particles abrade ductwork and eventually damage duct integrity, allowing the system to leak. Specific concepts evaluated as improvements to the existing production line include installing new baghouses, replacing ductwork with ceramic piping for pneumatically conveyed raw materials, enhancing housekeeping, and using high-efficiency particulate air (HEPA)-filtered vacuums (ERG-GI, 2008). In the weighing and mixing areas, an additional exposure control option could include an interlock system that automatically activates local exhaust ventilation when the raw material hoppers are used.

Among the issues identified by ERG as problematic for this industry is the use of compressed air for cleaning. The facility visited by OSHA described raw material storage and baghouse areas as locations where HEPA-filtered vacuums might be an option for cleaning (ERG-GI, 2008). Cleaning with compressed air (and dry sweeping) can result in significant worker exposure to hazardous air contaminants (ERG-GI, 2008). To the extent that elevated silica exposures in the raw material storage/baghouse areas are primarily associated with cleaning using compressed air, increasing reliance on HEPA-filtered vacuums will substantially reduce exposure levels.

Feasibility Finding

Based on the information presented above, OSHA estimates that production workers in this industry may currently experience exposures of approximately $98 \mu g/m^3$, with occasional excursions to higher levels. OSHA preliminarily concludes that with improved housekeeping and more rigorous use and maintenance

 $^{^{58}}$ The OSHA PEL for silica (quartz) respirable dust is calculated using the following formula: PEL = 10 mg/m³/(% quartz + 2). The company's engineered quartz contains 93 percent quartz; therefore the silica respirable dust PEL is estimated to be 10 mg/m³/95, which is equal to 0.105 mg/m³ or 105 $\mu g/m³$. If the respirable dust contains 93 percent quartz, the silica level is approximately 98 $\mu g/m³$ (0.93 x 105 $\mu g/m³$).

of existing ventilation systems, the estimated silica exposure levels of $98 \mu g/m^3$ or less can be achieved more reliably in this industry for workers involved with routine production processes, but levels of $50 \mu g/m^3$ might not be achievable all the time without completely replacing the existing decade-old production line with a new line (e.g., equivalent to that recently installed by the facility evaluated by OSHA). Even then, an increased level of inspection and maintenance will be necessary to ensure that raw material conveyance ducts and dust collection systems work efficiently.

Once these changes are made, OSHA preliminarily concludes that exposure levels of $50 \,\mu\text{g/m}^3$ or less can be achieved for most workers in this industry most of the time. However, because of the high silica content of the raw materials (93 percent quartz), some workers will continue to experience elevated intermittent exposures during maintenance and housekeeping tasks, particularly in baghouses and raw material storage areas. Respirator use will continue to be necessary during these tasks.

REFERENCES

[ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365.**

Foundries (Metal Casting)

Foundries melt and cast metal in molds to produce precisely formed metal castings, which workers then trim and clean to create finished products. Major end-use markets for these metal castings are manufacturers of automotive parts, pipe, industrial machinery, transportation equipment, and aerospace equipment (U.S. DOE, 1995). Depending on the casting processes used, workers in as many as a dozen foundry job categories work directly with materials that contain silica, including sand used to create molds, refractory mold release agents, furnace linings, and residual sand mold material adhered to castings and scrap metal.

The foundry industry can be divided into four subsectors, based primarily on the types of metal and processes employed:

- Ferrous sand casting foundries.
- Nonferrous sand casting foundries.
- Non-sand casting foundries (ferrous and nonferrous).
- Captive foundries.

Captive foundries include establishments with foundry processes incidental to the primary products being manufactured.

Ferrous sand casting foundries employ a major share of foundry workers potentially exposed to silica and are covered extensively earlier in this section. Separate discussions are then presented for the other foundry sectors. Table IV.C-14 shows the four foundry sectors and the associated North American Industry Classification System (NAICS) industries.

Sand casting is the most common method of producing metal castings,⁵⁹ and the silica exposure hazards of casting using silica sand molds are far greater than those of casting methods not involving sand, such as permanent casting and die casting (NIOSH-79-114, 1978). Therefore, the discussion in this report focuses on job categories with potential for silica exposure applicable primarily to sand casting foundries. Furthermore, among sand casting foundry workers, the workers of iron and steel foundries typically have higher silica exposures than workers in other metal casting facilities, primarily because the higher temperatures required for melting ferrous metals, such as iron and steel, result in sand molds that are hotter, drier, and hence dustier than in other metal casting facilities (O'Brien, 1998). Although data from all types of ferrous sand casting foundries (NAICS 331511 and 331513)⁶⁰ are included in this OSHA's analysis of ferrous sand casting foundries, silica exposures of workers in gray and ductile iron foundries (NAICS 331511) serve as the primary basis for discussion, since these foundries are the most numerous and the best studied with respect to worker exposure to silica. Workers in these foundries serve

as a basis of comparison for the three other major foundry groups addressed later in this foundry industry analysis.

⁵⁹ Sand casting is used to produce an estimated 60 percent of all cast metal products, both ferrous and nonferrous (U.S. DOE, 1998).

 $^{^{60}}$ NAICS 331511 and 331513 generally correspond to Standard Industrial Classification (SIC) 3321, 3322, and 3325.

IV.C-14 Foundry Sectors					
Foundry Sector	NAICS Industries	Comment			
Ferrous Sand Casting Foundries	331511, Iron Foundries	Foundries in these NAICS industries perform sand casting.			
	331513, Steel Foundries (except Investment)				
Nonferrous Sand Casting Foundries	331524, Aluminum Foundries, (except Die-Casting)—Part*	Foundries in these NAICS industries perform sand casting.			
	331525, Copper Foundries (except Die-Casting)—Part				
	331528, Other Nonferrous Foundries (except Die-Casting)— Part				
Non-Sand Casting Foundries	331524, Aluminum Foundries, (except Die-Casting)—Part	Foundries in these industries do not perform sand casting.			
	331525, Copper Foundries (except Die-Casting)—Part				
	331528, Other Nonferrous Foundries (except Die-Casting)— Part				
	331512 Steel Investment Foundries				
Captive Foundries	Various manufacturing industries	Foundries in this sector perform metal casting as part of a parent company's operations.			

^{* &}quot;Part" included in the notation means that only part of this NAICS group is included in the indicated foundry sector, while the remainder of the group is included in another foundry sector. For example, part of the aluminum foundries in NAICS 331525 perform sand casting (placed in the non-ferrous sand casting foundry sector) and the remainder perform non-sand casting (in the non-sand casting foundry sector).

Ferrous Sand Casting Foundries—Description

The metal casting industry is diverse, employing many different casting processes for a wide variety of applications. The production of castings using sand molds includes the following basic processes: 1) preparing a mold, and often a central core; 2) melting and pouring the molten metal into the mold; and 3) cleaning the cooled metal casting to remove molding and core material and extraneous metal (NIOSH-85-116/86-116-1730, 1986). The sand molds are formed using moist sand created by mixing sand and clay. This malleable mixture is termed "green" sand.

The volume, size, and type of castings produced vary widely from one foundry to another, ranging from a few large specialized castings to thousands of small castings per shift. Depending on the size of the foundry, operators might be responsible for a single task or several tasks. In high-production foundries, workers are likely to be responsible for a single task (e.g., molder, coremaker, shakeout operator), whereas in small shops a single worker might be assigned to several operations, such as combined responsibilities for furnace operation, hot metal transfer, and pouring (NIOSH-79-114, 1978).

Table IV.C-15 presents a summary of the job categories, major activities, and primary sources of silica exposure of workers in sand-casting foundries. For detailed descriptions of jobs, please see ERG-GI (2008). In addition to the categories listed in Table IV.C-15, foundries typically conduct the following operations: pattern-making, welding, arc-air gouging, heat treating, annealing, X-ray inspection of castings, machining, and buffing. OSHA assumes that these operations are not associated with substantial direct silica exposure; therefore, they are not discussed in detail in this report.

Table IV.C-15 Job Categories, Major Activities, and Sources of Exposure of Workers in Ferrous Sand Casting Foundries						
Job Category*	Major Activities and Sources of Exposure Controlling processing and mixing of new sand, recycled sand, and mold or core additives in mixer (muller) or sand reclamation equipment. Sand is typically fed via hoppers. Might be batch or continuous.					
Sand Systems Operator						
	 Dust released during loading of hoppers. Dust released during sand transport. Dust raised by using compressed air for cleaning. 					
Molder	Monitoring molding machine operation. Might apply mold parting/coating compound.					
	 Dust generated by handling dry cores and refractory mold coatings (washes). Dust raised by using compressed air for cleaning mold surfaces. Dust released by adjacent operations. 					
Coremaker	Overseeing transfer of mixed sand and additives to automated coremaking equipment. Cleaning and finishing cores. Applying core coatings.					
	 Dust created by grinding, filing, and sanding cores. Dust raised by using compressed air for cleaning. Dust released by adjacent operations. 					
Furnace Operator	Controlling and monitoring furnaces used to produce molten metal. In small operations, might hand-load metal into furnaces.					
	 Dust generated as furnace emissions. Dust from molding sand adhered to scrap metal for remelt. Dust from adding sand to molten metal (e.g., stainless steel). Dust released by adjacent operations. 					
Pouring Operator	Transferring molten metal into ladle or holding furnace, then into molds, typically via a crane or monorail configuration.					
	 Dust released by adjacent operations. 					
Shakeout Operator	Overseeing operation. Contact with equipment and castings depends on the degree of automation.					
	 Dust generated by agitating, breaking, and separating molds from castings. 					
Knockout Operator	Removing sprues, gates, and risers from castings.					
	 Dust generated by the use of hammers and saws to remove excess metal from the castings. Dust released from adjacent operations. 					
Abrasive Blasting Operator	Cleaning residual mold or core material from castings typically operating an abrasive blasting cabinet.					
	 Dust generated by performing shotblasting on open floor or blasting booth, if the casting is large. Dust raised by using compressed air for cleaning surfaces. Dust released from poorly maintained abrasive blasting cabinet. Dust released form adjacent operations. 					
Cleaning/Finishing Operator	Removing remaining molding sand from castings. Dust generated by using portable or bench tools such as chippers, grinders, and polishers. Dust raised by using compressed air for cleaning surfaces.					

Table IV.C-15 Job Categories, Major Activities, and Sources of Exposure of Workers in Ferrous Sand Casting Foundries						
Job Category*	Major Activities and Sources of Exposure					
Material Handler	Transporting sand, castings, or other materials using a front-end loader, forklift, or other material moving equipment.					
	 Dust generated when adding or removing materials from the sand system. Dust raised by manually sweeping or shoveling dry sand. Dust raised by using compressed air for cleaning surfaces. Dust released from adjacent operations. 					
Maintenance Operator	Repairing and maintaining foundry and sand-handling equipment. Might perform repair and maintenance of refractory furnace linings.					
	 Dust released during repair and maintenance of equipment. Dust generated during removal of old refractory linings using hammers, pneumatic chisels, and jackhammers. Dust released from adjacent operations. 					
Housekeeping Worker	Removing spilled sand and debris from floors, conveyor discharges, abrasive machines, and dust collectors.					
	 Dust raised during dry sweeping, vacuuming, shoveling, or front-end loader operations. 					
*Job categories are intended allocated differently, dependent	ed to represent job functions; actual job titles may differ and responsibilities may be ding on the facility.					
Source: ERG-GI, 2008.						

Ferrous Sand Casting Foundries—Baseline Conditions and Exposure Profile

To develop the exposure profiles for these job categories, OSHA compiled the best available data from all identified industrial hygiene literature that included sample information, and from exposure monitoring conducted at selected site visits. OSHA relied primarily on OSHA Special Emphasis Program (SEP) inspection reports, NIOSH reports, and reports from States that performed workplace evaluations (ERG-GI, 2008). OSHA elected to use information from 1990 to the present, except in cases where older sources provide special insight into exposures or controls in a specific area not readily described by more recent sources.

Table IV.C-16 provides a summary of exposure data available to OSHA for ferrous sand casting foundries. A discussion by job category follows.

⁶¹ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-16
Respirable Crystalline Silica Exposure Range and Profile for Ferrous Sand Casting Foundries (NAICS 331511, 331513)

Job Category	Exposure Summary			Exposure Range		Exposure Profile				
	Number of Samples	Mean (μg/m³)*	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Ferrous Sand Casting Sand Systems Operator	58	228	78	11	2,430	10 17.2%	9 15.5%	15 25.9%	16 27.6%	8 13.8%
Molder	152	74	50	6	1,417	40 26.3%	37 24.3%	44 28.9%	29 19.1%	2 1.3%
Coremaker	106	76	39	9	1,780	27 25.5%	34 32.1%	31 29.2%	10 9.4%	4 3.8%
Furnace Operator	8	109	34	13	281	3 37.5%	2 25.0%	0 0.0%	1 12.5%	2 25.0%
Pouring Operator	24	79	48	10	280	6 25.0%	6 25.0%	4 16.7%	7 29.2%	1 4.2%
Shakeout Operator	97	101	66	10	500	14 14.4%	25 25.8%	29 29.9%	17 17.5%	12 12.4%
Knockout Operator	37	111	78	13	540	4 10.8%	13 35.1%	7 18.9%	9 24.3%	4 10.8%
Abrasive Blasting Operator	61	155	90	13	1,002	4 6.6%	15 24.6%	17 27.9%	17 27.9%	8 13.1%
Cleaning/Finishing Operator	213	196	77	12	1,868	33 15.5%	46 21.6%	41 19.2%	45 21.1%	48 22.5%
Material Handler	32	80	56	11	231	9 28.1%	6 18.8%	10 31.3%	7 21.9%	0 0.0%
Maintenance Operator	24	376	72	13	5,851	4 16.7%	6 25.0%	5 20.8%	4 16.7%	5 20.8%
Housekeeping Worker	14	146	75	16	646	2 14.3%	2 14.3%	6 42.9%	2 14.3%	2 14.3%
Total Ferrous Sand Casting Foundries	826	138	62	6	5,851	156 18.9%	201 24.3%	209 25.3%	164 19.9%	96 11.6%

*µg/m³ = micrograms per cubic meter

Foundries (Metal Casting)

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: Burmeister, 2001; ERG-GI, 2008; Lee, 2009a, 2009b; OSHA SEP Inspection Report 303207518.

Relatively Well-Controlled and Poorly Controlled Foundries

Among the foundries with exposure results included in the Table IV.C-16 exposure profile are two subsets of facilities selected to represent foundries where silica is relatively well controlled and foundries where it is poorly (or not yet) controlled (ERG-GI, 2008). ERG conducted an informal review of characteristics common among each group. To facilitate the review, ERG selected several foundries that have been relatively successful in reducing exposures and several that experienced widespread elevated exposures. ERG focused on foundries where OSHA, NIOSH, or a State agency had collected air samples for multiple job categories and provided at least some documentation of working conditions at the time. ERG then compared the exposure controls and work practices reported in the documentation for each.

Specifically, the group of relatively well-controlled foundries includes facilities selected by ERG (ERG-GI, 2008) because the vast majority of the full-shift results were less than or equal to $50 \mu g/m^3$, although a few results occurred above that level (and, rarely, above $100 \mu g/m^3$). These results indicate the level of silica exposure that workers can experience in foundries where their own activities generate little airborne silica and, at the same time, where other sources are also limited. The group of relatively well-controlled foundries includes four gray and ductile iron foundries evaluated in 1989, 1994, 1997, and 1999 (ERG # MI-1485; NIOSH ECTB 233-107c; OSHA SEP Inspection Reports 109198036 and 116156266).

The four poorly controlled foundries are three gray and ductile iron foundries and one stainless steel foundry that range in size from 55 to 340 production workers. Two of these facilities were evaluated in 1992, while the others were visited in 1996 and 1999 (NIOSH HETA 92-044-2265; NIOSH HETA 92-090-2296; OSHA SEP Inspection Reports 116201997 and 122043151).

The relatively robust data set available to OSHA for ferrous sand casting foundries (826 full shift silica results) permits this more detailed treatment; such data are not available for other industries.

The findings from this informal review are described with the overall feasibility finding for ferrous sand casting foundries.

Baseline Conditions and Exposure Profile for Sand Systems Operators

Based on information available from OSHA SEP, NIOSH, State, and industry association reports summarized by ERG-GI (2008), OSHA concludes that most sand systems operators use automated mixers to blend sand with clay, water, and additives. While most facilities have some form of local exhaust ventilation (LEV), the mixing equipment (mixers, screens, hoppers) typically is not fully enclosed or equipped with effective LEV (ERG-GI, 2008).

Mixer charging is usually an open unventilated process involving sand transfer from weigh hoppers or front-end loaders. Sand systems operators typically transfer dry, silica-containing additives to mixers by manually emptying bags. Additionally, they often work near sand transport equipment such as open conveyors, which also can contribute to workers' silica exposures.

As indicated in Table IV.C-16, the 58 results for sand systems operators ranged from 11 μ g/m³ to 2,430 μ g/m³, with a median of 78 μ g/m³. The results were obtained from 35 data sources.⁶²

The two highest results were obtained at two separate facilities and are associated with poor ventilation. No LEV was present in the area where the highest result $(2,430 \, \mu g/m^3)$ was obtained, and the report notes

 $^{^{62}}$ All but one result were evaluated in ERG-GI (2008); the additional result (identified by OSHA) of 159 μ g/m³ is for a sand systems operator using a muller (OSHA SEP Inspection Report 303207518).

that the doors of the mixer were left open, presumably allowing sand dust to escape (NIOSH HETA 88-240-2210, 1992). The second-highest result, $2{,}312~\mu\text{g/m}^3$, is associated with a sand systems operator dumping sand into a mixer from an overhead bin (OSHA SEP Inspection Report 300219755). A small fan exhausted air through the wall near the mixer, but the sand delivery and mixing equipment were not ventilated. Although the upper range of exposure levels for this job category exceeds $2{,}000~\mu\text{g/m}^3$, Table IV.C-16 shows that most results (86 percent) are considerably lower (less than $250~\mu\text{g/m}^3$).

Some of the lowest results for this job category are associated with sand systems operators working in areas where sand transport systems were isolated (enclosed or pneumatic) and mullers were fitted with exhaust ventilation. For example, a limit of detection (LOD) reading of $11 \,\mu\text{g/m}^3$ was obtained by OSHA for a sand systems operator controlling a muller that had both the muller belts and elevator fully enclosed (OSHA SEP Inspection Report 108772377). Exposure levels of $13 \,\mu\text{g/m}^3$ (LOD) and $30 \,\mu\text{g/m}^3$ (two sampling days) were associated with pneumatic sand transport equipment and use of larger size (50-grain) washed lake sand (NIOSH ECTB 233-107c, 2000).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for sand system operators is $78 \mu g/m^3$.

Baseline Conditions and Exposure Profile for Molders

Based on information summarized by ERG-GI (2008), OSHA finds that baseline conditions for molders include the use of various semi-automated molding machines designed to shape and compact silica sand. The processes used often require manual handling of the mold. Although general exhaust ventilation is often present (e.g., wall or ceiling exhaust fans), it is common for most molders to work without LEV (ERG-GI, 2008). Molders typically use green sand (Schleg and Kanicki, 2000) and use compressed air to clean molds.

ERG-GI (2008) summarized 149 sample results for molders in ferrous sand casting foundries. These data were extracted from 49 OSHA SEP, NIOSH, and State reports. As described in the following paragraphs, OSHA has identified three additional results in two reports: a report from Lee (2009a) and an OSHA SEP Inspection Report (303207518).

Lee (2009a, 2009b) obtained one silica result of $109 \,\mu\text{g/m}^3$ for a molder during an inspection of a facility where heavy industrial castings were made. Lee noted that dust was visible suspended in the air and accumulated on surfaces during an initial walk-though of the facility. A subsequent measurement reported as $6 \,\mu\text{g/m}^3$ was collected by a consultant after the company made changes to the LEV and made repairs to the sand system in the foundry (Lee, 2009a). In a separate report on a different foundry, OSHA obtained a silica result of 234 $\,\mu\text{g/m}^3$ for a molder operating an automated mold former (OSHA SEP Inspection Report 303207518).

The data summarized in Table IV.C-16 present the exposure profile for molders and represent the best exposure data available to OSHA for these workers. The 152 results for molders ranged from 6 μ g/m³ to 1,417 μ g/m³ with a median of 50 μ g/m³.

⁶³ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Exposure levels for molders tend to be higher in facilities where silica dust is poorly controlled throughout the facility. As discussed in ERG-GI (2008), some of the highest results for molders are associated with facilities where the results for other job categories also exceed $100 \, \mu g/m^3$: seven results between $159 \, \mu g/m^3$ and $1,417 \, \mu g/m^3$ were obtained at three facilities where multiple samples in all job categories evaluated exceed $100 \, \mu g/m^3$ (ERG # OH-1470; NIOSH HETA 92-090-2296, 1993; OSHA SEP Inspection Report 121905079).

Some of the lowest results (two 13 μ g/m³ [LODs], one 20 μ g/m³, and one 23 μ g/m³) were obtained by NIOSH and OSHA for four molders working in two foundries where pneumatic or enclosed conveyers were used to transport sand (NIOSH ECTB 233-107c, 2000; OSHA SEP Inspection Report 122122534). NIOSH noted that one of these establishments made a particular effort to control dust throughout the facility, although workers occasionally used compressed air to clean molds.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for molders is $50 \, \mu \text{g/m}^3$.

Baseline Conditions and Exposure Profile for Coremakers

Based on information contained in ERG-GI (2008), OSHA has preliminarily determined that most coremakers operate or work near automated equipment associated with sand processing for coremaking. Additionally, some coremakers manually handle cores to coat, clean, assemble, or position the cores. OSHA based this determination on information from OSHA SEP, NIOSH, State, and industry association reports summarized by ERG-GI (2008). The work is typically conducted without LEV, but general ventilation might be present, and OSHA has preliminarily determined that these are the baseline conditions.

ERG-GI (2008) summarized 103 representative coremaker results obtained from 24 OSHA SEP, NIOSH, State, and industry association reports on ferrous sand casting foundries. In addition, OSHA has identified three results in a report recently published by Lee (2009a), who reported exposure levels of 106 μ g/m³ and 147 μ g/m³ for two coremakers in a facility that made heavy industrial castings during an inspection completed under OSHA's Site Specific Targeting (SST) program. A third result of 8 μ g/m³ was reported by a consultant to the same foundry after repairs were made to the sand systems and changes were made to LEV (Lee, 2009a, 2009b). The total of 106 results represent the best exposure data available to OSHA for coremakers in ferrous sand casting foundries. As shown in Table IV.C-16, the results range from 9 μ g/m³ to 1,780 μ g/m³, with a median of 39 μ g/m³.

Coremakers are routinely exposed to silica dust generated by adjacent sand processing and transport equipment, use of compressed air, and dust migrating into the coremaking area from sources elsewhere in the foundry. The two highest results (380 $\mu g/m^3$ and 1,780 $\mu g/m^3$) were obtained in 1999 in a California foundry (Scholz and Hayes, 2000b). At the same time, a result of 90 $\mu g/m^3$ was obtained for a third coremaker at the same facility. Although no information is available on the specific activities of the coremakers, the report suggests that ventilation was "stagnant" in the core area and that air from the melting and charge preparation area entered the space where the coremakers worked. In contrast, eight of the lowest exposure levels, all $\mu g/m^3$ and less, were obtained for coremakers working in two foundries that employed pneumatic sand transport systems (NIOSH ECTB 233-107c, 2000; OSHA SEP Inspection Report 100494079).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as

summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for coremakers is $39 \,\mu\text{g/m}^3$.

Baseline Conditions and Exposure Profile for Furnace Operators

Based on the information provided in ERG-GI (2008), OSHA concludes that the primary sources of exposure for most furnace operators include the silica dust generated from poorly controlled adjacent operations, such as emissions released from hot, dry sand molds at shakeout (NIOSH-79-114, 1978; NIOSH-85-116/86-116-1730, 1986) and dust released when operators add silica sand to the furnace to correct slag acidity (AFS, 2001). However, no information was available to indicate exposure levels specifically associated with these practices.

Limited general data are available to characterize the exposures of furnace operators. ERG-GI (2008) summarized eight samples from five reports on ferrous sand casting foundries. Table IV.C-16 summarizes these results, which range from less than the LOD ($13 \mu g/m^3$) to $281 \mu g/m^3$, with a median of $34 \mu g/m^3$. Nearly two-thirds (62 percent) of the results are $50 \mu g/m^3$ or less.

The highest reading ($281 \ \mu g/m^3$) was obtained in 1995 for a furnace operator who repaired the furnace lining (with refractory materials) every day (OSHA SEP Inspection Report 114154263). Similarly, readings of 198 $\mu g/m^3$ and $280 \ \mu g/m^3$ were obtained for furnace operators in a foundry where the respirable quartz levels were largely uncontrolled, according to NIOSH, and the sources of exposure included not only furnace emissions but also adjacent operations (NIOSH HETA 90-0249-2381, 1994). The report does not indicate whether these furnace operators participated in maintenance of refractory furnace linings.

Three of the lowest readings for furnace operators ($29 \,\mu\text{g/m}^3$ and two less than or equal to $13 \,\mu\text{g/m}^3$) were measured at a single facility where operators worked in a control booth or on a ventilated melt deck (OSHA SEP Inspection Report 121977870). At another facility, a result of $20 \,\mu\text{g/m}^3$ was obtained for a furnace operator tending a furnace with slotted hoods above and a retractable enclosing hood for ductile iron inoculations (Scholz and Hayes, 2000b).

No results for furnace operators are available among the data from the group of poorly controlled foundries. In the absence of other information, OSHA has preliminarily determined that seven of the eight results presented in the exposure profile represent some aspect of baseline conditions.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for furnace operators is $34 \,\mu\text{g/m}^3$.

Baseline Conditions and Exposure Profile for Pouring Operators

The pouring operation itself is unlikely to release silica or be a source of silica exposure for pouring operators (O'Brien, 2000). However, data suggest that pouring operators are subject to silica exposure from adjacent operations. Based on available reports, OSHA has determined that pouring operators commonly perform manual manipulation of ladles or operating cranes and might use automated equipment in an open pouring area with no engineering controls or dust-suppressing work practices.

⁶⁴ See the foundry "maintenance operator" job category for information on other foundry workers whose primary silica exposure is from work with refractory materials.

Furthermore, pouring operations are generally located in the same area as furnace and shakeout operations, which can release considerable silica dust.

LEV is not a standard feature of pouring areas in ferrous foundries. Where LEV was reportedly associated with a pouring task, the ventilation system was noted to be in poor condition (ERG-GI, 2008; ERG # OH-1470).

ERG-GI (2008) summarized 24 samples ranging from the LOD (in this $10 \,\mu\text{g/m}^3$) to $280 \,\mu\text{g/m}^3$, with a median of $48 \,\mu\text{g/m}^3$. These data were obtained from 13 reports on ferrous sand casting foundries. Three of the four highest readings ($150 \,\mu\text{g/m}^3$, $150 \,\mu\text{g/m}^3$, and $280 \,\mu\text{g/m}^3$) for pouring operators were from a single foundry visited by the Industrial Commission of Ohio in 1987 (ERG # OH-1466). Respirable quartz levels throughout this foundry were poorly controlled. Another elevated level, $157 \,\mu\text{g/m}^3$ (full shift), was obtained for a worker operating a pouring crane at a foundry visited by NIOSH in 1992 (NIOSH HETA 92-090-2296, 1993). At this foundry, half of the results from four job categories exceeded $100 \,\mu\text{g/m}^3$, indicating airborne respirable quartz was released in or spread to most areas in the facility. According to the NIOSH report, the pouring crane operators at this facility were exposed to respirable quartz primarily from shakeout operations (NIOSH HETA 92-090-2296, 1993).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for pouring operators is $48 \mu g/m^3$.

Baseline Conditions and Exposure Profile for Shakeout Operators

Shakeout operators monitor equipment that separates castings from mold materials by mechanically vibrating or tumbling the casting, a procedure that is generally termed "shakeout." In addition to causing elevated silica exposures for shakeout operators, dust generated from shakeout activities is frequently cited as a source of silica exposure for other workers in the foundry.

Shakeout conditions vary dramatically depending on the age and condition of the equipment or facility. A review of OSHA SEP, NIOSH, and State reports suggests that foundries frequently have installed LEV in the shakeout area. However, enclosures and ventilation are not uniformly effective as used, particularly on older equipment. New and modern shakeout equipment is generally associated with LEV designed to help manage dust from this process (ERG-GI, 2008; Kinergy Corporation, 2000; South Cast Equipment, 2000).

ERG-GI (2008) summarized 93 results from 31 reports representing shakeout operators. Additionally, OSHA identified four results in two reports from Lee and an SEP inspection report. Lee (2009a, 2009b) obtained two results of $107~\mu g/m^3$, and $161~\mu g/m^3$ for shakeout operators during an inspection of a facility where heavy industrial castings were made. A subsequent measurement of $32~\mu g/m^3$ was collected by a consultant after the company made changes to the LEV and made repairs to the sand system in the foundry (Lee, 2009a, 2009b). In the SEP report, OSHA provided a result of $328~\mu g/m^3$ for a shakeout operator dumping molds (OSHA SEP Inspection Report 303207518).

Table IV.C-16 presents the exposure profile for shakeout operators. This table summarizes the best exposure data available to OSHA for these workers. The 97 total shakeout operator results were collected

⁶⁵ Silica results for workers who primarily repaired refractory lining during the sampling period (including workers repairing ladle linings) were placed in the "maintenance operator" job category, regardless of their position/title at the foundry.

during de-molding operations under a variety of working conditions and results ranged from $10 \mu g/m^3$ to $500 \mu g/m^3$, with a median of $66 \mu g/m^3$.

Two of the lowest readings, both 13 μ g/m³ (LODs), were obtained for shakeout operators working with LEV at a foundry that reportedly made a concerted effort to control silica emissions throughout the facility (ERG # MI-1483). Results of 33 μ g/m³ and 41 μ g/m³ were associated with other shakeout operators at the same foundry. At another foundry, readings of 12 μ g/m³ (LOD), 21 μ g/m³, 22 μ g/m³, and 53 μ g/m³ were associated with shakeout area crane operators working in cabs supplied with fresh air (NIOSH ECTB 233-107c, 2000). At that facility, which also had an active silica management program, nine results obtained for manual shakeout operations were mixed, ranging from 22 μ g/m³ to 104 μ g/m³ (NIOSH ECTB 233-107c, 2000).

Four full-shift PBZ respirable quartz exposure results for shakeout operators at another foundry evaluated by NIOSH ranged from 37 to $214 \,\mu\text{g/m}^3$, again indicating the potential for variability in respirable quartz exposures for a single job category at a single facility. Although not described, based on notes in the report these results are assumed to be associated with the use of an open shaker table and the use of a front-end loader to break large molds on the open floor (NIOSH HETA 92-044-2265, 1992).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for shakeout operators is $66 \,\mu\text{g/m}^3$.

Baseline Conditions and Exposure Profile for Knockout Operators

Knockout operators are responsible for "knocking" any loosely adhered sand from castings and removing unwanted scrap metal left from the pouring process. These workers use hand and power tools or vibrating equipment on castings delivered from the shakeout process. Based on a review of OSHA SEP, NIOSH, and State reports on foundries, OSHA has determined that knockout procedures involve use of manual or semi-automated stationary workstations, typically with some form of LEV; however, these ventilation systems are not necessarily well maintained or operating efficiently (ERG-GI, 2008).

ERG-GI (2008) summarized 37 samples of knockout operator exposures obtained from 16 reports on ferrous sand casting foundries. These samples represent the best data available to OSHA, and are provided in Table IV.C-16. Exposures range from 13 $\mu g/m^3$ (LOD) to 540 $\mu g/m^3$, with a median of 78 $\mu g/m^3$.

Five of the highest readings for knockout operators ($540 \mu g/m^3$, $380 \mu g/m^3$, $310 \mu g/m^3$, $140 \mu g/m^3$, and $90 \mu g/m^3$) were collected at a single foundry where the workers used vibrating equipment to remove sand from casting interiors (NIOSH HETA 86-0284-1914, 1988). While knockout operators (along with sandblasters) had the highest exposure levels at this facility, NIOSH found elevated silica exposures in all foundry departments and recommended that the facility investigate the use of engineering controls such as local exhaust ventilation, downdraft molding platforms, and isolation of work areas to reduce worker exposure to silica, indicating that exposures at this facility were largely uncontrolled (NIOSH HETA 86-0284-1914, 1988).

At another foundry, levels of 95 μ g/m³ and 101 μ g/m³ are associated with inefficient LEV. However, this foundry made some improvements and several years later, after the LEV system had been upgraded, results less than 50 μ g/m³ were obtained for workers with the same job title (ERG # MI-1485).⁶⁶

Among the data available to OSHA, lower results are associated with cleaner castings, ventilated workstations, and dust controls in the adjacent shakeout area. Three of the lowest results ($13 \mu g/m^3$, $24 \mu g/m^3$, and $30 \mu g/m^3$) and one somewhat higher reading ($87 \mu g/m^3$) were obtained on two sampling dates for two workers who used pneumatic chisels to open holes in castings (NIOSH ECTB 233-107c, 2000). On each of the two sampling dates, these knockout operators spent half the shift at ventilated workstations chiseling casting that had already passed from an enclosed two-stage shakeout area to an automated, enclosed abrasive grinder, and were carried to the knockout operator on a partially enclosed conveyer. Presumably the castings were relatively free of loose sand by this point. These operators spent the remainder of the shift transferring finished castings onto pallets.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for knockout operators is $78 \, \mu \text{g/m}^3$.

Baseline Conditions and Exposure Profile for Abrasive Blasting Operators

Abrasive blasting operators use abrasive media to remove tightly adhered mold and core materials and prepare the surfaces of castings for further processing. Based on ERG-GI's (2008) review of OSHA, NIOSH, and State reports, OSHA preliminarily concludes that the vast majority of abrasive blasting operators (95 percent) in the foundry industry use automated or semi-automated blasting equipment (e.g., steel shot blast machines). ⁶⁷ This equipment is typically designed to be fully (or nearly fully) enclosed and connected to an exhaust ventilation system with a dust collector; however, enclosures often leak and the associated ventilation is not necessarily effective (ERG-GI, 2008).

ERG-GI (2008) summarized 61 sample results for abrasive blasting operators. As shown in Table IV.C-16, these values range from 13 $\mu g/m^3$ to 1,002 $\mu g/m^3$, with a median of 90 $\mu g/m^3$. These results, which represent the best data available to OSHA, were obtained from 29 reports on ferrous sand casting foundries (ERG-GI, 2008).

Elevated exposures appear to be associated with poor work practices. Two of the highest results, 238 $\mu g/m^3$ and 1002 $\mu g/m^3$ (as well as a third result of 91 $\mu g/m^3$) were obtained in 1992 at a gray and ductile iron foundry. NIOSH noted that the workers used compressed air (presumably for cleaning) while they operated steel shot blasting machines equipped with LEV (NIOSH HETA 92-044-2265, 1993). At a different foundry visited by OSHA, a result of 909 $\mu g/m^3$ was reported for an abrasive blasting operator who monitored a continuous process steel shot blast machine as well as the dust-collection tote. This worker replaced the tote when it was full (OSHA SEP Inspection Report 116199589). This result suggests that the dust collection system performed poorly, that the act of monitoring and replacing the dust tote contributed to the silica exposure, or that both might have been factors.

 $^{^{66}}$ During the initial visit, additional results of 42 $\mu g/m3$ and 45 $\mu g/m3$ were obtained for a forklift driver in the knockout area and a worker who, based on the job title, is presumed to have been performing a knockout operation different from that of the other two workers.

⁶⁷ Most of the foundry industry abrasive blasting machines use steel shot as media. Therefore, the silica exposure to these abrasive blasting operators is predominantly from residual mold and core materials adhered to the casting, rather than originating in the abrasive blasting media. However, recycled abrasive blasting media that are poorly cleaned can carry residual mold and core materials.

Some of the lowest results for this job category are associated with control measures that isolate the operator from the process and control sources of dust surrounding the shot blasting machine. A result of $46~\mu g/m^3$, approximately half the median for this job category, is associated with an abrasive blasting operator who operated an enclosed shot blasting machine from behind a transparent barrier. Automated manipulators positioned the parts. This gray iron foundry had implemented numerous exposure controls throughout the facility and results rarely exceeded $50~\mu g/m^3$ in most job categories (NIOSH ECTB 233-107c, 2000). OSHA obtained two results of $34~\mu g/m^3$ and $47~\mu g/m^3$ at a gray and ductile iron foundry that had enclosed and ventilated sand- and casting-handling equipment leading to and from the automated shot blasting machine (OSHA SEP Inspection Report 101548626). These abrasive blasting operators spent a couple hours sorting castings and the remainder of the shift operating the shot blasting equipment. Results obtained during earlier evaluations of this facility were substantially higher, as discussed in the review of additional controls for this job category.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for abrasive blasting operators is $90 \, \mu \text{g/m}^3$.

Baseline Conditions and Exposure Profile for Cleaning/Finishing Operators

Based on NIOSH, OSHA SEP, and State reports summarized in ERG-GI (2008), OSHA concludes that most cleaning/finishing operators use hand-held grinding equipment, without LEV, for a substantial portion of the shift. While the same workers also might use stationary grinding equipment, OSHA finds that it is the hand-held equipment that is both most typical and the greater source of exposure.

ERG-GI (2008) summarized 209 sample results for cleaning/finishing operators from 53 OSHA, NIOSH, and State reports on ferrous sand casting foundries. OSHA subsequently identified four additional results in a report from Lee (2009a).

Lee (2009a, 2009b) obtained results of 161 μ g/m³, 181 μ g/m³, 216 μ g/m³, and 245 μ g/m³ for cleaning/finishing operators grinding on casings during an inspection of a facility. Although grinding stations were equipped with LEV, the LEV did not appear to be effective based on the amount of dust observed in the air and on the work surfaces (Lee, 2009a).

Table IV.C-16 summarizes the total of 213 exposure results for this job category. These results represent the best available exposure data for cleaning/finishing operators. The results range from 12 μ g/m³ to 1,868 μ g/m³, with a median of 77 μ g/m³. Twenty-three percent of the exposure values exceed 250 μ g/m³, and upon further examination of the data, OSHA notes that 23 of the 213 (11 percent) exceed 500 μ g/m³. These observations suggest that, along with maintenance operators, cleaning/finishing operators have many of the highest silica exposures in the foundry industry.

Some of the highest results (all greater than $500~\mu g/m^3$) were associated with three facilities where most exposures for multiple job categories also were elevated (ERG # MI-1474; NIOSH HETA 92-0089-2368, 1993; Scholz and Hayes, 2000b). One of the highest respirable quartz readings, 1,120 $\mu g/m^3$, was obtained for a cleaning/finishing operator who performed hand grinding on large castings on the open floor (NIOSH HETA 92-090-2296, 1993). NIOSH recommended that the facility install a room for cleaning the castings, and recommended the use of ventilated tool hoods for hand grinders (NIOSH HETA 92-090-2296, 1993).

Worst-case exposures for grinders might be represented by a facility visited by NIOSH that performed only casting cleaning operations (NIOSH HETA 92-0089-2368, 1993). Castings at this facility were

delivered on flatbed trucks; they were cleaned by workers operating 25 individual grinding stations separated by plywood partitions. Compressed air was used to remove excess sand from internal cavities. The 20 results for cleaning/finishing operators ranged from 300 μ g/m³ to 1,868 μ g/m³. Based on NIOSH recommendations for controlling exposures, OSHA assumes that these readings are associated with minimal or no controls.

Results for cleaning/finishing operators are not uniformly high, particularly where foundries have implemented controls. Two relatively low readings (both 30 μ g/m³) were reported for grinders at a foundry in Ohio. These results were associated with the use of separate booths for each grinder operator; the booths were equipped with benches serviced by local exhaust hoods, but were not further described (ERG # OH-1488). Most of the lowest results were associated with those facilities where exposures across all job categories were typically low (ERG-GI, 2008).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for cleaning/finishing operators is 77 μ g/m³.

Baseline Conditions and Exposure Profile for Material Handlers

Material handlers use mobile equipment to transport materials and castings throughout foundries and are subject to background silica dust associated with the conditions and controls found in those work areas. Information contained in OSHA SEP, NIOSH, and State reports suggests that enclosed cabs are not typically available or used to limit exposures. Material handlers routinely assist with cleaning tasks, typically involving dry sweeping or using compressed air.

ERG-GI (2008) summarized 32 results from 16 different reports presenting material handler silica exposure levels ranging from 11 μ g/m³ to 231 μ g/m³, with a median of 56 μ g/m³.

Some of the lowest exposure levels are associated with a facility that had made substantial and successful efforts to control silica dust across the entire facility. NIOSH obtained four results, all at or below the LOD (11 $\mu g/m^3$ to 13 $\mu g/m^3$), for two material handlers who operated powered equipment in a well-controlled facility (NIOSH ECTB 233-107c, 2000).

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for material handlers is $56 \, \mu g/m^3$.

Baseline Conditions and Exposure Profile for Maintenance Operators

Based on a review of OSHA SEP, NIOSH, and State reports, OSHA finds that most reported silica exposure for maintenance operators is due to work repairing (patching) or replacing refractory furnace and ladle lining materials. The related Section IV.C.19 – Refractory Repair addresses the similar (but more frequent and often large-scale) activities of contractors who travel from facility to facility offering refractory maintenance services. Those contractors are more likely to perform the periodic complete tear-out and replacement of refractory linings, ⁶⁸ while the foundry maintenance operator is more likely to perform small-scale patch and repair jobs to maintain refractory linings between replacement cycles. The

⁶⁸ According to Refractory Products Supplier A (2010), 75 percent of establishments that use refractory furnaces also use a contract service to reline the furnaces.

patch and repair tasks are typically performed weekly (OSHA SEP Inspection Report 122209679), but might be necessary more or less frequently depending on several factors such as the type of refractory material and how the furnace is used.

Maintenance operators most commonly perform these manual refractory repair processes in areas with general ventilation only. Furnace ventilation systems cannot be considered an effective control for those maintenance operators who maintain refractory furnaces. The ventilation systems associated with furnaces are designed to exhaust heat and rising fumes, but are inadequate to control silica dust generated during refractory maintenance activities (OSHA SEP Inspection Report 116201997).

ERG-GI (2008) summarized 23 exposure results obtained from 10 reports on ferrous sand casting foundries' maintenance operators. OSHA identified one additional exposure value in a report by Burmeister (2001), who presented a result of 215 μ g/m³ for a sample collected by OSHA while a maintenance operator relined a ladle. The operator "performed the pneumatic chipping and mixing of the refractory materials..." The foundry made several changes to the process, including initiating "a water control system" to reduce dust during chipping. Subsequent air sampling by a consultant indicated that exposure was reduced to a level slightly less than the calculated OSHA permissible exposure limit (PEL) for respirable dust containing silica (Burmeister, 2001).

Table IV.C-16 summarizes the 24 exposure results noted above, which represent the best exposure data available to OSHA for maintenance operators. The results range from 13 $\mu g/m^3$ to 5,851 $\mu g/m^3$, with a median of 72 $\mu g/m^3$.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for maintenance operators is $72 \ \mu g/m^3$.

Maintenance operators also are subject to background levels of silica dust associated with the conditions and controls found in the work areas where they maintain equipment or make repairs during upset conditions. However, the results available to OSHA for maintenance operators are primarily associated with refractory repair activities.

Baseline Conditions and Exposure Profile for Housekeeping Workers

Based on a review of seven OSHA SEP, NIOSH, and State reports, OSHA concludes that housekeeping workers most frequently use manual methods to perform cleaning tasks. Exposures of housekeeping workers are closely related to the general exposure levels within the facility and to the specific area where they spend most of their time. Although reports contain few details regarding the specific activities of the available housekeeping worker results, data suggest that adjacent operations are the primary source of exposure for housekeeping workers, although their own work will likely contribute to their exposure when dry sand is involved.

ERG-GI (2008) summarized 14 results for housekeeping workers ranging from the LOD (less than or equal to 16 μ g/m³) to 646 μ g/m³, with a median of 75 μ g/m³. ERG obtained these results from seven OSHA, NIOSH, and State reports on ferrous sand casting foundries (ERG-GI, 2008). Although limited, these are the best data available to OSHA for foundry housekeeping workers.

Some of the lowest results for housekeepers include a value for a housekeeping worker shoveling and sweeping spilled mold sand. In this case the result was less than or equal to $16 \mu g/m^3$, the LOD (OSHA SEP Inspection Report 122031487). At the same gray and ductile iron foundry, results for a maintenance

operator and two knockout operators were also below $50 \,\mu\text{g/m}^3$. The fact that these were the only workers OSHA elected to evaluate suggests that the foundry made a successful effort to control exposures throughout the facility.

Two other results, both 30 μ g/m³ (one was the LOD), were obtained at two ferrous metal sand casting foundries evaluated by the Michigan Department of Public Health in the early 1990s (ERG # MI-1473; ERG # MI-1483). One worker reportedly was responsible for cleaning an area where LEV was present. The other was classified as a "floor sweeper" (no further information available).

Higher housekeeper exposures were reported for a foundry visited by OSHA, where a result of $172 \,\mu\text{g/m}^3$ was obtained for a "cleanup" worker whose duties included vacuuming sand (OSHA SEP Inspection Report 103471314). Other exposure values obtained on the same date at this facility included results of $87 \,\mu\text{g/m}^3$ and $96 \,\mu\text{g/m}^3$ for pouring operators (nearly twice the median level for that job category). The following month, two results of $276 \,\mu\text{g/m}^3$ and $291 \,\mu\text{g/m}^3$ were obtained for shakeout operators (four times greater than the median for this group), suggesting that the shakeout line might have been a contributing source of silica exposure for the other workers.

Because a wide variety of conditions exist in foundries, OSHA has preliminarily determined that the baseline condition is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-16. Thus, the exposure level associated with baseline conditions for housekeeping workers is $75~\mu g/m^3$.

Ferrous Sand Casting Foundries—Additional Controls

Additional Controls for Sand Systems Operators

Table IV.C-16 includes the exposure profile for sand systems operators, which shows that one-third of the 58 results for this job category are below $50 \,\mu\text{g/m}^3$. Additional controls will be required for the remaining two-thirds of these workers. Minimizing contact with dust generated by sand processing and transport can reduce exposures for sand-system operators. Foundries can accomplish this reduction through effective LEV and enclosures for sand mixing, processing, and transport equipment. Alternatively, substituting silica-free media that is less toxic than silica for the sand used in molds and cores can eliminate the silica exposures of sand systems operators.

Exposure monitoring data obtained by OSHA at a foundry showed an 83 percent reduction in sand systems operator silica levels (from 231 μ g/m³ to 40 μ g/m³) after the foundry installed LEV and repaired leaks in the mixer (OSHA SEP Inspection Report 122040488). Published standards for sand mixer and mullers, bins, hoppers, and screens specify that equipment be well enclosed and exhausted at a minimum rate of 150 cubic feet per minute (cfm) (200 cfm in the case of screens) per square foot of opening (ACGIH, 2010; AFS, 1985).

Both OSHA and NIOSH showed that controlling dust from sand transport equipment as well as process equipment could reduce silica exposures. An exposure of $11 \mu g/m^3$ (LOD) was obtained for a sand systems operator who was controlling a muller with both muller belts and sand elevator fully enclosed (OSHA SEP Inspection Report 108772377). NIOSH reported exposures less than 30 $\mu g/m^3$ at a facility where a sand systems operator monitored a pneumatic transport system that moved sand to the mixing equipment. In addition, this facility used specifically sized (A50-grain), pre-washed lake sand for casting,

⁶⁹ The American Conference of Governmental Industrial Hygienists (ACGIH) (ACGIH, 2010) recommends a higher air flow rate of 250 cfm per square foot of opening for toxic dusts, which might be more appropriate for silicacontaining materials.

which likely helped reduce exposures (NIOSH ECTB 233-107c, 2000). Pre-washing sand can remove fine respirable-sized particles that might otherwise become airborne when workers use the sand.⁷⁰

A steel foundry used the following combination of methods to reduce exposures: using fully enclosed mullers and hoppers, improving existing LEV, renovating the sand handling system across the entire facility, wetting hot sand reclaimed from the shakeout area, changing work practices, improving housekeeping, using pre-mixed additives, and controlling silica exposure sources throughout the facility. As a result, exposures decreased 82 percent from 159 $\mu g/m^3$ to 28 $\mu g/m^3$ (OSHA SEP Inspection Report 303207518).

Enclosed, ventilated, continuous process sand recycling and reclamation equipment is commercially available for foundries (South Cast Equipment, 2000). According to the manufacturer, this type of multifunctional equipment can be configured to accomplish most sand handling from shakeout and cast cleaning to screening and mixing as fresh molding sand. These systems can be used with a multitude of sand products for various castings (Didion, 2000b; Vulcan, 2005).

Substituting non-silica granular media (that is less toxic than silica) for silica sand used for molds and cores can virtually eliminate the silica exposures of all sand systems operators. Although the extent of exposure reduction from the use of substitution materials has not been quantified for sand systems operators in ferrous sand casting foundries, it has been documented in nonferrous sand casting foundries. A report from the Industrial Commission of Ohio shows that exposures dropped below the LOD for all workers when the foundry used olivine sand (ERG # OH-1460). Another aluminum foundry reported respirable dust levels of 300 to $1600 \,\mu/m^3$, but no exposure to silica when using olivine sand (Foundry Engineering Group Project – Case History H, 2000). ERG-GI (2008) contains additional information on commercially available alternatives to silica sand as granular media for foundry applications.

Additional Controls for Molders

Table IV.C-16 shows that half of the molder exposure levels available to OSHA are $50 \,\mu\text{g/m}^3$ or less. Additional controls will be required for the remainder of these workers. Minimizing molders' contact with dust released from dry sand and silica mold washes will reduce the exposures of molders. This might be accomplished by installing or upgrading LEV near molding equipment, improving housekeeping procedures to minimize the spread of sand, reducing use of compressed air and dry sweeping, and controlling dust from nearby processes (e.g., sand mixing, transport, recovery, shakeout). Alternatively, non-silica substitutes that are less toxic than silica can be used for washes and cores.

Exposures can be reduced by installing covered or enclosed systems for transporting sand through or near the molding area. NIOSH and OSHA evaluated pneumatic and enclosed systems to isolate the storage and transport of dry sand in two facilities. The four molder results from these foundries include two results of

⁷⁰ Washed lake sands contain fewer very fine particles and the grains are more rounded than angular sand types. The sharp points on angular sands break as the sand is handled and the broken points contribute additional fine silica particles to the sand (Mohawk College, 2005). Fine particles detract from molding sand quality and contribute to airborne dust. For a variety of reasons, including reduction of fines, improved mold permeability, and reduced resin use, rounded or partially rounded sands provide better casting results for bonded sand casting methods. For some applications sand grain geometry is more important than size (Mohawk College, 2005; Naro, 2002).

⁷¹ Olivine is a magnesium-iron ortho-silicate mineral, which contains little or no quartz and is commercially available as sand for foundries.

⁷² Samples were collected over 3- to 6-hour periods.

13 μ g/m³ (LOD), 20 μ g/m³, and 23 μ g/m³ (NIOSH ECTB 233-107c, 2000; OSHA SEP Inspection Report 122122534). At another facility, OSHA reported a 65- to 70-percent reduction in exposures (from 140 μ g/m³ to 50 μ g/m³ and 42 μ g/m³) after the facility made improvements to sand delivery systems and exhaust ventilation systems throughout the facility (OSHA SEP Inspection Report 100494079).

Because work activities can vary throughout the day, a combination of engineering controls and housekeeping might be required to reduce exposures below 50 $\mu g/m^3$. A foundry evaluated by OSHA showed a 60-percent reduction in exposure (from 123 $\mu g/m^3$ to 49 $\mu g/m^3$) when the facility implemented a wide variety of controls (OSHA SEP Inspection Report 300530029). The controls included installing an efficient dust collector, enclosing a sand chute, adding a water spray to a sand feed belt, adding LEV to the return sand belt and bucket elevator, and improving housekeeping.

While the contribution to exposure reduction from housekeeping alone has not been quantified in ferrous sand casting foundries, poor housekeeping practices that disturb dust (dry sweeping and using compressed air) can diminish the effects of other controls (ERG-GI, 2008). However, data suggest that good housekeeping in combination with other controls will provide substantial exposure reduction. Irwin (2003) reported on a foundry that used a combination of LEV (enclosing and ventilating the mold dumping and sand return areas) and adding a rotary media tumbler to substantially reduce worker exposure levels. In addition, the foundry changed work practices and performed aggressive housekeeping. Altogether, implementing these controls reduced the exposure levels by at least 80 percent. The precise reduction could not be determined because no silica was detected in the sample; however, ERG estimated an 8-hour TWA exposure level of less than or equal to $40~\mu g/m^3$. Similar results were obtained on multiple sampling dates.

Vacuuming of molds offers an alternative to using compressed air for cleaning. NIOSH reported on a foundry that occasionally used vacuums, in addition to compressed air, for removing loose sand from molds and flasks (NIOSH ECTB 233-113c, 2000).

Additional Controls for Coremakers

The data summarized in Table IV.C-16 show that 58 percent of coremakers' exposures are already less than 50 $\mu g/m^3$. The remainder of the coremakers (42 percent) will require additional controls. Information summarized in ERG-GI (2008) indicates that the primary cause of exposures over 50 $\mu g/m^3$ is often dust from adjacent sand processing and transport equipment or other foundry processes. Therefore, controlling dust from adjacent sources will substantially reduce the exposures of most coremakers. Installing a pneumatic transport system has been shown to reduce exposures to below 21 $\mu g/m^3$ from levels ranging from 80 $\mu g/m^3$ to 360 $\mu g/m^3$ (OSHA SEP Inspection Report 100494079). NIOSH also reported low exposures (less than 36 $\mu g/m^3$) for coremakers working in an area with a pneumatic sand transport system (NIOSH ECTB 233-107c, 2000).

Area sample results from a foundry evaluated by OSHA further demonstrate the extent to which other foundry operations can affect background silica levels in the coremaking area. This foundry identified sand systems operations, molding, and shakeout areas as the primary sources of silica in the facility. Migrating dusts settled into other areas causing elevated exposures to adjacent workers. An initial area sample collected in the coremaking area showed an exposure of 200 µg/m³. The foundry took steps to

 $^{^{73}}$ Irwin (2003) did not report sample durations. This estimate is based on the respirable dust result (0.55 μg/m³ after controls were in place) and the OSHA-calculated PEL (1.0 μg/m³) provided for the initial uncontrolled sample and derived using the general industry equation for the PEL for respirable dust containing silica. ERG reversed the calculation to find the percentage silica in the initial respirable dust sample. Assuming the percent silica would be similar in the two samples, ERG estimated that the 8-hour TWA was less than or equal to 40 μg/m³ (ERG-GI, 2008).

control the release of silica and improve the general ventilation and sand-handling systems, and clean accumulated dust in all production areas within the building. Additional samples showed exposures to coremakers dropped between 88 and 94 percent to 12 $\mu g/m^3$ and 24 $\mu g/m^3$ (OSHA SEP Inspection Report 303207518).

Additional Controls for Furnace Operators

The exposure profile indicates that more than nearly two-thirds (62 percent) of furnace operators already experience exposure levels less than 50 $\mu g/m^3$. The remaining one-third will require additional controls. Where adjacent operations release silica dust, control of these operations can reduce exposure levels of furnace operators.

Since furnace and pouring operations are often located in the same general area, OSHA has preliminarily determined that control strategies described for pouring operators (see below) also would benefit furnace operators to a notable extent. For example, in a highly automated foundry that made substantial efforts to control silica in all operations, NIOSH reported exposure readings of $27 \,\mu\text{g/m}^3$ and $29 \,\mu\text{g/m}^3$ for a worker performing tasks between the furnace and the pouring machine (NIOSH ECTB 233-107c, 2000). Although not specifically obtained for furnace operators, these values demonstrate how rigorous control of silica dust throughout a foundry can help minimize exposure levels in the area near the furnace.

Furnace operators handle sand or sand-contaminated scrap metal when they add these items to furnaces. In foundries where silica-contaminated foundry returns contribute to the exposure of furnace operators, the use of cleaner scrap and removal of sand from such returns prior to furnace charging will further reduce exposures. Metal scrap can be cleaned using rotary media mills (Didion, 2003). Facilities might need to alter work practices where furnace operators introduce silica sand as an additive to molten metal. For example, the operator might add sand at a point where existing ventilation will capture dust generated by the process. Other options include installing retractable enclosing hoods to add sand under controlled circumstances (Scholz and Hayes, 2000b).

Finally, ensuring that ventilation systems are installed and functioning properly as well as installing well-ventilated climate controlled monitoring booths (where feasible) will further reduce exposures. Use of a furnace operator control booth was associated with an exposure reading of 13 μ g/m³ (LOD), a 50-percent decrease compared the exposure result for one of two furnace operators working outside the control booth at the same facility (OSHA SEP Inspection Report 121977870). The other furnace operator that worked outside the booth had an exposure level of 13 μ g/m³ as well, making it difficult to confirm the benefit of this particular booth. The option of a booth for exposure control has proven effective in other industries; however, in foundries they are only effective for the more automated furnaces that require little hands-on tending.

Additional Controls for Pouring Operators

As indicated in Table IV.C-16, half the results for pouring operators (50 percent) are below 50 $\mu g/m^3$. Pouring operator exposures above 50 $\mu g/m^3$ are generally due to uncontrolled dust in adjacent operations. Therefore, controlling adjacent operations will reduce the exposure levels of pouring operators. Balancing (adjusting) the overall facility ventilation to prevent airflow patterns that draw dusty air from other processes into the pouring area will achieve an additional level of control.

Pouring operators who monitor automated processes or use cranes can be isolated with operator booths or cabs supplied with fresh air maintained under positive pressure. NIOSH recommended enclosing crane cabs and ventilating them with fresh outside air, as well as controlling silica dust in adjacent operations to control exposures for pouring crane operators (NIOSH HETA 92-090-2296, 1993). A mobile duct system

that provides the cab with fresh outdoor air is commercially available for bridge crane operators (Cralley and Cralley, 1989). While the benefit of this control has not been quantified for pouring operators, OSHA reported a result of less than or equal to $13 \mu g/m^3$ (below the LOD) for a furnace operator working in a control room provided with fresh air, less than half the exposure level of a furnace operator working outside the control room at the same foundry (OSHA SEP Inspection Report 121977870).

Pouring operators conducting manual processes might be isolated by creating a pouring room physically separated from other activities. OSHA obtained a result of $22 \mu g/m^3$ for a pouring operator isolated from other operations while exposures for molders exceeded $80 \mu g/m^3$ for the same facility (OSHA SEP Inspection Report 302380522). An alternative approach to isolating pouring operations might be through controlled airflow. The American Foundrymen's Society and ACGIH both describe LEV controls for several different pouring configurations (AFS, 1985; ACGIH, 2010).

Additional Controls for Shakeout Operators

Table IV.C-16 shows that 40 percent of the silica results for shakeout operators are already $50 \,\mu\text{g/m}^3$ or less, but the remaining 60 percent of shakeout operators (those with current exposure levels above $50 \,\mu\text{g/m}^3$) will require additional controls. The selection and relative effectiveness of controls is dependent on the size of the castings. Those facilities mainly working with small or medium-sized castings can effectively control silica levels in the shakeout area by enclosing the process and improving ventilation in a coordinated control effort to reduce exposures.

Several cases demonstrate the value of enclosed and ventilated shakeout equipment, particularly when combined with other dust control measures. An enclosed dust collection system (not further described) was associated with full-shift PBZ readings for shakeout operators of less than or equal to $13 \mu g/m^3$ (2 readings), $30 \mu g/m^3$, and $41 \mu g/m^3$. These readings were obtained at a foundry that had made a systematic effort to identify and abate all sources of dust emission with the establishment of a "Sand Leak Team" consisting of an engineer, maintenance and production supervisors, and workers (ERG # MI-1483). Another foundry enclosed the shakeout conveyer and exhausted the enclosure at a rate of 8,000 cfm (for a 10-foot segment, or a rate of 800 cfm/linear foot) as part of a comprehensive effort to reduce exposure throughout the facility. With the enclosure in place, results of $13 \mu g/m^3$ and $37 \mu g/m^3$ were obtained for workers in the shakeout area (OSHA SEP Inspection Report 303207518).

Alternatives to vibrating shakeout equipment are available to small and medium-sized casting applications. Such systems include rotary sand/casting separators, rotary media drums, or shotblast machines (Didion, 2003; O'Brien, 2000; South Cast Equipment, 2000). When connected to an appropriate exhaust ventilation system, this equipment (which entirely encloses the process of separating sand from castings) can separate the shakeout operator from the source of exposure. For example, at one of the same foundries mentioned earlier in the discussion of molders, a combination of enclosed and ventilated sand handling and mold dumping areas and a rotary media tumbler substantially reduced shakeout operator exposure levels at a foundry evaluated by OSHA (Irwin, 2003). At this facility, shakeout operators dumped molds onto a shaker conveyer, operated a rotary media drum that removed additional sand from the casting, and then hung the castings on an overhead conveyer. Initially, this process was associated with an operator exposure level that was 380 percent of the calculated PEL (measured as respirable silicacontaining dust). The employer then "designed and built an enclosure that ran the length of the shakeout conveyer from the mold dump position to the [media tumbler]" and also increased exhaust ventilation to the area. Once these changes were in place and the facility had been vacuumed and power washed,

shakeout operator silica exposure levels decreased to levels in the estimated range of $20 \,\mu\text{g/m}^3$ to $40 \,\mu\text{g/m}^3$ (Irwin, 2003).

For larger castings, enclosing the process is preferred to enclosing the operator because emissions from shakeout operations have been shown to contribute to excessive exposures in adjacent operations. However, enclosing the operator can be effective when the entire process is isolated within the facility. NIOSH evaluated a facility that enclosed an entire shakeout and finishing line in an isolation room. The crane operators worked in a positive pressure cab supplied with fresh air (NIOSH ECTB 233-107c, 2000). Exposures for operators on two different days ranged from the LOD (less than or equal to 12 μ g/m³) to 53 μ g/m³. Furthermore, a Mine Safety and Health Administration (MSHA) evaluation of heavy equipment cabs reported a 90- to 95-percent reduction in respirable dust (inside compared with outside the cab) for well-sealed, filtered cabs with air conditioning. This reduction was associated with an exposure level of 25 μ g/m³ (Haney, 2000). OSHA preliminarily concludes that when large-casting shakeout operations can be conducted remotely, an operator's booth using similar technology would offer the operator a comparable level of protection.

For very large castings that must be de-molded manually, ventilation can still provide some exposure reduction. The use of portable enclosures and portable ventilation systems, as well as ventilated tools, can help reduce exposures (ERG-GI, 2008). OSHA estimates that such controls can reduce exposures below $100 \, \mu \text{g/m}^3$ and will reduce exposures of adjacent operations where shakeout operations are the major source of exposures. Based on information reviewed in ERG-GI (2008), OSHA believes that no more than 5 percent of shakeout operators are involved in producing castings of this size.

Alternatively, silica exposures can be eliminated by substituting non-silica granular molding media for silica sand and using alternative refractory mold coatings (Schleg and Kanicki, 2000; Carbo, 2000). These alternatives are readily available from commercial sources and are associated with silica exposures below the LOD (ERG-GI, 2008; ERG # OH-1460).

Additional Controls for Knockout Operators

As the Table IV.C-16 exposure profile for knockout operators indicates, nearly half (46 percent) of the available results for this job category are already 50 $\mu g/m^3$ or less. Major control options for reducing exposures for the remaining 54 percent of these workers include reducing the amount of sand on the castings that enter the knockout area and installing or improving LEV on the tools and workstation where operators remove sand and excess metal from castings.

Foundries have several options for reducing the amount of residual sand adhered to castings that reach knockout operator workstations. Rotary media drums that offer more vigorous or longer shakeout cycles can loosen additional sand. Modern high-frequency vibrating units offer another option. These machines can be used with exhaust ventilation and/or sand reclamation equipment to control dust (Didion, 2000a; ERG-GI, 2008). NIOSH visited a foundry where, on two different product lines, castings were placed through a high-frequency shaking process after the primary shakeout was completed. On one product line, the high-frequency shaker was used after several other cleaning steps; on the second line, castings entered the high-frequency shaker prior to most other cleaning and knockout operations (NIOSH ECTB 233-107c, 2000). These two lines demonstrate that foundries have considerable leeway in assigning the order in which various cleaning and processing steps occur. The sooner that all but the most tightly adhered sand can be removed, the less likely the loose sand will affect the silica exposures of downstream workers.

 $^{^{74}}$ Silica was not sampled, so this estimate is based on the initial 2,930 $\mu g/m^3$ (2.93 $mg/m^3)$ and post-abatement 550 $\mu g/m^3$ (0.55 $mg/m^3)$ respirable dust results (Irwin, 2003).

Some facilities use a combination of controls to reduce exposure levels for workers in this job category. For example, a combination of controls reduced knockout operator exposures to levels of $50 \,\mu\text{g/m}^3$ or less at a foundry visited by the Michigan Department of Public Health's Bureau of Environmental and Occupational Health. The first set of sample results, obtained in 1989, included two full-shift PBZ readings, $95 \,\mu\text{g/m}^3$ and $101 \,\mu\text{g/m}^3$, for "knock off" operators. Between 1989 and 1994, the foundry installed new controls in the knockout area and added some new shakeout equipment. Two samples collected for "knock off" operators in 1994 resulted in full-shift PBZ concentrations of $30 \,\mu\text{g/m}^3$ and $50 \,\mu\text{g/m}^3$. The improvements to the knockout line included the installation of a 50,000-cfm canopy hood exhaust system, a 10,000-cfm make-up air system, baffle plates and side shields, and a new vibrator to the monorail conveyor carrying castings. The vibrating monorail conveyor shook off most excess sand in a ventilated tunnel while transporting the castings to the knockout area, where workers eventually removed residual scrap metal from the castings (ERG # MI-1485).

Saws and grinders used to remove scrap metal can be fitted with LEV or located in partially enclosed, ventilated booths. Hand-held tools used on larger castings also can be fitted with tool-mounted LEV or used in a ventilated booth. These tools are often associated with finishing operations and are discussed under that job category.

As has been discussed for other job categories in ferrous sand casting foundries, substitution of silica-containing mold and core materials with non-silica alternatives that are less toxic than silica would virtually eliminate the silica exposure of knockout operators. Alternative material, including ceramic media, olivine, and zircon sand, are readily available from commercial sources (Carbo, 2000; Foundry Products Supplier A, 2000).

Additional Controls for Abrasive Blasting Operators

Approximately 70 percent of the silica exposure results summarized in Table IV.C-16 for abrasive blasting operators exceed 50 $\mu g/m^3$. To the extent that abrasive blasting operators experience secondary exposure from adjacent operations, the exposure levels of these workers will be reduced when the exposures of adjacent workers in other job categories are reduced (e.g., shakeout and knockout processes).

For abrasive blasting operator silica exposures that continue to be elevated once adjacent sources of respirable dust are controlled, the primary control methods involve repairing or enclosing the machines to seal leaks, and augmenting ventilation systems to achieve 500 feet per minute (fpm) air flow through all openings as recommended for blasting cabinets by ACGIH or to achieve the air flow recommended by the machines' manufacturer (ACGIH, 2010). Blasting machine manufacturers offer programs to rebuild and retrofit these machines and also provide long-term service contracts. New abrasive blasting machines are readily available from a variety of commercial sources.

A series of air sampling results demonstrates the value of identifying, enclosing, and ventilating *all* substantial sources of exposure associated with abrasive blasting operations. OSHA visited a gray and ductile iron foundry where the abrasive blasting operator exposures were due to a combination of dust sources. The foundry made incremental modifications and eventually reduced operator silica results by 75 to 85 percent, to levels less than $50 \, \mu \text{g/m}^3$. Initially, in 1994, two workers sorted castings from a conveyer arriving from the shakeout area and loaded and unloaded an automated shot blasting machine (presumably a batch process). The ventilation was poor ("0 CFM") in the sorting area, and results of 178 $\mu \text{g/m}^3$ and $184 \, \mu \text{g/m}^3$ were obtained for these two operators (OSHA SEP Inspection Report 101548626). The facility replaced the shot blasting machine and associated ventilation, as well as covered and ventilated a section of the conveyer coming from the shakeout. During a second evaluation it was evident that these changes had not reduced the silica exposure levels (195 $\mu \text{g/m}^3$ and 246 $\mu \text{g/m}^3$).

Several months later the workers continued to perform similar work, but were now placing castings sorted from the conveyer into skip buckets used to load the blasting machine. During this third evaluation, results of $47~\mu g/m^3$ and $107~\mu g/m^3$ were obtained for the two abrasive blasting operators, whose primary source of exposure was now reportedly dust from the shakeout conveyer and skip buckets. The foundry next added an enclosure over the skip buckets and further covered a sand conveyer next to the shot blasting machine. The shakeout conveyer, however, was noted to be a continuing source of exposure during a fourth evaluation, at which time results of $72~\mu g/m^3$ and $80~\mu g/m^3$ were reported for the abrasive blasting operators. Finally, 21 months after the initial evaluation, the facility added an enclosure and LEV to the exit from the shakeout, and also added LEV to the skip bucket enclosure. These controls, combined with previous modifications (new blasting machine with LEV, enclosed and exhausted sand and shakeout conveyers) were associated with results of $34~\mu g/m^3$ and $47~\mu g/m^3$ for the abrasive blasting operators who continued to sort castings (25 percent of the shift) and operate the shot blasting machine (OSHA SEP Inspection Report 101548626).

Another option for reducing sand on castings before they reach the abrasive blasting operations is to use fully enclosed pre-cleaning equipment prior to abrasive blasting. OSHA visited a facility that manually blasted castings with aluminum oxide in a ventilated booth and obtained an initial exposure of $436 \ \mu g/m^3$. After changing the process to include pre-cleaning the castings in an automated shot blasting machine before finishing the blasting by hand, the exposure declined to $51 \ \mu g/m^3$, an $88 \ \text{percent}$ reduction (OSHA SEP Inspection Report 300409166). At this facility, OSHA also obtained a result of $33 \ \mu g/m^3$ for an operator who loaded and unloaded an automated shot blasting machine, which was fully enclosed and equipped with properly functioning LEV.

Work practices can affect the silica exposure levels of abrasive blasting operators. Sealed and ventilated abrasive blasting cabinets must remain closed for a period of time after blasting ceases (long enough for the ventilation system to cycle several complete air changes inside the cabinet). This period allows the ventilation system to remove residual airborne dust before the operator opens the door, releasing any contaminant remaining inside. In addition, the use of compressed air for cleaning dusty surfaces should be avoided. Two of the highest results in the exposure profile $(1,002 \,\mu\text{g/m}^3)$ and $238 \,\mu\text{g/m}^3$) are associated with workers who used compressed air to blow dust from surfaces around steel shot blasting machines (NIOSH HETA 92-044-2265, 1992).

Where very large castings (too large to fit into an abrasive blasting machine) must be blasted with abrasives, foundries should make every attempt to use a ventilated blasting booth designed for this purpose. Although operator exposures might remain elevated, use of an enclosed booth will prevent migration of silica dust to other areas of the facility. Abrasive blasting under these conditions must comply with 29 CFR 1910.94 – Ventilation, and the workers performing this abrasive blasting must be equipped with suitable respirators in accordance with 29 CFR 1910.94 and 29 CFR 1910.134 – Respiratory Protection.

Wet abrasive blasting is an additional control option for abrasive blasting operators working on very large castings (whether in the open or in a booth). Wet abrasive blasting is used on other silica-containing materials, such as concrete, and has the potential to limit silica exposures from this source if adequate water is used during the blasting (NIOSH ECTB 247-11c, 1999). For example, one manufacturer of a water induction nozzle for wet abrasive blasting recommends that water be applied at a rate of 0.75 to 6 liters per minute to control dust (Boride, 2003). The use of water on ferrous castings is rare, but not unprecedented. In 1997 NIOSH visited a gray and ductile iron foundry where finishing operators used water to wet castings while performing grinding (NIOSH HETA 97-0004-2642, 1997).

As noted for other job categories, by replacing silica sand with alternative granular media that is less toxic than silica for mold and core materials, foundries can eliminate these primary sources of silica exposure.

Additional Controls for Cleaning/Finishing Operators

Table IV.C-16 shows that slightly more than one-third (37 percent) of the silica exposure results for cleaning/finishing operators are $50 \,\mu\text{g/m}^3$ or less. The remaining 63 percent of workers in this job category will require additional controls.

Exposure levels of cleaning/finishing operators are dependent on a number of factors, including size and shape of casting, degree of burnt-in sand, extent of defects requiring removal, and whether compressed air is used for cleaning. Therefore, options to reduce exposure focus on controlling these factors. NIOSH has recommended the following general approaches to reducing dust levels in casting cleaning operations: reduce casting defects, pre-clean castings as thoroughly as possible prior to chipping/grinding, apply LEV to these operations, and eliminate the use of compressed air for cleaning (NIOSH-85-116/86-116-1730, 1986; NIOSH HETA 97-0004-2642, 1997). Other control options include the use of wet grinding/finishing methods and process automation (NIOSH ECTB 233-107c, 2000; NIOSH HETA 97-0004-2642, 1997)

Reducing Casting Defects and Pre-Cleaning Castings

ERG-GI (2008) discussed options for reducing casting defects, which can trap mold and core materials that produce silica dust when cleaning/finishing operators chip and grind the defect. Although estimates of the impact on exposure levels of reducing casting defects are not available, OSHA notes that if workers require less time to remove smaller amounts of silica embedded in defects, their silica exposure would potentially decrease proportionally. When residual mold and core material are present, most castings (small and medium sized) can be pre-cleaned using enclosed, automated, and ventilated processes, such as vibrating abrasive media, rotary media drums, or enclosed shot blasting (Huston, 1981; Pangborn, 2000; South Cast Equipment, 2000). Pre-cleaning reduces the amount of time and effort required to clean and finish castings (Didion, 2000b; Huston, 1981). OSHA recorded exposure levels of 27 μ g/m³, 36 μ g/m³, and 40 μ g/m³ for cleaning/finishing operators working with hand-held and stationary grinding equipment on castings that were pre-cleaned using a shot blast machine (OSHA SEP Inspection Report 123187965). Compared with the exposure levels measured before the introduction of pre-cleaning (93 μ g/m³ and 116 μ g/m³), these results represent an exposure reduction of 57 to 77 percent.

Local Exhaust Ventilation

To reduce exposures while using manually operated power tools, NIOSH recommends the following options: 1) vacuum suction system on the tool itself (e.g., a high-velocity low-volume [HVLV] LEV system); 2) mobile extraction hood; 3) stationary side-draft or downdraft LEV benches; and/or 4) retractable ventilation booth for castings that do not fit on benches (NIOSH-85-116/86-116-1730, 1986). However, there are limitations with these systems. Option 1 might interfere with tool operation, and clogging of inlet ports has been identified as a problem; and option 3 does not provide direct capture during cleaning of cavities. Still, LEV can provide substantial exposure reduction. NIOSH also notes that downdraft and/or side draft LEV hoods are preferable to overhead exhaust systems, because overhead exhaust systems can draw silica dust from the point of generation through the worker's breathing zone (NIOSH EPHB 233-133c, 2002).

Gressel (1997) reported on a study showing a 59 percent (cone grinder) to 77 percent (cup grinder) reduction of respirable dust exposures after workers switched to using a downdraft booth fitted with a turntable to allow manipulation of castings. The system was designed to ACGIH recommendations (reproduced in ACGIH [2010]) and included a new ventilation system that had an exhaust volume of 2,900 cfm. NIOSH recommended the use of such workstations as a means of reducing exposure.

OSHA initially obtained results of $56 \,\mu\text{g/m}^3$ to $81 \,\mu\text{g/m}^3$ for cleaning/finishing operators at a facility using stand grinders and hand-held grinders (OSHA SEP Inspection Report 122040488). The facility installed three dust control booths for the stand grinders and achieved a reduction in the mean exposure of 43 percent (exposures ranging from $23 \,\mu\text{g/m}^3$ to $60 \,\mu\text{g/m}^3$). As a second control measure, the facility later installed a downdraft collection bench for operators using hand-held equipment. Compared with the initial exposure levels, cleaning/finishing operators using the downdraft booths experienced a mean exposure reduction of 69 percent (results of 20 and $24 \,\mu\text{g/m}^3$). Although HVLV hoods for controlling dust emission from portable tools have been available for many years, the foundry industry has not widely accepted them. Historically, HVLV systems involved the use of shrouds fitted to tools, which sometimes obscured the work from the worker's view and proved cumbersome to move about complex casting shapes (NIOSH-81-114, 1981). Ventilated tools continue to evolve and are becoming more widely available and better accepted in other industries (see the construction industry portion of this technological feasibility analysis). OSHA seeks additional information on the extent to which these tools are now used in the foundry industry.

LEV systems for stationary tools, such as bench grinders, are readily available and have been shown to reduce exposures in foundries. The ACGIH recommends specific LEV designs for seven different styles of grinding equipment (ACGIH, 2010). LEV booths present another option for controlling dust from both stationary equipment and hand tools. As noted under baseline conditions for this job category, exposure results of 30 μ g/m³ were obtained for two operators using separate booths, each with a grinding bench serviced by LEV (ERG # OH-1488). At another facility, OSHA obtained three results between 23 μ g/m³ and 60 μ g/m³, and a 43-percent reduction in mean silica exposure when workers used grinding benches equipped with LEV hoods (OSHA SEP Inspection Report 122040488).

A case study completed at a foundry in New York showed that a ventilation system, which had been demonstrated to be effective in controlling emissions from another foundry process (air carbon-arc gouging), could be used to control silica exposures related to grinding with portable tools. Grinding benches were equipped with a "tabletop booth" consisting of a wrap-around design, which provided supply-air on both sides of the worker's body as well as exhaust ports at the rear of the bench. The foundry reported that tabletop booths operated at exhaust rates as low as 3,000 cfm with 1,500-cfm supply-air have "consistently controlled silica exposures during grinding to below OSHA's Permissible Exposure Level"(Hughes and Schultz, 1984). OSHA estimates that this type of LEV could provide some exposure reduction, but the effectiveness of this approach depends on a number of variables, including the size and shape of the castings and the amount of grinding necessary.

Eliminate Cleaning With Compressed Air

NIOSH consistently cites the elimination of compressed air for cleaning when recommending methods to reduce silica exposures (NIOSH HETA 92-0089-2368, 1993; NIOSH HETA 97-0004-2642, 1997). ERG-GI (2008) describes an informal review of 26 results for cleaning/finishing operators working at five foundries where NIOSH or OSHA had observed use of compressed air. The review showed that compressed air used by cleaning/finishing operators to blow sand off castings and equipment was associated with elevated exposure results, including a median of 487 for those 26 μ g/m³ results. Furthermore, all 26 results were 230 μ g/m³ and higher. (These results are elevated compared with a median of 196 for all cleaning/finishing operators shown in the Table IV.C-16 exposure profile.) The majority of these results are associated with cleaning/finishing operators using pneumatic hand-held

⁷⁵ The downdraft bench dust collection system operated at 4,800 cfm, using 51 cotton sateen filter bags (255 square feet of filter media) that are 99 percent efficient for particles 1 micron or larger (OSHA SEP Inspection Report 122040488).

grinding, sanding, and chipping tools. As an alternative to cleaning with compressed air, preferable practices include wet cleaning methods or vacuuming using appropriately filtered vacuums.

As workers use compressed air to clean, accumulated dust in the surrounding work area becomes airborne and can contribute to worker exposure. OSHA visited a foundry with background silica levels of 63 $\mu g/m^3$. This background silica concentration would add to the exposures of those workers performing operations that generate silica dust. The foundry made no physical changes in the casting cleaning department, but walls and dust accumulation points in the area were vacuumed and washed. As a result, no background silica dust was detected, and respirable dust levels were reduced 60 to 80 percent in the cleaning/finishing area. This demonstrates the extent to which accumulated dust from poor housekeeping practices and dust spread from other foundry departments can influence cleaning/finishing operator results.

Wet Methods

Wet methods might be the best option for cleaning/finishing operators working on some of the largest castings, which cannot be pre-cleaned using automated methods and which are too large for conventional booths and downdraft tables. Although wet methods are not widely used in ferrous sand casting foundries, this control has been documented in this type of facility. A foundry evaluated by NIOSH in 1996 used wet methods to help reduce dust during chipping and grinding of large grey iron castings ranging in mass from 1 to 28 tons (NIOSH HETA 97-0004-2642, 1997). Although NIOSH noted that a worker frequently used water to wet castings, compressed air was also used to remove sand from internal cavities. As a result, an exposure of 380 μ g/m³ was recorded for the cleaning/finishing operator (NIOSH HETA 97-0004-2642, 1997). OSHA believes that this exposure would have been substantially lower if a high-efficiency particulate air (HEPA)-filtered vacuum system had been used instead of compressed air.

Wet methods are successfully used in the stone cutting industry. Kitchen countertop fabricators experienced up to an 88-percent decrease in silica exposures when finishing operators switched to waterfed angle and edge grinders (Simcox et al., 1999).

NIOSH (NIOSH EPHB 282-11a, 2003) investigated a water-spray dust control used by construction workers breaking concrete with jackhammers. Compared with uncontrolled conditions, the use of water spray reduced exposures between 72 and 90 percent (NIOSH EPHB 282-11a, 2003). Williams and Sam (1999) also reported that a water spray nozzle mounted on a hand-held pneumatic chipper decreased respirable dust exposures approximately 70 percent, even in the enclosed environment of concrete mixing trucks.

Beamer et al. (2005) conducted a study of dust suppression using misting nozzles to reduce silica while brick cutting using a stationary saw. Misting at three different flow rates resulted in respirable mass fractions of dust 63 to 79 percent lower than those when free-flowing water was tested. NIOSH completed a similar study evaluating water spray devices to suppress dust created while jack hammering. The study reported a 77-percent reduction in exposures (NIOSH EPHB 282-11c-2, 2004). Foundries can apply these methods to achieve similar exposure reductions (ERG-GI, 2008).

In summary, a number of silica control options are available to cleaning/finishing operators using handheld and bench tools to remove embedded mold and core materials. As discussed for other job categories, foundries that are able to switch to alternate granular media that is less toxic than silica sand can eliminate this source of exposure for cleaning/finishing operators.

⁷⁶ This area sample result (as opposed to a breathing zone result) is not included in the industry profile.

Additional Controls for Material Handlers

Table IV.C-16 shows that the exposure levels of approximately half (47 percent) of material handlers are already 50 μg/m³ or less. The majority of the remaining operators will likely experience results at this level and lower when effective controls are implemented to reduce silica dust generated from other operations (i.e., sand systems, molding, shakeout, knockout, cleaning/finishing). Where material handlers generate dust through their own activities, additional controls will be required. For example, material handlers can minimize the distance that sand falls and the speed with which they add sand to hoppers, both of which will limit the amount of dust released into the air during these activities (ERG-GI, 2008).

Enclosed operator cabs operating under positive pressure equipped with air filtration and air conditioning offer another option for reducing the exposure of material handlers in facilities that have not implemented controls in high dust generating operations. An MSHA evaluation of heavy equipment cabs reported a 90-to 95-percent reduction in respirable dust (inside compared with outside the cab) for well-sealed, filtered cabs with air conditioning. This reduction was associated with a respirable quartz exposure level of 25 μ g/m³ (Haney, 2000). Exhaust ventilation on the material transfer points served by material handlers offers another control option. Improving or adding enclosures and exhaust ventilation on the bins and hoppers into which material handlers place sand would likely offer the same benefit (68- to 83-percent exposure reduction) achieved by foundries that have made such changes to sand transfer equipment (OSHA SEP Inspection Reports 116154311 and 122040488).

Finally, as noted for other job categories, essentially all silica exposures of material handlers can be eliminated by foundries that are able to substitute non-silica materials that are less toxic than silica as the granular media used in molds and cores.

<u>Additional Controls for Maintenance Operators</u>

The primary silica exposure for maintenance operators occurs during routine patching or repair and periodic replacement of refractory materials. The additional controls described in the following paragraphs address this source of exposure. Additional sources of exposure, from adjacent processes and equipment maintained by the maintenance operator, will be controlled when the exposure levels of workers associated with those processes and equipment are controlled.

The exposure profile suggests that 42 percent of all foundry maintenance operators are currently exposed to silica levels of $50 \,\mu\text{g/m}^3$ or less. The remaining 58 percent will require additional controls, such as use of low-silica-content refractory materials, use of preformed (pre-cast) materials, improved work practices, LEV, or wet methods. In describing these controls, OSHA has drawn from the experiences of contract refractory service providers and other industries, whose workers perform work similar to that of the foundry maintenance operators who patch,

maintain, and occasionally replace refractory materials. OSHA anticipates that these controls will be equally effective for controlling silica exposure during refractory furnace maintenance.⁷⁷

Reduced-Silica Refractory Materials

Refractory materials with low silica content (0 to 5-percent silica compared with 90-percent silica) are readily available from commercial sources, although each low-silica refractory material is not necessarily compatible with every application for which refractory materials are used (Foundry Equipment Manufacturer J, 2000). OSHA visited a foundry that reduced the silica exposure of workers who relined furnaces by 90 percent after implementing a comprehensive exposure control program that included switching to a low-silica gunning refractory applied to furnace walls (for exposure levels reported at this facility, see below in the discussion of combined control methods) (ERG-GI, 2008; OSHA SEP Inspection Report 122209679). Since the replacement refractory material was stronger and lasted longer, refractory workers also were able to use less material during cupola repair operations.

When switching from high-silica- to low-silica-content refractories, employers will need to consider the possible hazards of substitutes. For example, under high temperatures and oxidative conditions (as in a furnace), the chromite compounds contained in some refractories can be converted to hazardous chromium VI (ANH, 2004; Brenneman, 2010). Because both installation and removal activities can generate airborne dust, employers must evaluate the need to protect workers from other contaminants found in refractories before *and* after service life.

Automated and Remotely Controlled Processes

Automated refractory demolition and installation methods can reduce the number of workers exposed, the duration of exposure, and possibly the exposure levels of workers who perform large-scale refractory removal jobs. Examples include "pusher" systems installed in coreless induction furnaces to push out refractory linings (Foundry Products Supplier B, 2000a), remote chipping equipment attached to a hydraulically controlled articulated arm commonly available on some types of construction equipment (Refractory Services Provider A, 2003b), and automated systems for installing dry rammable refractory material in coreless induction furnaces (Gradmatic, 1999). For additional discussion of these control options, see Section IV.C.19 – Refractory Repair, which covers the maintenance service contractors who repair and replacement of refractory materials. OSHA believes that, in general, these methods are more useful and more available to workers involved in large-scale refractory replacement than to maintenance operators who perform periodic patching and repair. However, this control method is included here because some foundry workers occasionally participate in large-scale removal activities.⁷⁸

Although not a control measure, the reliance on professional maintenance contracts has decreased the amount of time foundry employees spend replacing refractory materials (McNeil, 2000; Refractory Products Supplier A, 2000). An industry source confirmed that refractory relining services are used by an estimated 75 percent of all companies, across all industries that use furnaces requiring relining (including foundries) and this number has been constant for the past decade (Refractory Products Supplier A, 2010). These companies offer service contracts to reline and maintain refractories on a schedule, using trained personnel. Professional refractory contractors are better equipped for safe handling of refractory materials (e.g., with remotely controlled equipment, portable exhaust ventilation systems) than foundry workers who might perform this work only occasionally. More consistent installation quality also reduces the frequency of relining. Additionally, some refractory management companies also offer a service to reline furnaces off site (McNeil, 2000). The exposures and additional controls for professional refractory maintenance contractors are addressed under Section IV.C.19 – Refractory Repair.

⁷⁸ Some furnace linings are replaced monthly, but most are replaced yearly or even every several years.

Precast Refractory Materials

Relining of induction and other furnace types also might be accomplished using precast refractory materials that are set in place as units, with minimal risk of exposure. Precast refractory materials can look like typical construction bricks, or they can have more sophisticated geometries that facilitate installation. For example, curved shapes can be cast that sit flush against the furnace wall. The custom-made precast materials are sealed with refractory grout, mixed from a powder (Gradmatic, 2000; Refractory Products Supplier A, 2000). When appropriate for a particular application, preformed refractory shapes can reduce installation labor, improve performance, and provide a longer service life compared with some brick and poured materials. When repairs are required, standard shapes mean that replacement parts can be kept on hand and that repairs can be isolated to the worn section of the lining (eliminating the need for complete tear-out) (TFL, Inc., 2009). Because of these and other advantages, companies are more frequently using precast shapes instead of powdered products (monolithics) for certain applications (Gradmatic, 2000), and the growth of precast refractory shapes in the United States is expected to exceed monolothics in 2011 (Business Wire, 2008).

Work Practices

Work practices, such as limiting the number and location of operators working in a furnace at one time, can reduce refractory worker exposures during removal activities. Sweeney and Gilgrist (1998) reported a higher silica exposure level (170 μ g/m³) for a refractory worker operating in a lower position than a second refractory worker (78 μ g/m³) within a 1,100-pound holding furnace for molten aluminum. The authors reported 8-hour TWAs for both exposures, assuming zero exposure for approximately 1 hour of the 8-hour shift. The worker who experienced higher exposure levels reportedly bent over to grab and toss (to discard) the pieces of refractory material debris while the other worker operated the jackhammer. This put the lower worker's breathing zone closer to the jackhammer's point of operation and dust generation than the breathing zone of the jackhammer operator. However, both workers were overexposed to the silica-containing respirable dust (Sweeney and Gilgrist, 1998).

Where faulty equipment contributes to awkward work practices, a preventive maintenance program can help reduce worker silica exposures. Workers experienced an exposure reduction of 92 percent when a foundry initiated several control measures, including a preventive maintenance program to ensure proper function of air guns and related equipment used to spray refractory furnace lining materials (OSHA SEP Inspection Report 122209679) (for exposure levels reported at this facility, see the section below discussing combined control methods). In a second foundry, a worker's silica exposure level decreased after a foundry replaced the missing tool restraint on a pneumatic chipper used to remove the refractory lining from a large ladle. The tool restraint eliminated the need for this worker to lean into the ladle (where dust was generated) to hold the chipping blade in place (Burmeister, 2001). This improvement to the tool, in conjunction with other controls, reduced exposure levels of the worker by 70 percent.

Ventilation (Local Exhaust Ventilation)

Several options are available to control dust generated when refractory workers must chip or apply refractory linings from a position inside the furnace. In addition to using low-silica materials, appropriate controls include temporary general dilution ventilation installed in the furnace, LEV on the chipping tool, and wet methods.

A company that provides refractory overhaul services developed a method for installing temporary LEV in a gas-fired furnace. This method is used for complete lining removals, but also is applicable to smaller patching jobs. The method, associated with silica exposures between 50 μ g/m³ and 100 μ g/m³, involves company-built exhaust fans fitted with air filters (three filters of increasing efficiency in series). Plastic

sheeting is used as necessary to ensure that fresh air enters the furnace only from the most advantageous point, causing clean air to flow past the worker's breathing zone (Refractory Services Provider A, 2003a). Fan/filter boxes are set into the opposite and lower end of the furnace to exhaust dusty air from near the chipping point (ERG-GI, 2008). The position of sheeting and boxes might need to be moved in order to continue providing optimal air flow as the work progresses to other sections of the furnace. Although the fan/filter boxes are specially built for this purpose, they are made of materials readily available at hardware stores (Refractory Services Provider A, 2003b).

LEV also is a dust control option for refractory workers who empty bags or mix refractory powders. For smaller jobs, workers who dump bags of silica-containing materials can empty the bags into a movable hopper (or other receptacle), then use a flexible sleeve to guide material from the hopper to the distribution point (e.g., a furnace bottom). A portable exhaust trunk (preferably with a semicircular slot or flanged hood) positioned near the bag dumping hopper can capture a portion of the dust released during that activity. Because additional silica exposure can occur when workers compress empty bags, this task also should be located near a portable exhaust trunk. Bag dumping for large jobs can sometimes be eliminated by obtaining powdered materials in bulk bags (e.g., 1-ton sack) filled by the supplier with the predetermined amount of product required for the job. As a standard feature, bulk bags come fitted with a sleeve through which material is dispensed. Bulk bags and sleeves are used for installing high-silica rammable refractory powder in induction furnaces (Foundry Equipment Manufacturer J, 2000; Gradmatic, 1999). Maintaining the bottom of the sleeve, which releases material, at a level just below the surface of deposited material can keep dust emissions to a minimum.

Workers who mix high-silica refractory materials also would benefit from the use of a portable exhaust hood.

Ventilated Chipping Tools

The benefits of tool-mounted systems for controlling silica have been demonstrated in other industries, including the construction and ready-mix concrete industries. The chipping of refractory materials is similar to chipping concrete, another silica-containing material. NIOSH tested two tool-mounted LEV shrouds for hand-held pneumatic chipping equipment (impact drills), one custom built and the other a commercially available model. Comparing multiple short-term samples, NIOSH found that the shrouds reduced respirable dust by 48 to 60 percent (NIOSH EPHB 282-11a, 2003).

In a separate evaluation, NIOSH showed that this type of LEV system controls dust equally well for larger chipping equipment. NIOSH collected short-term samples while workers used 25- or 30-pound jackhammers to chip concrete from inside concrete mixer truck drums (comparable to a foundry furnace due to the quantity of hardened concrete accumulated over many months and the enclosed working conditions in the drum). During 90- to 120-minute periods of active chipping, mean silica levels decreased 69 percent (from 970 $\mu g/m^3$ to 300 $\mu g/m^3$) when the workers used a tool-mounted LEV shroud in these enclosed spaces (NIOSH EPHB 247-19, 2001). NIOSH also evaluated a combination of ventilation controls as part of the same study. The tool-mounted LEV shroud plus general exhaust ventilation provided an additional exposure reduction compared with uncontrolled conditions, resulting in a 78 percent decrease in mean silica readings and a 54 percent decrease in respirable dust levels (the difference was due to a lower percentage of silica in the respirable dust sample associated with the combined control). While tool-mounted LEV shrouds on chipping equipment reduces worker exposures, their use is more complicated in very tight spaces (such as some furnaces), where maneuvering the additional air hose can be awkward (Refractory Services Provider A, 2003a).

Wet Methods

Wet methods can be successfully used to control silica exposures in a number of operations, including chipping, sawing, spraying, and handling of dusty refractory materials.

Studies have quantified the benefit of using wet methods to control respirable dust generated during chipping with hand-held equipment. NIOSH (NIOSH EPHB 282-11a, 2003) investigated a water spray dust control used by construction workers breaking concrete with 60- and 90-pound jackhammers. A spray nozzle was fitted to the body of the chipping tool, and a fine mist was directed at the breaking point. Using both a direct reading instrument and a high-flow cyclone and filter media, NIOSH collected 10-minute readings with and without the spray activated, and found respirable dust concentrations were between 72 percent and 90 percent lower when the water spray was used (NIOSH EPHB 282-11a, 2003). Williams and Sam (1999) reported that a water spray nozzle mounted on a hand-held pneumatic chipper decreased respirable dust approximately 70 percent in the worker's breathing zone. Tool-mounted water spray devices can be assembled using materials obtained from a hardware store and include a garden spray nozzle, tubing, clamps, and a control valve (Hoffer, 2007; NIOSH-2008-127, 2008; NJDHHS, no date; Williams and Sam, 1999). NIOSH completed another study evaluating water spray devices to suppress dust created while jack hammering. The study reported a 77-percent reduction in exposures (NIOSH EPHB 282-11c-2, 2004).

Two more sources also show the effect that water-misting devices have on dust control. Beamer et al. (2005) conducted a study of dust suppression using misting nozzles to reduce silica while brick cutting using a stationary saw. The effectiveness of misting at three different flow rates compared with free-flowing water was tested. The respirable mass fractions of dust were reduced by 63 percent with the mist on low (4.8 gallons per hour total flow), 67 percent on medium (8.6 gallons per hour total flow), and 79 percent on high (17.3 gallons per hour total flow). Water-fed saws are readily available and effectively control dust during sawing of concrete, stone, and bricks. Use of a bench-top water-fed masonry saw was associated with a less-than-full-shift (340 minutes) result of 23 μ g/m³ for a worker cutting refractory brick (OSHA SEP Inspection Report 113451538).

Water spray also is useful for suppressing dust during cleanup. After chipping, Refractory Services Provider A (2003b) uses a garden mister to wet refractory debris in the bottom of the furnace. This step helps control dust as the waste is removed from the furnace. The same employer also tested high-pressure water blasting as a refractory removal method; the process controlled dust, although workers found it difficult to manage the amount of water released in the process (Refractory Services Provider A, 2003b). This method could be effective in cases where water can be captured efficiently.

Workers must use caution when introducing water into a furnace. Some refractory materials crumble and become muddy or slippery when wet with excessive amounts of water (Cheng et al., 1992; Refractory Services Provider A, 2003a). Additionally, wetting portions of the furnace lining that will not be removed (when making smaller repairs) requires an extra step to dry the refractory material before the furnace is brought to working temperature. However, despite these complications, wet methods remain the best option for controlling silica dust from high-energy activities such as pneumatic chipping and should be considered when high-silica materials are involved. A spray of fine mist directed at the point of dust generation has been shown to be effective. At an open air location, a flow rate of 350 milliliters (12 ounces) per minute reportedly dried quickly, without adding a substantial amount of water to the work site (NIOSH EPHB 282-11a, 2003). In indoor environments, workers can use a shop vacuum to collect the water (Flanagan et al., 2001), but need to ensure general dilution ventilation is sufficient and treat or duct vacuum exhaust air so that it does not become an additional source of exposure in the work area.

⁷⁹ This value is not included in the exposure profile because it was less than full shift.

Combined Control Methods

Depending on the sources of respirable dust, a combination of control methods can reduce silica exposure levels more effectively than a single method. A routine cupola relining (removal and replacement) in the ferrous foundry industry demonstrates the benefit of a combination of controls by achieving up to a 92 percent reduction in exposures (ERG-GI, 2008). Before implementing controls, OSHA collected samples for three workers with results of 270 μ g/m³, 368 μ g/m³, and 630 μ g/m³. This facility then substituted refractory material with reduced silica and greater moisture content (8 percent, rather than 4 percent, moisture), improved equipment and materials to reduce malfunction and task duration, wet refractory material before removal, and assigned a consistent team of trained workers to the task. After the foundry made these changes, a consultant collected silica exposure samples on three dates. The values included six results between 30 μ g/m³ and 50 μ g/m³, one of 61 μ g/m³, and a short-term result below the LOD (<70 μ g/m³) (OSHA SEP Inspection Report 122209679). Reduced silica in the respirable dust sample and shorter task times (relining required less time with the improved methods) account for most of the exposure reduction.

A second report on a facility performing refractory relining also demonstrates the benefits of a combination of control measures (Burmeister, 2001). A full-shift silica result of 215 µg/m³ was obtained while a worker chipped away the old refractory lining using faulty equipment, and then mixed the replacement refractory material. According to the manufacturer's material safety data sheet (MSDS), the ladle lining contained 56-percent silica. Burmeister noted that the "pneumatic chipper lacked a tool retainer, requiring the worker to hold the chipping bit, putting the worker much closer to the source of the exposure than would have been necessary had the pneumatic chipper been equipped with a retainer." The foundry responded to the high exposure result by holding a training meeting and seeking worker input on abatement actions; implementing a "water control system to reduce dust generated during the pneumatic chipping process"; purchasing chisel retainers to eliminate the need for the worker to reach into the ladle during chipping; and purchasing a vacuum to remove dust and debris from the ladle. With these changes in place, a consultant found that exposure was reduced to 74 µg/m³, representing a 66-percent reduction. OSHA notes that this facility might have achieved still lower silica exposure levels by using LEV or tool-mounted vacuum suction to capture dust, or by managing fresh air flow past the worker's breathing zone.

Additional Controls for Housekeeping Workers

The 29 percent of housekeeping worker exposure values (summarized in Table IV.C-16) that are 50 $\mu g/m^3$ or less are often associated with facilities that make an effort to limit silica exposures of workers in other job categories across the facility. OSHA anticipates that many of the 71 percent of housekeeping workers whose exposures are above 50 $\mu g/m^3$ will experience lower exposures once modifications are made to control silica in the dustiest process (i.e., sand systems operations, shakeout, knockout, abrasive blasting, clean/finishing).

For those housekeeping workers who must clean spills during upset conditions and clean areas where dust gradually accumulates over time, additional controls will be required to reduce worker exposures.

 $^{^{80}}$ One of the results of 30 $\mu g/m^3$ was also below the LOD (ERG-GI, 2008; OSHA SEP Inspection Report 122209679).

Appropriate controls include wet methods, HEPA-filtered vacuums, portable exhaust ventilation, and reduced reliance on compressed air for cleaning.

Silica particles do not become airborne as readily when damp as when they are dry. Housekeeping workers can limit their exposures to silica by cleaning up spilled mold and core sand and washes while they are still damp. The material should be contained or removed so that it does not become a source of exposure when it dries. As evidence of the feasibility of this control method, NIOSH obtained six results for housekeeping workers who cleaned up damp, spilled molding sand every 2 to 4 minutes (with each mold cycle). Although their silica results (65 to $90 \mu g/m^3$) were somewhat elevated because of other dust sources in the area, OSHA judges that the exposures were probably lower than if the sand had been allowed to dry before the workers removed it (NIOSH ECTB 233-113c, 2000).

Cleaning up spilled sand and core washes, by containing the waste before it dries, will reduce airborne dust generation. When housekeeping workers encounter dry sand, simply adding moisture will reduce dust generation during cleanup. Vacuuming, shoveling, and scraping generate less dust than dry sweeping (ERG-GI, 2008). Although these alternate methods have not been evaluated in foundries, a study of construction industry workers found that when compared with dry sweeping, exposures were approximately three times lower when construction workers used squeegees to scrape surfaces and approximately five times lower when workers used vacuums (Riala, 1988).

When exposures are controlled across the facility, the use of vacuums for cleaning can provide additional exposure control. However, if vacuums are not sealed properly, they can become a source of dust generation and exposure. Portable vacuums must be emptied frequently according to manufacturers' instructions to ensure adequate suction and prevent the vacuum contents from becoming an additional source of exposure (Echt and Sieber, 2002). Special precautions and work practices will need to be developed to make certain the cleaning of filters does not introduce dust. As an alternative, large stationary or skid-mounted vacuum systems can provide adequate suction with vacuum ports at multiple locations. The suction ports can be positioned near locations where they are most likely to be needed, and the exhaust air and dust will pass through a traditional foundry air-cleaning device, such as a bag house.

Use of compressed air for cleaning also can contribute to workers' silica exposure levels. While low-pressure compressed air is usually considered less of a safety hazard than high-pressure air, any blowing can cause respirable-sized silica particles to become airborne. In a study of construction workers in the United States, Flanagan et al. (2003) made 1-minute measurements using a direct reading dust monitor while 10 workers performed various cleaning tasks. The investigators found that the cleaning equipment associated with the highest respirable dust exposure level was the backpack blower.

Where dust accumulations are prevalent, control efforts should start with a professional-level cleaning to remove silica dust from rafters, walls, and equipment. Irwin (2003) reported on a foundry (described previously) that reduced silica exposure levels in several job categories from levels in the range of 200 $\mu g/m^3$ and higher, to 50 $\mu g/m^3$ or lower. Among other modifications, "the foundry temporarily shut down while the entire facility was thoroughly vacuumed and power washed down to remove many years of accumulated silica containing dust." The down time was used to make other modifications as well, such as completely renovating the sand-handling system.

Finally, with the substitution of non-silica containing materials for mold and coremaking, silica exposures can be virtually eliminated.

Ferrous Sand Casting Foundries—Feasibility Findings

Feasibility Findings for Sand Systems Operators

Based on a review of OSHA SEP, NIOSH, State, and industry association reports, OSHA preliminarily concludes that the silica exposures of approximately one-third of sand systems operators in ferrous sand casting foundries are maintained at $50 \,\mu\text{g/m}^3$ or less through use of enclosed and ventilated sand processing and transport equipment. OSHA further finds that this level can be achieved for most of the remaining operators by improving or adding enclosures and ventilation to existing equipment. For example, a foundry reduced the silica exposure of the sand systems operator by 83 percent (from 231 $\mu\text{g/m}^3$ to $40 \,\mu\text{g/m}^3$) by installing LEV and fixing leaks in the mixer (OSHA SEP Inspection Report 122040488).

OSHA also preliminarily concludes that even the highest exposures reported for this job category (the 14 percent that currently experience silica exposures above 250 $\mu g/m^3$, as summarized in Table IV.C-16) can be reduced to levels of 50 $\mu g/m^3$ or less using these methods (installing LEV and fixing leaks in the mixer) combined with other controls, such as replacing existing equipment with completely enclosed or pneumatic sand processing and transportation equipment, as well as improved work practices and improved housekeeping. A steel foundry that implemented this combination of controls achieved silica exposures of 28 $\mu g/m^3$ (NIOSH ECTB 233-107c, 2000).

As an alternative, foundries can virtually eliminate the silica exposures of all workers by substituting for sand with one of the alternate non-silica granular media commercially available for foundries. For example, silica exposures dropped below the LOD for all workers when a foundry in Ohio used olivine sand, a non-silica containing sand (ERG # OH-1460). OSHA notes that employers must evaluate alternate granular media to ensure that workers are adequately protected from any associated hazards.

Feasibility Findings for Molders

Based on information contained in Table IV.C-16, OSHA preliminarily concludes that 50 percent of molders already achieve exposure levels of $50~\mu\text{g/m}^3$ or less. These same levels can be achieved for most of the remaining molders (the other 50 percent) through a combination of controls that includes improving the enclosures and ventilation associated with equipment that delivers and processes sand in molding areas, and reducing reliance on poor housekeeping and work practices that disturb dust (e.g., dry sweeping and use of compressed air). This conclusion is based on silica exposure levels of $42~\mu\text{g/m}^3$ to $50~\mu\text{g/m}^3$ associated with improvements in engineering controls (OSHA SEP Inspection Report 100494079) and a silica exposure level of $40~\mu\text{g/m}^3$ or less achieved when a foundry also implemented aggressive housekeeping practices in addition to LEV and work practice controls (Irwin, 2003).

Since a large portion of molder exposures is attributable to adjacent operations, the exposure levels of workers in this job category will be further reduced when facilities control the exposures of adjacent workers in other job categories. OSHA preliminarily concludes that by implementing the controls described above and controlling adjacent sources of exposure, foundries will be able to reduce the exposure levels of all molders to levels of $50~\mu g/m^3$ or less.

Feasibility Findings for Coremakers

Based the information described above, OSHA preliminarily concludes that 57 percent of coremakers' exposures are already less than or equal to $50 \mu g/m^3$. Additional controls will be required to achieve the same level for the remaining 43 percent of coremakers (those with exposure levels exceeding $50 \mu g/m^3$ in Table IV.C-16). The exposure level of most of these remaining coremakers can be reduced to levels of 50

 $\mu g/m^3$ or less by effective control of silica release from adjacent operations (e.g., shakeout, finishing, sand systems operations). In addition, a professional-level cleaning followed with improved housekeeping (i.e., switching to HEPA-filtered vacuums instead of compressed air) will reduce exposure levels further. A foundry that took steps to control the release of silica and also improved the general ventilation and sand-handling systems within the building reduced coremaker exposure levels 88 percent to $12~\mu g/m^3$ and $24~\mu g/m^3$, which shows that even higher exposures can be reduced (OSHA SEP Inspection Report 303207518). OSHA preliminarily concludes that by implementing the controls described above, foundries will be able to reduce the exposure levels of all coremakers to levels of $50~\mu g/m^3$ or less.

Feasibility Findings for Furnace Operators

OSHA preliminarily concludes that exposure levels of $50 \mu g/m^3$ or less have already been achieved for 62 percent of furnace operators by limiting the spread of silica dust from other areas of the foundry to the furnace area and by augmenting ventilation systems. To reduce all furnace operator exposures to this level, facilities will need to ensure that all existing emission control systems are functioning properly throughout the foundry, or install such systems where feasible to reduce dust generation from tasks specifically performed by furnace operators (OSHA SEP Inspection Report 121977870; NIOSH ECTB 233-107c, 2000; NIOSH HETA 90-0249-2381, 1994).

In foundries where silica-contaminated foundry returns contribute to the exposure of furnace operators, metal scrap can be cleaned using rotary media mills (Didion, 2003). If sand must be added to the furnace (as part of the formulation or to protect the furnace lining from aggressive metals), a retractable enclosing hood will permit the worker to add sand under controlled circumstances (Scholz and Hayes, 2000b).

In the event that furnace operators repair refractory furnace linings, exposures can be reduced using the same controls available to workers in the foundry maintenance operator job category covered elsewhere in this section.

OSHA preliminarily concludes that by implementing the controls described above, foundries will be able to reduce the exposure levels of all furnace operators to levels of $50 \mu g/m^3$ or less.

Feasibility Findings for Pouring Operators

OSHA preliminarily concludes that silica exposure levels of $50~\mu g/m^3$ or less have already been achieved for 50~percent of pouring operators in ferrous sand casting foundries. OSHA further finds that pouring operator exposure levels above $50~\mu g/m^3$ are generally due to uncontrolled exposures in adjacent operations. For those pouring operators whose exposures might still be above $50~\mu g/m^3$ after dust control for adjacent operations has been addressed, additional controls might be implemented. Such controls include isolation of the pouring operation, adjustment of air flow in the facility to prevent dusty air from being drawn into the pouring area, or use of booths and cabs to isolate operators from silica exposures. OSHA preliminarily concludes that by implementing these additional controls, exposure levels for all pouring operators will be reduced to levels of $50~\mu g/m^3$ or less.

<u>Feasibility Findings for Shakeout Operators</u>

Based on Table IV.C-16 and other information presented above, OSHA preliminarily concludes that foundries have already achieved silica exposure levels of 50 $\mu g/m^3$ or less for 40 percent of shakeout operators through the use of well-enclosed and ventilated shakeout and related equipment to separate sand from castings. Additional controls will be required for the remaining 60 percent of shakeout operators.

OSHA estimates that by enclosing operations, improving existing ventilation, or installing new systems, exposure levels can be reduced for most shakeout operators to levels of $50~\mu g/m^3$ or less. For example, four shakeout operator exposure results were $41~\mu g/m^3$ or less at three foundries that implemented various dust control measures in the shakeout area (e.g., shakeout enclosure added, ventilation system improved, rotary media mills installed, conveyers enclosed and ventilated) and made other systematic efforts to abate dust emissions (ERG # MI-1483; OSHA SEP Inspection Report 303207518; Irwin, 2003). However, some foundries might find it more practical to replace existing open shakeout equipment with more modern enclosed or automated equipment than to modify ventilation systems around existing open models of shakeout equipment.

While most shakeout operators' exposures will be controlled to the proposed PEL of $50~\mu g/m^3$ by using the controls described above, some operators (an estimated 5 percent of the total) will not be able to use the same methods to reach this level because the casting size or the need to manipulate castings will make it more difficult to enclose or ventilate the process. For these operators, achieving exposures below $100~\mu g/m^3$ is more realistic. Until engineering controls can be developed to manage silica concentrations in their work area, employers might need to provide respiratory protection to protect these shakeout operators.

Finally, exposures for all shakeout operators can be virtually eliminated by substituting non-silica granular media that is less toxic than silica for silica sand in the molding and coremaking processes. As discussed for the sand systems operator job category, these media are commercially available and are associated with silica exposure levels below the LOD for all job categories evaluated (ERG # OH-1460).

Feasibility Findings for Knockout Operators

Based on Table IV.C-16, OSHA preliminarily concludes that exposure levels of $50~\mu\text{g/m}^3$ or less have already been achieved for 46 percent of knockout operators. The remaining 54 percent of workers in this job category (i.e., those with current exposure levels exceeding $50~\mu\text{g/m}^3$ in Table IV.C-16) will require a combination of additional controls, including limiting the amount of sand loosely adhered to castings entering the knockout process, and LEV or ventilated tools in areas where excess sand and scrap metal are removed. Because loose sand is the greatest source of exposure to knockout operators who experience the highest silica concentrations, OSHA believes that the silica exposure levels for even the most highly exposed operators can be reduced effectively when most of this sand is removed before the casting reaches the knockout area and without releasing silica dust into the work area air.

At a foundry in Michigan a combination of controls that included improved ventilation, better workstation enclosures (e.g., side shields and baffles), and new equipment to shake excess sand off castings (in a ventilated tunnel en route to the knockout area) reduced knockout operator exposures to levels of 30 and $50 \mu g/m^3$ (ERG # MI-1485).

In addition, those operators who work on large castings will require LEV attached to hand tools to reduce exposures (discussed in cleaning/finishing operations). Using LEV-equipped hand tools on large castings where no other controls are feasible will reduce exposures below 100 μ g/m³, but might not reduce exposures below 50 μ g/m³ (ERG-GI, 2008). Therefore, as with shakeout operators, OSHA preliminarily concludes that results of 100 μ g/m³ can be achieved for the approximately 5 percent of knockout operators working on very large castings, but information is insufficient to confirm that exposure levels for these workers can be reduced to levels of 50 μ g/m³ or less.

Alternatively, as discussed for sand systems operators, foundries able to switch to non-silica granular media that is less toxic than silica sand can virtually eliminate the silica exposure of all knockout operators.

Feasibility Findings for Abrasive Blasting Operators

Considering the information described above, OSHA preliminarily concludes that the majority of abrasive blasting operators' exposures can be reduced to levels of $50~\mu g/m^3$ or less by automating and enclosing abrasive blasting operations using properly ventilated equipment and following manufacturer's recommendations for abrasive blasting machine use and maintenance. This conclusion assumes that silica exposures from adjacent sources will be reduced when the exposure of adjacent workers in other job categories is controlled. As seen earlier in this analysis, a gray ductile foundry made modifications that included a new blasting machine with LEV, enclosed and exhausted sand conveyors, an enclosure and LEV to the shakeout exit, and LEV to the skip bucket enclosure. Over a period of almost 2 years, the foundry eventually reduced operator silica results by 75 to 85 percent, to levels less than $50~\mu g/m^3$ (OSHA SEP Inspection Report 101548626). Another facility found an 88-percent exposure reduction to $51\mu g/m^3$ after workers started using automated, fully enclosed shot blasting for pre-cleaning castings (OSHA SEP Inspection Report 300409166).

An estimated 5 percent of abrasive blasting operators manually clean very large castings (the same percentage of shakeout operators are estimated to handle large castings) (OSHA SEP Inspection Report 300409166). To the extent possible, these workers should perform this activity in ventilated blasting booths to limit exposure to other workers. When it is possible, pre-cleaning the casting can reduce the silica exposure levels of the abrasive blasting operator. Furthermore, as discussed in Section IV.C.22 – Abrasive Blasters, which covers abrasive blasting in the construction industry, wet abrasive blasting can substantially reduce silica exposures. Information from construction is applicable to abrasive blasting of large-scale castings. There, blasting must be performed manually because larger-sized pieces cannot be isolated within a blasting cabinet, thus necessitating other means of worker protection. Additionally, like the concrete surfaces abrasively blasted by construction workers, the residual mold material is a hard sand-based substance (in this case held in a clay rather than cement matrix) with high silica content. Furthermore, the foundry abrasive blasting operator works indoors, blasting residual mold material adhered to a casting much like a construction worker blasts indoor concrete walls, tank interiors, or other ground-level structures. Using the methods discussed above, foundries will greatly reduce abrasive blaster exposures, but not necessarily to levels below 50 μ g/m³.

Pre-cleaning small and medium-sized castings in automated shot blasting machines to reduce the amount of residual sand on the castings also can provide a substantial reduction in exposures for these operators when the entire process cannot be accomplished using automated equipment.

As has been noted for other job categories, silica exposures throughout the foundry can be eliminated by replacing silica-containing mold and core materials with alternate granular media that is less toxic than silica sand (see discussion under the sand systems operators job category).

Feasibility Findings for Cleaning/Finishing Operators

OSHA preliminarily concludes that 37 percent of cleaning/finishing operators already have silica exposures of 50 μ g/m³ or less (see Table IV.C-16). The exposures for most of the remaining 63 percent of these workers can be reduced to 50 μ g/m³ or less by using a combination of controls, including using ventilated workstations, effectively pre-cleaning castings, improving housekeeping, and eliminating the use of compressed air for cleaning.

At one foundry, installation of a downdraft dust collection bench (LEV) for workers using hand-held equipment to clean and finish castings reduced exposure levels by a mean of 69 percent (to 20 $\mu g/m^3$ and 24 $\mu g/m^3$) (OSHA SEP Inspection Report 122040488). At another foundry, pre-cleaning castings using a shot blast machine (prior to performing finishing operations using hand-held and stationary grinding

equipment) reduced results by an average of 67 percent (to 27 $\mu g/m^3$, 36 $\mu g/m^3$, and 40 $\mu g/m^3$) (OSHA SEP Inspection Report 123187965).

Although the uncontrolled exposures in these examples were all below $120~\mu g/m^3$, OSHA has preliminarily determined that pre-cleaning castings would be as effective (or possibly more effective) when uncontrolled cleaning/finishing activity results in higher direct silica exposure levels (e.g., $500~\mu g/m^3$ or greater), because of larger quantities of adhered mold material. OSHA bases this determination on the ability of pre-cleaning equipment to prepare castings equally well regardless of the initial quantity of mold material originally adhered to the castings' surface. For a typical casting, the shot blast machines, tumbling media mills, and related equipment (singly or in series) leave only the most ingrained mold material, so cleaning/finishing operators must grind only the trace volume of residual mold material, and the resulting silica exposures are minimized.

Since pre-cleaning and use of dust collection equipment are independent controls, OSHA estimates that foundries that pre-clean castings *and* install LEV can reduce the silica exposure of finishing operators using hand-held equipment by a combined 90 percent (assuming the average exposure reduction for each control is achieved). For example, an exposure of 500 $\mu g/m^3$ conservatively can be reduced by 67 percent (to 165 $\mu g/m^3$) by thoroughly pre-cleaning castings, and can be further reduced by 69 percent (to 51 $\mu g/m^3$) by providing workers with LEV workstations (such as downdraft tables) for a total reduction approaching 90 percent. As noted in the description of baseline conditions, only 23 exposures (11 percent) exceed 500 $\mu g/m^3$. Thus, for the remaining 89 percent of workers currently exposed to 500 $\mu g/m^3$ or less, implementation of these controls can reduce silica exposures to 51 $\mu g/m^3$ or less.

Further dust management efforts can reduce exposures to lower levels. As noted in the section on additional controls for this job category, effective plant cleaning to remove sources of accumulated dust has been shown to reduce background respirable dust exposure levels by 60 to 80 percent (OSHA SEP Inspection Report 303207518). If silica had been evaluated in addition to respirable dust after the cleaning session at this foundry cleaning/finishing department (where the background silica level was 63 μ g/m³), then the post-cleaning background silica value would likely have been 25 μ g/m³ or less (lower by at least 38 μ g/m³, corresponding to a minimum 60-percent reduction). For the cleaning/finishing operator job category, taking the maximum worker exposure levels of 51 μ g/m³ after pre-cleaning castings and installing LEV (calculated for the 89 percent of workers in this job category who currently experience exposure levels of 500 μ g/m³ or less) and subtracting 38 μ g/m³ (to account for improved background silica levels after a complete shop cleaning) results in an exposure level of 13 μ g/m³.

As a final step, eliminating use of compressed air for cleaning will reduce the exposure level of many of the most highly exposed cleaning/finishing operators (those 11 percent with exposures currently exceeding 500 μ g/m³) to levels below 500 μ g/m³. ERG-GI (2008) found that 26 cleaning/finishing results associated with compressed air for cleaning had a median of nearly 500 μ g/m³ (487 μ g/m³), compared with the median of 196 μ g/m³ for cleaning finishing operators as a whole (Table IV.C-16). Use of compressed air for cleaning will be prohibited under the proposed rule and OSHA preliminarily estimates that by eliminating cleaning with compressed air, many of these workers would experience exposure levels closer to the median for the entire job category (i.e., substantially below 500 μ g/m³). At these reduced levels, these workers will benefit from the exposure control methods described in the previous paragraphs to the same extent as the other 89 percent of workers in this job category.

Based on these estimates, OSHA preliminarily concludes that results of 50 μ g/m³ or less can be achieved for most cleaning/finishing operators most of the time.

<u>Feasibility Findings for Material Handlers</u>

Based on the information presented in this section, OSHA preliminarily concludes that 47 percent of material handlers already experience silica exposure levels of $50 \,\mu\text{g/m}^3$ or less. Once foundries have controlled the exposures of workers in other job categories (which contribute the majority of the airborne silica to which material handlers are exposed), the exposures of the vast majority of the remaining 53 percent of material handlers also will be controlled to the same level.

Where material handlers' activities generate silica dust, exposures will be reduced through use of work practices that minimize dust release (minimizing the distance that sand falls during material handling and adding sand slowly to hoppers so that the hopper capacity is not exceeded). If exposures continue to exceed the proposed PEL of $50 \mu g/m^3$, foundries can install enclosed cabs on heavy material-handling equipment. While OSHA believes that material handlers who have exposures of $100 \mu g/m^3$ or less can alter work practices to reduce their exposures, reductions might be insufficient to achieve exposures below $50 \mu g/m^3$. Enclosed, ventilated cabs are associated with exposure reductions of 90 to 95 percent and can reduce even the highest material handler result to a level less than $50 \mu g/m^3$.

As noted for other job categories, OSHA further finds that switching to alternate granular media that is less toxic than silica for molds and cores will essentially eliminate the silica exposures of material handlers.

Feasibility Findings for Maintenance Operators

Considering the information described above, OSHA preliminarily concludes that 42 percent of maintenance operators currently experience exposures of $50~\mu g/m^3$ or less, primarily by using low-silica refractory materials and work practices that limit their exposures and activities to small-scale patching or repair tasks. Refractory repair is the primary source of silica exposure for these workers. While they might also encounter indirect exposure from the activities of workers in other job categories, maintenance operators' exposures from those sources will be eliminated when the other job categories are controlled. Maintenance operators can also encounter silica during upset conditions. When possible, before making repairs maintenance operators should permit housekeeping workers, equipped appropriately for the job, to clean up spilled material.

OSHA also preliminarily concludes that the exposure levels of many of the remaining operators (those with current exposure values of 250 μ g/m³ or less) can be reduced to levels of 50 μ g/m³ or less by using these same methods. A foundry that implemented a comprehensive exposure control program that included switching to low-silica refractory reduced exposure levels by 92 percent (OSHA SEP Inspection Report 122209679). The extent and the consistency of worker exposure reduction will depend on the silica content of the replacements materials and the proportions in which they are used compared with other refractory materials. In foundries that cannot use reduced silica refractory patching products (because of incompatibility with production processes) operators will require other control methods.

OSHA preliminarily concludes that in these cases, facilities will be able to reduce maintenance operator exposure levels if they use a combination of chipping equipment fitted with LEV shrouds (or water spray when possible), work practices that limit exposure, and general exhaust ventilation that improves air circulation within the furnace during small-scale tasks (NIOSH EPHB 247-19, 2001). However, the level of 50 μ g/m³ might not be achieved for all of these workers. NIOSH found that tool-mounted LEV reduced worker silica exposure levels by 78 percent in enclosed concrete mixer drums, but could not reliably maintain exposures to the level of the proposed PEL (50 μ g/m³). OSHA estimates that by using these methods, the exposure levels of most of these operators will be reduced to 50 μ g/m³ or less; however, a small portion will remain between 50 μ g/m³ and 100 μ g/m³.

The exposure level of in-plant maintenance operators engaged in completely replacing refractory linings during overhaul activities also can be reduced using these controls, but to a somewhat lesser extent (to levels of $100 \,\mu\text{g/m}^3$) because of the extent and duration of the project.⁸¹

Additionally, OSHA estimates greater reduction can be achieved if the process is misted or performed with LEV and if workers are equipped with automated or remotely operated equipment. This combination of controls reduces exposures to levels of $50 \, \mu g/m^3$ or less (see Section IV.C.19 – Refractory Repair. OSHA anticipates that by using these two controls in combination with use of low-silica-containing refractory materials, pre-wetting, and high-moisture installation, foundries might reduce the exposure of most maintenance operators who maintain or replace refractory materials to levels below $50 \, \mu g/m^3$.

As a final option, using a comprehensive professional refractory maintenance contract will eliminate direct silica exposure of in-plant maintenance operators from major refractory replacement activities.

Although the primary silica exposure for maintenance operators occurs during maintenance of refractory materials, these workers also are subject to additional sources of exposure from adjacent processes and equipment maintained by the maintenance operator. When the exposure levels of workers associated with those processes and equipment are controlled, maintenance operators' silica exposure from these sources also will be controlled.

Feasibility Findings for Housekeeping Workers

OSHA preliminarily concludes that 30 percent of housekeeping workers' exposures are 50 μ g/m³ or less (Table IV.C-16). The exposure levels of most of the remaining workers (70 percent) will be reduced to 50 μ g/m³ or less when the exposures of workers in other job categories also are controlled.

If housekeepers in a foundry continue to experience elevated exposures after the silica levels associated with other job categories have been controlled, an initial professional-level cleaning to remove residual accumulated silica can reduce exposure levels. A foundry reduced silica exposure in several job categories from levels of 200 $\mu g/m^3$ and higher, to 50 $\mu g/m^3$ or lower by making a number of modifications, including a thorough cleaning with vacuuming and power washing to remove many years of silica dust accumulation (Irwin, 2003).

Additional controls, such as using HEPA-filtered vacuums, using wet methods to clean up spilled sand (i.e., clean while the sand is still damp), and eliminating use of compressed air, can further reduce exposures during those tasks performed by housekeeping workers that generate additional dust. OSHA concludes that with implementation of these control strategies, all exposures for housekeeping workers can be reduced below $50 \,\mu\text{g/m}^3$.

Ferrous Sand Casting Foundries—Overall Feasibility Findings

Based on the information presented above, OSHA preliminarily concludes that the exposure levels of most ferrous sand casting foundry workers can be reduced to levels of $50 \,\mu\text{g/m}^3$ or less most of the time by using the controls described.

 $^{^{81}}$ Based on information reported by Refractory Products Supplier A (2010) that 75 percent of facilities use a professional service for this work (suggesting that the remaining 25 percent perform it using their own workers), OSHA has preliminarily determined that this group of maintenance operators is represented by the 21 percent shown in Table IV.C-16 who currently have exposures exceeding 250 $\mu g/m^3$. As noted previously, complete relining occurs only occasionally: monthly for some furnaces and annually (or every 3 years) for other furnaces.

Characteristics of Relatively Well-Controlled Foundries

OSHA notes that certain practices are more common in foundries that have been relatively successful in controlling the silica exposures of most workers compared with foundries at which elevated exposures occur routinely. As noted previously, ERG identified several facilities that fit into each category (see discussion at the beginning of the Baseline Conditions and Exposure Profile—Ferrous Sand Casting Foundries section). OSHA reviewed OSHA, NIOSH, and State agency documentation for these foundries to look for trends.

The review of relatively well-controlled and poorly controlled foundries shows some clear distinctions between the two groups. The relatively well-controlled facilities were more likely to have installed enclosures and LEV for usually dusty activities, such as for sand-handling equipment, shakeout, knockout, and cleaning/finishing tasks. These foundries were also more likely to have automated processes, such as mold-making or coremaking, routine grinding, shot-blasting, and conveying parts into enclosures for dusty processes (shakeout, shot blast equipment). Workers controlled these processes remotely, sometimes from behind partitions. Additionally, records describing these foundries are more likely to note other special controls in place to reduce airborne silica dust. Examples include adding pneumatic sand transport equipment, using washed lake sand (with low respirable-sized particle content), and purchasing sand additives premixed (because the mixing process released additional dust).

The poorly controlled facilities tend to rely more heavily on general exhaust ventilation (ceiling or wall fans not associated with any specific process). Notes on the facilities often commented on the lack of LEV (or on having LEV installed for a process such as welding, but not for adjacent processes associated with elevated silica levels, such as grinding in the cleaning/finishing area). Sand systems equipment (e.g., sand mill or reclaimer) were more likely to be unventilated and leak. Additionally, equipment that leaked sometimes contributed to the exposure of workers in more than one job category. For example, OSHA reported that the reclaimed sand mill at one foundry contributed to the silica exposure levels of a material handler and several cleaning/finishing operators who worked nearby. Furthermore, these foundries used compressed air extensively, and the practice was associated with multiple job categories.

Overall, these trends point to the overall benefit that the additional controls mentioned throughout this analysis for individual job categories can have on silica exposures across the entire foundry.

Nonferrous Sand Casting Foundries—Description

The job categories, manufacturing processes, and equipment are essentially the same for ferrous and nonferrous sand casting foundries, as are the sources of silica exposure within these foundry types. Only the metal type differs. However, among all sand casting foundries, ferrous foundry workers typically have higher silica exposures than workers in other metal casting facilities. This is primarily due to higher temperatures required for ferrous casting, causing molds that are hotter, drier, and hence dustier during shakeout operations (O'Brien, 1998). For the same reasons, sand-handling and molding sand removal tasks also contribute less exposure to all job categories throughout the foundry. Additionally, some nonferrous metals are compatible with different casting materials than are typically used for ferrous casting. For example, historically olivine sand (with very low silica content) was thought to produce better casting quality for aluminum than for iron, and thus is used more frequently in the aluminum casting sector (Foundry Products Supplier A, 2000). 82

⁸² In fact, olivine sand might be equally effective for ferrous castings. A foundry supply business noted that "Olivine has been famous for years in producing excellent non-ferrous castings. Today, more foundrymen are realizing olivine works equally well in iron, manganese and stainless steel" (IFSCO, 2000). Olivine sand contains

The median, mean, and range of exposures of nonferrous sand casting workers in 26 foundries are presented by job category in Table IV.C-17. Exposure results in these facilities are generally lower, though within the range of results reported for ferrous sand casting foundries. With one exception (the maximum result for cleaning/finishing workers), the medians and maximum exposure levels in every job category are lower for nonferrous foundries than for ferrous foundries. However, the figures show clear evidence of the potential for elevated silica exposure among nonferrous foundry workers in all 12 job categories.

Comparison of Nonferrous Sand Casting Foundries and Ferrous Sand Casting Foundries by Job Category

For each job category, the following sections discuss similarities and any relevant differences between nonferrous sand casting foundries and ferrous sand casting foundries as they apply to worker activities and exposure levels. The discussion indicates whether the exposure control options and conclusions presented for ferrous sand casting foundries apply in nonferrous sand casting foundries.

It is worth reiterating that lower casting temperatures in nonferrous foundries result in processes that are less dry and dusty than those in ferrous sand foundries. This difference and more frequent use of olivine sand explain the lower range of silica exposures in nonferrous foundries, compared with those reported for ferrous foundries.

less than 0.1 percent silica and is "a naturally occurring mineral composed of a solid solution of magnesium ortho silicate, (forsterite, Mg₂SiO₄) and iron ortho silicate (fayalite, Fe2SiO4)" (Reade Advanced Materials, no date).

 $^{^{83}}$ The maximum value among the data available to OSHA for cleaning/finishing operators in nonferrous sand casting foundries (1,915 $\mu g/m^3$) is 3 percent higher than the maximum for ferrous sand casting foundries (1,868 $\mu g/m^3$). However, this figure might not indicate increased potential for elevated exposures. Just 1 percent of the cleaning/finishing operators in nonferrous sand casting foundries experienced a result above 250 $\mu g/m^3$, while 22 percent of the exposure levels reported for workers in the same job category exceeded 250 $\mu g/m^3$ in the ferrous sand casting foundries (see Table IV.C-16 and Table IV.C-17).

Table IV.C-17
Respirable Crystalline Silica Exposure Range and Profile for Nonferrous Sand Casting Foundries (Parts of NAICS 331524, 331525, 331528)

	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Nonferrous Sand Casting Sand Systems Operators	8	33	20	13	78	4 50.0%	2 25.0%	2 25.0%	0 0.0%	0 0.0%	
Molder	39	43	23	12	441	23 59.0%	9 23.1%	5 12.8%	1 2.6%	1 2.6%	
Coremaker	47	38	13	11	940	41 87.2%	3 6.4%	1 2.1%	1 2.1%	1 2.1%	
Furnace Operator	4	14	14	13	14	4 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Pouring Operator	3	14	14	13	14	3 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Shakeout Operator	20	68	50	12	212	4 20.0%	6 30.0%	6 30.0%	4 20.0%	0 0.0%	
Knockout Operator	19	27	23	10	64	10 52.6%	7 36.8%	2 10.5%	0 0.0%	0 0.0%	
Abrasive Blasting Operator	11	27	14	13	58	6 54.5%	3 27.3%	2 18.2%	0 0.0%	0 0.0%	
Cleaning/Finishing Operator	27	111	44	14	1,915	8 29.6%	8 29.6%	10 37.0%	0 0.0%	1 3.7%	
Material Handler	2	31	31	16	46	1 50.0%	1 50.0%	0 0.0%	0 0.0%	0 0.0%	
Maintenance Operator	0	0	0	0	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Housekeeping Worker	1	66	66	66	66	0 0.0%	0 0.0%	1 100.0%	0 0.0%	0 0.0%	
Total Nonferrous Sand Casting	181	50	20	10	1,915	104 57.4%	39 21.5%	29 16.0%	6 3.3%	3 1.7%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour TWA exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

Foundries (Metal Casting)

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

Sand Systems Operator

Processes and activities in nonferrous sand casting foundries are essentially the same as those found in ferrous sand casting foundries. Both types of sand casting foundries use similar quantities of "green sand" (a moldable mixture of sand and clay) for their operations. Additionally, both types of foundries recycle molding sand using automated equipment to crush lumps and incorporate more clay. Eight results summarized in Table IV.C-17 from five reports on nonferrous sand casting foundries show exposures ranging from 13 to 78 μ g/m³, with a median of 20 μ g/m³. The range of these results is within the range reported for ferrous sand casting foundries.

As shown in Table IV.C-17, the exposure levels of 75 percent of sand systems operators in nonferrous sand casting foundries are already at levels of $50 \,\mu\text{g/m}^3$ or less. The remaining 25 percent of workers in this job category require additional controls to achieve exposures less than $50 \,\mu\text{g/m}^3$. OSHA preliminarily concludes that the controls and conclusions for sand systems operators in ferrous sand casting foundries also apply in nonferrous sand casting foundries because both types of foundries use the same equipment and sand in a similar manner and in comparable quantities. Therefore, by implementing those controls as needed according to the exposure profile, nonferrous sand casting foundries will likely be able to reduce the exposure levels of all sand systems operators to levels of $50 \,\mu\text{g/m}^3$ or less.

Molder

Molder activities in nonferrous sand casting foundries are the same as those in ferrous sand casting foundries. The molding equipment, sand type and quantities, and worker activities are nearly identical in both types of foundries.

Table IV.C-17 summarizes 39 results for molders from 11 reports on nonferrous sand casting foundries, indicating that exposure levels for this group range from 12 to 441 μ g/m³. These results have a median of 23 μ g/m³. This range of exposure levels is within the range described for ferrous sand casting foundries, but with results of 50 μ g/m³ or less already achieved for 82 percent of molders. Eighteen percent of molders require additional controls to reduce their exposure to below 50 μ g/m³.

OSHA preliminarily concludes that the controls and conclusions for molders in ferrous sand casting foundries apply in nonferrous sand casting foundries as well. OSHA also preliminarily concludes that by implementing those controls as needed according to the exposure profile, nonferrous sand casting foundries will be able to reduce the exposure levels of all molders to levels of $50~\mu g/m^3$ or less.

Coremaker

Coremaking is identical in nonferrous and ferrous sand casting foundries. In both types of foundries, coremakers oversee transfer of the same type of sand and additives into automated coremaking equipment to make similar types of cores. In addition, they clean and finish the cores. Table IV.C-17 summarizes 47 results from six reports on nonferrous sand casting foundries. Exposures range from 11 μ g/m³ to 940 μ g/m³, with a median of 13 μ g/m³. The range of results is within the range reported for ferrous sand casting foundries.

As shown in Table IV.C-17, the exposure levels of 94 percent of coremakers in nonferrous sand casting foundries are already at levels of $50~\mu g/m^3$ or less. Only 6 percent of these workers require additional controls to reduce their exposures to below $50~\mu g/m^3$. OSHA preliminarily concludes that the controls and conclusions described for coremakers in ferrous sand casting foundries are the same as those for coremakers in nonferrous sand casting foundries; therefore, the remaining coremaker exposures can be

controlled to a similar extent by implementing those controls discussed for coremakers in the ferrous sand casting foundries.

Furnace Operator

Furnace operator functions are similar in nonferrous sand casting foundries and ferrous sand casting foundries. Although there are some variations in furnace types that are used for the various nonferrous metals, the furnace design is unlikely to affect operator silica exposure levels. Furnace operator activities, such as controlling and monitoring the furnaces used to pour molten metal, are similar in both types of foundries. Table IV.C-17 summarizes four results for furnace operators from a single report on nonferrous sand casting foundries all with exposure levels below the LODs (in this case 13 μ g/m³ and 14 μ g/m³). These results are within the lowest end of the range reported for furnace operators in ferrous sand casting foundries.

Based on Table IV.C-17, OSHA preliminarily concludes that the exposure levels of all (100 percent) of furnace operators in nonferrous sand casting foundries are already at levels of $50~\mu g/m^3$ or less, and additional controls are not be necessary for this job category. OSHA recognizes that data are limited for furnace operators in the nonferrous sand casting industry. However, median exposures in both nonferrous and ferrous foundries are below $50~\mu g/m^3$. This supports the preliminary finding that the controls and conclusions described for furnace operators in ferrous sand casting foundries apply to furnace operators in nonferrous sand casting foundries.

Pouring Operator

Pouring operator activities are similar to those in ferrous sand casting foundries. Workers in both types of foundries transfer molten metal into a ladle or holding furnace, and then into molds. Table IV.C-17 summarized results for three pouring operators in two nonferrous sand casting foundries; all exposures were less than the LODs (13 μ g/m³ and 14 μ g/m³). These results are within the range reported for ferrous sand casting foundries (ERG-GI, 2008).

Based on Table IV.C-17, OSHA preliminarily concludes that the exposure levels of all (100 percent) of pouring operators in nonferrous sand casting foundries are already at levels of $50 \,\mu\text{g/m}^3$ or less, and additional controls are not necessary for this job category. As with the furnace operators, data are limited for pouring operator. Since median exposures in both types of foundries discussed are below $50 \,\mu\text{g/m}^3$, OSHA preliminarily finds that the controls and conclusions described for pouring operators in ferrous sand casting foundries apply to pouring operators in nonferrous sand casting foundries.

Shakeout Operator

Shakeout operators perform the same functions and use the same equipment in nonferrous foundries as in ferrous sand casting foundries. In both types of foundries, these workers monitor equipment that separates castings from the same types of sand mold materials. Table IV.C-17 summarized 20 results for nonferrous foundry shakeout operators obtained from 10 reports on nonferrous sand casting foundries. Exposure levels for this group range from 12 to 212 $\mu g/m^3$, with a median of 50 $\mu g/m^3$. This range of exposure levels is within the range described for ferrous sand casting foundries (ERG-GI, 2008).

As shown in Table IV.C-17, the exposure levels of 50 percent of shakeout operators in nonferrous sand casting foundries are already at levels of 50 $\mu g/m^3$ or less. The remaining 50 percent of these workers require controls to achieve exposures of 50 $\mu g/m^3$ or less. OSHA preliminarily concludes that the controls and conclusions described for this job category in ferrous sand casting foundries are the same as those for shakeout operators in nonferrous sand casting foundries; therefore, the remaining shakeout operators

exposures can be controlled to a similar extent by implementing those controls discussed for the equivalent group in the ferrous sand casting foundries. Although not suggested by the exposure profile in Table IV.C-17, it is possible that a few shakeout operators in these foundries might require respiratory protection under the same circumstances as mentioned for shakeout operators in ferrous sand casting foundries.

Knockout Operator

Knockout operator functions are identical in ferrous and nonferrous sand casting foundries. Operators in both types of foundries use hammers and saws to remove sprues, gates, and risers from castings. Although workers in both types of foundries also remove the same type of sand from castings, the lower casting temperatures in nonferrous sand foundries result in processes that are less dry and dusty. Table IV.C-17 summarized 19 results from six reports on nonferrous sand casting foundries. Exposures range from 10 to $64 \, \mu \text{g/m}^3$ with a median of $23 \, \mu \text{g/m}^3$. These exposure levels are within the lower portion of the range reported for ferrous sand casting foundries (ERG-GI, 2008).

As shown in Table IV.C-17, the exposure levels of 90 percent of knockout operators in nonferrous sand casting foundries are already at levels of $50~\mu g/m^3$ or less. Only 10 percent of workers in this job category require additional controls to achieve exposures below $50~\mu g/m^3$. OSHA preliminarily concludes that the controls and conclusions described for this job category in ferrous sand casting foundries are the same as those for knockout operators in nonferrous sand casting foundries; therefore, the remaining knockout operator exposures can be controlled to a similar extent by implementing those controls discussed for this job category in the ferrous sand casting foundries. Although not suggested by the exposure profile in Table IV.C-17, if extremely elevated exposures are encountered, it is possible that a few knockout operators in these foundries might require respiratory protection under the same circumstances as mentioned for the comparable group in ferrous sand casting foundries.

Abrasive Blasting Operator

The activities of abrasive blasting operators in nonferrous sand casting foundries are the same as in ferrous sand casting foundries. Though blasters remove the same type of sand, lower casting temperatures in nonferrous foundries create conditions that are less dry and dusty than in ferrous sand foundries.

Table IV.C-17 summarized results ranging from 13 $\mu g/m^3$ to 58 $\mu g/m^3$, with a median of 14 $\mu g/m^3$. These 11 results, obtained from five reports on nonferrous sand casting foundries are within the range reported for ferrous sand casting foundries (ERG-GI, 2008). Although 18 percent of the results exceed 50 $\mu g/m^3$, none exceeds 100 $\mu g/m^3$. In contrast, Table IV.C-16 shows that 69 percent of abrasive blasting operators have exposures exceeding 50 $\mu g/m^3$ in the ferrous sand casting foundries, with 13 percent of those exceeding 250 $\mu g/m^3$.

As shown in Table IV.C-17, the exposure levels of 82 percent of abrasive blasting operators in nonferrous sand casting foundries are already at levels of $50 \,\mu\text{g/m}^3$ or less. The remaining 18 percent of these workers require additional controls to achieve exposures of $50 \,\mu\text{g/m}^3$ or less. OSHA preliminarily concludes that the controls and conclusions described for this job category in ferrous sand casting foundries are the same as those for abrasive blasting operators in nonferrous sand casting foundries; therefore, the remaining abrasive blasting operators exposures can be controlled to a similar extent by implementing those controls discussed for this job category in the ferrous sand casting foundries. Although not suggested by the exposure profile in Table IV.C-17, if extremely elevated exposures are encountered, it is possible that a few abrasive blasting operators in these foundries might require respiratory protection under the same circumstances as mentioned for the comparable group in ferrous sand casting foundries.

Cleaning/Finishing Operator

Cleaning/finishing operators perform the same activities in nonferrous sand casting foundries as in ferrous sand casting foundries. In both types of foundries, these workers use the same tools to grind out similarly constituted residual mold material and to finish the casting. Table IV.C-17 summarized 27 results for cleaning finishing operators in nonferrous sand casting foundries ranging from 14 to 1,915 μ g/m³ with a median of 44 μ g/m³. These results were obtained from three reports on nonferrous sand casting foundries (ERG-GI, 2008). Although widely distributed, this range is within that reported for ferrous sand casting foundries.

As shown in Table IV.C-17, exposure levels of $50~\mu\text{g/m}^3$ or less have already been achieved for 96 percent of cleaning/finishing operators in nonferrous sand casting foundries. Only 4 percent of workers in this job category require additional controls to achieve exposures below $50~\mu\text{g/m}^3$. OSHA preliminarily concludes that the controls and conclusions described for cleaning/finishing operators in ferrous sand casting foundries are the same as those for cleaning/finishing operators in nonferrous sand casting foundries; therefore, the remaining cleaning/finishing operator exposures can be controlled to a similar extent by implementing those controls discussed for cleaning/finishing operators in the ferrous sand casting foundries.

Material Handler

The activities of material handlers in nonferrous sand casting foundries are the same as in ferrous sand casting foundries. They typically use powered material handling equipment to transport sand, castings, or other materials. Table IV.C-17 summarized two results from two reports on nonferrous sand casting foundries, ranging from $16 \,\mu\text{g/m}^3$ to $46 \,\mu\text{g/m}^3$, with a median of $31 \,\mu\text{g/m}^3$. These results are within the range reported for ferrous sand casting foundries (ERG-GI, 2008).

Based on Table IV.C-17, OSHA preliminarily concludes that the exposure levels of all (100 percent) of material handlers in nonferrous sand casting foundries are already at levels of 50 μ g/m³ or less and additional controls are not be necessary for this job category. With only two exposures, data available for material handlers are limited. However, at 56 μ g/m³, the median exposure for worker in ferrous sand casting foundries is only slightly higher, leading OSHA to find that the controls and conclusions described for material handlers in ferrous sand casting foundries apply to material handlers in nonferrous sand casting foundries in cases where elevated exposures occur.

Maintenance Operator

In both nonferrous sand casting and ferrous sand casting foundries, maintenance operators repair and maintain foundry and sand-handling equipment, including refractory furnace linings. However, maintenance operators who repair nonferrous furnace linings might not need to perform this task as frequently as for ferrous furnaces since the lower melting temperatures of nonferrous metals potentially cause less damage to the linings. OSHA was not able to identify any exposure measurements representing working conditions for maintenance operators in nonferrous sand casting foundries. However, based on the lower exposures reported for other job categories in nonferrous sand casting foundries compared with the exposure median and range of results for equivalent job categories in ferrous sand casting foundries, OSHA preliminarily concludes that exposures for maintenance operators are at the low end of the range for maintenance operators in ferrous sand casting foundries and that exposure levels of $50~\mu g/m^3$ or less likely have already been achieved for these workers. Furthermore, refractory maintenance activities in nonferrous foundries are not likely to result in any greater exposure for maintenance operators than in ferrous foundries. The lower melting temperatures of some nonferrous metals, such as aluminum, are less destructive of furnace linings.

In the event that elevated exposures do occur, OSHA preliminarily concludes that the controls and conclusions for maintenance operators in ferrous sand casting foundries also apply in nonferrous sand casting foundries and that by implementing those controls as needed, nonferrous sand casting foundries will be able to reduce the exposure levels of all maintenance operators to levels of $50 \, \mu g/m^3$ or less.

Housekeeping Worker

The activities of housekeeping workers in nonferrous sand casting foundries are the same as in ferrous sand casting foundries. A single result of $66 \mu g/m^3$ was obtained from a report on a nonferrous sand casting foundry and is entered in Table IV.C-17. This result is within the range reported for ferrous sand casting foundries (NIOSH HETA 86-0116-1730, 1988).

Although there is only one exposure available for housekeeping workers, the result is only slightly lower than the median value of 75 μ g/m³ for housekeeping workers in ferrous sand casting foundries. Based on information presented above for other job categories (the major sources of silica exposure for housekeeping workers), OSHA has preliminarily determined that silica exposure levels for this job category arise from the same sources in nonferrous sand-casting foundries and are unlikely to exceed (and are likely lower than) the profile presented for housekeeping workers in the ferrous sand-casting industry (Table IV.C-16). Hence, OSHA preliminarily finds that the controls and conclusions for housekeeping workers in ferrous sand casting foundries also apply in nonferrous sand casting foundries. OSHA preliminarily concludes that by implementing those controls as needed according to the exposure profile, nonferrous sand casting foundries will be able to reduce the exposure levels of all housekeeping workers to levels of 50 μ g/m³ or less.

Nonferrous Sand Casting Foundries—Overall Feasibility Findings

OSHA has preliminarily determined that controls identified to reduce worker exposures in ferrous sand casting facilities also will reduce exposures to an equivalent or greater extent in nonferrous sand casting facilities. This conclusion is based on evidence that the same casting methods involving sand are commonly used to cast most metals. As a result, the affected job categories and the sources of exposure are the same for ferrous and nonferrous sand casting foundries, and the same controls will be effective.

Based on the relatively low exposure levels reported for this industry in Table IV.C-17 and the availability of controls for most workers, OSHA preliminarily concludes that exposure levels of $50~\mu g/m^3$ or less can be achieved for all workers in nonferrous sand casting foundries most of the time. This conclusion is based on several points presented in Table IV.C-17 and elsewhere in this section. These points are summarized here. Overall, most workers (80 percent) already have exposures of $50~\mu g/m^3$ or less, and this level has already been achieved for the vast majority of workers in nine out of the 12 job categories. Additionally, the affected job categories, worker duties, sources of exposure, and equipment are the same as in the ferrous sand casting industry, where the silica exposures of most workers can be controlled to $50~\mu g/m^3$ or less most of the time (see the discussion of ferrous sand casting foundries earlier in this section).

Furthermore, exposure levels in this industry tend to be lower than in ferrous sand-casting foundries because the nonferrous metals are typically cast at lower temperatures than ferrous metals, resulting in less drying and fracturing of silica mold and core materials. For these reasons, OSHA has preliminarily determined that the same exposure controls outlined for ferrous sand-casting foundries will be at least as effective in the nonferrous sand casting industry.

Non-Sand Casting Foundries (Ferrous and Nonferrous)—Description

The group of non-sand casting foundries includes facilities that cast any metal primarily using methods other than bonded sand molds. Casting methods include, but are not limited to, unbonded sand molding (e.g., lost foam), investment casting, casting with ceramic and plaster molds, and permanent mold casting (including centrifugal mold processes). Poured metal is shaped by a substance other than sand, typically a sturdy shell-like layer of refractory material. The refractory shell materials contain silica, and permanent molds are often washed with silica mold-release agents. Sand casting foundries sometimes use similar materials to line sand molds and cores, but non-sand casting foundries depend more heavily on these refractory substances in the molding process. Some of these refractory materials contain a substantial amount of silica.

Although sand is not the primary molding material, a reduced amount of sand might be involved in these casting methods. Some processes use loose, unbonded sand to fortify or provide structural support around the refractory mold. Additionally, sand cores might be inserted into any type of mold (Schleg and Kanicki, 2000).

In general, job categories are similar to those in ferrous sand casting foundries. With the exception of molders, workers in non-sand casting foundries perform the same activities, have similar sources of exposure, and are exposed to similar levels of silica in both types of foundries (ERG-GI, 2008). Thus, OSHA preliminarily concludes that the exposure controls described for ferrous sand casting foundries will be equally effective in non-sand casting foundries.

Table IV.C-18 summarizes, by job category, the available full-shift PBZ silica exposure results for non-sand casting foundry workers.

Comparison of Non-sand Casting Foundries and Ferrous Sand Casting Foundries by Job Category

For each job category, the following section discusses relevant differences between non-sand casting foundries and ferrous sand casting foundries as they apply to worker activities and exposure levels. The discussion indicates whether the exposure control options and conclusions presented for ferrous sand casting foundries apply in non-sand casting foundries. Where necessary, the section also describes required modifications to the controls.

Sand Systems Operator

In non-sand casting foundries, the activities of sand systems operators are limited to mixing sand for cores in those facilities that use sand cores and to handling any unbonded core sand returned from the shakeout process. Core sand and refractory materials are not typically reclaimed and reused in non-sand casting foundries. Thus, sand reclamation is less complicated and presumably less dusty than in ferrous sand casting foundries. OSHA was not able to identify any exposure measurements for sand systems operators in non-sand casting foundries; however, the reduced use of sand and the modest exposure levels encountered for most job categories in these foundries suggest that exposure levels for this group would likely be in the lower end of the range reported for ferrous sand casting foundries (ERG-GI, 2008). Because of the decreased amount of sand handling, a fewer number of sand systems operators with lower exposures are likely to be employed in non-sand casting foundries than in sand casting foundries. In some cases, these duties are likely performed by a worker in another job category, such as coremaker or molder.

Table IV.C-18
Respirable Crystalline Silica Exposure Range and Profile for Non-Sand Casting Foundries (Ferrous and Nonferrous)
(Parts of NAICS 331524, 331525, 331528, 331512)

	Exposure Summary			Exposure Range		Exposure Profile				
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Non-Sand Casting Sand Systems Operator	0	0	0	0	0.0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%
Molder	23	63	30	9	318	10 43.5%	6 26.1%	3 13.0%	2 8.7%	2 8.7%
Coremaker	6	32	36	10	60	2 33.3%	3 50.0%	1 16.7%	0 0.0%	0 0%
Furnace Operator	2	26	26	17	35	1 50.0%	1 50.0%	0 0.0%	0 0.0%	0 0.0%
Pouring Operator	5	46	18	10	150	3 60.0%	1 20.0%	0 0.0%	1 20.0%	0 0.0%
Shakeout Operator	7	189	220	10	432	1 14.3%	1 14.3%	1 14.3%	2 28.6%	2 28.6%
Knockout Operator	12	88	52	9	598	4 33.3%	2 16.7%	5 41.7%	0 0.0%	1 8.3%
Abrasive Blasting Operator	9	128	13	10	980	6 66.7%	0 0.0%	2 22.2%	0 0.0%	1 11.1%
Cleaning/Finishing Operator	25	70	31	8	820	10 40.0%	10 40.0%	2 8.0%	2 8.0%	1 4.0%
Material Handler	3	41	8	8	107	2 66.7%	0 0.0%	0 0.0%	1 33.0%	0 0.0%
Maintenance Operator	4	14	12	12	20	4 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%
Housekeeping Worker	2	13	13	12	14	2 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%
Total Non-Sand Casting Foundries	98	76	28	8	980	45 45.9%	24 24.4%	14 14.3%	8 8.2%	7 7.1%

Foundries (Metal Casting)

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour TWA exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-GI, 2008.

OSHA preliminarily concludes that for those workers in this industry who do have sand-handling duties (regardless of their job category), the available controls described for sand systems operators in ferrous sand casting foundries will be sufficient to control any exposures that occur in non-sand casting foundries as well. OSHA further concludes that by implementing those controls as needed, non-sand casting foundries will be able to reduce the exposure levels of all sand systems operators to levels of $50~\mu g/m^3$ or less.

Molder

The silica exposures of molders in non-sand casting foundries originate from different mold materials than in sand-casting foundries. Green and chemically bonded sand molding processes are non-existent in non-sand casting foundries. Instead, molders weigh and mix a slurry of refractory material (typically containing substantial quantities of silica as quartz or cristobalite, or both), then repeatedly dip expendable patterns (e.g., foam, wax) in the mold material to form a shell (NIOSH ECTB 233-102c, 1999). Some molders also pour the refractory investment material around a pattern set in a flask. Molders might also sift dry silica-containing sand over dipped patterns to fortify the mold shell as it forms. In foundries using permanent molds, molders spray or pour refractory material into the metal molds (OSHA SEP Inspection Report 109051904; Schleg and Kanicki, 2000; Scholz and Hayes, 2000a). Molders oversee these typically semi-automated molding processes; however, molders might perform these processes manually for small runs or in a facility that performs one of these methods only occasionally.

Additional Exposure Profile Data for Molders

Table IV.C-18 summarized 23 results for molders from 11 reports on non-sand casting foundries ranging from 9 μ g/m³ to 318 μ g/m³, with a median of 30 μ g/m³. The mean, median, and range of results in this group are well within the levels reported for ferrous sand casting foundry molders (ERG-GI, 2008).

Two of the highest results (150 μ g/m³ and 318 μ g/m³) were associated with molders who cleaned permanent centrifugal molds (NIOSH HETA 82-0302-1461, 1984; Scholz and Hayes, 2000a). These exposure levels were attributed to refractory mold release agents, which were applied and then brushed out of the mold after completion of the casting process. NIOSH obtained the highest of these exposures in a facility that had reportedly switched from a silica flour mold release agent to a product containing less than 1.5 percent silica.

Sequential sampling sessions show the effect of switching from silica sand to an alternate granular media even when the foundry uses molding methods other than green sand casting. OSHA obtained results of 50 $\mu g/m^3$ and 90 $\mu g/m^3$ for molders at a steel investment foundry that compacted unbonded silica sand around lost-foam molds (OSHA SEP Inspection Report 109197897). This facility replaced the silica sand with olivine and reduced exposures to below the LOD (less than or equal to 12 $\mu g/m^3$). These are among the lowest results reported for this job category.

Non-sand casting methods can involve refractory investment materials that contain cristobalite instead of, or in addition to, quartz. OSHA obtained a result for a molder that contained respirable cristobalite (129 $\mu g/m^3$) in addition to respirable quartz (162 $\mu g/m^3$), producing a combined silica result of 291 $\mu g/m^3$ (OSHA SEP Inspection Report 109051904). The molder manually emptied bags of silica-containing investment material into a bucket, reaching in to stir the dry ingredients and break up clumps by hand.

These results demonstrate the additive effect of quartz and cristobalite on the worker's overall silica result.⁸⁴

Additional Controls for Molders

The controls described for ferrous sand casting foundries apply to non-sand casting foundries as well. Specific controls include improved enclosures and ventilation on sand delivery systems, ventilated workstations, work practices that limit the spread of silica-dust, and substitution of non-silica containing materials where feasible. For further detail, please see the molder job category under Ferrous Sand Casting Foundries earlier in this section.

Additionally, non-sand casting foundries that mix refractory products require ventilated bag-dumping stations and mixing equipment.

Workers who handle powdered silica materials (e.g., empty bags, weigh, mix) can be exposed to dust when it is released from these processes, and when emptied bags are compressed for disposal. One control option involves bag-dumping stations with properly ventilated enclosures, which capture dust released during both bag emptying and bag disposal. While OSHA has not identified any foundry facilities using bag-dumping stations that effectively controlled dust, ERG obtained respirable quartz exposure monitoring data for workers using bag dumping stations to empty 50-pound bags of silica-containing materials into mixers at a paint manufacturing facility (ERG-paint-fac-A, 1999). The stations consisted of hoppers topped with grates that were enclosed by LEV hoods. This ventilation system automatically removed empty bags (by suction) and transferred them to an enclosed storage area. ERG obtained five full-shift PBZ silica exposure readings of less than or equal to $12 \,\mu\text{g/m}^3$ (LOD) for five workers who emptied bags of silica-containing material using the bag-dumping stations.

ERG also obtained a full-shift PBZ exposure reading of 263 μ g/m³ for a worker at the same site who used a bag-dumping station equipped with an LEV system that failed to operate for approximately 2 hours (ERG-paint-fac-A, 1999). Without the LEV system operating, the worker was required to manually stack and compress empty bags adjacent to the station, which generated visible dust. The elevated exposure reading obtained for the worker indicates the effectiveness of the LEV system for the bag-dumping stations.

NIOSH evaluated a second type of bag-dumping station equipped with an enclosure, empty bag compactor, bag disposal chute, and LEV system (NIOSH CT-144-19a, 1983). The LEV system ventilated both the enclosure and compactor. NIOSH evaluated the unit by measuring respirable dust levels with real-time aerosol monitors before and while workers emptied bags of crushed limestone into these hoppers. NIOSH determined that the unit effectively controlled respirable dust. Ventilated bag-dumping stations that include a ventilated compactor are readily available from commercial sources (Whirl-air, 2003). OSHA notes that ventilated bag-dumping stations would be equally effective in reducing silica exposures for molders in non-sand casting foundries.

Automated transfer equipment also can reduce dust released as hoppers are filled. OSHA inspected a structural clay facility and found an 86-percent reduction in silica exposures after the facility installed an enclosed, automated sand transfer system (ERG-GI, 2008; OSHA SEP Inspection Report 300523396). Installing such a system can reduce exposures to molders in non-sand casting foundries.

⁸⁴ As described in Section IV.A – Methodology, OSHA is proposing the same permissible exposure limits (PELs) for all three of the major polymorphs of crystalline silica (quartz, cristobalite, and tridymite). On the rare occasions when both quartz and cristobalite are present in a sample, the concentrations of the detected forms are added together.

For those facilities that clean refractory materials from permanent molds, vacuuming in lieu of using compressed air will reduce exposures. Although no data are available comparing the effectiveness of vacuuming molds and brushing in non-sand casting foundries, a study of Finnish construction site workers compared the silica exposure levels for workers dry sweeping or using alternate cleaning methods (ERG-GI, 2008). The study showed that workers who cleaned using vacuums instead of dry sweeping had a five-fold reduction in exposures (Riala, 1988). Such a reduction could result in exposures below $64 \mu g/m^3$ for molders with the highest exposures in non-sand casting foundries and achieve results of $35 \mu g/m^3$ or less for workers with current exposures of $250 \mu g/m^3$ or less.

Feasibility Findings for Molders

As shown in the table, OSHA preliminarily concludes that 70 percent of molders' exposures are $50 \,\mu\text{g/m}^3$ or less. The remaining 30 percent of these workers will require additional controls to achieve exposures of $50 \,\mu\text{g/m}^3$ or less. Although limited data in Table IV.C-18 are available, based on that data and other information described above, by improving or adding ventilation to bag-dumping stations, adding or improving ventilated bag compactors, as well as enclosing and ventilating mixing equipment, OSHA preliminarily concludes that most foundries will be able to achieve results of $50 \,\mu\text{g/m}^3$ or less for molders. This conclusion is based on results from the paint manufacturing industry indicating that a functioning ventilation and bag disposal system at manual charge hoppers can reduce exposure from a level greater than $250 \,\mu\text{g/m}^3$, to less than or equal to $12 \,\mu\text{g/m}^3$ (the LOD) (ERG-paint-fac-A, 1999).

Molders who use vacuums to clean permanent molds can achieve silica exposure levels of $64~\mu g/m^3$ or less. OSHA bases this conclusion on the five-fold reduction of exposures for construction workers who cleaned with vacuums compared with dry sweeping (Riala, 1988) (applying the five-fold reduction to the highest exposure result for molders, $318~\mu g/m^3$ yields $64~\mu g/m^3$; the same reduction in results $250~\mu g/m^3$ or lower would result in values of $35~\mu g/m^3$ or less). OSHA preliminarily concludes that by implementing those controls as needed according to the exposure profile, non-sand casting foundries will be able to reduce the exposure levels of most molders to levels of $50~\mu g/m^3$ or less most of the time.

Coremaker

Coremakers are limited to those facilities that produce or handle sand cores. These cores are essentially the same as cores produced by other types of foundries. Table IV.C-18 summarized six coremaker results from three reports on non-sand casting foundries ranging from $10 \mu g/m^3$ to $60 \mu g/m^3$, with a median of $36 \mu g/m^3$. The range of results is within the lower end of the range reported for ferrous sand casting foundries (ERG-GI, 2008).

Based on the limited available data summarized in Table IV.C-18, OSHA preliminarily concludes that results of 50 μ g/m³ or less have already been achieved for 83 percent of the coremakers in these foundries. The remaining 17 percent of coremakers need additional controls to reduce their exposures to 50μ g/m³ or less. The controls and conclusions described for coremakers in ferrous sand casting foundries also apply to coremakers in non-sand casting foundries.

Furnace Operator

Furnace operator functions are the same in non-sand casting foundries as in other foundries. Table IV.C-18 summarized two results for furnace operators from a report on non-sand casting foundries. The exposures of 17 and 35 μ g/m³ are within the range reported for furnace operators in ferrous sand casting foundries (ERG-GI, 2008).

Based on the limited information presented in Table IV.C-18, OSHA preliminarily concludes that all furnace operators (100 percent) in non-sand casting foundries already experience results below 50 $\mu g/m^3$ and additional controls are not necessary for this job category. However, if elevated exposures do occur, the controls and conclusions described for furnace operators in ferrous sand casting foundries apply equally in non-sand casting foundries.

Pouring Operator

Pouring operator functions in non-sand foundries are the same as those in ferrous sand casting foundries; however, the equipment and materials differ. Pouring operators in non-sand casting foundries use a variety of mold types, including permanent molds for metals such as aluminum (made of a metal with a higher melting temperature) and the types of molds described under the molder job category. Pouring operators using permanent molds can be exposed to silica when molders apply or remove refractory coating from the molds. Table IV.C-18 summarizes five results for pouring operators in non-sand casting foundries. The results range from $10 \mu g/m^3$ to $150 \mu g/m^3$, with a median of $18 \mu g/m^3$. These results are within the range reported for ferrous sand casting foundries (ERG-GI, 2008).

The silica content of mold release agents can influence the exposure levels of workers in the pouring area. Two of the available results for this job category, $36~\mu g/m^3$ and $150~\mu g/m^3$, were obtained for pouring operators at two foundries where workers (molders or pouring operators) applied and removed refractory mold release agents on permanent centrifugal molds (NIOSH HETA 82-0302-1461, 1984; Scholz and Hayes, 2000a). The lower of these results ($36~\mu g/m^3$) was associated with a "low silica parting compound" used as the mold release agent.

OSHA preliminarily concludes, based on Table IV.C-18, that 80 percent of pouring operators have exposures of 50 $\mu g/m^3$ or less. The remaining 20 percent of these workers require additional controls to bring their exposure to 50 $\mu g/m^3$ or less. Based on the information included above, OSHA preliminarily concludes that pouring operator exposure resulting from molders applying and removing refractory coating will be reduced when molding operator exposures are controlled using methods described for molders working with permanent molds in non-sand casting foundries. However, pouring operators involved in cleaning might need to be provided with vacuums to reduce exposures below 50 $\mu g/m^3$. Alternatively, foundries can switch to low-silica mold release agents that are less toxic than the high-silica products used for the same purpose.

Shakeout Operator

Shakeout operator functions are generally similar to those in ferrous sand casting foundries. However, in sand casting foundries, manual processes for removing mold and core materials are consolidated into this operation (despite worker job titles associated with knockout operations), while sprue and riser removal are consolidated under the knockout operations.

Table IV.C-18 summarized seven results for shakeout operators from four reports on non-sand casting foundries. Exposures for shakeout operators range from 10 to 432 $\mu g/m^3$ with a mean of 189 $\mu g/m^3$ and a median of 220 $\mu g/m^3$. Four of the seven samples (all from one steel investment foundry) contained cristobalite only (no quartz detected) at levels of 222 $\mu g/m^3$, 238 $\mu g/m^3$, and 420 $\mu g/m^3$, while one result of 100 $\mu g/m^3$ included equal parts quartz and cristobalite (OSHA SEP Inspection Report 123186611). This range of exposure levels is within the range described for ferrous sand casting foundries (ERG-GI, 2008).

Based on Table IV.C-18, OSHA preliminarily concludes that exposure levels of $50 \mu g/m^3$ or less have already been achieved for 29 percent of shakeout operators. The remaining 71 percent will require

additional controls. OSHA has preliminarily determined that the controls and conclusions for shakeout operators in ferrous sand casting foundries also apply in non-sand casting foundries.

Although not suggested by the exposure profile in Table IV.C-17, it is possible that a few shakeout operators in these foundries might require respiratory protection under the same circumstances as mentioned for shakeout operators in ferrous sand casting foundries.

Knockout Operator

Knockout operator functions are generally the same as in ferrous sand casting foundries. However, as stated earlier, manual processes for removing mold and core materials are consolidated into the shakeout process. Sprue and riser removal activities are consolidated under the knockout operations.

Table IV.C-18 summarizes 12 silica results from six reports on non-sand casting foundries ranging from 9 $\mu g/m^3$ to 598 $\mu g/m^3$ with a median of 52 $\mu g/m^3$. The highest result (598 $\mu g/m^3$) was from an investment casting foundry and contained cristobalite but no detectable quartz (ERG-GI, 2008).

Based on Table IV.C-18, OSHA preliminarily concludes that 50 percent of knockout operators already experience silica exposures of $50~\mu g/m^3$ or less. Based on the similarities between knockout operator tasks in this and other types of foundries, OSHA has preliminarily determined that the controls and conclusions for knockout operators in ferrous sand casting foundries apply in non-sand casting foundries as well. The exposure levels of the remaining 50 percent of knockout operators can be controlled using these methods

Although not suggested by the exposure profile in Table IV.C-17, it is possible that a few knockout operators in these foundries might require respiratory protection under the same circumstances as mentioned for shakeout operators in ferrous sand casting foundries.

Abrasive Blasting Operator

Activities of abrasive blasting operators in non-sand casting foundries are the same as in ferrous sand casting foundries. Table IV.C-18 summarizes nine results from six reports ranging from 10 μ g/m³ to 980 μ g/m³, with a median of 13 μ g/m³. These results are within the range reported for ferrous sand casting foundries (ERG-GI, 2008).

Table IV.C-18 also shows that 67 percent of abrasive blasting operators already experience exposure levels less than the proposed PEL of $50~\mu g/m^3$. The controls and conclusions for abrasive blasting operators in ferrous sand casting foundries also apply to non-sand casting foundries, where investment materials or mold washes can adhere to castings, as do green sand molding materials in sand casting foundries. OSHA preliminarily concludes that by implementing those controls as needed according to the exposure profile, non-sand casting foundries will be able to reduce the exposure levels for the remaining 33 percent of abrasive blasting operators to levels of $50~\mu g/m^3$ or less.

Although not suggested by the exposure profile in Table IV.C-17, it is possible that a few abrasive blasting operators in these foundries might require respiratory protection under the same circumstances as mentioned for shakeout operators in ferrous sand casting foundries.

Cleaning/Finishing Operator

Cleaning/finishing operators perform the same activities in non-sand casting foundries as in ferrous sand casting foundries. As noted above, silica mold materials and washes can remain adhered to castings using

non-sand casting methods just as they do in sand casting foundries, although the quantity might be lower (e.g., mold washes are typically used in small quantities as release agents on permanent molds; where so used, these agents are present as trace contaminants on the finished casting, rather than as large chunks or deeply embedded veins). However, regardless of the casting or mold release material used, cleaning/finishing operators use the same tools and processes to remove it from castings.

Table IV.C-18 summarizes 25 results (combined quartz and cristobalite) for cleaning/finishing operators in non-sand casting foundries ranging from 8 μ g/m³ to 820 μ g/m³ with a median of 31 μ g/m³. These results are contained in nine reports on non-sand casting foundries (ERG-GI, 2008). Two of these results, both from foundries using investment casting methods, included cristobalite (one value of 54 μ g/m³, no quartz detected; one result of 210 μ g/m³ that included 150 μ g/m³ quartz and 60 μ g/m³ cristobalite).

Based on Table IV.C-18, the silica exposures of 80 percent of cleaning/finishing operators are already at levels of $50~\mu g/m^3$ or less. Because of the similarities between cleaning/finishing operator activities in this and other types of foundries, OSHA preliminarily concludes that the controls and conclusions provided for cleaning/finishing operators in ferrous sand casting foundries apply in non-sand casting foundries as well. OSHA preliminarily concludes that by implementing additional controls, non-sand casting foundries will be able to reduce the exposure levels for the remaining 20 percent of sand systems operators to levels of $50~\mu g/m^3$ or less most of the time.

In the event that exposure levels of a few operators still remain above 50 $\mu g/m^3$, respiratory protection will be necessary for those workers

Material Handler

The activities of material handlers in non-sand casting foundries are the same as in ferrous sand casting foundries. Table IV.C-18 summarizes three results from two reports on non-sand casting foundries. Exposures range from 8 μ g/m³ to 107 μ g/m³, with a median of 8 μ g/m³ and mean of 41 μ g/m³. These results are approximately half the mean and range reported for ferrous sand casting foundries (mean of 80 μ g/m³ and maximum of 280 μ g/m³) (see Table IV.C-16). This difference can be accounted for by the lower potential for material handlers to experience secondary exposure to silica from the activities of workers in other job categories (who also have lower exposure levels in non-sand casting foundries).

Based on Table IV.C-18, the exposure levels of $50 \,\mu g/m^3$ or less have already been achieved for 67 percent of material handlers. Because the work activities of material handlers are the same within both types of foundries, the controls and conclusions for those workers in ferrous sand casting foundries also apply in non-sand casting foundries. OSHA preliminarily concludes that by implementing those controls as needed according to the exposure profile, non-sand casting foundries will be able to reduce the exposure levels of the remaining 33 percent of material handlers to levels of $50 \,\mu g/m^3$ or less.

Maintenance Operator

Activities of maintenance operators are the same in non-sand casting foundries as in other types of foundries that cast the same metals and include tasks related to refractory repair. For example, a report on a non-sand casting foundry included four results for maintenance operators performing refractory repair work in a cast iron foundry. These results range from less than or equal to $12 \,\mu\text{g/m}^3$ (the LOD) to $20 \,\mu\text{g/m}^3$, with a median of $12 \,\mu\text{g/m}^3$ (OSHA SEP Inspection Report 301320644). This is the only source of data for maintenance operators in non-sand casting foundries and these results, summarized in Table IV.C-18, are at the lower end of the range reported for ferrous sand casting foundries.

Based on Table IV.C-18, OSHA preliminarily concludes that the exposure levels of all (100 percent) of maintenance operators in non-sand casting foundries are already at levels of $50~\mu g/m^3$ or less and additional controls are not necessary for this job category. However, OSHA acknowledges that the available data might underestimate exposure for maintenance operators in non-sand casting foundries, who have the potential for exposure at the same levels encountered by workers performing the same refractory repair tasks at ferrous sand casting foundries. If elevated exposures do occur, the controls and conclusions described for maintenance operators in ferrous sand casting foundries apply equally to maintenance operators in non-sand casting foundries.

Housekeeping Worker

The activities of housekeeping workers in non-sand casting foundries are also the same as those of the equivalent job category in ferrous sand casting foundries. Two silica results obtained from a report on a non-sand casting foundry were less than or equal to the LOD ($12 \mu g/m^3$ and $14 \mu g/m^3$), with a median of $13 \mu g/m^3$. These results, summarized in Table IV.C-18, are within the range reported for ferrous sand casting foundries (OSHA SEP Inspection Report 122480742). Although limited, these results suggest that housekeeping workers in these foundries have little or no excessive secondary exposure to silica from the activities of workers in other job categories.

Based on Table IV.C-17, OSHA preliminarily concludes that the exposure levels of all (100 percent) housekeeping workers in non-sand casting foundries are already at levels of 50 $\mu g/m^3$ or less and additional controls are not necessary for this job category. If elevated exposures do occur, the controls and conclusions described for housekeeping workers in ferrous sand casting foundries apply to housekeeping workers in non-sand casting foundries.

Non-Sand Casting Foundries—Overall Feasibility Finding

OSHA has preliminarily determined that controls identified to reduce worker exposures in ferrous sand casting facilities also will reduce exposures to an equivalent or greater extent in non-sand casting facilities. This conclusion is based on evidence that even non-sand casting foundries use sand and other materials that contain silica in casting processes, although often to a lesser extent (e.g., in cores, or to pack investment molds). Additionally, non-sand casting foundry processes involve the same job categories performing generally similar activities as those outlined for ferrous sand casting foundries. As a result, the affected job categories and to a large extent the sources of exposure in non-sand casting foundries are similar to those listed for both ferrous and nonferrous sand casting foundries. Therefore, most of the same controls will be effective. Where production methods diverge (e.g., using mold release agents on permanent molds), additional controls are available as described above.

As indicated in Table IV.C-18, the rather limited available information indicates that exposures of 50 $\mu g/m^3$ or less have already been achieved for the vast majority of workers in seven of the 12 job categories (coremakers, furnace operators, pouring operators, cleaning/finishing operators, maintenance operators, housekeeping workers, and possibly sand systems operators). Furthermore, where exposures exceed the proposed 50 $\mu g/m^3$, they usually do so moderately. Overall, 70 percent of workers in non-sand casting foundries already experience results of 50 $\mu g/m^3$ or less, and nearly half of the remainder (14 percent of the total) have exposures between 50 $\mu g/m^3$ and 100 $\mu g/m^3$. For only two job categories do more than 10 percent of the workers experience results greater than 250 $\mu g/m^3$ (shakeout operators and abrasive blasting operators).

Based on the relatively moderate exposure levels reported for this industry in Table IV.C-18 and the availability of controls for most working conditions, OSHA preliminarily concludes that exposure levels of $50 \,\mu\text{g/m}^3$ or less can be achieved for all workers in non-sand casting foundries most of the time.

Captive Foundries—Description

Captive foundries cast metal using the same range of processes that are found in other foundry sectors. A captive foundry might cast any metal in any quantity, use any molding process, clean castings, and process and reclaim sand using the same range of methods and equipment used by ferrous sand casting, nonferrous sand casting, or non-sand casting foundries (ERG-GI, 2008). Furthermore, the job categories found in captive foundries mirror those found in other foundries. For example, a State industrial commission reviewed data collected from a captive gray iron foundry that produces large truck brake drums. Job categories sampled included those found in ferrous sand casting foundries (i.e., sand system operator, molder, shakeout operator). As another example, OSHA inspected sand casting foundries (both ferrous and nonferrous) belonging to an enameled iron and metal products manufacturer and sampled shakeout operators (OSHA SEP Inspection Report 118115344).

The difference between a captive foundry and other foundries involves the business relationship between the foundry and the organization it supplies, rather than a fundamental difference in the metal casting process. Captive foundries fill specific requirements of their parent companies, whether the need is for large numbers of identical pieces, a small number of customized items, or specialty handling of a wide range of castings. As such, a captive foundry operation is incorporated into the larger manufacturing process of the parent operation. This relationship might be beneficial under some economic conditions; thus, captive foundries might have an increased ability to modernize or add environmental controls. However, as discussed below, this potential is not reflected in exposure levels reported in the limited number of OSHA, NIOSH, and State reports available to OSHA for captive foundries.⁸⁵

Table IV.C-19 summarizes the worker exposure levels for the data (50 results) available to OSHA for captive foundries. Exposures range from 6 μ g/m³ to 286 μ g/m³, with a median of 54 μ g/m³ and a mean of 76 μ g/m³. Exposure results for six of the eight job categories with available data consistently fall within the range of results reported for ferrous sand foundries. Minimum exposure results for abrasive blasting operators and cleaning/finishing operators are just slightly lower than minimums for the same job categories for ferrous sand foundries (all below 14 μ g/m³).

For most job categories, the exposure levels are generally similar to the levels observed for noncaptive foundries using comparable casting processes. Although the median values for some job categories (coremaker, shakeout operator, knockout operator) are higher than those for the same job categories in other foundry sectors, these values might over represent the true median exposures in captive foundries (ERG-GI, 2008). OSHA believes that this could be the case because: 1) in some cases the data are quite limited (just one or two results available) and 2) in order to compensate for the limited number of more recent information sources describing exposure levels in captive foundries, OSHA included data from three NIOSH reports on foundry visits performed in the late 1980s. Thus, Table IV.C-19 contains a substantial number of silica

⁸⁵ OSHA also notes that information contained in some documents does not permit the facilities to be classified as captive or independent foundries. As a result, some information on facilities that are actually captive foundries might appear in the analysis for other foundry types. Table IV.C-19 summarizes data from facilities known to be captive foundries at the time the samples were collected.

Table IV.C-19
Respirable Crystalline Silica Exposure Range and Profile for Captive Foundries

Job Category	Exposure Summary			Exposure Range		Exposure Profile					
	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Captive Sand Systems Operator	2	116	116	111	120	0 0.0%	0 0.0%	0 0.0%	2 100.0%	0 0.0%	
Molder	10	83	49	26	286	0 0.0%	5 50.0%	2 20.0%	2 20.0%	1 10.0%	
Coremaker	1	56	56	56	56	0 0.0%	0 0.0%	1 100.0%	0 0.0%	0 0%	
Furnace Operator	0	0	0	0	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Pouring Operator	0	0	0	0	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Shakeout Operator	11	96	77	26	197	0 0.0%	2 18.2%	4 36.4%	5 45.5%	0 0.0%	
Knockout Operator	2	112	112	76	149	0 0.0%	0 0.0%	0 0.0%	2 100.0%	0 0.0%	
Abrasive Blasting Operator	7	64	30	6	254	3 42.9%	1 14.3%	2 28.6%	0 0.0%	1 14.3%	
Cleaning/Finishing Operator	16	56	46	7	185	1 6.3%	11 68.8%	3 18.8%	1 6.3%	0 0.0%	
Material Handler	1	22	22	22	22	1 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Maintenance Operator	0	0	0	0	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Housekeeping Worker	0	0	0	0	0	0 0.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Total Captive Foundries	50	76	54	6	286	5 10.0%	19 38.0%	13 26.0%	11 22.0%	2 4.0%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour TWA exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

Foundries (Metal Casting)

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-GI, 2008.

results from older reports. These older data that might not reflect modifications made to reduce exposure levels since that time. Despite this potential overrepresentation, the exposure profiles for each job category are reasonably similar to those in ferrous sand casting categories, and therefore, technological feasibility can be compared with other foundries (ERG-GI, 2008). OSHA preliminarily concludes that exposure levels of $50 \, \mu \text{g/m}^3$ or less can be achieved for most of these workers most of the time.

Captive Foundries—Overall Feasibility Findings

OSHA preliminarily concludes that the controls identified to reduce worker exposure to silica in ferrous and nonferrous sand casting foundries and in non-sand casting foundries will be equally effective in reducing silica exposure in captive foundries. This conclusion is based on evidence that the processes, equipment, and worker activities are similar in captive foundries and foundry industry facilities using the same casting method. As a result, the affected job categories and the sources of exposure are the same for the different types of foundries.

REFERENCES

- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- [AFS] American Foundrymen's Society, Inc., 1985. Foundry Ventilation Manual. Des Plaines, IL. **OSHA-2010-0034-0517**
- [AFS] American Foundrymen's Society, Inc., 2001. Casting Answers & Advice. AFS Technical Department. Modern Casting (January): 52. **OSHA-2010-0034-0518**
- [ANH] ANH Refractories Company, 2004. Dossolite 1410—75 Material Safety Data Sheet. Available at http://msds.domamer.anhamer.anhrefractories.com/ag/DOSSOLITE_1400-75_(USA).pdf. Last accessed 23 April 2010. **OSHA-2010-0034-0527**
- Beamer, B.R., S. Shulman, A. Maynard, and D. Watkins, 2005. Evaluation of misting controls to reduce respirable silica exposure for brick cutting. Annals of Occupational Hygiene 49(6):503-510. **OSHA-2010-0034-0549**
- Boride, 2003. Product literature for Wet blast nozzles: WIN (Water Induction Nozzle) system for wet abrasive blasting. **OSHA-2010-0034-0564**
- Brenneman, C., 2010. Evaluating Worker Exposure to Hexavalent Chromium in Refractory Materials During Demolition Activities. Thesis submitted to the University of Cincinnati Division of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science. **OSHA-2010-0034-0568**
- Burmeister, S., 2001. OSHA compliance issues: Exposure to crystalline silica during a foundry ladle relining process (R. Fairfax, Column Editor). Applied Occupational and Environmental Hygiene 16(7):718–720. **OSHA-2010-0034-0576**
- Business Wire, 2008. Examine the US refractories market. Available at: http://www.businesswire.com/portal/site/home/permalink/?ndmViewId=news_view&ne

- wsId=20080222005277&newsLang=en. Last accessed 23 April 2010. **OSHA-2010-0034-0578**
- Carbo, 2000. Carbo AccucastTM product attributes As disclosed by using companies. Product literature for Carbo Ceramics Accucast. **OSHA-2010-0034-1691**
- Cheng, R.T., H.J. MdDermott, G.M. Gia, T.L. Cover and M.M. Duda, 1992. Exposures to refractory ceramic fiber in refineries and chemical plants. Applied Occupational and Environmental Hygiene 7(6):361–367. **OSHA-2010-0034-1414**
- Cralley, L.V, and L.J. Cralley, 1989. In-Plant Practices for Job Related Health Hazards Control, Vol. 1. New York, NY: John Wiley & Sons, Inc. **OSHA-2010-0034-1406**
- [Didion] Didion International, Inc., 2000a. Letter from Michael S. Didion to ERG, including attached product literature (dated 25 October). **OSHA-2010-0034-0622**
- [Didion] Didion International, Inc., 2000b. Internet Web site: Rotary media drum. Available at: http://www.didion.com/media.htm. Last accessed 27 December 2009.
- [Didion] Didion International, Inc., 2003. Internet Web site: Testimonials. Available at: http://www.didion.com/company_news.htm. Last accessed 25 October 2009.
- Echt, A., and Sieber, W., 2002. Control of silica from hand tools in construction: grinding concrete (D. Tharr, ed.). Applied Occupational and Environmental Hygiene 17(7):457-461. **OSHA-2010-0034-0632**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- ERG # MI-1473. Michigan Department of Public Health. Case File. OSHA-2010-0034-0249
- ERG # MI-1474. Michigan Department of Public Health. Case File. OSHA-2010-0034-1407
- ERG # MI-1483. Michigan Department of Public Health. Case File. OSHA-2010-0034-1408
- ERG # MI-1485. Michigan Department of Public Health. Case File. OSHA-2010-0034-1409
- ERG # OH-1460. Industrial Commission of Ohio, Division of Safety and Hygiene. Case File. **OSHA-2010-0034-1412**
- ERG # OH-1466. Industrial Commission of Ohio, Division of Safety and Hygiene. Case File. **OSHA-2010-0034-0265**
- ERG # OH-1470. Industrial Commission of Ohio, Division of Safety and Hygiene. Case File. **OSHA-2010-0034-1354**
- ERG # OH-1488. Industrial Commission of Ohio, Division of Safety and Hygiene. Case File. **OSHA-2010-0034-0265**

- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- Flanagan, M.E., C. Loewenherz, and G. Kuhn, 2001. Indoor wet concrete cutting and coring exposure evaluation. Applied Occupational and Environmental Hygiene 16(12):1097–1100. **OSHA-2010-0034-0675**
- Flanagan M.E., N. Seixas, M. Majar, J. Camp, and M. Morgan, 2003. Silica dust exposures during selected construction activities. American Industrial Hygiene Association Journal 64(3):319-328. **OSHA-2010-0034-0676**
- Foundry Engineering Group Project Case History H, 2000. Ventilation Controls Report and Interactive CD-ROM. Foundry Engineering Group Project, LLC; El Dorado Hills, California. **OSHA-2010-0034-1250**
- Foundry Equipment Manufacturer J, 2000. Personal communication between Foundry Equipment Manufacturer J and Eastern Research Group, Inc. October 2. **OSHA-2010-0034-0691**
- Foundry Products Supplier A, 2000. Phone call between representative of Foundry Products Supplier A and Eastern Research Group, Inc. September 13. **OSHA-2010-0034-0684**
- Foundry Products Supplier B, 2000a. Personal communication. Phone call between representative Number 1 of Foundry Products Supplier B and Eastern Research Group, Inc. November 16. **OSHA-2010-0034-1358**
- [Gradmatic] Gradmatic Equipment, Inc., 1999. Gradmatic refractory installation and vibratory system Economic considerations (technical paper). **OSHA-2010-0034-1367**
- [Gradmatic] Gradmatic Equipment, Inc., 2000. Phone call between A.J. Grady of Gradmatic Equipment, Inc. and Eastern Research Group, Inc. October 18. **OSHA-2010-0034-0718**
- Gressel, M.G., 1997. An evaluation of a local exhaust ventilation control system for a foundry casting-cleaning operation. American Industrial Hygiene Association Journal 58:354–358. **OSHA-2010-0034-0718**
- Haney, R., 2000. Measurement and Control of Silica. Presentation at OSHA/NIOSH/MSHA Triagency Workshop, Morgantown, West Virginia. June 28. **OSHA-2010-0034-0723**
- Hoffer, K., 2007. How to make your very own jackhammer spray dust control. New Jersey Laborers Health and Safety Fund. Accessible at: http://www.njlaborers.org/health/pdfs/other/jackhammer.pdf OSHA-2010-0034-0741
- Hughes R.T., and R.C. Schultz, 1984. Demonstration of control methods for torch cutting and air carbon-arc gouging. AFS Transactions. As appearing in Foundry Engineering Group Project: Ventilation Controls Report and Interactive CD-ROM. **OSHA-2010-0034-0744**

- Huston, R.N., 1981. Abstract number 820130: Cast cleaning methods Vibratory finishing. From Cleaning Room Technology, Proceedings of AFS/CMI Conference, Rosemont, Illinois. Pp. 89–102. Internet Web site for Cast Metals Institute: http://www.castmetals.com. Last accessed 21 December 2000. **OSHA-2010-0034-1695**
- [IFSCO] Independent Foundry Supply Company, 2000. Olivine molding sand. Available at: http://www.foundry-supplies.com/sands.htm. Last accessed December 22. **OSHA-2010-0034-0746**
- Irwin, A., 2003. Overexposure to crystalline silica in a foundry. Applied Occupational and Environmental Hygiene 18(1):18-21. **OSHA-2010-0034-0752**
- Kinergy Corporation, 2000. Phone call between representative of Kinergy Corporation and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-0764**
- Lee, K., 2009a. OSHA compliance issues benzene and crystalline silica exposures in a grey iron foundry. Journal of Occupational and Environmental Hygiene 6(5):D15–D17. **OSHA-2010-0034-0779**
- Lee, K., 2009b. Personal communication between Ken Lee, Occupational Safety and Health Administration, and Eastern Research Group, Inc. November 12. **OSHA-2010-0034-0780**
- McNeil, 2000. Internet Web site for McNeil, Inc.: Refractory manufacturing and installation. Available at: http://www.mcneilusa.comconstruc.html. Last accessed 5 October. **OSHA-2010-0034-0799**
- Mohawk College, 2005. Introduction to metal casting: MATL MTB72 module 2—Course notes. Available at: http://www.theworkshop.ca/casting/course/MTB72/2/MTB722.htm
 OSHA-2010-0034-1396
- Naro, 2002. Formation and control of lustrous carbon surface defects in iron and steel castings. American Foundry Society, AFS Transactions 02-154, Silver Anniversary Paper, Division 4, 20 pp. **OSHA-2010-0034-1397**
- [NIOSH-79-114] National Institute for Occupational Safety and Health, 1978. An evaluation of occupational health hazard control technology for the foundry industry. October. **OSHA-2010-0034-1382**
- [NIOSH-81-114] National Institute for Occupational Safety and Health, 1981. High velocity, low volume dust capture during grinding using portable tools. Proceedings of the Symposium on Occupational Health Control Technology in the Foundry and Secondary Non-Ferrous Smelting Industries. December 1979. **OSHA-2010-0034-1383**
- [NIOSH-85-116/86-116-1730] National Institute for Occupational Safety and Health, 1986. Recommendations for control of occupational safety and health hazards: Foundries. September. **OSHA-2010-0034-1368**

- [NIOSH 2008-127] National Institute for Occupational Safety and Health, 2008. Workplace solutions Water spray of hazardous dust when breaking concrete with a jackhammer. Available at: http://www.cdc.gov/niosh/docs/wp-solutions/2008-127/pdfs/2008-127.pdf
 OSHA-2010-0034-0838
- [NIOSH CT-144-19a] National Institute for Occupational Safety and Health, 1983. An evaluation of control technology for bag opening, emptying and disposal the self-contained filter/bag dump station, The Young Industries, Inc., Muncy, Pennsylvania. OSHA-2010-0034-1369
- [NIOSH ECTB 233-102c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 02 A lost foam foundry. **OSHA-2010-0034-0215**
- [NIOSH ECTB 233-107c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 07 A grey iron foundry operation. **OSHA-2010-0034-0268**
- [NIOSH ECTB 233-113c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 13 A steel foundry operation. **OSHA-2010-0034-0233**
- [NIOSH ECTB 247-11c] National Institute for Occupational Safety and Health, 1999. In-depth study report: Control technology for crystalline silica exposure in construction: Wet abrasive blasting at the Nokia building construction site, Irving, Texas. **OSHA-2010-0034-0230**
- [NIOSH EPHB 233-133c] National Institute for Occupational Safety and Health, 2002. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 33 A gray iron foundry with computational fluid dynamics used to analyze an existing control and model proposed modifications. **OSHA-2010-0034-0246**
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0862**
- [NIOSH EPHB 282-11a] National Institute for Occupational Safety and Health, 2003. In-depth survey report of control of respirable dust and crystalline silica from breaking concrete with a jackhammer at Bishop Sanzari companies, North Bergen, New Jersey. **OSHA-2010-0034-0865**
- [NIOSH EPHB 282-11c-2] National Institute for Occupational Safety and Health, 2004. In-depth survey report of a water spray device for suppressing respirable and crystalline silica dust from jackhammers. **OSHA-2010-0034-0867**
- [NIOSH HETA 82-0302-1461] National Institute for Occupational Safety and Health, 1984. Health hazard evaluation report: East Penn Foundry, Macungie, Pennsylvania. **OSHA-2010-0034-0900**

- [NIOSH HETA 86-0116-1730] National Institute for Occupational Safety and Health, 1988. Health hazard evaluation report: Winters Industry Foundry, Canton, Ohio (includes NIOSH HETA 85-482-1730 for the same facility). **OSHA-2010-0034-1373**
- [NIOSH HETA 86-0284-1914] National Institute for Occupational Safety and Health, 1988. Health hazard evaluation report: H.B. Smith Company, Inc., Westfield, Massachusetts. **OSHA-2010-0034-1374**
- [NIOSH HETA 88-240-2210] National Institute for Occupational Safety and Health, 1992. Health hazard evaluation report: The Mueller Company, Decatur, Illinois. **OSHA-2010-0034-1375**
- [NIOSH HETA 90-0249-2381] National Institute for Occupational Safety and Health, 1994. Health hazard evaluation report: Blaw Knox Rolls, Inc., Wheeling, West Virginia. **OSHA-2010-0034-1376**
- [NIOSH HETA 92-044-2265] National Institute for Occupational Safety and Health, 1992. Health hazard evaluation report: General Castings Company, Liberty Road Facility, Delaware, Ohio. **OSHA-2010-0034-1463**
- [NIOSH HETA 92-0089-2368] National Institute for Occupational Safety and Health, 1993. Health hazard evaluation report: General Castings Company, Curtis Street Facility, Delaware, Ohio. **OSHA-2010-0034-1378**
- [NIOSH HETA 92-090-2296] National Institute for Occupational Safety and Health, 1993. Health hazard evaluation report: General Castings Company, Toledo Street Facility, Delaware, Ohio. **OSHA-2010-0034-1379**
- [NIOSH HETA 97-0004-2642] National Institute for Occupational Safety and Health, 1997. Health hazard evaluation report: Centre Foundry & Machine Company, Wheeling, West Virginia. **OSHA-2010-0034-1381**
- [NJDHSS] New Jersey Department of Health and Senior Services, no date. NJ silicosis outreach and research alliance Engineering controls for crystalline silica Modifications to jackhammer spray dust control by NJ DOT. Available at:

 http://www.state.nj.us/health/silicosis/documents/njdotmodifications.pdf
 OSHA-2010-0034-0914
- O'Brien, D., 1998. Phone call between Dennis O'Brien of National Institute of Occupational Safety and Health and Eastern Research Group, Inc. June 25. **OSHA-2010-0034-0926**
- O'Brien, D., 2000. Phone call between Dennis O'Brien of National Institute of Occupational Safety and Health and Eastern Research Group, Inc. October 27. **OSHA-2010-0034-0927**
- [OSHA SEP Inspection Report 100494079] OSHA Special Emphasis Program Inspection Report 100494079. **OSHA-2010-0034-0132**

- [OSHA SEP Inspection Report 101548626] OSHA Special Emphasis Program Inspection Report 101548626. **OSHA-2010-0034-0128**
- [OSHA SEP Inspection Report 103471314] OSHA Special Emphasis Program Inspection Report 103471314. **OSHA-2010-0034-0118**
- [OSHA SEP Inspection Report 108772377] OSHA Special Emphasis Program Inspection Report 108772377. **OSHA-2010-0034-0018**
- [OSHA SEP Inspection Report 109051904] OSHA Special Emphasis Program Inspection Report 109051904. **OSHA-2010-0034-0498**
- [OSHA SEP Inspection Report 109197897] OSHA Special Emphasis Program Inspection Report 109197897. **OSHA-2010-0034-0142**
- [OSHA SEP Inspection Report 109198036] OSHA Special Emphasis Program Inspection Report 109198036. **OSHA-2010-0034-0147**
- [OSHA SEP Inspection Report 113451538] OSHA Special Emphasis Program Inspection Report 113451538. **OSHA-2010-0034-0102/ OSHA-2010-0034-113**
- [OSHA SEP Inspection Report 114154263] OSHA Special Emphasis Program Inspection Report 114154263. **OSHA-2010-0034-0025**
- [OSHA SEP Inspection Report 116154311] OSHA Special Emphasis Program Inspection Report 116154311. **OSHA-2010-0034-0139**
- [OSHA SEP Inspection Report 116156266] OSHA Special Emphasis Program Inspection Report 116156266. **OSHA-2010-0034-0082**
- [OSHA SEP Inspection Report 116199589] OSHA Special Emphasis Program Inspection Report 116199589. **OSHA-2010-0034-0196**
- [OSHA SEP Inspection Report 116201997] OSHA Special Emphasis Program Inspection Report 116201997. **OSHA-2010-0034-0080**
- [OSHA SEP Inspection Report 118115344] OSHA Special Emphasis Program Inspection Report 118115344. **OSHA-2010-0034-0168**
- [OSHA SEP Inspection Report 121905079] OSHA Special Emphasis Program Inspection Report 121905079. **OSHA-2010-0034-0104**
- [OSHA SEP Inspection Report 121977870] OSHA Special Emphasis Program Inspection Report 121977870. **OSHA-2010-0034-0028**
- [OSHA SEP Inspection Report 122031487] OSHA Special Emphasis Program Inspection Report 122031487. **OSHA-2010-0034-0038**

- [OSHA SEP Inspection Report 122040488] OSHA Special Emphasis Program Inspection Report 122040488. **OSHA-2010-0034-0130**
- [OSHA SEP Inspection Report 122043151] OSHA Special Emphasis Program Inspection Report 122043151. **OSHA-2010-0034-0131**
- [OSHA SEP Inspection Report 122122534] OSHA Special Emphasis Program Inspection Report 122122534. **OSHA-2010-0034-0501**
- [OSHA SEP Inspection Report 122209679] OSHA Special Emphasis Program Inspection Report 122209679. **OSHA-2010-0034-0121**
- [OSHA SEP Inspection Report 122480742] OSHA Special Emphasis Program Inspection Report 122480742. **OSHA-2010-0034-0017**
- [OSHA SEP Inspection Report 123186611] OSHA Special Emphasis Program Inspection Report 123186611. **OSHA-2010-0034-0078**
- [OSHA SEP Inspection Report 123187965] OSHA Special Emphasis Program Inspection Report 123187965. **OSHA-2010-0034-0081**
- [OSHA SEP Inspection Report 300219755] OSHA Special Emphasis Program Inspection Report 300219755. **OSHA-2010-0034-0094**
- [OSHA SEP Inspection Report 300409166] OSHA Special Emphasis Program Inspection Report 300409166. **OSHA-2010-0034-0099**
- [OSHA SEP Inspection Report 300523396] OSHA Special Emphasis Program Inspection Report 300523396. Includes pages from related inspections 300530805, 302005772, and 302547674. **OSHA-2010-0034-0161**
- [OSHA SEP Inspection Report 300530029] OSHA Special Emphasis Program Inspection Report 300530029. Includes pages from related inspection 302545801. **OSHA-2010-0034-0182**
- [OSHA SEP Inspection Report 301320644] OSHA Special Emphasis Program Inspection Report 301320644. **OSHA-2010-0034-0062**
- [OSHA SEP Inspection Report 302380522] OSHA Special Emphasis Program Inspection Report 302380522. **OSHA-2010-0034-0163**
- [OSHA SEP Inspection Report 303207518] OSHA Special Emphasis Program Inspection Report 303207518. **OSHA-2010-0034-0511**
- Pangborn Corporation, 2000. Internet Web page: Surface preparation equipment rotoblast tables. **OSHA-2010-0034-1692**

- Reade Advance Materials, no date. Internet Web page for olivine powder and olivine sand ((MgFe)2SiO4) from READE. Available at: http://www.reade.com/products/29-minerals-and-ores-powder/630-olivine-powder-olivine-sand-mgfe2sio4-magnesium-iron-silicate-chrysopal-glinkite-hawaiite-villarsite-glinkita-hawaiita OSHA-2010-0034-1254
- Refractory Products Supplier A, 2000. Personal communication between Refractory Products Supplier A and Eastern Research Group, Inc. October 5. **OSHA-2010-0034-0969**
- Refractory Products Supplier A, 2010. Personal communication between Refractory Products Supplier A and Eastern Research Group, Inc. March 24. **OSHA-2010-0034-1159**
- Refractory Services Provider A, 2003a. Personal communication between Refractory Services Provider A and Eastern Research Group, Inc. October 6. **OSHA-2010-0034-1161**
- Refractory Services Provider A, 2003b. Personal communication between Refractory Services Provider A and Eastern Research Group, Inc. October 7. **OSHA-2010-0034-1162**
- Riala, R., 1988. Dust and Quartz Exposure of Finnish Construction Site Cleaners. Annals of Occupational Hygiene 32(2):215-220. **OSHA-2010-0034-1163**
- Schleg, F., and D. Kanicki, 2000. Guide to casting and molding processes. Engineered Casting Solutions. American Foundry Society (summer ed.):18–27. **OSHA-2010-0034-1287**
- Scholz, R.C., and R.J. Hayes, 2000a. Ventilation control of airborne metals and silica in foundries, case history D. California Cast Metals Association (April). **OSHA-2010-0034-1171**
- Scholz, R.C., and R.J. Hayes, 2000b. Ventilation control of airborne metals and silica in foundries, case history E. California Cast Metals Association (April). **OSHA-2010-0034-1175**
- Simcox, N., D. Lofgren, J. Leons, and J. Camp, 1999. Silica exposure during granite countertop fabrication. Applied Occupational and Environmental Hygiene 14(9):577-582. **OSHA-2010-0034-1146**
- South Cast Equipment, 2000. Phone call between Ron Brown of South Cast Equipment (distributor of Didion rotary drums) and Eastern Research Group, Inc. 27 October. **OSHA-2010-0034-1148**
- Sweeney, J., and D. Gilgrist, 1998. Exposures to respirable silica during relining of furnaces for molten metals. In OSHA Compliance Issues column (R. Fairfax, ed.). Applied Occupational and Environmental Hygiene 13(7):508–510. **OSHA-2010-0034-1178**
- TFL, Inc., 2009. Precast refractory shapes. Available at: http://www.tflhouston.com/precast.html. Last accessed 23 April 2010. **OSHA-2010-0034-1179**

- [U.S. DOE] U.S. Department of Energy, 1995. Beyond 2000: A vision for the American metalcasting industry. Available at: oitdev.nrel.gov/metalcast/mcvision.shtml OSHA-2010-0034-1387
- [U.S. DOE] U.S. Department of Energy, 1998. Metalcasting industry technology roadmap. Available at: oitdev.nrel.gov/metalcast/roadmap.shtml **OSHA-2010-0034-1460**
- [Vulcan] Vulcan Engineering Company, 2005. Sand reclamation equipment. Available at: http://www.vulcangroup.com/sandrecl.htm. Last accessed 20 April. **OSHA-2010-0034-1465**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**
- Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**

Glass

Description

Silica sand is the main raw material used in the manufacture of glass products, including flat glass, container glass, and fibrous glass, p.408. The glass industry is the largest user of silica sand in the United States, consuming 8.2 million metric tons in 2008, equivalent to 31 percent of all silica sand sold in that year (USGS, 2009).

Industries that manufacture glass products are classified primarily in the following six-digit North American Industry Classification System (NAICS) codes: 327211, Flat Glass Manufacturing; 327212, Other Pressed and Blown Glass and Glassware Manufacturing; and 327213, Glass Container Manufacturing. This section also includes facilities in NAICS 327993, Mineral Wool Manufacturing, that produce fibrous glass and glass wool insulation products directly from sand.

The manufacture of all types of glass involves five main procedures: raw materials mixing, melting, forming, annealing, and finishing, p.17-18, from AP-42, 1986. Depending on the facility and type of glass production, the operations might be highly mechanized or involve manual operations. Mass production glasses (such as flat glass, container glass, and fiberglass) require large amounts of sand and involve automated raw materials handling processes and continuous, enclosed melting processes. Small-run glass manufacture, such as manufacture of specialty glass and art glass, however, involves intermittent production that can utilize a combination of automated and manual operations, p.348. The potential for silica exposures is limited to the so-called "hot end" of the process, where sand, cullet, and other raw materials are unloaded, transferred, and mixed prior to melting. Once melted, the silica in the sand is converted to amorphous silica and no longer presents a significant exposure hazard to workers downstream of the melting stage,. Thus, the two job categories with the potential for silica exposure in the glass products industry are raw material handlers and batch operators (and associated workers). Table IV.C-20 provides information on these job categories and their sources of exposure.

Table IV.C-20 Job Categories, Major Activities, and Sources of Exposure of Workers in the Glass Industry (NAICS 327211, 327212, 327213, 327993)						
Job Category*	Major Activities and Sources of Exposure					
Material Handler	Overseeing the delivery of sand and other raw materials.					
	 Dust from automatic or manual transfer of sand. 					
Batch Operators and Associated Workers	Transferring raw materials to weigh stations, mixers, and furnaces; performing housekeeping/maintenance in the vicinity of such operations.					
	 Dust from automatic or manual transfer of sand. Re-suspension of settled dust during housekeeping/maintenance activities. 					
*Job categories are intended to repredifferently, depending on the facility.	sent job functions; actual job titles may differ and responsibilities may be allocated					
Source: ERG-GI, 2008.						

Baseline Conditions and Exposure Profile

OSHA reviewed the best available exposure monitoring data, consisting of two NIOSH reports (NIOSH ECTB 233-114c, 1999; NIOSH HETA 97-0265-2781, 2000) and an OSHA Special Emphasis Program (SEP) inspection report (OSHA SEP Inspection Report 300386117), previously described by ERG-GI

(2008). 86 The NIOSH reports each summarize a site visit to one of two large flat glass manufacturing facilities. OSHA obtained the SEP data during an inspection at a large glass products facility. The following sections describe the baseline conditions, and Table IV.C-21 summarizes the exposure information for the affected job categories.

Because available data are limited for an industry that utilizes copious amounts of silica sand, ERG attempted to contact more than 50 glass products manufacturers and associations representing manufacturers to gather additional information (ERG-glass contacts log, 1999). Although several manufacturers provided supporting information, none provided data that could be used in developing the exposure profile. OSHA seeks additional good quality information to update both the exposure profile and information related to controls.

Baseline Conditions for Material Handlers

OSHA reviewed six exposure results for material handlers from one OSHA SEP inspection report and two NIOSH reports. The exposure profile, provided in Table IV.C-21, has a full-shift median exposure of 130 micrograms per cubic meter ($\mu g/m^3$), a mean of 156 $\mu g/m^3$, and a range of 46 $\mu g/m^3$ to 350 $\mu g/m^3$. Details on the highest exposure were not provided.

"Hot-end" material handlers primarily work outdoors to oversee the delivery of sand and other raw materials to the facility. These materials are transported primarily via rail car or truck, with the exception of certain small-run specialty glass producers, which receive sand in smaller containers such as bags or fiber drums. Sand is typically unloaded and transported to storage units by automated equipment, such as pneumatic or gravity conveyors, which material handlers set up and operate. Material handlers may not be required to remain at the unloading site for their entire shift (ERG-GI, 2008).

Baseline Conditions for Batch Operators and Associated Workers

OSHA reviewed six exposure results for batch operators and associated workers from one OSHA SEP inspection report and one NIOSH report (ERG-GI, 2008). The exposure profile, provided in Table IV.C-21, has a full-shift median exposure of 40 $\mu g/m^3$, a mean of 75 $\mu g/m^3$, and a range of 14 $\mu g/m^3$ to 262 $\mu g/m^3$.

⁸⁶ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-21

Respirable Crystalline Silica Exposure Range and Profile for Workers in the Glass Industry (NAICS 327211, 327212, 327213, 327993)

	Expo	sure Sumr	nary	Exposu	re Range			Exposure Pro	file	
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (μ g /m³)	Max (µg/m³)	<25 (µg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	> 250 (µg/m³)
Material Handlers	6	156	130	46	350	0 0%	1 17%	2 33%	2 33%	1 17%
Batch Operations and Associated Workers	6	75	40	14	262	3 50%	0 0%	2 33%	0 0%	1 17%
Totals	12	116	71	14	350	3 25%	1 8%	4 33%	2 17%	2 17%

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

Batch operators and associated workers are responsible for transferring raw materials to weigh stations, mixers, and furnaces. Sand is transferred from storage units to weigh hoppers and is then sent to enclosed mixers, where other dry materials and water are added. After batches are mixed, they are transferred to storage units or conveyed directly to enclosed furnaces. Depending on the size and type of glass production facility, the batching systems can be fully automated or can involve manual operations. OSHA estimates that up to 10 percent of batch operations involve manual charging of mixers and furnaces (ERG-GI, 2008).

Other workers in the batch area may inspect equipment and perform maintenance operations or perform housekeeping activities. Housekeeping might involve dry sweeping, shoveling, vacuuming, and/or using compressed air to remove spilled sand and debris from floors, conveyors, and other surfaces. Based on the available literature and personal communications with representatives of glass products manufacturers, OSHA finds that few facilities have implemented engineering controls to minimize exposures associated with maintenance operations (NIOSH ECTB 233-114c, 1999; ERG-GI, 2008). Based on these same sources, however, OSHA estimates that 75 percent of facilities use dust suppressants and high-efficiency particulate air (HEPA)-filtered vacuums (OSHA SEP Inspection Report 300386117; NIOSH ECTB 233-114c, 1999; ERG-GI, 2008).

Additional Controls

Additional Controls for Material Handlers

As indicated in the exposure profile, OSHA estimates that 17 percent of material handlers have exposures below $50 \,\mu\text{g/m}^3$. For the remaining workers, additional controls will be required to reduce exposures below current levels. Control options include using cleaned, larger, rounded grain sand containing fewer fine particles (e.g., sized and washed sand, which is widely available from sand suppliers) as the process permits; fully enclosing and ventilating all conveyers and transfer points used in sand handling; implementing general dust control measures to minimize dusty conditions that exacerbate exposure levels; and educating workers on adequate work practices.

A glass product manufacturing facility with an actively enforced silica control program outlined steps the company takes to maintain worker exposures to levels below 50 μ g/m³ (Glass Products Manufacturer G[a], 2000):

- Purchase size-selected sand which exceeds respirable size (20 micrometer [μm] to 250 μm). The sand is pre-washed to remove finer particles before it is delivered to the plant. Thus, if spilled, very little becomes airborne.
- Use fully ventilated conveyors, buckets, and lifts for all dry sand handling.
- Minimize silica handling through process automation.
- Observe workers frequently to ensure more healthful and efficient work practices.
- Provide ventilation systems with routine preventive maintenance to ensure that process ventilation and exhaust points are functioning properly.
- Conduct routine air sampling following a coordinated strategy.
- Train workers to be aware of silica in their work environment and to notify supervisors when necessary.

Through aggressive air sampling, the company determined that only about one in a thousand personal breathing zone results exceed the American Conference of Governmental Industrial Hygienists' (ACGIH's) Threshold Limit Value (TLV) of 50 μ g/m³ when the above steps are followed (Glass Products Manufacturer G, 2000).

When sand particle size must be small for production purposes (e.g., glass fiber production), another facility achieves low silica results by using a pneumatic sand conveyance system instead of conveyer belts. Avoiding the use of conveyer belts for moving silica materials is one of several aspects of the facility's design to which managers attribute personal air sampling results that are "typically below the limit of detection" (LOD) (Glass Products Manufacturer D, 2000). In addition, this facility, an OSHA Voluntary Protection Program (VPP) site, trains workers to watch for and respond appropriately to leaks and uses careful clean-up methods.

Information, including that from the VPP site, indicates that by using a combination of these methods all glass manufacturing facilities can achieve levels below 50 μ g/m³ for all their workers, including material handlers, on a regular basis (ERG-GI, 2008).

Additional Controls for Batch Operators and Associated Workers

OSHA estimates that exposure levels for approximately half the workers involved in batch operations are already below 50 $\mu g/m^3$. For the remaining workers, additional controls will be required to reduce exposures below current levels. The same control methods described previously for material handlers also will benefit workers in the batch area to an equal extent. At the two facilities described above, these practices resulted in low silica exposure levels for all workers, including workers in batch areas.

During the OSHA SEP inspection, results of $14~\mu g/m^3$ and $59~\mu g/m^3$ were obtained for two workers who operated automated equipment to weigh materials and transfer them to mixers (OSHA SEP Inspection Report 300386117). Further exposure reductions might be possible by fully enclosing and ventilating all conveyors and transfer points, and isolating batch operators in enclosed and ventilated control booths. Some facilities with manual batch operations might reduce exposures by installing automated batch handling equipment.

OSHA notes that exposures to workers engaged in batch area-related maintenance and housekeeping tasks also can be controlled below $50~\mu\text{g/m}^3$. Reduction of dust leakage, spillage, and other sources of silica material in the batch area (as described above) should serve to generally reduce dust levels. Routine, diligent housekeeping should reduce dust accumulation and limit the potential for re-suspended dust. Using HEPA-filtered vacuums and dust suppressant during housekeeping activities rather than dry sweeping and using compressed air also will reduce exposures.

The practice of adding moisture to the batch ingredients, reportedly practiced by up to 60 percent of the industry, also can have a beneficial effect on worker exposure (Glass Products Manufacturer G[a], 2000). Because the moisture is added for process reasons, with an additional benefit to hygiene, OSHA estimates that glass manufacturers who are able to implement this procedure have already done so.

Feasibility Finding

Feasibility Finding for Material Handlers

Based on the best available information, OSHA estimates that 83 percent of material handlers require additional controls. The employers of all material handlers in the glass manufacturing industry can achieve silica levels of $50 \, \mu \text{g/m}^3$ or less for those workers through a combination of engineering and

administrative controls. Appropriate engineering controls include automated and ventilated equipment for unloading raw materials from shipping containers and transferring them to storage units. Other modifications may include fully enclosing and ventilating all sand conveyance devices (including the transfer points) and implementing administrative controls (such as active dust management procedures, which involve workers in the process).

OSHA expects that using the control methods discussed will achieve levels below 50 $\mu g/m^3$ for even highly exposed workers.

Feasibility Finding for Batch Operators and Associated Workers

OSHA preliminarily concludes that employers can reduce exposures below $50~\mu g/m^3$ for the 50 percent of batch area workers who require additional controls using the same combination of administrative and engineering controls described for material handlers. Such controls would include automated and ventilated equipment for transferring raw materials to mixers and furnaces, and administrative procedures for managing released sand.

REFERENCES

- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-200-0034-1365**
- [ERG-glass contacts log] Eastern Research Group, Inc., 1999. Glass Manufacturing Industry Establishments that Eastern Research Group, Inc. attempted to contact from July 15, 1999 to October 18, 1999. **OSHA-2010-0034-0665**
- Glass Products Manufacturer D, 2000. Personal communication between representative of Glass Products Manufacturer D and Eastern Research Group, Inc. May 17. **OSHA-2010-0034-0699**
- Glass Products Manufacturer G, 2000. Personal communication between representative of Glass Products Manufacturer G and Eastern Research Group, Inc. August 23. **OSHA-2010-0034-0703**
- [NIOSH ECTB 233-114c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 14 Plate glass manufacturing. **OSHA-2010-0034-0221**
- [NIOSH HETA 97-0265-2781] National Institute for Occupational Safety and Health, 2000. Health hazard evaluation report: AFG Industries, Bridgeport, West Virginia. **OSHA-2010-0034-0886**
- [OSHA SEP Inspection Report 300386117] OSHA Special Emphasis Program Inspection Report 300386117. **OSHA-2010-0034-0085**
- [USGS] U.S. Geological Survey, 2009. 2008 minerals yearbook: Silica [advance release]. Available at http://minerals.usgs.gov/minerals/pubs/commodity/silica/myb1-2008-silic.pdf OSHA-2010-0034-1211

Jewelry

Description

The jewelry manufacturing industry uses silica-containing materials in casting and finishing operations. Worker exposure to silica can occur during investment casting silical involving the use of investment casting compounds, which are powdered refractory materials that often contain quartz or cristobalite (NIOSH HETA 81-365-1083, 1982). Workers in this industry also perform abrasive blasting using silical sand as abrasive media for cleaning the investment material from castings, which can result in worker exposure. Workers performing lapidary operations (cutting, polishing, and engraving precious stones) are potentially exposed to silical generated by gemstones (such as agate, amethyst, aventurine, jasper, and quartz crystal) and by abrasives used for grinding and polishing jewelry products (White et al., 1991). In general, jewelers typically perform small-scale, bench-top operations, using relatively small amounts of silical-containing materials. Facilities manufacturing jewelry are classified in the six-digit North American Industry Classification System (NAICS) codes: 339911, Jewelry (except costume) Manufacturing; 339913, Jewelers' Material and Lapidary Work Manufacturing; and 339914, Costume Jewelry and Novelty Manufacturing (ERG-GI, 2008).

Table IV.C-22 summarizes the major activities and sources of exposure for jewelers, the single job category with potential exposure to silica in this industry. ERG-GI (2008) contains a more detailed process description.

Job Category*	Major Activities and Sources of Exposure								
Jeweler	Mix investment material and cast jewelry products.								
	 Dust released during manual transfer and mixing of silica-containing investment material. 								
	 Dust generated while separating castings from investment material. 								
	Cleaning and abrasive blasting of jewelry.								
	 Dust from abrasive blasting operations involving silica-containing media and/or castings coated with silica-containing investment material. 								
	Cutting, grinding, and/or polishing of jewelry.								
	 Dust from grinding or polishing of jewelry with silica-containing abrasives Dust from cutting, grinding, or polishing of gemstones containing silica. 								

Baseline Conditions and Exposure Profile

To evaluate silica exposures of jewelers, OSHA reviewed personal breathing zone (PBZ) respirable quartz exposure monitoring data from two OSHA Special Emphasis Program (SEP) inspection reports (OSHA SEP Inspection Reports 106860455 and 301312252), previously described in ERG-GI (2008).

⁸⁷ "Investment casting" is form of metal casting that involves enclosing a three-dimensional pattern in a heat-resistant ceramic mold called investment material. Lost-wax casting is an example of a type of investment casting commonly used in jewelry production facilities and dental laboratories (ERG-dental-lab-A, 2000).

The exposure monitoring data presented in these reports were not collected over full work shifts; however, the reports indicate that activities associated with potential exposure were not performed during the unsampled portions of the workers' shifts. As a result, ERG (2008) calculated 8-hour time-weighted average (TWA) exposures based on the reported data and assuming no exposure during the unsampled period. In this manner, an 8-hour TWA of 15 micrograms per cubic meter (μ g/m³) was calculated for a jeweler who performed abrasive blasting of gold and silver using an unventilated glovebox blasting cabinet and silica sand media (originally 21 μ g/m³ for a 349 minute sample). According to the inspection report, visible airborne dust leaked from the cabinet while it was in operation. The worker performed blasting operations for approximately 5 to 20 percent of each shift.

An 8-hour TWA of less than or equal to $12~\mu g/m^3$ was calculated for a jeweler at another site who performed abrasive blasting of metallic medals for approximately 15 percent of the shift (originally less than or equal to $77~\mu g/m^3$ [the level of detection {LOD}] for a 76 minute sample⁸⁸). The jeweler used garnet media (a substitute abrasive blasting media that contains less than 0.5 percent silica [Universal Minerals, Inc., 2008]) in an unventilated glovebox cabinet. The cabinet leaked media through holes during the blasting operation and released visible airborne dust when opened by the worker (to remove or reposition medals). The room had open windows, and the jeweler used a floor fan for comfort. Table IV.C-23 summarizes these two results.

To provide additional insight into the exposure profile for this industry, for which so few other suitably documented data are available, OSHA considered supplemental data that were not as fully documented. OSHA reviewed historic PBZ results obtained during OSHA inspections and reported in OSHA's Integrated Management Information System (IMIS) database. Only positive IMIS results with silica detected in the sample (16 of the 34 total results for this industry) are included in this descriptive analysis because the volume-adjusted reporting limit concentrations for the nondetectable samples are not available (i.e., IMIS does not contain sufficient information to determine the LODs). OSHA identified sixteen personal air sampling results containing detectable silica.

Despite the limitations associated with IMIS data (limited documentation of worker activity, sample duration, materials being handled, exposure controls in use at the time, and other or adjacent sources of silica exposure), these results confirm that jewelry workers can be exposed to silica at levels greater than $50~\mu g/m^3$, although the majority of the results (56 percent) are below this value. Results range from 4

 $^{^{88}}$ The elevated LOD (less than or equal to 77 $\mu g/m^3)$ is a function of the extremely short sample duration (76 minutes).

⁸⁹ Two additional results from a New Jersey Department of Health (NJDOH) report and a NIOSH report, previously described by ERG-GI (2008), are excluded from the exposure profile. Both results are reported as below the LOD, but supporting information is insufficient to determine the LOD. In addition, the NIOSH sample covered only some of the worker's potential sources of silica exposure and likely does not represent total exposure for that day. One jeweler conducted polishing inside a booth equipped with LEV, while the other jeweler worked without ventilation (ERG-GI, 2008).

⁹⁰ OSHA searched the IMIS database for data collected from 1979 to 2002 and identified results associated with Standard Industrial Classification (SIC) codes 3911 (Jewelry, Precious Metal), 3915 (Jewelers' Findings and Materials, and Lapidary Work), and 3961 (Costume Jewelry and Costume Novelties, Except Precious Metal).

⁹¹ Because this database does not include the sample duration or air volume, the LOD is not quantifiable for samples with results in which silica was not detected (i.e., the upper limit of the LOD cannot be known).

⁹² In a separate action, to avoid counting the same samples twice, OSHA also excluded from the IMIS review the two results from OSHA's SEP for silica, which are already individually summarized in Table IV.C-23 and discussed previously.

 $\mu g/m^3$ to 565 $\mu g/m^3$, with a median of 39 $\mu g/m^3$ (see Table IV.C--24). Seven results (43 percent) exceed 50 $\mu g/m^3$, and 5 results (31 percent) exceed 100 $\mu g/m^3$. Job titles connected with the IMIS exposure data (including investment operator, caster, pourer) indicate that most of the workers were engaged in some phase of the casting process, although one elevated exposure was associated with a worker described as a grinder. The true median of all 34 IMIS entries is likely to be considerably lower because silica was nondetectable in an additional 18 results (52 percent of the total IMIS entries for jewelers). Nevertheless, in this case, the IMIS data present the most meaningful overview of this industry.

The potential extent to which OSHA's review of IMIS data might overestimate jeweler exposures is suggested by Yassin et al. (2005), who analyzed a different subset of IMIS data while examining the coating engraving industry. This industry includes a percentage of workers in the jewelry manufacturing industry described in ERG-GI (2008), although the exact percentage of jewelers is not reported. In their study, Yassin et al. (2005) *included* results below the LOD and recorded them as 0 μ g/m³. The authors report a geometric mean of 75 μ g/m³ calculated from IMIS data collected between 1988 and 2003 for 75 workers in the coating engraving industry (SIC code 3479). This mean reported by Yassin et al. (2005) is lower than that presented in Table IV.C-24 and represents the maximum amount by which OSHA might be overestimating jewelers' silica exposures by excluding the nondetectable results.

Based on the information presented here and in ERG-GI (2008), baseline controls may include LEV for finishing operations or use of substitute media for abrasive blasting operations, but generally only a single control is in place. Facilities often use unventilated glovebox abrasive blasting cabinets. Activities associated with silica exposure are often performed for less than 20 percent of each shift. In the absence of more definitive information, OSHA preliminarily concludes that the values summarized in Table IV.C-24 represent the baseline conditions in this industry.

Table IV.C-23

Respirable Crystalline Silica Exposure Range and Profile for Workers in the Jewelry Industry (NAICS 339911, 339913, 339914)

	Expo	sure Sum	mary	Exposu	re Range		E	xposure Profile)	
Job Category	N	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Jeweler	2	13.5	13.5	12	15	2 100%	0 0%	0 0%	0 0%	0 0%

Note: All samples are personal breathing zone (PBZ) results for durations represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

Table IV.C-24

Respirable Crystalline Silica Exposure Range and Distribution of Supplemental IMIS Results for Workers in the Jewelry Industry (NAICS 33991, 339913, 339914)

	Expo	sure Sum	mary	Exposur	e Range		E	Exposure Profil	е	
Job Category	N	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Jeweler	16	108	39	4	565	6 38%	3 19%	2 12%	3 19%	2 12%

Notes: All results are from personal breathing zone samples. This summary includes only results for which silica was detected. LODs cannot be determined from the available information for other results in the IMIS database. For each applicable silica result presented in IMIS as Exposure-Type "T" (time-weighted average), the silica concentration was calculated based on the reported 8-hour TWA PEL and the reported respirable dust exposure level.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: OSHA IMIS, 1979 to 2002.

Additional Controls

Based on the limited available data, OSHA estimates that up to 44 percent (see Table IV.C-24) of workers require additional controls to reduce the exposures of jewelers to levels of 50 μ g/m³ or less. Where necessary, options for additional controls include the following:

- Use of covered containers and LEV during investment mixing.
- Use of wet methods and/or LEV when separating investment material from castings (e.g., breaking molds under a water stream or mist).
- Use of a properly designed and ventilated abrasive blasting cabinet.
- Use of alternative low-silica or silica-free blast media.
- Use of clean blast media for each session (to avoid recycling media contaminated with refractory material unless it can be cleaned).
- Improved work practices (such as allowing the blasting cabinet ventilation to clear the equipment of dust before opening the cabinet).
- Use of wet methods and/or LEV during finishing operations.
- Improved housekeeping (such as use of a high-efficiency particulate air (HEPA)-filtered vacuum, daily where necessary).

Although no information is available quantifying the effectiveness of each method in reducing silica exposures, jewelers employing at least one control often achieved levels of silica below $25 \,\mu g/m^3$ (see earlier discussion of baseline conditions for this industry). In addition, dental technicians who perform work similar to that of jewelers (mixing investment material, casting precious and semi-precious metals, cleaning and finishing small castings, and abrasive blasting in cabinets) use several similar exposure controls that should be equally effective in the jewelry industry. Based on the similarity of the tasks and the scale of these operations in these two industries, OSHA preliminarily concludes that control options available in dental laboratories will be just as effective in jewelry manufacturing facilities.

At one dental laboratory, technicians use a covered and sealed mixer to blend water with powdered silica investment materials (70 percent silica). After casting, the investment mold is cracked and castings removed (called "divesting") under a stream of water to suppress dust. Workers also use water-fed and ventilated grinding equipment, perform abrasive blasting with new (clean) media in a ventilated cabinet, and work at benches fitted with LEV (ERG-dental-lab-A, 2000). Three dental technicians working with these controls had exposures of less than or equal to $10 \,\mu\text{g/m}^3$ (LOD in this case).

Other dental laboratory industry data also suggest that jewelers who perform similar tasks are unlikely to experience elevated exposure levels. Ninety-seven percent of the sample results for dental technicians, summarized in the exposure profile associated with Section IV.C.6 – Dental Laboratories in this technological feasibility analysis, are less than the proposed permissible exposure limit (PEL) of 50 $\mu g/m^3$, with 17 (55%) of the results below the LOD. The single result that exceeded 50 $\mu g/m^3$ (58 $\mu g/m^3$) was obtained for a dental technician trainee divesting castings, working with wax, and performing abrasive blasting. The next highest result, 40 $\mu g/m^3$, represents the exposure of a dental technician at a different laboratory performing investing, casting, sandblasting, grinding, and polishing. Similar results have been obtained internationally. Kim at al. (2002) collected 22 samples for dental lab workers performing investment casting and abrasive blasting to create small metal castings and obtained results ranging from 3 $\mu g/m^3$ to 51 $\mu g/m^3$, with a mean of 15 $\mu g/m^3$. Based on the similarities between the

processes used by dental laboratory technicians and those performed by jewelers, OSHA preliminarily concludes that by using similar control methods, jewelry manufacturing establishments may be able to lower workers' exposure levels.

Feasibility Finding

OSHA preliminarily concludes that jewelry manufacturing facilities already achieve respirable silica levels of $50~\mu g/m^3$ or less for most of their workers. Based on information summarized in Table IV.C-24, OSHA finds that *at least* 56 percent of jewelers' exposures are already below that level. This percentage likely underestimates the number of jewelers with exposures less than $50~\mu g/m^3$, because nondetectable results were excluded from the IMIS data summarized in Table IV.C-24. Furthermore, two partial-shift samples obtained during OSHA inspections at two different jewelry manufacturing establishments resulted in silica concentrations of $21~\mu g/m^3$ and less than the LOD (in this case $77~\mu g/m^3$, because of the particularly brief sample duration), respectively. ⁹³ These values also support OSHA's assertion that more than $56~\mu g/m^3$.

For any jewelers (fewer than 44 percent) with exposures above $50 \mu g/m^3$, OSHA preliminarily finds that by implementing one or more controls, employers of all jewelers can achieve exposures below $50 \mu g/m^3$ for workers in this job category. Control options include LEV for mixing and finishing operations, sealed equipment or wet methods for handling silica-containing investment casting materials, ventilated abrasive blasting cabinets, and alternative (low- or nonsilica) abrasive blasting media.

The effectiveness of these controls is demonstrated by silica exposure levels below the LOD ($10 \mu g/m^3$ in this case) obtained for all workers in a dental laboratory that employed small-scale metal casting, finishing, and abrasive blasting processes that were nearly identical to those used in jewelry manufacturing (ERG-dental-lab-A, 2000).

REFERENCES

- [ERG-dental-lab-A] Eastern Research Group, Inc., 2000. Site Visit to Dental Laboratory A. August 3. **OSHA-2010-0034-0201**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Kim, T.S., H.A. Kim, Y. Heo, Y. Park, C.Y. Park, and Y.M. Roh, 2002. Levels of silica in the respirable dust inhaled by dental technicians with demonstration of respirable symptoms. Industrial Health 40:260-265. **OSHA-2010-0034-0763**
- [NIOSH HETA 81-365-1083] National Institute for Occupational Safety and Health, 1982. Health hazard evaluation report: Studio 311, Navato, California. **OSHA-2010-0034-** 1370

 $^{^{93}}$ The worker's 8-hour TWA based on the LOD is 12 $\mu g/m^3$, assuming that the sample encompassed the worker's total silica exposure for the day (no further silica exposure during the shift).

⁹⁴ At this dental laboratory, workers performing casting mixed refractory investment powder in a sealed mixer and used wet dust suppression methods to break open investment molds. Additionally, one worker performing abrasive blasting used a bench-top abrasive blasting cabinet similar to that used by jewelers, while all workers used bench-top ventilation hoods and a water-fed bench grinder when cleaning small metal dental appliances or working with silica-containing plasters (ERG-dental-lab-A, 2000).

- [OSHA IMIS] Occupational Safety and Health Administration Integrated Management Information System. Electronic data from 1979 to 2002. **OSHA-2010-0034-1698**
- [OSHA SEP Inspection Report 106860455] OSHA Special Emphasis Program Inspection Report 106860455. **OSHA-2020-0034-0150**
- [OSHA SEP Inspection Report 301312252] OSHA Special Emphasis Program Inspection Report 301312252. **OSHA-2010-0034-0145**
- Universal Minerals, Inc., 2008. Material safety data sheet for garnet abrasive grains. October. Available at:
 http://www.universalminerals.com/WE_CMS/documents/pdfs/sharpjet_msds.pdf
 OSHA-2010-0034-1364
- White, N.W., R. Chetty, and E.D. Bateman, 1991. Silicosis among gemstone workers in South Africa: Tiger's-eye pneumoconiosis. American Journal of Industrial Medicine 19(2):205–213. **OSHA-2010-0034-1402**
- Yassin, A., F. Yebesi, and R. Tingle, 2005. Occupational exposure to crystalline silica dust in the United States, 1988–2003. Environmental Health Perspectives 113(3):255–260. **OSHA-2010-0034-1236**

Landscape Contracting Description

Landscape contractors are primarily engaged in providing landscape care and maintenance services, including installation of trees, shrubs, plants, lawns and gardens. As part of landscaping projects, some landscape contractors also might construct walkways, retaining walls, patios, fences, ponds, or similar structures. Some landscape workers might be exposed to silica during masonry-related activities such as using masonry saws to cut bricks or paving tiles. Establishments providing landscaping services are classified in six-digit North American Industry Classification System (NAICS) code 561730, Landscaping Services (ERG-GI, 2008).

Only landscape and horticultural service workers performing masonry-related construction activities have the potential for silica exposure. These landscape service workers could be exposed to silica while cutting silica-containing landscaping materials using diamond blades when installing "hardscapes," such as retaining walls, patios, and walkways (Quinn, 2004). Common hardscape materials cut by workers preparing landscapes include brick, concrete, or stone in the form of curbs, block, or pavers (12 to 40 percent quartz) (NIOSH ECTB 233-118c, 1999; Thorpe et al., 1999). Although the quantity of this work varies with the operation and nature of the firm's services, OSHA estimates that, overall, these activities represent a relatively minor portion of the industry's labor time, as the vast majority of workers are engaged primarily in lawn maintenance services (e.g., mowing, trimming, planting, mulching, fertilizing, leaf removal). Only a small share of the industry is engaged routinely in installation of hardscapes where block and brick cutting operations occur. If a firm generates a majority of its revenues from this type of construction activity, the establishment is classified as a construction establishment, and not as a landscape architecture establishment. Table IV.C-25 describes the major activities and sources of exposure of workers in the landscape contracting industry.

Table IV.C-25 Job Category, Major Activities, and Sources of Exposure of Workers in the Landscape Contracting Industry (NAICS 561730)						
Job Category*	Major Activities and Sources of Exposure					
Landscape Worker	Sawing and cutting bricks, paving tile, and stone during installation of walkways, retaining walls, patios, fences, ponds, or other hardscapes. Performing landscape care and lawn maintenance services.					
	 Dust generated by cutting action of the abrasive blade during masonry cutting. 					
	ed to represent job functions; actual job titles might differ, and responsibilities might be nding on the landscaping employer.					
Source: ERG-GI, 2008.						

Baseline Conditions and Exposure Profile

No exposure data specific to landscape or horticultural service workers were identified. Further, there were no Integrated Management Information System (IMIS) observations for landscape workers for silica exposure. Data are available for analogous activities conducted by masonry cutters in the construction industry; however, OSHA estimates that landscape service workers face less frequent exposures than

construction workers engaged in masonry cutting activities.⁹⁵ Further, virtually all such exposures would occur outdoors, eliminating the potential for elevated exposures in nonventilated enclosures. In addition, landscape workers might work at a greater number of sites performing smaller assignments than construction workers. This reduces the amount of time spent sawing and increases the amount of time spent on preparation and cleanup and in transit.

Based on a review of saw manufacturing and published literature, OSHA preliminarily concludes that landscape workers preparing hardscapes typically use portable saws and most commonly use hand-held saws (Contractor Depot, no date; Meeker et al., 2009; Page Landscapers, 2008). Meeker et al. (2009) note that hand-held saws are increasingly used as a direct substitute for water-fed stationary saws.⁹⁶

In Section IV.C.27 – Masonry Cutters Using Portable Saws, OSHA examines the specific occupational category of masonry cutters using hand-held saws. In that section, OSHA identified 56 8-hour time-weighted average (TWA) personal breathing zone (PBZ) silica readings for masonry cutters using hand-held saws outdoors. The results range from 12 micrograms per cubic meter (μ g/m³) to 1,472 μ g/m³, with a median of 134 μ g/m³ and a mean of 177 μ g/m³. Forty-three results (77 percent) exceed 50 μ g/m³, and 36 results (64 percent) exceed 100 μ g/m³. The highest exposure, 1,472 μ g/m³, was recorded for a worker who cut concrete for approximately 5 hours, but also operated a jackhammer for approximately 45 minutes of the 451-minute sampling period.

OSHA obtained 48 measurements for workers using hand-held saws to cut concrete or masonry outdoors with no dust controls. For this subgroup, the median silica result was 150 μ g/m³. This is substantially greater than the median of 24 μ g/m³ obtained for eight results from other outdoor workers who used similar saws with wet methods of dust control.

OSHA preliminarily concludes that baseline conditions for landscape workers performing masonry work are dry-cutting outdoors using hand-held saws. The median exposure level for masonry cutters in the construction industry working under these conditions is $150~\mu g/m^3$. OSHA acknowledges that these results from the construction industry might overestimate the actual exposure of landscape workers because, as noted previously, these workers face less frequent exposures and might saw for shorter

⁹⁵ Because these results are drawn directly from the construction industry, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. For additional information on data handling for general industry and the construction industry, see Section IV.A – Methodology.

⁹⁶ According to Meeker et al. (2009), "Historically, stationary wet saws served as the primary tool bricklayers used to cut masonry units such as brick. However, contractors have increasingly used portable masonry abrasive cutters, often referred to as 'chop saws,' in lieu of the stationary wet saw. Stationary wet saws require the user to be on the ground to make cuts. Some contractors, therefore, view the use of portable masonry saws as a productivity gain because they can be used without getting down from scaffolding. However, gasoline-powered equipment is prohibited on suspended scaffolding [reference 29 CFR 1926.451(d)(14) – Scaffolds]. In addition, portable abrasive cutters are heavy, generate high dust levels, and pose an increased safety risk for accidental cuts and amputations if not used correctly. The stationary wet saw also offers many ergonomic advantages compared with the portable saw." Meeker et al. (2009) go on to explain that with a stationary saw, the operator is able to work in an upright position and does not have to bear any of the saw's weight. In contrast, operators using hand-held saws often adopt a bent posture and must support the full weight of the saw while cutting objects at ground level.

⁹⁷ Sources of exposure monitoring data: Lofgren, 1993; NIOSH ECTB 233-117c, 1999; NIOSH ECTB 233-118c, 1999; NIOSH ECTB 233-121c, 1999; NIOSH HETA 2005-0030-2968, 2008; NIOSH HETA 2005-0031-3055, 2008; NIOSH HETA 2003-0209-3015, 2006; NIOSH-WV-Route 6, 1992; NJDHSS, 2000; OSHA SEP Inspection Reports 122376791 and 300591047/L2809; Shields, 2000.

amounts of time (when completing small assignments) than construction workers engaged in stone and masonry activities. However, these remain the best data available to OSHA.

Table IV.C-26 summarizes the exposure information for landscape workers.

Additional Controls

Wet methods and local exhaust ventilation (LEV) are additional controls for landscape workers performing masonry activities. The exposure data available to OSHA from the construction industry shows that 75 percent of 8-hour TWA exposure results for masonry cutters using hand-held saws are 50 $\mu g/m^3$ or less when workers use water-fed saws outdoors. In contrast, 85 percent of workers experienced exposures *greater than* 50 $\mu g/m^3$ when no dust controls were in place. The use of wet methods reduced the median exposure by 84 percent compared with no dust controls.

Investigators have evaluated wet methods of dust control specifically for hand-held saws and report worker silica exposure level reductions of at least 90 percent (ranging from 90 to 96 percent) (Thorpe et al., 1999). For a complete discussion, refer to Section IV.C.27 – Masonry Cutters Using Portable Saws. All but three of the 48 exposure results presented in Table IV.C-26 for workers dry cutting outdoors are below 500 μ g/m³. The smallest exposure reduction reported for wet methods (90 percent) will bring all but those three exposures (or 93 percent of all the hand-held saw operators who currently perform uncontrolled cutting) to levels of 50 μ g/m³ or less.

Table IV.C-26 Respirable Crystalline Silica Exposure Range and Profile for Workers in the Landscape Contracting Industry (NAICS 561730)

	Ex	posure Su	mmary	Exposui	re Range			Exposure Profile)	
Job Category	N	Mean (μg/m	Media n (μg/m	Min (µg/m³	Max (μg/m ³	<25 (μg/m ³)	\geq 25 and \leq 50 $(\mu g/m^3)$	>50 and ≤100 (µg/m ³)	>100 and ≤250 (µg/m ³)	>250 (µg/m³)
Landscape Worker ^A										
Outdoors, no dust controls	48	200	150	12	1,472	4	3	6	28	7
						8.33%	6.25%	12.50%	58.33%	14.58%
Outdoors, wet methods	8	37	24	12	101	5	1	1	1	0
						62.50%	12.50%	12.50%	12.50%	0.00%
Totals	56	177	134	12	1,472	9	4	7	29	7
						16.07%	7.14%	12.50%	51.79%	12.50%

Notes: This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

The sample results summarized here are PBZ results. Because these data are drawn directly from the exposure profile for construction industry workers who use hand-held saws, all results represent 8-hour TWA exposures (based on samples obtained over periods of approximately 1 to 8 hours) with the assumption that no additional exposure occurred during any unsampled portion of the shift. For additional information on data handling for general industry and the construction industry, see Section IV.A – Methodology.

Sources: Section IV.C.27 – Masonry Cutters Using Portable Saws.

A No data are available for landscape workers. Data presented in this table describe the exposures of masonry cutters in the construction industry who operate hand-held saws outdoors. Equipment, materials, and sources of exposure are identical for these two job categories. In general, however, masonry cutters likely conduct outdoor sawing more frequently than landscape workers and might perform sawing for longer durations. Thus, OSHA assumes that landscape contractor workers are exposed to silica levels no greater than, and probably less than, those presented here. Masonry cutting is only a small fraction of the work performed by landscape contractors, who more typically perform lawn care services (e.g., planting, mulching, grading). Specialized landscape workers performing masonry cutting represent a small fraction of the total labor force employed by landscape contractors.

To further reduce exposures, workers should carefully manage the slurry produced with wet methods (e.g., by capturing it before it dries using a wet vacuum with high-efficiency particulate [HEPA] filtration) and use good work practices (e.g., standing away from the slurry spray coming off the saw blade).

Hand-held saws also can be equipped with LEV air extraction systems. OSHA was not able to obtain extended-period exposure monitoring data indicating the effectiveness of LEV-equipped saws under workplace conditions for this or the construction industry. However, experimental data indicate that such saws might help control silica exposure. In some tests, LEV-equipped saws offered as much (or more) dust control as wet methods, but this is an inadequate basis on which to determine whether outdoor workers using such saws can reliably achieve levels below 50 μ g/m³ (again, for a complete discussion, refer to Section IV.C.27 – Masonry Cutters Using Portable Saws).

Feasibility Finding

Based on the conclusions for masonry cutters using hand-held saws outdoors, OSHA preliminarily concludes that wet methods can control the silica exposure of most landscape workers using hand-held saws to levels of $50~\mu g/m^3$ or less, provided that the water is consistently applied in an appropriate manner and in sufficient quantities. The median exposure of masonry cutters using hand-held saws outdoors with wet methods is $24~\mu g/m^3$.

Additional controls, such as wet methods, will be required for, at most, the 77 percent of landscape workers performing masonry-related construction activity who are exposed to silica levels exceeding 50 $\mu g/m^3$ (Table IV.C-26). This preliminary finding is based on the assumption that landscape workers most likely experience lower levels of exposure than do workers in the construction industry. Workers who currently perform dry-cutting with hand-held saws will need to switch to water-fed saws (including, as an option, water fed stationary masonry saws). Where workers currently experience exposure levels above 50 $\mu g/m^3$ while using wet sawing methods, additional controls include increased attention to the rate and position of water used for wet dust suppression; carefully managing slurry (capturing it before it dries and adding HEPA filtration to vacuums); using work practices that position the worker away from the slurry spray coming off the saw blade; and controlling silica exposure from adjacent sources (including other saws).

When wet methods are not possible, LEV-equipped hand-held saws might reduce silica exposures substantially, but the evidence is insufficient to confirm that they can reliably maintain worker exposures below 50 $\mu g/m^3$. If LEV is used, respiratory protection might be required until the reliability of LEV can be confirmed over extended work periods.

REFERENCES

Contractor Depot, no date. Internet Web page for diamond hardscape, landscape, stone saw blades. Available at: http://www.ordersawblades.com/stone_hardscape.html OSHA-2010-0034-0607

[ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**

⁹⁸ As noted above, only a small percentage of landscape workers perform such activities.

- Lofgren, D.J., 1993. Silica exposure for concrete workers and masons. Applied Occupational Environmental Hygiene 8(10):832–836. **OSHA-2010-0034-1423**
- Meeker, J.D., M.R. Cooper, D.L. Lefkowitz, and P.Susi, 2009. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing. Public Health Reports, 124 (Supplement 1):101–111. **OSHA-2010-0034-0803**
- [NIOSH ECTB 233-117c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 17 Dry cutting of concrete masonry units. **OSHA-2010-0034-0224**
- [NIOSH ECTB 233-118c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 18 Cutting brick and concrete masonry units. **OSHA-2010-0034-0231**
- [NIOSH ECTB 233-121c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 21 Non-residential construction. **OSHA-2010-0034-0853**
- [NIOSH HETA 2003-0209-3015] National Institute for Occupational Safety and Health, 2006. Health hazard evaluation report: Diversified Roofing Inc., Phoenix, Arizona. **OSHA-2010-0034-0875**
- [NIOSH HETA 2005-0030-2968] National Institute for Occupational Safety and Health, 2008. Health hazard evaluation report: Haedlee Roofing, Mesa, Arizona. **OSHA-2010-0034-0876**
- [NIOSH HETA 2005-0031-3055] National Institute for Occupational Safety and Health, 2008. Health hazard evaluation report: C&C Roofing, Phoenix, Arizona. **OSHA-2010-0034-0877**
- [NIOSH-WV-Route 6] National Institute for Occupational Safety and Health, 1992. Environmental surveillance report: West Virginia Department of Highways, Bridge Demolition, Route 6, Ohio County. May 18. **OSHA-2010-0034-0911**
- [NJDHSS] New Jersey Department of Health and Senior Services, 2000. Update of silica sampling conducted under the New Jersey silica partnership. **OSHA-2010-0034-0912**
- [OSHA SEP Inspection Report 122376791] OSHA Special Emphasis Program Inspection Report 122376791. **OSHA-2010-0034-0148**
- [OSHA SEP Inspection Report 300591047/L2809] OSHA Special Emphasis Program Inspection Report 300591047/L2809. **OSHA-2010-0034-0064**
- Page Landscapers, 2008. Internet Web page for installation guide. Available at:

 http://www.pagelandscape.com/page_landscaping_installation.asp OSHA-2010-0034-0950

- Quinn, W., 2004. Telephone communication between Michelle Arbogast, Eastern Research Group, Inc., and Mr. Warren Quinn, Director or Operations, American Nursery and Landscape Association. June 21. **OSHA-2010-0034-0961**
- Shields, C.J., 2000. Database sent by OSHA North Aurora Area Office, Illinois, to Eastern Research Group, Inc. via e-mail. September 14. **OSHA-2010-0034-1143**
- Thorpe, A., A.S. Ritchie, M.J. Gibson, and R.C. Brown, 1999. Measurements of the effectiveness of dust control on cut-off saws used in the construction industry. Annals of Occupational Hygiene 43(7):1443–1456. **OSHA-2010-0034-1181**

Mineral Processing Description

The nonmetallic mineral processing industry includes those establishments that are primarily engaged in calcining (processed by burning or incinerating), dead burning, or otherwise processing beyond beneficiation clays, ceramic and refractory minerals, barite, slag, roofing granules, and miscellaneous nonmetallic minerals (U.S. Department of Commerce, 2002). For example, establishments might batch, blend, extrude, and package dry and de-aired moist clays. These facilities are classified in the six-digit North American Industry Classification System (NAICS) 327992, Ground or Treated Mineral and Earth Manufacturing. Many of the raw materials processed by this industry contain varying amounts of naturally occurring silica and include nonmetallic minerals such as clay, diatomaceous earth, graphite, and mica (ERG-GI, 2008).

The nonmetallic mineral processing industry produces intermediate or finished products from mined or quarried nonmetallic minerals. All production-related workers have the potential for silica exposure. Depending on the specific establishment, production workers might perform one or more jobs, including loader/material handler, operator (e.g., crusher, screener, batch, mixer, dryer), bagger, laborer, or housekeeper (ERG-GI, 2008). The activities and equipment used by workers also can vary by facility depending on whether operations are performed manually or by fully automated systems. Consequently, job function and associated exposure to silica varies by establishment. Table IV.C-27 provides detail on exposures to these workers.

Job Category*	Major Activities and Sources of Exposure
Production Worker	Dumping dry materials.
	Dust generated during manual breaking and dumping of dry materials.Dust generated by disposal of empty bags.
	Transferring, mixing, and packaging dry materials.
	 Dust from transferring or processing dry materials (e.g., with conveyors, elevators, mixers, blenders, screeners). Dust from manual mixing or packaging of dry materials.
	Performing housekeeping duties.
	• Dust raised by using inappropriate cleaning methods (e.g., dry sweeping, shoveling).

⁹⁹ Beneficiation is the process whereby the extracted material is reduced to particles that can be separated into mineral and waste, the former suitable for further processing or direct use (U.S. Department of Commerce, 2002).

Baseline Conditions and Exposure Profile

Baseline Conditions for Production Workers

OSHA reviewed full-shift personal breathing zone (PBZ) silica exposure monitoring data from two sources: 1) an OSHA Special Emphasis Program (SEP) inspection report on a facility using mineral raw materials to mix the clays it provides to the pottery industry and 2) a NIOSH Health Hazard Evaluation (HHE) report on a manufacturer producing mineral granules for eventual use by the roofing tile industry ¹⁰⁰. Both reports were previously described by ERG (ERG-GI, 2008). The data and information from these reports provide the basis for the industry exposure profile.

OSHA reviewed a total of 34 exposure results associated with mineral processing. ¹⁰¹ These results, summarized in Table IV.C-28, are the best data available to OSHA. The exposures in the 34 samples range from 26 micrograms per cubic meter ($\mu g/m^3$) to 221 $\mu g/m^3$, with a median of 50 $\mu g/m^3$ and a mean of 57 $\mu g/m^3$. Six results (18 percent) exceed 50 $\mu g/m^3$, and two results (6 percent) exceed 100 $\mu g/m^3$.

OSHA conducted an inspection at a small ceramic and pottery clay manufacturing company and noted several issues with dust control (OSHA SEP Inspection Report 116178096). During the inspection, the dustiest operation OSHA observed was breaking and dumping bags of raw materials into a hopper on an elevated work platform. Although the hopper was partially enclosed and ventilated, the task produced substantial amounts of dust. A worker who spent a portion of the shift dumping bags of dry silicacontaining material at this station and spent the remaining portion dry sweeping experienced the highest exposure of 221 μ g/m³. Near the bag-dumping station, two other workers ran the clay batch operation, which involved dry sweeping, packaging dry product, and moving bags of raw material with an open lift truck. These two workers had exposure levels of 80 μ g/m³ and 83 μ g/m³. OSHA also noted that product bag-filling areas did not have local exhaust ventilation (LEV) during the inspection, but that mixing and blending containers, and material conveyors and elevators, were enclosed (OSHA SEP Inspection Report 116178096).

Following the inspection, the facility made several improvements to its engineering controls. These included the installation of ventilated bag-disposal hoppers; a new LEV system with a commercially available dust collector (Donaldson, 2009) for dry batch operations; and the addition of high-efficiency particulate air (HEPA) after-filters for two existing dust collectors. Improvements also were made to existing LEV ductwork and hoods to improve capture efficiency and exhaust flow. After the engineering improvements were completed, three full-shift PBZ follow-up exposure levels were reported at less than or equal to the limit of detection (LOD) [in this case 31 μ g/m³], 26 μ g/m³, and 44 μ g/m³. Two of these

¹⁰⁰ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

¹⁰¹ ERG (ERG-GI, 2008) reported on a larger number of results (40 rather than 34 described here) because quartz and cristobalite results for six samples were each counted as an independent value (e.g., as a total of 12 values). Because these analytes both represent forms of silica, for the present analysis OSHA has combined the paired quartz and cristobalite values to create a total silica result for each of the six workers exposed to both mineral forms. Cristobalite was not detected in the other 28 samples.

 $^{^{102}}$ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample,

samples (less than or equal to $31~\mu g/m^3$ and $44~\mu g/m^3$) were collected on workers who spent part of their shift performing bag dumping. Overall, the improved engineering controls reduced the mean silica exposure by 74 percent.

NIOSH conducted an HHE at a company that produces roofing granules from nepheline-syenite (NIOSH HETA 91-0091-2418, 1991). Although nepheline-syenite is reported to not contain silica, two bulk samples collected during the course of the NIOSH investigation contained 1 to 2 percent silica (as cristobalite). The facility processes the raw material into uniform-sized granules by using a system of crushers and production screeners. The granules are then transported by conveyor to the coloring department where the product is colored, heat-cured, and transferred to storage silos.

NIOSH collected 28 full-shift PBZ samples at the roofing granule manufacturer: six samples collected during the initial visit and 22 during the follow-up survey. NIOSH reported that five of the six samples (83 percent) from the initial visit included cristobalite (the sixth contained quartz). Three (50 percent) of those six samples exceeded $50 \,\mu\text{g/m}^3$ as total silica, and all were samples that contained cristobalite. A helper in the crushing and screening department who performed general cleaning within the department and assisted with screen changing had the highest exposure at $111 \,\mu\text{g/m}^3$. Two other workers in the crushing and screening department experienced exposures of $58 \,\mu\text{g/m}^3$. Both workers assisted in changing screens; one of them, the screen man, also constructed screens while the other, the bin tender, monitored mineral flow in and out of silos. Although most processes and conveyors were enclosed, NIOSH investigators observed process leaks and poor housekeeping practices (e.g., piles of dust located throughout the facility) that could expose workers to silica-containing dusts (NIOSH HETA 91-0091-2418, 1991). NIOSH also noted that its monitoring data might not be representative of typical worker exposures at the plant because of upset conditions created by a power failure. Plant management reported that dust concentrations were higher than normal.

During the follow-up survey, NIOSH obtained 22 full-shift exposure levels below the NIOSH recommended exposure limit (REL) of 50 $\mu g/m^3$. Although NIOSH noted that "most" exposures were below LOD of 20 $\mu g/m^3$, the report does not specify how many. For the purposes of the exposure profile, OSHA took the most conservative approach and used an exposure 50 $\mu g/m^3$ for all 22 samples. NIOSH also noted that one of the three production lines in the crushing and screening department was not operating because of mechanical problems, which might have caused silica concentrations to be lower than usual (NIOSH HETA 91-0091-2418, 1991).

Based on a review of the available information, OSHA finds that baseline conditions typically include some form of exhaust ventilation and process enclosures, although these controls might be inadequately maintained and function inefficiently (NIOSH HETA 91-0091-2418, 1991; OSHA SEP Inspection Report 116178096). In the absence of other information, OSHA finds that the results represented in Table IV.C-28 offers the best available indication of exposure levels under baseline conditions.

therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

¹⁰³ In keeping with OSHA's standard data handling for this analysis, the quartz LOD was conservatively assumed to represent the level of quartz in an individual sample and, when detected, cristobalite values were added to the quartz levels to create a total silica result.

Additional Controls

Additional Controls for Production Workers

Based on the available information, OSHA estimates that most production workers (82 percent) already experience exposures below 50 $\mu g/m^3$; however, additional controls will be required to reduce the exposures of the remaining 18 percent of production workers to this level. Appropriate control options include equipping existing bag-dumping stations with well-ventilated enclosures and ventilated bag-disposal equipment; modifying and/or improving maintenance to existing process equipment enclosures and LEV to ensure optimal dust control; and more diligent housekeeping to reduce dust accumulation in association with low dust-producing cleaning methods (i.e., HEPA-filtered vacuuming and wet methods). Implementation of these controls might involve installing new equipment or improving current equipment (ERG-GI, 2008).

Local Exhaust Ventilation

As previously discussed, the highest exposure level in the industry profile ($221 \,\mu\text{g/m}^3$) is associated with bag-dumping and disposal operations at a pottery clay manufacturing company (OSHA SEP Inspection Report 116178096). After this establishment made engineering improvements to its dry batch operations, the silica exposure of the production worker whose activities include bag dumping, bag disposal, and dry sweeping was reduced by about 80 percent, from $221 \,\mu\text{g/m}^3$ to $44 \,\mu\text{g/m}^3$ (based on one sample collected before improvements and one sample collected after). Engineering improvements included the installation of ventilated bag-disposal hoppers and a new (presumably enhanced) LEV system with dust collectors that serviced the bag-dumping and disposal hoppers, and other dry batch processing equipment (blenders and elevators). Additionally, HEPA final-filters were added to two existing dust collectors and improvements were made to existing LEV ductwork and hoods to improve capture efficiency and exhaust flow.

Table IV.C-28

Respirable Crystalline Silica Exposure Range and Profile for Workers in the Mineral Processing Industry (NAICS 327992)

	Expo	sure Sumn	nary	Exposi	ıre Range			Exposure Pro	file	
Job Category	Number of Samples	Mean (μg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Production Worker										
Before engineering improvements	3	128	83	80	221	0 0%	0 0%	2 67%	1 33%	0 0%
After engineering improvements*	3	34	31	26	44	0 0%	3 100%	0 0%	0 0%	0 0%
Production Worker										
Other conditions	28**	52	50	30	111	0	25	2	1	0
						0%	89%	7%	4%	0%
Totals	34	57	50	26	221	0	28	4	2	0
						0%	82%	12%	6%	0%

Notes: All samples are personal breathing zone (PBZ) results and all except one are for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: NIOSH HETA 91-0091-2418, 1991; OSHA SEP Inspection Report 116178096.

^{*} Because the available data are limited, the exposure profile includes one PBZ sample result (collected for 354 minutes) that is less than full shift (i.e., 360 minutes).

^{**} NIOSH reported 22 of these samples as less than 50 μ g/m³, with most concentrations being below the LOD of 20 μ g/m³; however, the number of observations actually below the LOD is not provided. For this exposure profile, OSHA used an exposure of 50 μ g/m³ for all 22 samples and placed them in the <25 μ g/m³ and ≤50 μ g/m³ category, recognizing that this conservative approach overestimates the exposure of some workers.

Exposure levels for two other workers in the production area of the pottery clay manufacturer also were reduced after the engineering improvements. Full-shift PBZ exposure results for the two workers were initially 80 $\mu g/m^3$ and 83 $\mu g/m^3$. After improvements were made to control dust from the bag-dumping station and other dry batch process equipment, exposure levels were less than the LOD (in this case 31 $\mu g/m^3$) and 26 $\mu g/m^3$ (an average reduction of about 65 percent). These workers worked near the dry batch bag-dumping operation and performed dust-producing activities such as moving bags of raw material with an open lift truck, dry sweeping, and packaging dry product.

Comparable information regarding the effectiveness of properly designed and maintained equipment for controlling dust generated during bag dumping and disposal exists for other industries. Two results, both less than or equal to 15 μ g/m³ (LOD), were reported by the New Jersey Department of Health (NJDOH) for workers in a porcelain fixtures facility who manually emptied 50-pound bags of silica and other raw materials containing silica into a LEV-equipped mixer hopper (ERG # NJ-1412).

Additionally, ERG obtained respirable quartz exposure monitoring data for workers using bag-dumping stations with an automated bag-disposal feature at a paint manufacturer (ERG-paint-fac-A, 1999). The stations consist of hoppers topped with grates enclosed by LEV hoods. Full-shift PBZ exposure levels were less than or equal to $12~\mu g/m^3$ (LOD) for five workers who emptied bags of silica-containing materials at these stations. In contrast, a full-shift PBZ exposure level of $263~\mu g/m^3$ was obtained for a worker at a bag-dumping station where the LEV system failed for approximately 2 hours (ERG-paint-fac-A, 1999). This suggests that an effective LEV system can reduce silica exposure levels by at least 95 percent.

A NIOSH report also describes a bag-dumping station with an effective LEV system (NIOSH CT-144-19a, 1983). NIOSH evaluated the unit by measuring PBZ respirable dust levels with real-time aerosol monitors before and while workers emptied bags of crushed limestone and found no statistically significant elevation of PBZ respirable dust over background levels. OSHA requires additional data to better characterize the effectiveness of LEV and bag-dumping systems. Ventilated bag-dumping stations that include a ventilated compactor are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a; Whirl-air, 2003).

Process Enclosure and Maintenance

Properly enclosed, ventilated, and maintained process equipment (e.g., conveyors, elevators, mixers, blenders, screeners) are necessary to control silica-containing dusts during material transfer and other process-related operations. NIOSH investigators noted process leaks in and around enclosures and less than optimal LEV in a roofing granule manufacturer. NIOSH recommendations included implementing a preventive maintenance program and replacing process enclosures that are removed for inspection or maintenance purposes as soon as the work is completed (NIOSH HETA 91-0091-2418, 1991). In a similar manner, OSHA recommended specific operating and maintenance procedures following an inspection at the pottery clay manufacturer previously discussed (OSHA SEP Inspection Report 116178096). Recommendations included: 1) sealing all holes in the elevators, pug mills, and other vessels holding or transporting product; and 2) routine preventive maintenance on equipment, including LEV filter changes.

Although data comparing exposure levels before and after the above described recommendations are not available, enclosing, ventilating, and maintaining dry-process operations will reduce worker exposure to silica by limiting the quantity of dust released into the workplace.

Feasibility Finding

Feasibility Finding for Production Workers

Based on the best available data described in the exposure profile, OSHA preliminarily concludes that a substantial majority of the production workers in this industry (82 percent) have already achieved exposure levels of $50 \, \mu \text{g/m}^3$ or less through the use of process enclosures and ventilation. OSHA estimates the remaining workers in this job category (18 percent) will require additional controls to reach this level.

Appropriate controls include properly designed and maintained LEV and enclosures and good housekeeping practices. As previously discussed, effective ventilation and process enclosures routinely control worker exposures to levels below $50~\mu g/m^3$. A properly enclosed and ventilated bag-dumping station that incorporates a ventilated bag-disposal feature decreases exposure to not only the worker dumping bags, but also to other workers in the vicinity of the bag-dumping operation. These methods are already in use at some facilities (ERG-GI, 2008). For example, results of 80, 83, and 221 $\mu g/m^3$ were brought below the proposed permissible exposure limit (PEL) of $50~\mu g/m^3$ (to 26, 31, and $44~\mu g/m^3$) at the clay production plant when engineering controls were improved (OSHA SEP Inspection Report 116178096). Professional-level cleaning in association with improved housekeeping procedures significantly decrease exposure levels for workers engaged in cleaning activities, as well as for most workers working in areas where dust has been allowed to accumulate. In summary, OSHA preliminarily concludes that all mineral processing facilities can achieve exposure levels of $50~\mu g/m^3$ or less all workers by implementing currently available controls for some workers.

REFERENCES

Carolina Conveying, 2010. Bag dump stations. Available at:

http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0024-0581**

Chicago Conveyor, 2004. Bag dump stations. Available at:

http://www.chicagoconveyor.com/bagdump.html;

http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010.

OSHA-2010-0034-1429

Donaldson, 2009. Donaldson® Torit®. Available at:

 $\underline{\text{http://www.donaldson.com/en/industrialair/products/index.html}}. \ \ \textbf{OSHA-2010-0034-0624}$

ERG # NJ-1412. New Jersey Department of Health. Case file. OSHA-2010-0034-1410

[ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**

[ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**

- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-0680**
- [NIOSH CT-144-19a] National Institute for Occupational Safety and Health, 1983. An evaluation of control technology for bag opening, emptying and disposal the self-contained filter/bag dump station, The Young Industries, Inc., Muncy, Pennsylvania. OSHA-2010-0034-1369
- [NIOSH HETA 91-0091-2418] National Institute for Occupational Safety and Health, 1991. Health hazard evaluation report: Minnesota Mining and Manufacturing (3M) Company, Little Rock, Arkansas. **OSHA-2010-0034-1377**
- [OSHA SEP Inspection Report 116178096] OSHA Special Emphasis Program Inspection Report 116178096. **OSHA-2010-0034-0108**
- U.S. Department of Commerce, 2002. U.S. Census Bureau 2002 NAICS definitions. Available at: http://www.census.gov/epcd/naics02/def/NDEF327.htm OSHA-2010-0034-1401
- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1212**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Paint and Coatings Description

Finely ground quartz and cristobalite are used as pigments and fillers in the manufacture of paints and allied products such as stains, powder coatings, glazes, and vitreous enamels. These products are manufactured by establishments classified in the six-digit North American Industry Classification System (NAICS) code 325510, Paint and Coating Manufacturers.

Material handlers receive powdered silica components in bulk or in bags and transport them within the plant. Either material handlers or mixer operators weigh the silica ingredients, and mixer operators are responsible for adding ingredients to the blending equipment. Housekeeping activities can be performed by workers in either job title. Once powdered ingredients are combined with a liquid in blending equipment, OSHA expects that little or no further potential for exposure to silica exists in the manufacturing plant. The production of special vitreous coatings (glass frit, glazes, and enamels) are described in Sections IV.C.14 – Porcelain Enameling and IV.C.15 – Pottery but are also relevant to this industry; see ERG-GI (2008) for examples.

Based on information presented in ERG-GI (2008), OSHA estimates that one-third of the industry uses silica, and less than 10 percent of the silica used in paint manufacturing is in the form of cristobalite.

Based on information from one facility site visit and two OSHA Special Emphasis Program (SEP) inspection reports described in ERG-GI (2008), OSHA finds that material handlers and mixer operators are the two job categories that have potential exposure to silica.

Table IV.C-29 summarizes the job categories, major activities, and primary sources of silica exposure of workers in this industry.

Job Category*	Major Activities and Sources of Exposure								
Material Handler	Oversee delivery of raw materials and their transportation through the facility.								
	 Dust from open transferring of silica-containing raw materials (such as sand and clay) manually or by lift truck. 								
	 Dust from manual weighing of silica-containing materials. 								
	 Dust from sweeping, brushing (housekeeping). 								
Mixer Operator	Add wet and dry ingredients to milling, mixing, and dispersion equipment.								
	 Dust from opening and manually emptying bags of silica-containing materials into hoppers. 								
	 Dust from manual weighing of silica-containing materials. 								
	 Dust from sweeping, brushing (housekeeping). 								

Baseline Conditions and Exposure Profile

The following sections describe baseline conditions for each affected job category, based on an ERG site visit report and two OSHA SEP inspection reports ¹⁰⁴. Although limited, these represent the best data available to OSHA for workers in the paint and coatings manufacturing industry.

Baseline Conditions for Material Handlers

Based on descriptions of material handlers' activities and equipment discussed in ERG's 2008 analysis, OSHA finds evidence that baseline conditions for this group of workers include considerable manual handling of packaged and bulk raw materials, as well as the use of local exhaust ventilation in the raw materials weighing area at some facilities.

Seven silica results from an ERG site visit and one result from an OSHA SEP inspection characterize material handler exposure levels and are described in more detail in ERG's report (2008). As shown in Table IV.C-30, all eight results for material handlers are below 50 micrograms per cubic meter (µg/m³).

Baseline Conditions for Mixer Operators

OSHA reviewed baseline conditions for mixer operators from three facilities (seven from the ERG site visit and three from two typical paint batch mixing facilities inspected by OSHA), as described by ERG (2008), and determined that exposures are due primarily to airborne dust generated as: 1) bags are opened, 2) materials are transferred into hoppers, and 3) empty bags are compressed for disposal. Table IV.C-30 summarizes 10 full-shift results for mixer operators, two of which exceed 250 μ g/m³. One result (263 μ g/m³) is from a 447-minute sample associated with a mixer operator manually transferring raw materials (emptying 50-pound bags) during a period of ventilation system failure that ERG observed (ERG-paint-

¹⁰⁴ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

fac-A, 1999). At that manufacturing site, the plant-wide combination local exhaust ventilation (LEV) and bag disposal system worked well for the first shift monitored but became clogged (reduced or no airflow) during the subsequent shift on which ERG obtained the elevated result. The other six results from this site were collected while the ventilation system was still functioning and resulted in exposure levels below 25 μ g/m³. Two results at a similarly low level were also reported at a second facility visited by OSHA, for which the ventilation status was not documented (OSHA SEP Inspection Report 116187857). At the third paint manufacturing plant, OSHA obtained another elevated result of 413 μ g/m³ for a mixer operator working in an area where LEV was being considered, suggesting that LEV was not present on the date that the sample was collected (OSHA SEP Inspection Report 17621905). The median exposure level for mixer operators is 78 μ g/m³.

Detailed information on housekeeping practices at the paint manufacturing facility visited by ERG indicate that a mixer operator used a brush to dry sweep into the tank any silica powder that accumulated on tank rims near bag dumping stations. Another operator used a hose to wash away powder spilled to the floor. Floors at this facility were also cleaned using a wet vacuum truck, operated by workers in the material handler job category (ERG-paint-fac-A, 1999). Workers performing these activities during a shift when the exhaust ventilation system was functioning were among those who experienced exposure levels less than $25~\mu g/m^3$.

The data appearing in Table IV.C-30 come from three facilities where air monitoring was conducted because the industrial hygienist had reason to believe that the facility was using silica. For facilities that use silica, Table IV.C-30 is the exposure profile and summarizes the baseline exposure data available to OSHA for this industry.

 $^{^{105}}$ OSHA notes that although workers handled quartz and cristobalite powder during this site visit, only quartz was detected in the samples from the site.

Table IV.C-30
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Paint and Coatings Industry (NAICS 325510)

	Expo	Exposure Summary Exposure Range						Exposure Profile							
Job Category	Number of Samples	Mean (μg/m³)	Media n (μg/m	Min (μg/m³)	Max (μg/m		<25 (μg/m	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)				
Material Handler	8	12	13	10	13		8	0	0	0	0				
							100%	0%	0%	0%	0%				
Mixer Operator	10	80	13	12	413		8	0	0	0	2				
							80%	0%	0%	0%	20%				
Totals	18*	49	13	10	413		16	0	0	0	2				
							89%	0%	0%	0%	11%				

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry

All data for this exposure profile are from facilities that use silica in their operations.

Sources: ERG-paint-fac-A, 1999; OSHA SEP Inspection Reports 116187857 and 17621905.

Additional Controls

Additional Controls for Material Handlers

No additional controls are required for material handlers. If exposure controls were to become necessary, such methods might include substitution of low-silica-containing material and improved ventilation at weighing stations. The effectiveness of these options is described briefly for mixer operators.

Additional Controls for Mixer Operators

Based on the ERG report, OSHA lists the primary controls for mixer operators as bag dumping stations equipped with well-ventilated enclosures and bag compactors (ERG, 2008). At a site mentioned previously, ERG monitored mixer operator exposure and obtained results less than 12 μ g/m³ and 13 μ g/m³, the sample limits of detection (LODs), while workers produced batches of paint by emptying 50-pound bags of quartz and cristobalite powder into hoppers during periods when the combined exhaust ventilation and bag disposal systems were working properly. ¹⁰⁶ These values are 95 percent lower than the result of 263 μ g/m³ obtained by ERG during another shift at the same plant when these controls malfunctioned. Based on that site visit, OSHA estimates that properly functioning and adequate LEV will reduce exposures from levels exceeding 250 μ g/m³ to less than the limit of detection of 12 or 13 μ g/m³ (a 95 percent reduction) (ERG-paint-fac-A, 1999).

High-efficiency particulate air (HEPA)-filtered vacuums offer an alternative to dry brushing and sweeping in plants where exhaust ventilation is insufficient to control dust during these activities. These vacuums supplement wet washing and wet sweeping that already occurs in paint and coatings manufacturing facilities (ERG-paint-fac-A, 1999).

Another control option involves substituting low-silica-containing materials (e.g., calcium carbonate) for materials with a higher silica content; however, this option might require reformulating affected products (ERG, 2008).

Feasibility Finding

Feasibility Finding for Material Handlers

OSHA estimates the preliminary baseline exposure level for all material handlers to be less than 25 $\mu g/m^3$. This finding is based on the eight sample results (all under 25 $\mu g/m^3$) included in the exposure profile. Thus it is clearly feasible for paint and coatings manufacturers to maintain material handler exposures below 50 $\mu g/m^3$.

Feasibility Finding for Mixer Operators

OSHA estimates that exposures for mixer operators can be reduced to below $50 \,\mu g/m^3$. Based on the exposure profile, facilities will need to provide ventilated bag dumping stations and bag disposal equipment for 20 percent of mixer operators. To eliminate dry brushing until ventilation systems are operating effectively, mixer operators might need access to HEPA-filtered vacuums to clean tank rims and areas that cannot be washed with water immediately after spills occur.

¹⁰⁶ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Overall Feasibility Finding for Paints and Coatings Manufacturing Facilities

In summary, OSHA preliminarily concludes that by implementing additional controls for some mixer operators, paints and coatings manufacturers can achieve exposure levels of $50 \,\mu\text{g/m}^3$ or less for most of their workers most of the time.

REFERENCES

- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- [OSHA SEP Inspection Report 116187857] OSHA Special Emphasis Program Inspection Report 116187857. **OSHA-2010-0034-0105**
- [OSHA SEP Inspection Report 17621905] OSHA Special Emphasis Program Inspection Report 17621905. **OSHA-2010-0034-0943**

Porcelain Enameling Description

Porcelain enamel is a boro-silicate layer usually applied to metal products as a protective or decorative coating. Porcelain enameling is used in a variety of industries to produce such products as architectural panels, bathtubs, barbeques, boilers, chemical vessels, cookers, heat-exchange panels and tubes, holloware, microwave ovens, street signs, water heaters, and washing machines (Faust, 1994). Industries that can be involved with porcelain enameling (either as a service to another manufacturer or as a part of the manufacturing process) are classified in the six-digit North American Industry Classification System (NAICS) codes 332812, Metal Coating, Engraving (except Jewelry and Silverware), and Allied Services to Manufacturers; 332998, Enameled Iron and Sanitary Ware Manufacturing; 332323, Ornamental and Architectural Metal Work Manufacturing; 339950, Sign Manufacturing; and 335211, 335221, 335222, 335224, and 335228, industries involved in household appliance manufacturing (e.g., stoves, refrigerators, microwave ovens, water heaters).

The application of the enamel on the base material is performed in various ways, including manual or automatic dipping, slushing, flowcoating, manual or automatic spraying, electrostatic wet spraying, electro-deposition, and electrostatic dry powder spraying. Porcelain enamel is produced from ground frit, a silicate glass composed of approximately 50 percent amorphous silicon dioxide, and additive ingredients. For many applications (but not all), these additives include crystalline silica or crystalline silica-containing materials such as feldspar and quartz (Hlavac, 1983; Porcelain Enamel Institute, 2004). For the purposes of this analysis, porcelain enamels can be divided into two categories: 1) clay-containing porcelain enamels that typically include 2 to 10 percent silica and are always applied as a wet slurry (these cannot be applied electrostatically) and 2) porcelain enamels classified as powder coatings, which contain no clay or silica and can be applied by electrostatic/electro-deposition processes (Porcelain Enamel Institute, 2004). This discussion focuses solely on manufacturers of enamels that contain silica.

Establishments that perform porcelain enameling typically employ enamel preparers who mix the enamel and coatings applicators who apply the enamel to metal products. In facilities with small enameling operations, the same operator might mix the coating and apply it to products. See Table IV.C-31 for a description of job categories, major activities, and sources of exposure. Further process detail can be found in ERG-GI (2008). The steps used for both the porcelain enamel preparation and many of the application processes are generally similar to those used to produce and apply glazes in the pottery industry. The major difference between the porcelain enamel used on metals and the glaze applied to pottery is that metal enamels contain more boron and less silica (2 to 10 percent silica in metal enamels compared with 23 percent in pottery glaze), which allows enamels to fuse at a lower temperature and accommodate the greater thermal expansion of metals (ERG-GI, 2008).

Job Category*	Major Activities and Sources of Exposure
Enamel Preparer	Combine frit and other raw ingredients; transfer enamel slurry to other areas o the plant.
	 Dust from milling and/or mixing of silica-containing materials. Dust from manual weighing and bag dumping of silica-containing materials.
Porcelain Applicator	Apply enamel to products (manually or automated); transfer products between conveyers; perform housekeeping.
	 Dust from handling products coated in dried enamel. Dust from dried overspray and dripped slurry from the application process

Baseline Conditions and Exposure Profile

Little data exist to characterize silica exposures during porcelain enameling. In the absence of more completely documented exposure information for this industry, OSHA has relied on Integrated Management Information System (IMIS) data, as well as the general exposure information provided by a contact within the industry (Porcelain Industries, 2004a). Drawbacks associated with IMIS data include limited documentation of worker activity, sample duration, materials being handled, exposure controls in use at the time, and other or adjacent sources of silica exposure. However, IMIS data remain the best available source of exposure data for workers involved in porcelain enameling. ERG (ERG-GI, 2008) searched IMIS data for silica sampling associated with porcelain enameling between 1979 and 2002, and identified three exposure results (as respirable dust containing silica) for enamel preparers and 23 results for porcelain applicators between 1985 and 1992. The data were used to calculate 8-hour TWA silica values (see the related note in Table IV.C-32).

Baseline Conditions for Enamel Preparers

The three silica personal breathing zone (PBZ) results for enamel preparers (millers, mixers) from the IMIS database were 0 micrograms per cubic meter ($\mu g/m^3$), 46 $\mu g/m^3$, and 56 $\mu g/m^3$ (see Table IV.C-32). The limit of detection (LOD) for the low value (reported as 0) is likely less

Table IV.C-32

Respirable Crystalline Silica Exposure Range and Distribution of IMIS Results for Workers in the Porcelain Enameling Industry (NAICS 332323, 332812, 332998, 335211, 335221, 335222, 335224, 335228, and 339950)

	Expo	sure Sumr	nary	Exposure Range			Exposure Profile							
Job Category	Numbe r of Sample s	Mean (μg/m	Median (μg/m	Min (μ g/m ³)	Max (μg/m ³		<25 (μg/m ³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m ³)			
Enamel Preparer	3	34	46	0	56		1	1	1	0	0			
							33.3%	33.3%	33.3%	0.0%	0.0%			
Porcelain Applicator	23	234	23	0	2300		12	3	5	0	3			
							52.2%	13.0%	21.7%	0.0%	13.0%			
Totals	26	211	26	0	2300		13	4	6	0	3			
							50.0%	15.4%	23.1%	0.0%	11.5%			

Notes: For each applicable silica result presented in IMIS as Exposure-Type "T" (time-weighted average), the silica concentration was calculated based on the reported 8-hour TWA PEL and the reported respirable dust exposure level. The resulting silica values are 8-hour TWAs.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

than the median, but the precise value cannot be determined (ERG-GI, 2008). One silica PBZ result (33 percent) exceeds 50 µg/m³.

These results support the statement made by a representative of a facility specializing in porcelain enameling for contract customers (hereafter, Porcelain Facility A). At that establishment, air sampling conducted by a State Plan state OSHA program on at least two occasions showed an 8-hour time-weighted average (TWA) exposure level well below $100~\mu\text{g/m}^3$ for workers preparing porcelain enamels with minimal exposure to silica over the remainder of the shift. However, the Facility A representative also noted that task-based sampling had shown that airborne silica concentrations could exceed $100~\mu\text{g/m}^3$ during one of this worker's activities: the 1-hour task of mixer charging (by bag dumping) (Porcelain Industries, 2004a). This information confirms that enamel preparer exposure levels can be relatively low over the course of an enamel preparer's shift, but indicates that elevated exposures can occur for limited periods.

Based on limited information provided by NIOSH and contacts within the industry, OSHA believes that most facilities performing porcelain enameling currently use automated systems to move some raw materials (such as frit) to the mixer, but that enamel preparers are most likely to introduce those additives used in smaller quantities (such as silica-containing ingredients) by dumping bags directly into a hopper at the mixer opening (NIOSH 149-19a, 1984; Porcelain Enamel Institute, 2004; Porcelain Industries, 2004a). Some form of exhaust ventilation is often available at the mixer opening or hopper; however, the ventilation does not necessarily offer complete dust control during mixer charging (as evidenced by reports of measurable silica exposure levels during mixer charging) (Porcelain Industries, 2004a). Although relatively brief (e.g., 1 hour per day), mixer charging can be the most significant source of worker silica exposure associated with porcelain enameling (Porcelain Industries, 2004a).

The exposures summarized in Table IV.C-32 for enamel preparers represent the best available information on the exposure levels associated with this job category and, in the absence of more detailed information, also represent baseline conditions for enamel preparers.

Baseline Conditions for Porcelain Applicators

The 23 silica PBZ results for porcelain applicators identified in IMIS were obtained in nine facilities and show a median silica exposure of 23 μ g/m³ and a mean of 234 μ g/m³, with a range of 0 to 2,300 μ g/m³

results that were below the LOD, because that limit cannot be determined with the information available in the IMIS database. However, as an exception, a few specific "none detected" results in the porcelain enameling industry are included in this exposure profile. This is because the data for porcelain enameling were few enough to permit individual handling of those few results that are reported as "0" exposure for silica (resulting in a respirable dust permissible exposure limit [PEL] of 5 milligrams per cubic meter [mg/m³]) and that also had very low respirable dust concentrations (no greater than a few hundred mg/m³) and so were likely not analyzed for silica (because of limitations of the analytical equipment). Very low respirable dust concentrations would be associated with low silica exposure levels, even if that respirable dust were to contain a high percentage of silica. For example, one of these "0" μg/m³ results also indicated that a porcelain applicator's exposure to respirable dust was 70 μg/m³. Even if the respirable dust on the filter had contained 33 percent silica (a high percentage that occurs only rarely in any industry), the worker's silica exposure level would have been 23 μg/m³ (well below the median of 46 μg/m³. OSHA recognizes that a high level of uncertainty is associated with these results, but believes that in this case the additional values contribute to a more informed profile of the industry in the absence of other data that is more completely documented.

¹⁰⁸ The 8-hour TWA averages higher task-based concentrations (such as occurred during bag dumping) with lower levels that occurred during the rest of the shift.

(see Table IV.C-32). These workers were primarily employed by appliance manufacturers with job titles such as porcelain sprayer, porcelain applicator, enameler, rework sprayer, and enamel sprayer. Eight results (35 percent) exceed 50 μ g/m³; three (13 percent) exceed 100 μ g/m³; and two (9 percent) exceed 1,000 μ g/m³.

The IMIS data indicates that one facility was inspected by OSHA in three different years. Both porcelain applicator results exceeding 1,000 $\mu g/m^3$ were obtained in 1985 at the first inspection of this facility, along with two results of 47 $\mu g/m^3$ and 91 $\mu g/m^3$. At the two subsequent inspections, silica exposures for applicators were controlled below 50 $\mu g/m^3$. Results of 3 $\mu g/m^3$, 4 $\mu g/m^3$, 6 $\mu g/m^3$, and 22 $\mu g/m^3$ were reported in 1989, and results of 22 $\mu g/m^3$ and 23 $\mu g/m^3$ were reported in 1992. No data on controls are available for this facility.

At Porcelain Facility A, described in the previous section on Baseline Conditions for Enamel Preparers, all air sampling results for workers associated with the porcelain application line were reportedly below $100 \ \mu g/m^3$ (Porcelain Industries, 2004a). These results are associated with exhaust ventilation along the length of the spray application line. Only summary exposure data is available to OSHA from Porcelain Facility A (no individual results).

Regardless of the application method used (e.g., spray, dip, flowcoat), silica-containing porcelain enamels are typically applied as a slurry (Porcelain Enamel Institute, 2004). This wet application reduces exposure because silica particles cannot become airborne until dry, and when dry, porcelain enamel adheres tightly to the surface to which it is applied (Porcelain Industries, 2004a). Limited information provided by a contact within the industry indicates that ventilation is used extensively while porcelain applicators coat objects and subsequently handle the parts. All application is performed in ventilated booths (e.g., a spray booth) (Porcelain Industries, 2004a). Based on the experiences of other industries, some of the ventilation systems and booths might require maintenance or modification to operate efficiently. Thus, OSHA concludes that baseline conditions for porcelain applicators include wet application methods and use of exhaust ventilation (which might or might not be functioning optimally). The exposures summarized in Table IV.C-32 for porcelain applicators represent the best available information on the exposure levels associated with this job category and, in the absence of more detailed information, also represent baseline conditions for porcelain applicators.

Additional Controls

Additional Controls for Enamel Preparers

As indicated in the exposure profile, OSHA estimates that 66 percent of enamel preparers (two out of three) already achieve exposure levels of $50~\mu g/m^3$ or less, in part because of the limited amount of time required to add the silica-containing materials (generally less than 10 percent of all raw materials) and to the use of ventilated mixers/mill charging equipment. If elevated exposures do occur, facilities should be able to reduce exposures to $50~\mu g/m^3$ or less by improved design or maintenance of existing ventilation systems at bag dumping and mixer charging stations, process automation, improved housekeeping, and substitution. These controls have proven effective in the porcelain enameling industry and in other industries with analogous job categories, such as those that manufacture pottery or structural clay (see the related Section 15 – Pottery and Section 21 – Structural Clay). Coatings preparers in these industries are exposed to silica during transfer and mixing of sand, feldspar, and other coatings or glaze ingredients. Both the pottery and structural clay industries use a substantially greater percentage of silica (also in the form of quartz or feldspar) in product coatings than are used by the porcelain enameling industry. Because of the similarity of the tasks, equipment, and materials, OSHA believes that control methods employed by coatings preparers in the pottery and structural clay industries will function equally well in the porcelain enamel industry.

Local Exhaust Ventilation

Bag-dumping stations with properly ventilated enclosures, which capture dust release during both bag emptying and bag disposal, have been used in the pottery and structural clay industries. An example from the pottery industry demonstrates the value of the booth alone. A coatings preparer used a booth and also a weigh scale outside the booth to mix glazes. An initial value of $143 \mu g/m^3$ was reduced to $51 \mu g/m^3$ after the baghouse ventilation system was repaired. A consultant evaluating the plant during the second (post-repair) sampling date recommended that silica at this facility be reduced to its lowest possible level by taking further steps such as limiting use of compressed air for cleaning (this comment suggests that compressed air was used regularly in the plant) (OSHA SEP Inspection Report 300977352). OSHA preliminarily concludes that by moving the weigh scale into the booth (or adding exhaust ventilation to the scale area), and by reducing reliance on compressed air for cleaning, the exposure of this coatings preparer could be reduced to a level consistently below $50 \mu g/m^3$.

A bag-dumping station with fully functioning local exhaust ventilation (LEV) was found to reduce silica exposure by at least 95 percent in a paint manufacturing facility where workers emptied 50-pound bags of silica-containing materials (ERG-paint-fac-A, 1999). The station consists of hoppers topped with grates enclosed by LEV hoods. After each bag is emptied, the worker releases it and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area. Other types of bag dumping stations also are effective at reducing respirable dust (NIOSH CT-144-19A, 1983). Ventilated bag dumping stations are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a; Whirl-air, 2003).

Process Automation

Although information specific to enamel preparers is not available, the effectiveness of automated systems for transferring silica-containing materials is illustrated by exposure monitoring data obtained for material handlers at two pottery facilities. The exposure for a material handler who was monitoring automated equipment adding silica-containing raw materials to a mixer was almost 66 percent lower (29 $\mu g/m^3$ versus 85 $\mu g/m^3$) than the exposure of a material handler manually adding bags of raw materials to the mixer. At another facility, OSHA obtained a reading of 23 $\mu g/m^3$ for a material handler monitoring automated equipment that transferred dry silica sand from the storage silo and pumped a slurry of ball clay and kaolin into a mixer (ERG-GI, 2008).

An example from the structural clay industry is also instructive. At a facility inspected by OSHA, an 86 percent reduction in respirable quartz exposure readings occurred after management installed an enclosed, automated sand transfer system, despite having an incorrectly sized conveyer. With tightly sealed components, it is likely that exposures would be reduced further (ERG-GI, 2008).

<u>Improved Housekeeping</u>

Dust released during mixer charging can contribute substantially to enamel preparer exposure in facilities where poor housekeeping has allowed dust to accumulate. Some cleaning procedures (e.g., dry sweeping) can aggravate the situation by stirring up dust and causing it to become airborne. A thorough, professional-level cleaning in association with improved housekeeping procedures (e.g., use of a high-efficiency particulate air [HEPA]-filtered vacuum) to maintain cleanliness can reduce exposures in facilities where dust has been allowed to accumulate. An example from the structural clay industry

¹⁰⁹ As noted in Section IV.A – Methodology, unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

demonstrates the benefit of diligent housekeeping practices on worker silica exposure levels. A dramatic exposure reduction (in some cases a greater than 10-fold reduction) was associated with professional-level cleaning to remove dust accumulations on the floor and structural surfaces of raw material handling areas (Brick Industry Consultant A, 2003).

Surface cleaning with HEPA vacuums instead of compressed air has proven beneficial in the pottery industry (another industry using similar silica-containing mineral powders). In a pottery industry facility, the use of compressed air to clean silica dust from the surface of molds was replaced with the use of a vacuum and abrasive pad (OSHA SEP Inspection Report 301527909). Using these methods, and despite uneven functioning of the LEV at two workstations, the facility reduced silica exposures substantially so that four results for workers at these stations were below 40 μ g/m³ (three results equal to 30 μ g/m³ and one of 40 μ g/m³). In contrast, NIOSH had measured exposure levels at this facility 12 years earlier, before the plant instituted dust control measures (NIOSH HETA 84-066-1883, 1988). At that time three of 31 results (10 percent) exceeded 100 μ g/m³, and 6 (20 percent) exceeded 50 μ g/m³.

Substitution

The use of enamels with reduced crystalline silica content represents an additional control option. By preparing coatings with low-silica ingredients, enamel preparers' exposures to silica might be reduced. Coatings producers typically use quartz and feldspar as ingredients in coatings to increase durability and chemical resistance; however, coatings with reduced crystalline silica content can be formulated by replacing quartz with materials such as feldspar (lower crystalline silica content) and frit (amorphous silica), which contain less crystalline silica (ERG-GI, 2008). Porcelain enamels with less than 3 percent crystalline silica are common (Porcelain Industries, 2004b).

Combination of Controls

Using several of the controls discussed above (LEV, process automation, housekeeping, and substitution) simultaneously can lead to greater exposure reductions. Porcelain Facility A uses both ventilation and good housekeeping to keep exposures low. At Porcelain Facility A, enamel preparers charge milling equipment for 1 hour per day, then monitor mills and transport the resulting enamel slurry as needed within the facility for the remainder of the shift. Exhaust ventilation holds the milling equipment under negative pressure to minimize dust release during charging and mixing (for details see ERG-GI [2008]). In addition to ventilating the milling equipment, Porcelain Facility A uses a vacuum fitted with a HEPA filter for all cleaning. To minimize the generation of airborne dust, workers avoid dry sweeping and only shovel or scrape materials that are damp.

A company representative reported that air monitoring conducted by OSHA at this facility found that the 8-hour TWA exposure level of porcelain preparers was well below $100 \,\mu\text{g/m}^3$. Airborne silica concentrations could, however, exceed this level during the bag dumping task (Porcelain Industries, 2004a, 2004b). Exposures might have been still lower during this task if the bag dumping station had been designed differently and included ventilated equipment to dispose of empty bags.

Additional Controls for Porcelain Applicators

Based on data summarized in Table IV.C-32, the silica exposure levels for most porcelain applicators (65 percent) are already less than 50 μ g/m³. Additional controls will be necessary to reduce the exposures of the remainder of the operators (35 percent) to this level. Available controls include LEV, automation, diligent housekeeping practices, and use of low-silica enamels. Implementation of these controls might involve installing new equipment or improving current equipment.

Local Exhaust Ventilation

A common exposure control option includes the use of well-ventilated, well-enclosed booths for enamel application. In order for the booths to be effective, it is important to follow recommended exhaust rates. The American Conference of Governmental Industrial Hygienists (ACGIH) specifies ventilation designs for both large and small spray booths, including recommended air flow rates across the across the entire face of the booth (100 to 150 feet per minute) (see Section 13.75 and VS-75-01 through VS-75-06 in ACGIH [2010]).

The effectiveness of this method in other industries that use similar, but higher, silica content coatings than the porcelain enamel industry is demonstrated by exposure monitoring data obtained at a pottery manufacturing facility visited twice by NIOSH (NIOSH ECTB 171-11b, 1989; NIOSH CT-171-11c, 1992). Median exposure readings were 44 percent, 88 percent, and 67 percent lower on the manual, semiautomatic, and automatic lines, respectively, after the facility improved booths and LEV systems used for manual and automated spraying operations (repairing holes and openings, increasing airflow rates). On the semiautomatic and automatic lines NIOSH recorded eight results, the highest of which was $66 \,\mu\text{g/m}^3$, with a median of $30 \,\mu\text{g/m}^3$ and including four values of $23 \,\mu\text{g/m}^3$ or lower. On the manual spray line, where exposure levels remained higher (up to $507 \,\mu\text{g/m}^3$), reports indicate that operators used compressed air hoses to blow dust off prior to applying glaze during both site visits. It is possible that exposures on the manual spray line could be reduced further by removing dust from work pieces with vacuums and wet sponges as is done by operators on the semiautomatic spraying line.

In this facility, workers who used automated coatings application equipment had a median silica exposure level 64 percent lower than workers performing manual spraying. When the automated spray equipment is well enclosed and associated with a functioning ventilation system, operator results can be even lower (ERG-GI, 2008).

Porcelain applicators should ensure that they are making optimal use of LEV. Porcelain Facility A encourages workers who apply enamel to avoid positioning themselves between the enamel spray and the ventilation system. During manual spraying, small items are positioned by hand within the booth so the spray is directed into the booth and toward the ventilation take-off. For large items, the facility provides a turntable support that allows porcelain applicators to rotate the item to spray all sides of the object while maintaining the spray direction pointing into the ventilated booth (Porcelain Industries, 2004a). The workers also use great care to avoid dislodging enamel powder when handling items that are coated with dry porcelain enamel (e.g., when transferring parts to the furnace conveyer line).

Improved Housekeeping

Dust released from dried coatings and coatings residues (e.g., drips, spills, and overspray) can contribute substantially to the silica exposure of porcelain applicators in facilities where poor housekeeping has allowed dust to accumulate. Improper cleaning procedures (e.g., dry sweeping) can aggravate the situation by stirring up dust and causing it to become airborne. A thorough, professional-level cleaning in association with improved housekeeping procedures (e.g., use of a HEPA-filtered vacuum) to maintain cleanliness can reduce exposures in facilities where dust has been allowed to accumulate. An example from the structural clay industry demonstrates the benefit of diligent housekeeping practices on worker silica exposure levels. A dramatic exposure reduction (in some cases a greater than 10-fold reduction) was associated with professional-level cleaning to remove dust accumulations on the floor and structural surfaces of raw material handling areas (Brick Industry Consultant A, 2003).

Substitution

As discussed previously, the use of enamels with reduced crystalline silica content represents an additional control option. For further information see the previous section on Substitution under Additional Controls for Enamel Preparers.

Combination of Controls

Using several of the controls discussed above (LEV, housekeeping, and substitution) simultaneously can lead to greater exposure reductions. Porcelain Facility A uses ventilation, good work practices, and diligent housekeeping to keep exposures low. Porcelain Facility A makes extensive use of ventilation along the entire coatings application line. Both automated and manual spray enamel application are performed inside spray booths fitted with exhaust ventilation designed for the spray booths. At this site, most operations occur in large, ventilated, walk-in spray booths, although porcelain applicators sometimes apply the coating standing outside a smaller ventilated booth. In addition to using ventilated booths, Porcelain Facility A takes several steps to minimize the amount of dust that becomes airborne. Workers remove enamel residue from spray booths while it is still damp, using shovels and scrapers to recover the material for reuse. A company representative notes that no visible dust is generated during this process. Additionally, this facility uses a large HEPA-filtered vacuum to capture any dried porcelain enamel that workers encounter outside the ventilated booths. Sweeping and shoveling dry materials is not permitted and the HEPA-filtered vacuum is used for general housekeeping throughout the facility. According to a facility representative, during a visit to their facility, OSHA determined that the exposure levels of porcelain applicators were well below the current PEL, as calculated based on the OSHA general industry standard for silica in respirable dust (Porcelain Industries, 2004a, 2004b). The facility representative also reported that OSHA did not find it necessary to reevaluate the exposure of porcelain applicators during a repeat visit to this site.

Feasibility Finding

Feasibility Finding for Enamel Preparers

Based on the exposure profile, OSHA has determined that two-thirds of enamel preparer exposures currently experience silica exposure levels of 50 $\mu g/m^3$ or less, and the remaining third are only slightly higher than 50 $\mu g/m^3$. OSHA preliminarily concludes that the proportion of enamel preparers with exposures below this level can be increased by encouraging workers to use HEPA-filtered vacuums instead of compressed air for cleaning. Using these methods, a pottery manufacturing facility, where similar silica dusts are present, reduced silica exposures to levels below 40 $\mu g/m^3$ (three results equal to 30 $\mu g/m^3$ and one of 40 $\mu g/m^3$) (OSHA SEP Inspection Report 301527909). When facilities implement this control, OSHA preliminarily concludes that levels of 50 $\mu g/m^3$ or less can be achieved for most enamel preparers most of the time.

Where additional controls are required, options for enamel preparers include adding or improving maintenance on bag dumping stations and ventilated bag disposal equipment, process automation, improved housekeeping, and substitution. These methods have reduced exposure levels in other industries that prepare vitreous coatings or use similar materials to form products. OSHA believes that these methods will be equally effective in the porcelain enameling industry and can reduce the exposure for all enamel preparers to levels below $50 \, \mu \text{g/m}^3$.

Feasibility Finding for Porcelain Applicators

Based on the exposure profile, OSHA has determined that approximately two-thirds (65 percent) of coatings operators already experience exposures below 50 µg/m³. Low exposures, in this and related industries, are attributed to use of low-silica enamels; enclosed, well-ventilated automatic spray equipment; appropriately enclosed and ventilated booths for manual operations; and diligent housekeeping. OSHA concludes that exposure levels for the remaining coatings operators (35 percent) can be reduced to below 50 µg/m³ using similar controls. The two highest exposures for this job category (2,300 µg/m³ and 2,006 µg/m³) were both obtained in 1985 at the same facility where OSHA later recorded six silica concentrations between 3 µg/m³ and 23 µg/m³ for porcelain applicators in 1989 and 1992, demonstrating that even the highest exposures for this job category have been successfully controlled to levels below 50 µg/m³. Although information on control methods is not available for that facility, they most likely include some combination of the methods listed above. For example, in the related pottery industry, similar combinations of controls have reduced silica exposures to a median of 30 µg/m³ on the automatic glaze and semiautomatic spraying lines (on the semiautomatic line, where an 88 percent silica exposure reduction was reported, employees worked near the glaze spray in a position similar to a manual spray line in the porcelain enameling industry) (NIOSH ECTB 171-11b, 1989; NIOSH CT-171-11c, 1992). As noted above, the silica content of enamel is lower (by at least half) than for pottery glazes and the OSHA data indicates that correspondingly lower silica exposure levels have been achieved for porcelain applicators in the porcelain enameling industry.

Overall Feasibility Finding for Porcelain Enameling Workers

OSHA preliminarily concludes that the porcelain enameling industry can control the silica exposure of all workers in this industry to levels of 50 μ g/m³ or less using the methods described above.

REFERENCES

- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- Brick Industry Consultant A, 2003. Personal communication between Brick Industry Consultant A and Eastern Research Group, Inc. May 21. **OSHA-2010-0034-0571**
- Carolina Conveying, 2010. Bag dump stations. Available at: http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0034-0581**
- Chicago Conveyor, 2004. Bag dump stations. Available at:
 http://www.chicagoconveyor.com/bagdump.html;
 http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010.
 OSHA-2010-0034-0594
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**

- Faust, W.D., 1994. Enamels, porcelain or vitreous. In Kirk-Othmar Encyclopedia of Chemical Technology, Vol. 9 Elastomers, polyisprene to expert systems. John Wiley & Sons: 413–438. **OSHA-2010-0034-0671**
- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-0680**
- Hlavac, J., 1983. The technology of glass and ceramics, an introduction. Elsevier Scientific Publishing Company: 12–20, 244–246, 294–318, 370–378, 389–390. **OSHA-2010-0034-0740**
- [NIOSH 149-19a] National Institute for Occupational Safety and Health, 1984. Preliminary survey report: Control technology for manual transfer of chemical powders at Porcelain Metals Corporation, Louisville, Kentucky. **OSHA-2010-0034-1682**
- [NIOSH CT-144-19a] National Institute for Occupational Safety and Health, 1983. An evaluation of control technology for bag opening, emptying and disposal the self-contained filter/bag dump station, The Young Industries, Inc., Muncy, Pennsylvania. OSHA-2010-0034-1369
- [NIOSH CT-171-11c] National Institute for Occupational Safety and Health, 1992. SENSOR: Follow-up study for control of silica exposure at Woodbridge Sanitary Pottery Corp., Woodbridge, New Jersey. **OSHA-2010-0034-0211**
- [NIOSH ECTB 171-11b] National Institute for Occupational Safety and Health, 1989. SENSOR: Recommendations for control of silica exposure at Woodbridge Sanitary Pottery Corp., Woodbridge, New Jersey. **OSHA-2010-0034-0209**
- [OSHA SEP Inspection Report 300977352] OSHA Special Emphasis Program Inspection Report 300977352. **OSHA-2010-0034-0106**
- [OSHA SEP Inspection Report 301527909] OSHA Special Emphasis Program Inspection Report 301527909. **OSHA-2010-0034-0027**
- Porcelain Enamel Institute, 2004. Personal communication between Porcelain Enamel Institute, Norecross, Georgia, and Eastern Research Group, Inc. September 1. **OSHA-2010-0034-0959**
- Porcelain Industries, 2004a. Personal communication between Jim Nix, Manager of Safety and Environmental Compliance, of Porcelain Industries, Inc., Dickson, Tennessee, and Eastern Research Group, Inc. September 1. **OSHA-2010-0034-1277**
- Porcelain Industries, 2004b. Personal communication between Jim Nix, Manager of Safety and Environmental Compliance, of Porcelain Industries, Inc., Dickson, Tennessee, and Eastern Research Group, Inc. September 14. **OSHA-2010-0034-0960**

- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1212**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Pottery

Description

Silica-containing materials are the primary ingredients in the manufacture of pottery products, which include vitreous china, fine earthenware, and porcelain electrical supplies. The principal raw materials used in the manufacturing processes include a variety of quartz-containing clays (especially ball clay and china clay), flint, and feldspar. For example, an establishment making vitreous china products used a mixture of ball clay (29 percent silica) and feldspar (12 percent silica). Facilities also might use silica-containing materials to prepare glazes that are applied to the product. Facilities manufacturing pottery products are classified in the six-digit North American Industry Classification System (NAICS) codes 327111, Vitreous China Plumbing Fixtures and Bathroom Accessories; 327112, Vitreous China, Fine Earthenware, and Other Pottery Products; and 327113, Porcelain Electrical Supply Manufacturing (ERG-GI, 2008).

Pottery product manufacture typically begins with the mixing of clay raw material with water in a mill. The clay mass is mixed into "slip," a slurry. The slip is then transferred into molds. After setting, the pottery pieces are removed from the molds and finished (smoothed, trimmed, or ground). Glazes are mixed and applied to the pottery. The pieces are then fired in kilns and packaged (ERG-GI, 2008).

Workers in all phases of pottery product manufacture have potential for silica exposure (ERG-GI, 2008). The primary job categories with potential exposures are material handler, forming line operator, finishing operator, coatings preparer, and coatings operator. Certain workers regularly perform tasks associated with multiple job categories. Table IV.C-33 summarizes the major activities performed by workers and the sources of exposure in each job category. Further detail can be found in ERG-GI (2008).

Job Categories, N	Table IV.C-33 Major Activities, and Sources of Exposure of Workers in the Pottery Industry (NAICS 327111, 327112, and 327113)
Job Category	Major Activities and Sources of Exposure
Material Handler	Transferring silica-containing raw materials (e.g., clay, silica sand, feldspar) from storage silos to weigh hoppers via front-end loader or forklift; mixing clay slip.
	 Dust generated from transfer of materials. Dust from manually opening and dumping bags of silica-containing raw materials.
Forming Line Operator	Transferring slip into molds; removing formed pottery pieces; cleaning molds for reuse; applying mold parting compound.
	Dust from cleaning molds.Dust from applying the mold parting compound.
Finishing Operator	Shaping, smoothing, trimming of dried or fired pottery pieces, typically using hand-held equipment.
	 Dust from finishing dried pottery pieces.
Coatings Preparer	Transferring silica-containing materials (e.g., clay, silica sand, feldspar) to weigh hoppers or mixers; mixing glazes.
	 Dust generated from transfer of materials. Dust from manually opening and dumping bags of silica-containing raw materials.
Coatings Operator	Applying glazes to pieces, typically by hand-dipping or spraying.
	Silica-containing aerosol during glaze spraying.
	are intended to represent job functions; actual job titles might differ and responsibilities might y, depending on the facility.
Source: ERG-GI, 200	8.

Baseline Conditions and Exposure Profile

To evaluate silica exposures of pottery production workers, OSHA reviewed full-shift personal breathing zone (PBZ) respirable quartz exposure monitoring data from six OSHA Special Emphasis Program (SEP) inspection reports, three NIOSH site visit reports, and two site visit reports by the New Jersey Department of Health (NJDOH), summarized previously in ERG-GI (2008). Two of the reports describe one facility evaluated first by NIOSH (NIOSH HETA 84-066-1883, 1988) and then later by OSHA (OSHA SEP Inspection Report 301527909). A second facility was visited twice by NIOSH over the course of several years (NIOSH CT-171-11c, 1992; NIOSH ECTB 171-11b, 1989). OSHA also reviewed 12 additional facility reports from the states of Michigan, New Jersey, and Ohio for historical reference. These reports were also reviewed previously in ERG-GI (2008).

¹¹⁰ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

The vast majority of the results used for this exposure profile represent quartz concentrations. However, a few of the results (less than 5 percent) from one facility evaluated by NIOSH represent a combination of quartz and cristobalite (NIOSH HETA 84-0066-1883, 1988).

While OSHA generally relies on information from reports produced in the 1990s or later for this technological feasibility analysis, OSHA has determined that most sources of data on silica exposure of pottery workers in the United States date back to the late 1980s. Therefore, OSHA has included information from those earlier reports in the exposure profile for the pottery industry. OSHA acknowledges that the resulting exposure profile might overestimate current exposures in pottery facilities. The ceramics industry as a whole has seen marked decreases in respirable dust and silica exposure levels and greater attention to exposure controls since the 1980s.

For example, in Europe, the Institute for Occupational Safety and Health of the German Social Accident Insurance (BGIA) (2008) notes, "The quartz dust situation has been improved over time in all areas of the porcelain industry." BGIA provides evidence of 75 percent to 90 percent (or greater) decline in mean, median, and peak airborne silica concentration in all pottery and ceramics production areas at dozens of facilities over the three decades, ending in 2004.

Furthermore, the U.S. Environmental Protection Agency (EPA) issued a 2007 National Emissions Standard for Hazardous Air Pollutants for Clay Ceramics Manufacturing Area Sources, which includes specific provisions for managing emissions at these facilities, including inspecting and testing ventilation systems associated with pottery kilns and glaze spray booths (40 CFR 63.11435-.11445, 2007). This rule went into effect in 2007, and OSHA believes that the daily, weekly, and yearly inspection requirements for ducts, bag houses, and other dust control systems likely has now eliminated many of the problems with ventilation system integrity that NIOSH and OSHA found during the earlier workplace air sampling visits.

In addition to the data sources reviewed by ERG-GI (2008), OSHA has also identified a more recent NIOSH report (NIOSH HETA 2007-0127-3068, 2008) describing a small storefront pottery operation with four full-time workers and several part-time assistants. Because workers' activities could not be classified by job category (they all encompassed most job categories), exposure information has not been included in the exposure profile. However, the available results indicate that exposures are relatively low at this type of facility despite a lack of local exhaust ventilation (LEV). Only one of five workers evaluated had a measurable full-shift exposure, no results exceeded the proposed permissible exposure limit (PEL) of 50 micrograms per cubic meter (μ g/m³) (one result was at 50 μ g/m³ and the other four out of five sample results were below the limit of detection [LOD], in this case 12 μ g/m³). Although task-based samples results (1 to 2 hours duration) did indicate the potential for exposure to occur during brief periods when workers handle bags of clay and mix clay, workers that perform dusty jobs also perform

¹¹¹ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

many other tasks during their shifts. 112 Thus, their cumulative silica exposure is rarely detectable and did not exceed the proposed PEL of $50~\mu g/m^3$. These results suggest that the limited amount of materials and equipment used in small shops pose a lower risk than similar activities in a large manufacturing operation. For example, at the storefront facility visited by NIOSH, workers reprocessed clay and mixed glazes from 10-gallon buckets. In contrast, at a large industrial pottery facility one worker produced four 9,000-pound batches of clay on one shift.

Baseline Conditions for Material Handlers

Based on ERG-GI (2008), OSHA preliminarily finds that the silica exposures of material handlers result primarily from airborne dust generated as materials are transferred into hoppers or bins, bags are brushed, empty bags are handled for disposal, and vehicles re-suspend settled dust.

As shown in Table IV.C-34, the 21 results for material handlers are summarized by a median value of 33 $\mu g/m^3$ and a range of 10 $\mu g/m^3$ to 1,101 $\mu g/m^3$. Of the 18 material handler results with information on engineering control status, 11 (10 $\mu g/m^3$ to 180 $\mu g/m^3$) are associated with local exhaust ventilation (LEV) reported as relatively functional in areas where materials are dumped, both manually and using front-end loaders. An additional five results (67 $\mu g/m^3$ to 1,101 $\mu g/m^3$) were associated with no LEV or LEV described as inadequate. The remaining two results (23 $\mu g/m^3$ and 29 $\mu g/m^3$) made full or partial use of automated processes. Overall, these results suggest that while elevated exposures can occur in facilities with LEV systems that appear functional, those elevated exposures are less frequent and less severe than in plants where ventilation is documented to perform poorly.

The highest result for this job category (and also this industry), a value of 1,101 $\mu g/m^3$, was obtained when OSHA monitored a material handler shoveling dry clay into a mill that formed clay slip. No ventilation was installed in the mill area, and the material handler also shared the work space with a coatings preparer (another job category with potential to generate substantial silica dust). A lower result of 67 $\mu g/m^3$ was obtained for a second worker at the same plant. This worker shoveled a different clay (ball clay) in the mill area and controlled the addition of water and other ingredients from silos (OSHA SEP Inspection Report 103010542). The available information is insufficient to determine with certainty whether factors other than the clay type caused the results to vary so much.

¹¹² NIOSH recommended that the facility improve the building central ventilation and air circulation and also install exhaust ventilation hoods in the areas where the most dust was generated (NIOSH HETA 2007-0127-3068, 2008).

¹¹³ For the current purposes, inadequate ventilation systems are characterized by insufficient air flow, leaking ducts, inappropriate hood shape or position, or other factors that make dust collection less efficient.

Table IV.C-34
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Pottery Industry (NAICS 327111, 327112, and 327113)

	Expo	sure Sumr	nary	Exposu	re Range	Exposure Profile						
Job Category	Number of Mean (μg/m³) Median (μg/m³)		Min Max (µg/m³) (µg/m³)		<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)			
Material Handler												
No information about controls available	3	25	21	20	33	2 66.7%	1 33.3%	0 0.0%	0 0.0%	0 0.0%		
No LEV or LEV documented as being inadequate (manual bag dumping or power equipment operation)	5	506	530	67	1,101	0.0%	0 0.0%	20.0%	1 20.0%	3 60.0%		
LEV in use and reportedly functional (manual bag	11	50	27	10	180	5	2	3	1	0		
dumping or power equipment operation)						45.5%	18.2%	27.3%	9.1%	0.0%		
Fully or partially automated process (transferring material or charging mixture)	2	26	26	23	29	1 50.0%	1 50.0%	0 0.0%	0 0.0%	0 0.0%		
Material Handler Subtotals	21	152	33	10	1,101	8 38.1%	4 19.0%	4 19.0%	2 9.5%	3 14.3%		
Forming Line Operator												
No information about controls available	41	72	59	6	238	12 29.3%	6 14.6%	8 19.5%	15 36.6%	0 0.0%		
No LEV	4	38	30	22	68	1 25.0%	2 50.0%	1 25.0%	0 0.0%	0 0.0%		
LEV in use	45	43	40	10	130	10 22.2%	28 62.2%	4 8.9%	3 6.7%	0 0.0%		
Forming Line Operator Subtotals	90	56	40	6	238	23 25.6%	36 40.0%	13 14.4%	18 20.0%	0 0.0%		
Finishing Operator	26	75	52	10	180	4 15.4%	9 34.6%	5 19.2%	8 30.8%	0 0.0%		
Coatings Preparer	19	252	124	24	983	1	1	6	5	6		
Coatings Operator						5.3%	5.3%	31.6%	26.3%	31.6%		
Manual (including	29	184	125	17	668	5	2	3	11	8		
semiautomatic) spraying			120		000	17.2%	6.9%	10.3%	37.9%	27.6%		
Automated spraying	8	59	46	12	163	2	2	3	1	0		

Table IV.C-34
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Pottery Industry (NAICS 327111, 327112, and 327113)

	Expo	nary	Exposu	re Range	Exposure Profile						
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
						25.0%	25.0%	37.5%	12.5%	0.0%	
Coatings Operator Subtotals	37	157	106	12	668	7	4	6	12	8	
						18.9%	10.8%	16.2%	32.4%	21.6%	
Totals	193	108	50	6	1,101	43	54	34	45	17	
						22.3%	28.0%	17.6%	23.3%	8.8%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to further define the distribution of worker exposure in these job categories.

ERG-GI (2008) erroneously reported 195 results for this industry. The correct value in 2008 was 191. Here OSHA has added two additional results for finishing operators for an industry total of 193 results. Additionally, there were minor errors in the distribution of results in the 2008 exposure profile, corrected in the present version.

Sources: ERG-GI, 2008; NIOSH HETA 84-066-1883, 1988.

Both quartz and cristobalite contribute to the overall silica concentrations of two other results that also exceeded 250 μ g/m³. These results, summarized in Table IV.C-34, are 530 μ g/m³ and 700 μ g/m³. Information on the specific percentage of cristobalite in the dust sample is not available. The source document, NIOSH HETA 84-066-1883 (1988), indicates that these samples were obtained on two consecutive days for a worker operating an unenclosed front-end loader to scoop dry flint, ball clay, and feldspar into enclosed, ventilated weigh hoppers feeding an open system that conveyed raw materials to mixing equipment. The report suggests that housekeeping was poor, based on a comment that settled dust was disturbed by the loader activity. Additionally, the NIOSH investigator noted that the LEV at the hoppers (with air flow velocity of 155 feet per minute across the enclosure) was "overwhelmed" by the amount of dust released during the material transfer. Based on descriptions of exhausted enclosures for material transport recommended by ACGIH (2010), 114 OSHA has preliminarily determined that, in this case, the LEV system was not designed and used to best advantage; the LEV system could be upgraded to increase dust capture, and work practices could be improved to transfer raw materials in a manner that reduces airborne dust.

Although ERG-GI (2008) reported that most of the facilities for which information is available have some form of ventilation system (not necessarily effective) and considered that the baseline condition, OSHA has determined that, across the industry, baseline conditions are best represented by the cross-section of facilities reviewed for the exposure profile. Thus, the median $(33 \ \mu g/m^3)$ for material handlers presented in Table IV.C-34 also represents the baseline condition for material handlers.

Baseline Conditions for Forming Line Operators

As shown in Table IV.C-34, the median full-shift PBZ respirable quartz value for 90 forming line operator results is 40 μ g/m³, with a mean of 56 μ g/m³ and a range of 6 μ g/m³ (as reported) to 238 μ g/m³. Thirty-one results (34 percent) exceed 50 μ g/m³, and 18 (20 percent) exceed 100 μ g/m³. All of the results for forming operators are associated with operations involving wet or liquid (slip) clay mixtures, although many operators also handle dry materials, such as mold coating compounds and dried clay slip residue in molds. Of the 49 results for which engineering control status could be established, 45 (92 percent, ranging from 10 μ g/m³ to 130 μ g/m³) were associated with the use of LEV. Such ventilation, however, was not always functioning optimally. In fact, in some cases, workers at workstations without LEV (e.g., four results ranging from 22 μ g/m³ to 68 μ g/m³) experienced lower exposures than some forming line operators who had the benefit of LEV. The available information is insufficient to explain these differences, which could relate to work practices, plant cleanliness, or the amount of silica particles in materials.

and hopper openings for manual loading operations; however, ACGIH also recommends air velocity of one-and-a-half to two times that rate depending on the material flow rate (a front-end loader will add materials at a much greater material flow rate than manual transfers), dustiness (the material at this site was apparently very dusty), and the height the material falls (influenced by either hopper design or by material handler work practices). Furthermore, ACGIH recommends that the enclosure be "large enough to accommodate the 'splash' effect." For some dust controls, ACGIH suggests increasing the baseline air flow rate from 150 fpm to 250 fpm when the materials handled include toxic dusts.

As for the material handler job category above, OSHA has preliminarily determined that for the purposes of this analysis, baseline conditions are best represented by the median for this job category as a whole. The values summarized in Table IV.C-34 by this median ($40 \mu g/m^3$) describe the full range of current exposure levels for forming line operators.

Baseline Conditions for Finishing Operators

The exposure profile for finishing operators is based on 26 results obtained from three OSHA SEP inspection reports, one NIOSH report, and a report from the NJDOH described by ERG-GI (2008). Two of the values extracted from the NIOSH report were not previously included in ERG's (ERG-GI, 2008) exposure profile, but were identified as finishing operators during the present review and are included in OSHA's current exposure profile. As Table IV.C-34 indicates, the median full-shift PBZ respirable quartz exposure for finishing operators is $52 \,\mu\text{g/m}^3$, and results range from less than or equal to $10 \,\mu\text{g/m}^3$ to $180 \,\mu\text{g/m}^3$. Thirteen (50 percent) results exceed $50 \,\mu\text{g/m}^3$, and eight (31 percent) exceed $100 \,\mu\text{g/m}^3$. All of the finishing operators' results are associated with manual finishing tools or handling of formed pottery pieces. Of the 23 values for which engineering control status could be determined, all were associated with some form of LEV in the work area.

The lowest value for this job category (reported as $10~\mu g/m^3$) was obtained by a consultant to a pottery facility that had been visited by OSHA. This result is associated with a worker using manual and machine-controlled grinding wheels to square off the bottoms and backs of sanitary ware (e.g., ceramic bathroom fixtures). At least part of this work was conducted in a ventilated booth (OSHA SEP Inspection Report 300977352). On the same day, two other results were also obtained for finishing operators at this facility. One of these workers used hand tools and steel wool pads to smooth unfired ceramic pieces, which reportedly generated a lot of visible dust (no booth mentioned), resulting in an exposure level of $53~\mu g/m^3$. Although the other worker used a ventilated booth to perform similar work, that individual also used compressed air to remove the dust, and the consultant again noted visible dust in the air, leading to a result of $55~\mu g/m^3$ (OSHA SEP Inspection Report 300977352).

Although ERG-GI (2008) found that baseline working conditions include LEV (often poorly functioning, but available in most facilities), OSHA preliminarily finds that a range of working conditions best represents the baseline for the job category (e.g., the conditions under which results summarized in Table IV.C-34 were obtained). Therefore, the median of 52 μ g/m³ for this job category represents the baseline exposure level.

Baseline Conditions for Coatings Preparers

As shown in Table IV.C-34, the median for 19 full-shift PBZ respirable quartz result for coatings preparers is 124 μ g/m³, and these results range from less than or equal to 24 μ g/m³ to 983 μ g/m³. More than half (58 percent) of coatings preparer exposure levels available to OSHA exceed 100 μ g/m³. All of the results for this job category are associated with manual transfer of dry, silica-containing materials into mixing equipment.

The highest reading, $983 \mu g/m^3$, was obtained for a coatings preparer who manually emptied bags of glaze components into a large, unventilated mixer located in one area of the slip house

(OSHA SEP Inspection Report 103010542). Also in the same space was a material handler (making slip) whose exposure level of 1,101 $\mu g/m^3$ was the highest of the values in the material handler exposure profile. The actions of both workers contributed to extremely high silica dust levels in the space.

At a site visited by NIOSH, coatings preparers batched glazes (containing an average of 23 percent silica) by manually emptying bags of silica sand, feldspar, and other materials into ball mills that mixed the materials with water (NIOSH ECTB 171-11b, 1989). NIOSH obtained exposure readings of 292 $\mu g/m^3$, 279 $\mu g/m^3$, 145 $\mu g/m^3$, 124 $\mu g/m^3$, 116 $\mu g/m^3$, and 76 $\mu g/m^3$ for coatings preparers at this facility. To charge the mills, the coatings preparers emptied the bag contents through openings in the mills and manually compressed the bags, generating visible airborne dust. Instead of LEV, the facility had attempted to control coating preparers' exposures by placing a charged fogger above the mills. The fogger sprayed charged water droplets intended to reduce dust levels by electrostatically capturing airborne particles.

Three years later, NIOSH returned to collect additional air samples at the same facility (NIOSH CT-171-11c, 1992). The process and conditions were similar to those reported during the first visit, except that the fogger had been removed; however, LEV had not yet been installed. The maximum exposure levels were notably higher and the range greater during the second visit (692 μ g/m³, 687 μ g/m³, 651 μ g/m³, 78 μ g/m³, 57 μ g/m³, and less than or equal to 24 μ g/m³ [the LOD in this case]) compared with the first, when the fogger was in use.

Exposures are substantially lower when workers prepare coatings at ventilated workstations. OSHA obtained an exposure reading of 86 $\mu g/m^3$ for a coatings preparer who mixed three 3,000-pound batches of glaze (OSHA SEP Inspection Report 300180916). The coatings preparer manually weighed the glaze components, including silica sand and kaolin, in bags or buckets under an LEV hood. The coatings preparer then manually emptied the bags or buckets into an opening in a ball mill. At another facility, OSHA obtained results of 60 $\mu g/m^3$ and 41 $\mu g/m^3$ for coatings preparers using an LEV system that OSHA deemed only partially functional (OSHA SEP Inspection Report 300977352). These coatings preparers batched glazes by manually weighing materials and then manually loading them into a mixer hopper. The hopper was loaded inside a booth equipped with LEV. However, according to the inspection report, the scale used for weighing materials was located outside the booth. Additionally, the LEV system did not generate a sufficient exhaust rate. OSHA concurs with ERG's assumption that exposure readings would have been lower had the ventilation system functioned at the level recommended by ACGIH (2010).

As with the job categories discussed previously, OSHA has preliminarily determined that the baseline condition is best represented by the range of conditions under which coatings preparers worked when air samples included in the exposure profile were obtained. Therefore, the median value for this job category (124 μ g/m³) presented in Table IV.C-34 represents the baseline exposure level for coatings preparers.

Baseline Conditions for Coatings Operator

As Table IV.C-34 shows, the median silica exposure for the 37 exposure results for coatings operators is $106 \mu g/m^3$, with results ranging from $12 \mu g/m^3$ to $668 \mu g/m^3$. Twenty-four results

(70 percent) exceed $50~\mu g/m^3$, and most of those (54 percent of the total) also exceed $100~\mu g/m^3$. All of the results were obtained while workers used spray methods to apply silica-containing glazes onto pottery pieces. At all facilities from which results are available to OSHA, the spray operations took place in LEV-equipped booths; however, some of the booths were documented as performing poorly.

Not surprisingly, silica exposure levels are generally higher when workers use manual spray equipment, rather than automated equipment. Twenty-nine results (median $125~\mu g/m^3$) are associated with manual or semiautomatic spraying, while eight results (median $46~\mu g/m^3$) were obtained while workers tended automated spraying processes. Automated processes tend to allow the worker to stand at a greater distance from the exposure source. Exposures occur primarily when particles of silica-containing coatings are released by pressurized spray nozzles, but fail to adhere to the pottery pieces and drift into coatings operators' breathing zones.

Based on the conditions described for this job category, OSHA has preliminarily determined that the baseline conditions for coatings operators across the industry are best represented by the range of conditions in effect for results summarized in the exposure profile. Thus, the baseline exposure level is represented by the median exposure for this job category ($106 \mu g/m^3$).

Additional Controls

Material Handler

Additional controls will reduce exposures for the 43 percent of material handlers whose exposure levels exceed 50 $\mu g/m^3$, as indicated in Table IV.C-34. Control options include LEV (including well-ventilated process equipment [e.g., mixers] and bag or loader dumping stations equipped with well-ventilated enclosures and, as needed, attached bag compactor); enclosed and ventilated cabs for front-end loaders; improved housekeeping; and automated transfer of silica-containing materials. Implementation of these controls might involve installing new equipment or improving current equipment.

Local Exhaust Ventilation

Data presented in the exposure profile (Table IV.C-34) suggest that ventilated material transfer stations are associated with reduced worker exposures. Although some results remain above the proposed PEL of $50~\mu g/m^3$ when workers have access to LEV described as functional, the results are markedly lower (median exposure level $27~\mu g/m^3$) than when workers use material transfer stations where LEV is clearly inadequate or missing (median exposure level $530~\mu g/m^3$). Adjustments that improve the ventilation system, changes in work practices (e.g., while crushing empty bags or dumping materials from a loader scoop), and housekeeping (as discussed later in this section) will all further reduce material handler exposure levels.

As an example, material handlers performing manual bag dumping can be exposed to dust that is released when emptied bags are compressed for disposal (ERG-GI, 2008). During the first of two visits to a pottery facility, NIOSH noted that coatings preparers compressed bags, generating visible dust. Therefore, OSHA believes that it is likely that the same practice was used by other workers, including material handlers, who also handled bags of raw materials in the same

facility. Although no data exist for the pottery industry, a bag-dumping station with fully functioning LEV and automated bag disposal was found to reduce silica exposure by at least 95 percent in a paint manufacturing facility where workers emptied 50-pound bags of silicacontaining materials (ERG-paint-fac-A, 1999). Silica results were below the LOD (12 µg/m³) for five workers using these stations. In contrast, when the ventilation/bag disposal system failed for 2 hours during the shift, a silica exposure level of 263 μ g/m³ was recorded (ERG-paint-fac-A, 1999). At this plant, the bag-dumping stations consist of hoppers topped with grates enclosed by LEV hoods. After each bag is emptied, the worker releases it and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area (eliminating manual bag crushing). As an alternative, ventilated bag compactors also eliminate manual bag crushing. Both bag dumping stations and bag crushing equipment are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a, 2006b; Whirl-air, 2003). Ventilated hoppers for receiving materials transferred by frontend loader function similarly but on a larger scale. OSHA anticipates that both types will control silica exposures to a similar extent when designed according to ACGIH (2010) recommendations (see the note in the discussion of baseline conditions for material handlers in this industry).

Additionally, ventilation can be augmented along conveyer systems. Such control methods include covering conveyers and increasing ventilation at existing enclosed transfer points to meet the ACGIH recommended air velocity of 250 fpm/ft² across all openings in the enclosures (ACGIH, 2010). OSHA has not identified specific examples from the pottery industry; however, in other industries that convey quantities of dusty silica sand, enclosed or pneumatic conveying systems are an effective part of comprehensive respirable dust management, which results in reduced exposure levels.

Enclosed Cabs

The use of well-ventilated cab enclosures for lift trucks or front-end loaders also can reduce exposure for material handlers. Although data documenting the effectiveness of such enclosures at pottery manufacturing facilities are not available, data from other sources suggest a 90 to 99.5 percent reduction in respirable dust (inside compared with outside the cab) with well-sealed, air-conditioned, and filtered cabs (ERG-GI, 2008). Operators working in heavy equipment cabs designed to meet the American Society of Agricultural Engineers' (ASAE) standard should experience exposure reductions in this general range. Although these cabs require regular maintenance to function properly and concerns exist regarding the construction standards of new heavy equipment, OSHA estimates that appropriately fitted and maintained cabs would offer an exposure reduction of at least 90 percent (the low end reported for larger equipment) for material handlers, including those using front-end loaders (ERG-GI, 2008).

Improved Housekeeping

Poor housekeeping contributes substantially to worker exposure levels in material handling areas, and a thorough, professional-level cleaning in association with improved housekeeping procedures (to maintain cleanliness) can reduce exposures where dust has been allowed to accumulate. For one material handler, poor housekeeping was reported as the primary source of silica exposure (OSHA SEP Inspection Report 300384435). In the structural clay industry, another industry with similar material handling requirements, a professional cleaning of a brick

manufacturing facility dramatically reduced exposure levels (by 90 percent or more in some cases) for workers in areas where raw materials were transported or handled (raw material storage, near grinding equipment and conveyers, during bag dumping, and at raw material hoppers). In these areas most worker exposures were reduced to less than 50 μ g/m³ without other abatement efforts (ERG-GI, 2008). In addition to regular housekeeping procedures, spillage of raw materials can sometimes be prevented by modifying conveyor belts (e.g., using troughed belts or V-rollers).

Automated Equipment

Results at pottery manufacturing facilities with both manual and automated material transfer systems illustrate the effectiveness of the automated equipment. In one facility, exposure was almost 66 percent lower (29 $\mu g/m^3$ versus 85 $\mu g/m^3$) for a material handler tending automated equipment and adding silicacontaining raw materials to a mixer compared with a material handler manually adding bags of raw materials to the mixer (OSHA SEP Inspection Report 300384435). Both workers were working in areas with functioning LEV (although this notation does not mean that the LEV was functioning optimally). At another facility, OSHA obtained a reading of 23 $\mu g/m^3$ for a material handler monitoring automated equipment to transfer dry silica sand from the storage silo and pump a slurry of ball clay and kaolin into a mixer (OSHA SEP Inspection Report 300180916).

Forming Line Operator

Generally low exposures experienced by many forming line operators can be attributed to the fact that most materials are handled in a wet state and the wide-spread use of LEV during the production phase. However, additional controls will reduce exposures for the 34 percent of forming line operators whose exposure levels exceed 50 μ g/m³. Control options include improved or added LEV, eliminating the use of compressed air, using vacuums to remove residual clay from molds, and employing equipment that reduces the release of airborne dust when workers apply mold parting compound.

Eliminating Use of Compressed Air for Cleaning

Changes in controls and work practices were implemented at one work site in order to reduce exposure of forming line operators. The use of compressed air to clean molds was replaced with the use of a vacuum and abrasive pad (OSHA SEP Inspection Report 301527909). Additionally, the bags previously used to dust molds with talc (a parting compound containing trace amounts of silica) were redesigned to release talc from only one end in the direction of the molds. Primarily through the elimination of compressed air for cleaning, and despite uneven functioning of the LEV at two workstations, the facility reduced silica exposures substantially so that four results for workers at these stations were below 40 μ g/m³ (three results equal to 30 μ g/m³ and one of 40 μ g/m³). ERG-GI (2008) suggested that exposures would have been lower still if the LEV were more effective. In fact, worker exposures at the same facility were lower (10 μ g/m³ and 20 μ g/m³) at a third workstation that was equipped with LEV (OSHA SEP Inspection Report 301527909). In contrast, NIOSH had measured exposure levels at this facility 12 years earlier, before the plant instituted dust control measures (NIOSH HETA 84-066-1883, 1988). At that time three of 31 results (10 percent) exceeded 100 μ g/m³, and 6 (20 percent) exceeded 50 μ g/m³.

Finishing Operator

Table IV.C-34 shows that half of finishing operators (50 percent) are exposed to silica levels greater than 50 μ g/m³, and will require additional controls to achieve the proposed PEL. Appropriate controls include improved maintenance of or modifications to existing LEV and using wet methods to perform finishing operations, as discussed in the following paragraphs.

Local Exhaust Ventilation

OSHA does not have data that demonstrate the effectiveness of properly designed LEV in reducing exposure for potter finishing operators, primarily because many systems installed at pottery facilities appear to have been poorly designed or maintained. However, exposure monitoring data from the foundry industry for cleaning/finishing operators provide good evidence that properly designed LEV systems can reduce exposure for pottery finishing operators. Like pottery finishing operators, foundry workers that perform similar work also use grinding equipment to remove residual silica material, typically a mixture of sand and clay, from castings. An OSHA SEP inspection report documents full-shift PBZ respirable quartz readings for foundry industry grinders of $56~\mu\text{g/m}^3$, $80~\mu\text{g/m}^3$, and $81~\mu\text{g/m}^3$ (mean of $72~\mu\text{g/m}^3$) (OSHA SEP Inspection Report 122040488). After installation of a downdraft dust collection bench, OSHA collected readings of $20~\mu\text{g/m}^3$ and $24~\mu\text{g/m}^3$ (mean of $22~\mu\text{g/m}^3$) for two grinders (OSHA SEP Inspection Report 122040488). The downdraft benches were associated with a 69 percent reduction in mean silica concentration. Exposure levels also decreased when the foundry added LEV to bench grinders. ACGIH (2010) typically offers recommended designs for booths and other ventilation-based engineering controls.

In addition, tool-mounted LEV systems for hand-held grinding equipment can be helpful for reducing exposure. In the construction industry, a tool-mounted LEV system operating at 70 cubic feet per minute (cfm) (consisting of a grinder-mounted shroud, a 2-inch diameter flexible hose, and an industrial vacuum equipped with a cyclone and a high-efficiency particulate air [HEPA] filter) reduced silica exposure by 94 percent (Croteau, 2000). OSHA notes that in this study both the uncontrolled and controlled silica exposure levels were extremely high during 15-minute periods of intensive grinding; therefore, it is not clear that the same percentage reduction would result from tool-mounted LEV in the pottery industry, where peak exposures for finishing operators are not as extreme (among the data available to OSHA, $180 \,\mu\text{g/m}^3$ is the maximum value for this job category). However, recent information regarding tuckpointing grinders (angle grinders used to remove mortar between bricks, historically among the construction tasks for which silica dust is most difficult to control) suggests that lower exposure levels (less than $50 \,\mu\text{g/m}^3$ under certain conditions) can be achieved with these and other tools with LEV when workers are equipped with more powerful vacuums that provide greater LEV airflow and suction over an extended work period than traditional shop vacuums (Collingwood

OSHA described the system as a two-station Torit Model DDHV-45 Downdraft Bench dust collecting system designed to operate at 4,800 cfm. The system was 99 percent efficient for particles 1 micron or larger, used 51 cotton sateen filter bags, and provided 255 square feet of filter media (OSHA SEP Inspection Report 122040488).

¹¹⁶ The reduction was calculated by dividing the mean exposure before the downdraft collection benches were installed by the mean exposure after installation (22 μ g/m³ ÷ 72 μ g/m³).

and Heitbrink, 2007; Heitbrink and Santalla-Elías, 2009). For further discussion, see Section IV.C.32 – Tuckpointers and Grinders. Based on this information, OSHA has preliminarily determined that tool-mounted LEV can provide similar exposure reductions (e.g., to levels of $50~\mu\text{g/m}^3$ and less) for finishing operators in the pottery products industry when pottery manufacturers ensure that LEV shrouds are correctly matched to the grinding tools and that vacuums provide sufficient suction for the duration of the task.

For additional dust control, tool-mounted LEV can also be used in conjunction with ventilated downdraft tables, booths, or both.

Wet Methods

Exposures also can be reduced by performing finishing operations on pottery pieces that are still slightly damp instead of dry, because silica particles are less likely to become airborne when pieces are wet. Wet finishing operations can be conducted using sponges and abrasive pads, or by moistening the outer layer of the pottery prior to abrading it. Operators also might perform finishing tasks on a piece that has not completely dried. At one pottery facility, exposure levels were four-and-a-half times higher when operators finished fully dried pottery pieces compared with partially dried pieces with slight moisture content (OSHA SEP Inspection Report 103010542; see also ERG-GI [2008] for an expanded description). OSHA calculates that this difference is equivalent to an 88 percent change in exposure level.

The other wet finishing process option, wet sanding of dried pottery, is similar to a process used in the construction industry. Drywall finishers using a damp abrasive sponge experience a 60 percent reduction in respirable dust levels compared with dry sanding (Young-Corbett and Nussbaum, 2009). OSHA estimates that pottery grinders would receive similar benefits in reducing respirable dust and that silica would be reduced proportionally. Although moistened pieces would likely require additional drying time, because only the surface layer of clay would be dampened, drying time would still be less than for the original wet casting (ERG-GI, 2008).

Coatings Preparer

All but two of 19 results used in the exposure profile (and at least one result from each of the six facilities evaluated) exceed $50~\mu g/m^3$. Based on Table IV.C-34, OSHA preliminarily determines that most coatings preparers (89 percent) will require additional controls to achieve the same levels. The available information suggests that some LEV is often present at pottery facilities, but in most plants the LEV is applied to only a portion of the potentially dusty operations. Therefore, OSHA has preliminarily determined that control options include consistent use of bag dumping stations equipped with well-ventilated enclosures and ventilated bag disposal equipment, ventilated mixing equipment, and improved housekeeping. Reducing reliance on compressed air for cleaning also will help limit exposures. Implementation of these controls might involve installing new equipment or improving current equipment.

Local Exhaust Ventilation

Exhaust ventilation effectively captures dust that is released when workers empty bags of raw materials, crush the bags, weigh the materials, and dump the materials into hoppers or mixing equipment.

Bag emptying stations can reduce exposure levels somewhat even when they are not performing optimally, but they provide better dust capture when the ventilation system is fully functional. To reduce coatings preparer exposure levels to the lowest levels, workers must make all raw material transfers within ventilated enclosures or use equipment fitted with effective LEV. These principles were demonstrated by OSHA at a pottery manufacturing plant where a coatings preparer used a ventilated booth (with low airflow) to empty bags of powdered raw materials into a hopper, but also used a weigh scale outside the booth to measure some ingredients. An initial silica value of $143~\mu\text{g/m}^3$ was reduced to $40~\mu\text{g/m}^3$ and $51~\mu\text{g/m}^3$ after the baghouse ventilation system was repaired. A consultant evaluating the plant during the second (post-repair) sampling date recommended that silica at this facility be reduced to its lowest possible level by taking additional steps such as limiting use of compressed air for cleaning (suggesting that compressed air was still used regularly in the plant after the ventilation system was repaired) (OSHA SEP Inspection Report 300977352). In this example, the workers' exposure levels were reduced to approximately one-third of the original value simply by repairing the existing ventilation system.

OSHA notes that exposures could have been reduced further if the facility had taken two additional steps: 1) moving the weigh scale into the booth (or adding exhaust ventilation to the scale area), and 2) reducing reliance on compressed air for cleaning. As discussed below, exposure levels can be greatly reduced by both these modifications.

A dramatic reduction in exposure was recorded at the facility where previously OSHA had obtained the highest result for a coatings preparer (983 $\mu g/m^3$, as shown in Table IV.C-34) (OSHA SEP Inspection Report 103010542). At the time of the original sample, this worker manually lifted bags of raw materials and, from a position on a platform, dumped them into an unventilated mixer in an area where another dusty operation also took place.

As part of a four-part abatement plan, the facility made substantial changes to the way materials were handled during coating production. After hiring engineering consultants to evaluate the areas where OSHA found elevated exposure, the facility installed two new dust collector systems in the glaze-making area. These included one hood under which the worker now filled a portable hopper with measured raw materials and another hood at the hatch of the ball mill into which the materials were poured. To minimize ergonomic stressors, the filled hopper was lifted by a mechanical hoist to the overhead platform (level with the mill hatch) and emptied into the mill. Equipment leaking dust in other parts of the plant were also repaired. After these changes had been made (but prior to a planned comprehensive cleaning of the area) a consultant obtained a silica result of 47 μ g/m³ for a coatings preparer. A general area sample also collected in the glaze-making area resulted in a respirable quartz concentration of 34 μ g/m³ (OSHA SEP Inspection Report 103010542).

 $^{^{117}}$ This less-than-full shift result of 143 $\mu g/m^3$ was obtained as a 325-minute sample, so not included in the exposure profile (OSHA SEP Inspection Report 300977352).

¹¹⁸ Both the coatings preparer and the glaze-making area samples were full-shift duration (exactly 360 minutes) (OSHA SEP Inspection Report 103010542). However, ERG confirmed that the personal sample was associated with this (pottery) facility too late to include in the exposure profile.

The value of ventilated bag dumping systems was discussed previously with respect to material handlers, where it was noted that workers using a bag-dumping station (with ventilated bag disposal equipment) in a paint manufacturing facility experienced silica exposure reductions of at least 95 percent (from $263 \mu g/m^3$ to $12 \mu g/m^3$). A second type of bag-dumping station equipped with an enclosure, empty bag compactor, bag disposal chute, and LEV system also was found by NIOSH to effectively control dust released during bag opening, emptying, and disposal (ERG-GI, 2008). As noted previously, ventilated bag-dumping stations and ventilated compactors are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a, 2006b; Whirl-air, 2003).

Eliminating Use of Compressed Air for Cleaning

As noted in the discussion of additional controls for pottery industry forming line operators, a pottery facility visited by OSHA eliminated use of compressed air for removing dust from pottery pieces, substituting a vacuum instead. Despite uneven functioning of the LEV at two workstations, this modification reduced silica exposures substantially. Four results for workers at these stations were below 40 μ g/m³ (three results of 30 μ g/m³ and one of 40 μ g/m³) (OSHA SEP Inspection Report 301527909). Previously three of 31 results (10 percent) for forming line operators exceeded 100 μ g/m³, and 6 (20 percent) exceeded 50 μ g/m³ (NIOSH HETA 84-066-1883, 1988).

Good Housekeeping

Although there are no data describing the efficacy of housekeeping measures in the pottery industry, exposure monitoring data from the structural clay manufacturing industry provide strong evidence that housekeeping measures can reduce exposures for coatings preparers in the pottery industry. In the structural clay manufacturing and pottery industries, the same exposure reduction challenges arise for workers who transfer and mix sand and other coatings or glaze ingredients. As previously noted, a survey at a brick manufacturing facility revealed dramatic exposure reduction (90 percent, to levels usually less than 50 $\mu g/m^3$) after a professional-level cleaning removed dust accumulations on the floor and structural surfaces of raw material handling areas (ERG-GI, 2008). OSHA has preliminarily determined that coatings preparers in the pottery industry would benefit equally from housekeeping measures, based on the similarity in raw materials used in the structural clay and pottery industries (quartz sand and powdered silica-containing materials).

For example, in the china manufacturing facility at which the highest coatings preparer result was recorded (983 $\mu g/m^3$), the four-phase exposure abatement program included a thorough cleaning of all surfaces in the area where workers blend coatings (OSHA SEP Inspection Report 103010542). This phase had not been completed at the time of the last results available to OSHA from this facility (47 $\mu g/m^3$, as presented in the discussion of LEV for coatings preparers). Based on the experience in the structural clay manufacturing industry, OSHA has preliminarily determined that the silica exposure of this pottery industry coatings operator would have been even lower after the planned cleaning.

¹¹⁹The facility also modified talc bags to make them less dusty; however, the talc contained only trace amounts of silica (OSHA SEP Inspection Report 301527909).

Coatings Operator

OSHA has preliminarily determined that additional controls are required for the 70 percent of coatings operators identified in Table IV.C-34 as currently experiencing exposure levels greater than 50 μ g/m³. Appropriate controls include the use of low-silica coatings; well-enclosed, well-ventilated booths; and well-enclosed, well-ventilated automated coatings application machinery. Implementation of these controls might involve installing new equipment or improving current equipment.

Local Exhaust Ventilation and Automation

Well-ventilated, well-enclosed booths for coatings application can reduce worker exposure. The effectiveness of this method is demonstrated by exposure monitoring data obtained at a facility visited twice by NIOSH (NIOSH CT-171-11c, 1992; NIOSH ECTB 171-11b, 1989). During the initial site visit, silica sample results of 113 $\mu g/m^3$, 125 $\mu g/m^3$, 152 $\mu g/m^3$, 192 $\mu g/m^3$, 195 $\mu g/m^3$, 253 $\mu g/m^3$, 259 $\mu g/m^3$, 319 $\mu g/m^3$, and 434 $\mu g/m^3$ were obtained for operators on the semiautomatic spraying line (manual spraying of pieces mechanically transported through the booth[s] on this line). The facility then improved the booths by repairing holes or openings that could allow particles to escape or decrease the efficiency of the LEV systems by disrupting airflow. The facility also made improvements to the LEV system to increase airflow rates in the booths. NIOSH returned to evaluate operator exposure and collected five samples. On the same semiautomic spraying line, four of the five results (80 percent) were less than the LOD (less than 25 $\mu g/m^3$ in each case), and one result was 66 $\mu g/m^3$. These results were obtained for operators on the semiautomatic spraying line. The median exposure for these results is 88 percent lower than the original values obtained on this line.

The facility made similar repairs to two other spraying lines (one fully manual and the other fully automatic), which also reduced worker exposure levels. However, the improvement was not as dramatic, resulting in median values 44 and 67 percent lower on the manual and automatic lines, respectively (NIOSH CT-171-11c, 1992). However, NIOSH noted that even after ventilation system upgrades on the fully manual line, workers used compressed air to blow dust off pottery pieces prior to applying glaze and likely contributed to worker silica exposure levels (this practice had been eliminated from the semiautomatic line by providing workers with damp sponges to remove dust from the pottery pieces) (NIOSH CT-171-11c, 1992). OSHA preliminarily finds that additional exposure reduction will be possible by eliminating use of compressed air for removing dust from pieces (switching to vacuum system or damp sponges), making additional adjustments to further enclose the spray lines (particularly the fully automated line), reducing overspray through careful work practices and using modern high-volume-low-pressure (HVLP) spray nozzles, and limiting worker exposure while adjusting spray machines.

OSHA found in the technological feasibility analysis for the standard on hexavalent chromium that paint spray booths intended for small and medium-sized parts (including the sizes of pottery pieces, but excluding large objects the size of aircraft) are capable of controlling worker exposure to hexavalent chromium (a component of paint present in some pigment particles) to

 $^{^{120}}$ After repairs to the booths and ventilation system, silica exposure levels were one reading of 22 $\mu g/m^3$ (the LOD in this case), three readings of 23 $\mu g/m^3$ (the LOD for these samples), and one reading of 66 $\mu g/m^3$ (NIOSH CT 171-11c, 1992).

levels well below the PEL of 5 μ g/m³ (one-tenth the proposed silica PEL of 50 μ g/m³) (71 FR 10099-10385). Spray booths were found to be an effective control even for paint containing greater than 10 percent chromate (OSHA H054A, no date). OSHA has preliminarily determined that well-designed and effectively maintained spray booths are equally effective for silica particles in glazes as they are for chromate-containing paints. In demonstrating the effectiveness of spray booths for silica-containing coatings, OSHA notes that glazes can be 30 or more percent quartz. However, this higher percent silica is offset by the less restrictive proposed PEL for silica compared with hexavalent chromium. Although the level of chromate (hexavalent chromium) in the paints discussed above is three times lower than the amount of silica in the pottery industry coatings, the hexavalent chromium PEL is also 10 times lower than the proposed PEL of 50 μ g/m³ for silica. Thus, OSHA preliminarily concludes that spray booths will protect pottery industry coating operators from excessive silica exposure at least as well as the booths protect painters from chromates. ¹²¹

Automation offers another exposure control option for coatings operators. As shown in Table IV.C-34, among all data available to OSHA for this job category, coatings operator silica exposure levels are dramatically lower for workers tending automated equipment than for those using manual processes. Workers in this job category will also benefit from improved housekeeping.

Feasibility Finding

Material Handler

Based on information presented in Table IV.C-34, OSHA preliminarily concludes that results of $50~\mu g/m^3$ or less have already been achieved for more than half (57 percent) of the material handlers in this industry by using LEV at workstations. OSHA also preliminarily concludes that by using appropriately designed, well-maintained ventilation systems and good housekeeping practices, pottery production facilities can reduce the exposures of most of the remaining material handlers (43 percent) to $50~\mu g/m^3$ or less.

OSHA made this determination by analyzing the impact of controls that could be applied to the highest exposures ($530 \, \mu g/m^3$ and $700 \, \mu g/m^3$ for a worker filling hoppers using a front-end loader, and $1{,}101 \, \mu g/m^3$ for a worker manually shoveling clay, as described in the discussion of baseline conditions for this job category). By improving ventilation at raw material transfer points (e.g., well-ventilated bag-dumping station with ventilated bag disposal unit or a ventilated receiving hopper designed using criteria recommended by ACGIH [2010]), OSHA has preliminarily determined that worker exposures will be reduced by 95 percent, so that the highest silica value (1,101) will be reduce to $55 \, \mu g/m^3$ and all of the 20 other results (95 percent of all results) summarized in the exposure profile will be reduced to levels well below $50 \, \mu g/m^3$.

¹²¹ Note that the chromate-containing paints (often corrosion control coatings) and silica-containing glazes mentioned here are generally applied as aerosols, using the same spray coating guns (e.g., high-velocity low-pressure [HVLP], or other spray guns) (Spray Gun Industry-corrosion, no date; Spray Gun Industry-glaze, no date), and producing spray mist with similar aerodynamic properties. The particles from both types of coatings will respond in a similar manner in an airstream created by ventilation controls. Thus, this control will be similarly effective for both types of coatings.

This conclusion is based on the ability of effective raw material handling stations to reduce silica exposure levels by 95 percent compared with worker exposures while the ventilation system was not operating at a paint manufacturer (ERG-paint-fac-A, 1999). Workers in both the paint manufacturing and pottery industries handle sacks of raw materials that often contain silica as a high percentage of the material. This similarity suggests that properly functioning raw material handling stations would also be an effective control in the pottery industry.

Since poor housekeeping practices also contribute to material handler exposure (and in at least one case was the primary source of exposure at a pottery facility), a thorough professional-level cleaning followed by a continuing housekeeping program to prevent dust from accumulating, in combination with improved ventilation at material transfer points, will reduce the exposure of all material handlers to levels below 50 μ g/m³. For example, as described under additional controls for this job category, a thorough professional-level cleaning reduced worker exposure by 90 percent, to levels below 50, at a facility in the structural clay industry.

Silica results for material handlers will also be reduced when the silica exposures of workers in other job categories are controlled to levels of 50 $\mu g/m^3$ or less. For example, the highest exposure for a material handler 1,101 $\mu g/m^3$, was obtained while the material handler worked in the same area as a coatings preparer, who also had a very high exposure (983 $\mu g/m^3$) (OSHA SEP Inspection Report 103010542). The coatings preparer exposure was reduced by 95 percent (to 47 $\mu g/m^3$) by installing engineering controls, suggesting that this contributing source of exposure for the material handler was also reduced by 95 percent (although not directly evaluated, the material handler's own activities might still have generated some airborne silica).

In the event that a pottery products facility finds it necessary to reduce exposures further, other options included switching to automated raw material transfer and, for workers using vehicular equipment, adding enclosed cabs for the operators.

Forming Line Operator

Based on Table IV.C-34 and information presented in this section, OSHA preliminarily concludes that the exposure levels of two-thirds of forming line operators (66 percent) are already below $50~\mu g/m^3$. Employers can achieve this same level for the remaining 34 percent of operators through a combination of LEV, use of vacuums in place of compressed air, and redesigned equipment used for applying mold release agents. Air samples collected by OSHA and a consultant resulted in values of $40~\mu g/m^3$ or less for forming line operators who used some combination of these controls while removing, cleaning, and dusting molds (OSHA SEP Inspection Report 301527909). Previously three of 31 results (10 percent) for forming line operators at that facility exceeded $100~\mu g/m^3$, and 6~(20~percent) exceeded $50~\mu g/m^3$ (NIOSH HETA 84-066-1883, 1988).

Finishing Operator

Based on Table IV.C-34 and information contained in this section, OSHA has preliminarily determined that exposure levels of $50 \,\mu\text{g/m}^3$ or less have already been achieved for half (50 percent) of finishing operators, primarily through use of existing ventilated workstations. Furthermore, OSHA preliminarily concludes that the exposure levels of the remaining finishing operators (50 percent), can reduce exposures below $50 \,\mu\text{g/m}^3$ by improving LEV at workstations, using tools equipped with adequate LEV, and wet

methods. OSHA made this determination by estimating: 1) that even the maximum exposure level among the data available to OSHA (180 $\mu g/m^3$) will be reduced by 69 percent (to 56 $\mu g/m^3$) when existing ventilation systems are upgraded to be at least as effective as a downdraft table, and 2) that all results can be further reduced to levels of 50 $\mu g/m^3$ or less when ventilation system upgrades (or downdraft tables) are combined with wet methods (e.g., wet sanding or damp abrasive sponge) for at least part of the workshift. Compared with dry sanding, exposure levels are 60 percent lower when workers perform drywall finishing using these methods (Young-Corbett and Nussbaum, 2009). Exposure values can be reduced by both methods sequentially. For example, first the highest level for this job category can be reduced by 69 percent when ventilation systems are upgraded (as shown above, the resulting value is 56 $\mu g/m^3$). Then, an additional 60 percent reduction, achieved by switching to wet sanding, will result in a value of 34 $\mu g/m^3$.

As another option, finishing operators can use an alternative method of finishing partially dried pieces with a slight moisture content, before the pieces are completely dry. This method is already used by a pottery facility at which the technique reduced worker exposure levels by 88 percent (OSHA SEP Inspection Report 103010542).

Coating Preparer

Based on Table IV.C-34, OSHA has preliminarily determined that only 11 percent of coating preparers currently have exposures at or below 50 μ g/m³. However, considering the information contained in this section, OSHA preliminarily concludes that most employers of coatings preparers can achieve exposure levels of 50 μ g/m³ or less for all workers in this job category most of the time by using a combination of ventilated manual and mechanical material handling systems that control dust throughout the measuring and transfer process (e.g., bag dumping, weighing, bag disposal), diligent housekeeping beginning with a professional level cleaning, and eliminating compressed air for cleaning.

This conclusion is based in part on a result of 51 μ g/m³ obtained for a coatings preparer at a pottery facility where workers manually loaded dry silica-containing glaze components into a weigh hopper inside a booth equipped with recently repaired LEV. Prior to repair, OSHA collected an exposure of 143 μ g/m³ for a 325-minute sample (less than full shift) (OSHA SEP Inspection Report 300977352). The weigh scale was outside the booth, and the worker used compressed air for cleaning, both of which likely contributed to the exposure level, even after the LEV was repaired. OSHA preliminarily concludes that either moving the weigh scale into the booth (or adding ventilation at the scale) or eliminating compressed air for cleaning would be sufficient to reduce the measured exposure of 51 μ g/m³ to a level of 50 μ g/m³ or less. The benefit of eliminating compressed air for cleaning (a practice prohibited under the proposed rule) is described in the discussion of pottery industry forming line operators.

Furthermore, at a second facility where OSHA originally recorded the highest exposure for a coatings preparer (983 $\mu g/m^3$), the worker silica exposure level dropped to 47 $\mu g/m^3$ after the facility installed exhaust ventilation hoods: at the bag dumping position and at the mill opening (OSHA SEP Inspection Report 103010542). OSHA preliminarily concludes that the result would have been even lower after the facility completed a planned comprehensive cleaning. Exposure reductions of 90 percent, to levels usually less than 50 $\mu g/m^3$, were associated with professional-level cleaning to remove dust accumulations on the floor and structural surfaces of raw material handling areas in the structural clay industry (ERG-GI, 2008).

Coating Operator

Based on information contained in the exposure profile (Table x. EP), OSHA finds that approximately one-third (30 percent) of pottery facilities already achieve exposure levels of 50 μ g/m³ or less for these

workers by using enclosed, well-ventilated automatic spray equipment and appropriately enclosed and ventilated booths for manual operations. OSHA preliminarily concludes that the exposure levels of the remaining coatings operators can be reduced below $50 \,\mu\text{g/m}^3$ most of the time using similar controls. NIOSH found that improvements to LEV systems and booths, which resulted in better enclosure and ventilation of manual spraying operations, reduced 80 percent of coatings operator exposures on a semiautomatic spray line to levels well below $50 \,\mu\text{g/m}^3$ (NIOSH CT-171-11c, 1992). Silica exposure levels were somewhat higher on other production lines, where workers continued to use compressed air for cleaning pottery pieces prior to coating them. Furthermore, OSHA found that spray booths are an effective means of controlling aerospace painter exposures to hexavalent chromium (PEL of $5 \,\mu\text{g/m}^3$, one-tenth of the proposed PEL of $50 \,\mu\text{g/m}^3$ for silica, when workers spray paint small and medium size objects (the size range of pottery pieces) (71 FR 10099-10385, 2006).

OSHA preliminarily concludes that pottery coatings operator exposure levels can be reduced to $50 \,\mu\text{g/m}^3$ or less using similar equipment and by eliminating the use of compressed air for removing dust, a practice that will be prohibited under the proposed rule.

In the event that employers find that exposures continue to exceed the proposed PEL of 50 μ g/m³, additional options include work practices and equipment that limit overspray (e.g., HVLP spray nozzles and, for fully manual spraying, turn tables), as well as rigorous housekeeping.

The exposure levels of coatings operators can be reduced even further through automation. OSHA bases this conclusion on a respirable quartz exposure reading of $13 \mu g/m^3$ obtained by an industrial hygiene consultant for a coatings operator who monitored enclosed, ventilated, automated equipment at a facility that automated all spraying operations following an OSHA SEP inspection (OSHA SEP Inspection Report 300977352).

Overall Feasibility Finding

Based on the information presented in this section, OSHA preliminarily concludes that, in all job categories in industrial-scale pottery production, by using the controls described above, silica exposure levels of $50 \, \mu g/m^3$ or less can be achieved for most workers, most of the time.

Furthermore, OSHA preliminarily concludes that silica exposure levels of $50 \,\mu\text{g/m}^3$ or less are already achieved for most workers at small storefront pottery operations that use a relatively small amount of raw materials and clay. None of the five results obtained by NIOSH at such a shop exceeded the proposed PEL of $50 \,\mu\text{g/m}^3$, despite the lack of LEV (NIOSH HETA 2007-0127-3068 [2008]). If elevated exposures do occur, the same methods available to larger facilities (LEV, wet methods, improved housekeeping) can be instituted on a smaller scale and will benefit workers in these smaller facilities equally well.

REFERENCES

- [40 CFR 63.11435-.11445] 40 Code of Federal Regulations 63.11435-.11445 (Subpart RRRRR), 2007. National emissions standards for hazardous air pollutants for clay ceramics manufacturing area sources. U.S. Environmental Protection Agency.
- [71 FR 10099-10385] Federal Register No. 71:10099-10385, 2006. Occupational exposure to hexavalent chromium: Final rule. 28 February.
- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**

- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp. **OSHA-2010-0034-0553**
- Carolina Conveying, 2010. Bag dump stations. Available at: http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0034-0581**
- Chicago Conveyor, 2004. Bag dump stations. Available at:
 http://www.chicagoconveyor.com/bagdump.html;
 http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010.
 OSHA-2010-0034-1429
- Collingwood, S. and W.A. Heitbrink, 2007. Field evaluation of an engineering control of respirable crystalline silica exposures during mortar removal. Journal of Occupational and Environmental Hygiene 4(11):875-887. **OSHA-2010-0034-0600**
- Croteau, G.A., 2000. The effects of local exhaust ventilation controls on dust exposures during masonry activities. Master's Thesis. University of Washington. June. **OSHA-2010-0034-0613**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-0680**
- Heitbrink, W.A., and J. Santalla-Elías, 2009. The effect of debris accumulation on and filter resistance to airflow for four commercially available vacuum cleaners. Journal of Occupational and Environmental Hygiene 6(6):374-84. **OSHA-2010-0034-0731**
- [NIOSH CT-171-11c] National Institute for Occupational Safety and Health, 1992. SENSOR: Follow-up study for control of silica exposure at Woodbridge Sanitary Pottery Corp., Woodbridge, New Jersey. **OSHA-2010-0034-0211**
- [NIOSH ECTB 171-11b] National Institute for Occupational Safety and Health, 1989. SENSOR: Recommendations for control of silica exposure at Woodbridge Sanitary Pottery Corp., Woodbridge, New Jersey. **OSHA-2010-0034-0209**
- [NIOSH HETA 84-066-1883] National Institute for Occupational Safety and Health, 1988. Health hazard evaluation report: Artesian Industries, Mansfield, Ohio. **OSHA-2010-0034-1372**

- [NIOSH HETA 2007-0127-3068] National Institute for Occupational Safety and Health, 2008. Health hazard evaluation report: Evaluation of exposures at a pottery shop. **OSHA-2010-0034-0878**
- [OSHA H054A] OSHA Docket H054A Hexavalent Chromium, no date. Exhibit 49-3, Chapter III: Technological Feasibility. **OSHA-2010-0034-0934**
- [OSHA SEP Inspection Report 103010542] OSHA Special Emphasis Program Inspection Report 103010542. **OSHA-2010-0034-0174**
- [OSHA SEP Inspection Report 122040488] OSHA Special Emphasis Program Inspection Report 122040488. **OSHA-2010-0034-0130**
- [OSHA SEP Inspection Report 300180916] OSHA Special Emphasis Program Inspection Report 300180916. **OSHA-2010-0034-0143**
- [OSHA SEP Inspection Report 300384435] OSHA Special Emphasis Program Inspection Report 300384435. Includes pages from related inspection 300384468. **OSHA-2010-0034-1436**
- [OSHA SEP Inspection Report 300977352] OSHA Special Emphasis Program Inspection Report 300977352. **OSHA-2010-0034-0106**
- [OSHA SEP Inspection Report 301527909] OSHA Special Emphasis Program Inspection Report 301527909. **OSHA-2010-0034-0027**
- Spray Gun Industry-corrosion, no date. Internet web page promotional material for CAT Pather HPLV spray gun. Available at: http://www.spraygunindustry.com/products/CAT/CAT%20PantherHVLP.htm **OSHA-2010-0034-1151**
- Spray Gun Industry-glaze, no date. Internet web page of on Ceramic Glazes Finishing. Available at: http://www.spraygunindustry.com/Information2/CeramicGlaze/HowtosprayCeramicGlaze.html OSHA-2010-0034-1150
- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1214**
- Vac-U-Max, 2006b. Internet web page for model 209009PNEU pneumatic bag compactor; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/heavy_duty.html **OSHA-2010-0034-1214**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Young-Corbett, D.E., and M.A. Nussbaum, 2009a. Dust control effectiveness of drywall sanding tools. Journal of Occupational and Environmental Hygiene 6:385-389. **OSHA-2010-0034-1239**

Railroads

Description

Railroad track maintenance-of-way workers are responsible for maintaining the overall surface of the roadbed including the rails, ties, and ballast (rock), and other components associated with the railroad track right-of-way. Potential exposure to silica-containing dust might occur during maintenance activities involving both the manual and automated manipulation of ballast (NIOSH HETA 90-341-2288, 1993; NIOSH HETA 92-0311, 2001). Although the Federal Railroad Administration (FRA) is responsible for certain aspects of the safety of railroad track maintenance of way workers (e.g., ensuring that track men are not hit by trains or other equipment moving over the rails), hazards "not related to the conditions and procedures necessary to achieve the safe movement of equipment over the rails" are deemed non-operational concerns, which fall under OSHA's jurisdiction (FRA, 1978). OSHA considers exposure to silica during ballast handling activities to be a non-operational hazard. FRA acknowledges that for occupational hazards under OSHA's jurisdiction, general industry standards for toxic and hazardous substances usually apply (FRA, 1978). This industry is classified in six-digit North American Industry Classification System (NAICS) codes 482111, Line-Haul Railroads, and 482112, Short Line Railroads.

Railroad track is most often supported by a bed of material called ballast. Ballast transmits and distributes the load of the track and rolling equipment evenly across the roadbed; controls movement of the track; maintains proper track cross-level, surface, and alignment; and provides drainage for the track. Today, most railroads use crushed stone (especially granite, traprock, and limestone) or slag for ballast on mainline tracks. In 2001, granite (25 to 40 percent silica) accounted for approximately 46 percent of the total crushed stone sold for railroad ballast within the United States (ERG-GI, 2008). Railroad track maintenance-of-way activities might be associated with potential exposure to silica because of the use of silica-containing material for railroad ballast. Potential exposure to silica-containing dust might occur when silica-containing ballast is disturbed or otherwise manipulated during track maintenance activities.

The major job categories associated with potential silica exposure during track maintenance include ballast dumpers and heavy equipment (machine) operators. Table IV.C-35 presents job activities and major sources of exposure for affected job categories. See ERG-GI (2008) for detailed process descriptions.

Table IV.C-35 Job Categories, Major Activities, and Sources of Exposure in the Railroads Industry (NAICS 482111 and 482112)							
Job Category*	Major Activities and Sources of Exposure						
Ballast Dumper	Walks alongside moving ballast cars and manually or automatically (via radio remote control) opens hopper doors on moving ballast cars and dumps ballast alongside the track.						
	 Dust clouds generated when dry ballast falls from hopper cars. 						
Machine Operator	Operates heavy equipment used for track bed maintenance (surfacing activities). Includes ballast regulator (to level, shape, and dress ballast), broom (to sweep tracks), and tamper (to pack down ballast under the ties) machines.						
	 Dust generated during direct manipulation of the ballast. 						
*Job categories are intended allocated differently, depending	to represent job functions; actual job titles might differ, and responsibilities might be g on the facility.						

^{122 &}quot;The OSHA regulations apply according to their terms, except with respect to the shipment or transportation of hazardous substances, which is controlled by the Department of Transportation Hazardous Materials Regulations, and the regulation of air contaminants in locomotive cab and caboose environments" (FRA, 1978).

Source: ERG-GI, 2008.

Baseline Conditions and Exposure Profile

To evaluate the silica exposures of workers in the railroad transportation industry, OSHA reviewed full-shift personal breathing zone (PBZ) respirable quartz exposure monitoring data from two NIOSH reports (NIOSH HETA 90-341-2288, 1993; NIOSH HETA 92-0311, 2001), previously described in ERG-GI (2008). Full-shift area samples reported by these studies are also discussed. OSHA also reviewed one study from the published literature (Tucker et al., 1995), but exposure data from this study were not incorporated into the exposure profile because of a lack of sampling details (e.g., exact sample duration, PBZ result).

Baseline Conditions for Ballast Dumpers

The exposure profile for ballast dumpers is based on 26 full-shift respirable quartz readings from one NIOSH report (NIOSH HETA 92-0311, 2001). As indicated in Table IV.C-36, the median full-shift exposure for ballast dumpers is 25 micrograms per cubic meter ($\mu g/m^3$), with a mean of 68 $\mu g/m^3$ and a range from 11 $\mu g/m^3$ to 370 $\mu g/m^3$. Twenty-three percent of these readings exceed 50 $\mu g/m^3$, and 15 percent exceed 100 $\mu g/m^3$.

¹²³ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-36
Silica Exposure Range and Profile for Workers in the Railroads Industry (NAICS 482111 and 482112)

	Expo	Exposure Summary			ıre Range	Exposure Profile					
Job Category	Numbe r of Sample s	Mean (μg/m	Media n (μg/m³)	Min (μg/m	Max (μg/m³)	<25 (μg/m ³)	≥25 and ≤50 (µg/m ³)	>50 and ≤100 (μg/m³)	>100 and ≤250 (µg/m³)	>250 (μg/m ³)	
Ballast Dumper	26	68	25	11	370	13 50.0%	7 26.9%	2 7.7%	2 7.7%	2 7.7%	
Machine Operator											
Ballast Regulator	38	89	45	9	370	8 21.1%	13 34.2%	9 23.7%	3 7.9%	5 13.2%	
Broom Operator	21	90	60	10	440	2 9.5%	5 23.8%	8 38.1%	5 23.8%	1 4.8%	
Tamper Operator	35	54	40	9	310	10 28.6%	15 42.9%	6 17.1%	3 8.6%	1 2.9%	
Other Operator*	6	31	29	20	50	1 16.7%	5 83.3%	0 0.0%	0 0.0%	0 0.0%	
Total	100	74	46	9	440	21 21.0%	38 38.0%	23 23.0%	11 11.0%	7 7.0%	
Totals	126	73	40	9	440	34 27.0%	45 35.7%	25 19.8%	13 10.3%	9 7.1%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: NIOSH HETA 90-341-2288, 1993; NIOSH HETA 92-0311, 2001.

^{*}Includes scrap buggy operator (four samples), yard cleaner operator (one sample), and undercutter operator (one sample).

NIOSH investigators reported that some ballast was wet because the railroad company required that ballast be washed at the quarry before being loaded into hopper cars. Although some ballast was observed to be wet as it was dumped, pockets of dry ballast were still a source for dust. In general, most cars of ballast were observed to be dry, and dust was created when the ballast was dumped (NIOSH HETA 92-0311, 2001). A Mine Safety and Health Administration contact (2003) familiar with the industry reports that ballast material is probably not washed by quarries on a regular basis and likely depends on the size of the quarry operation as well as the tonnage of the ballast order.

Based on ERG-GI (2008), OSHA finds that the baseline condition for ballast dumpers is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-36. This is because the data obtained does clearly point to one work condition that occurs most of the time. Thus, the exposure level associated with baseline conditions for ballast dumpers is $25 \,\mu\text{g/m}^3$. In the absence of more detailed information, OSHA considers the results summarized in Table IV.C-36 for ballast dumpers to be the best information available for baseline exposure levels for this job category.

Baseline Conditions for Machine Operators

The exposure profile for machine operators is based on 100 full-shift respirable quartz readings from two NIOSH reports (NIOSH HETA 90-341-2288, 1993; NIOSH HETA 92-0311, 2001). As indicated in Table IV.C-36, the median full-shift PBZ respirable quartz exposure for machine operators is 46 μ g/m³, with a mean of 74 μ g/m³ and a range from 9 μ g/m³ to 440 μ g/m³. Forty-one percent of the quartz readings for machine operators exceed 50 μ g/m³, and 18 percent exceed 100 μ g/m³. Additional controls will be required for these workers.

Sample field observations and information were not provided with these exposure data; hence it is not possible to determine the specific exposure factors associated with these findings. However, it is possible to break down machine operator exposures by machine type (see Table IV.C-36). Although broom operators have a marginally greater potential for exposure to elevated concentrations of silica, they are followed closely by ballast regulators and tamper operators. Limited exposure data (six results) for three other types of machine operators (scrap buggy operator, undercutter operator, and yard cleaning operator) showed exposures to be below $50 \,\mu\text{g/m}^3$ for these workers. However, NIOSH noted that the large amounts of ballast manipulated by undercutting and yard cleaning machines and heavy dust clouds created indicate the potential for these machine operators and adjacent workers to experience overexposure (NIOSH HETA 92-0311, 2001).

NIOSH identified 22 individual full-shift respirable PBZ results for machine operators associated with equipment operator cabs that had been modified (air conditioned, pressurized, and well-sealed) to reduce operator exposure to silica (NIOSH HETA 92-0311, 2001). An analysis of the data for ballast regulators, the only subcategory with comparable numbers of readings for modified and unmodified cabs (n = 14 for both), suggests that the modified cabs provide a moderate degree of protection. The use of modified ballast regulator cabs resulted in a 40 percent reduction in the median full-shift PBZ respirable quartz exposure and a 52 percent reduction in the mean. However, three full-shift PBZ samples for ballast regulator operators in modified cabs exceeded $100 \,\mu\text{g/m}^3$, including a maximum exposure of $330 \,\mu\text{g/m}^3$. NIOSH (NIOSH HETA 92-0311, 2001) investigators suggest that inadequate cab maintenance (broken cab window covered with plastic) might be responsible for at least one of these readings. Elevated operator readings in modified cabs are most likely indicative of a problem with one or more of the dust control features (ERG-GI, 2008).

In addition to the 100 PBZ samples included in the exposure profile for machine operators, 27 full-shift area respirable quartz readings were collected on ballast regulators, brooms, tampers, and a scrap buggy. Samples were taken either inside the cab or within approximately three feet of the operator's PBZ.

Results range from 11 μ g/m³ to 140 μ g/m³, with a median of 50 μ g/m³ and a mean of 54 μ g/m³ (NIOSH HETA 90-341-2288, 1993; NIOSH HETA 92-0311, 2001). Thirteen results (48 percent) exceed 50 μ g/m³, and three results (11 percent) exceed 100 μ g/m³. An additional very high reading of 2,040 μ g/m³ is associated with a less-than-full-shift (225 minute) sample on a back broom. Although these area samples are not direct measures of worker exposure, and are not included in the exposure profile, they illustrate potential significant exposure.

A report by Tucker et al. (1995) confirms the potential for overexposure among maintenance-of-way machine operators. Twenty percent of 81 full-shift PBZ samples collected on ballast regulator and broom operators on timber and surfacing gangs were greater than $100~\mu\text{g/m}^3$. Twenty-five percent of the samples collected on track broom operators (a subset of broom operators) exceeded $100~\mu\text{g/m}^3$.

Additional Controls

Additional Controls for Ballast Dumpers

The available data indicate that the exposure levels of 77 percent of ballast dumpers are already less than or equal to $50 \,\mu\text{g/m}^3$. For the other 23 percent of ballast dumpers who require additional controls, OSHA recommends substitution of low-silica or silica-free ballast material for high-silica railroad ballast; use of dust suppression; and improved work practices in conjunction with remotely controlled dumping.

Substitution

The silica released during ballast dumping depends in part on the silica content of the ballast material. Ballast material with high silica content (e.g., granite, sandstone, quartzite) will generate dust with high silica content, whereas ballast material with low silica content (e.g., slag products, limestone) will generate dust with reduced silica content. For example, a worker exposed to $1,000~\mu g/m^3$ of respirable dust containing 25 percent silica (e.g., granite) would have a silica exposure reading of 250 $\mu g/m^3$. However, if the dust were 1 percent silica (e.g., slag), the worker would have an exposure of only 10 $\mu g/m^3$. Slag products are reported to contain less than

1 percent silica (NIOSH HEW Publication No. 75-120, 1974), and the FRA specifies crushed slag as a suitable material for ballast (FRA, 2002). 124

Dust Suppression

Washing ballast before it is loaded into hopper cars reduces the amount of fine particulate matter generated during dumping. Although there are no data for the railroad industry quantifying the effectiveness of washing ballast, Burgess (1995) reports that in other industries the use of washed sand results in silica exposures that are generally lower than when sand is not pre-washed. Similarly, Plinke et al. (1992) report that increased moisture content decreases the amount of dust generated and that water sprays should be applied to material *before* it reaches a transfer point so that dust has time to absorb the water. Washing ballast would help achieve both of these goals.

However, ballast wetted at the supplier's site might dry prior to reaching the dumping site, as observed by NIOSH (NIOSH HETA 92-0311, 2001). One option is to apply an additional layer of blanketing foam or other sealing chemical suppressant to the top of the rail car at the load-out station. Sealing in the wetted ballast might reduce evaporation and provide an additional type of dust suppression. This chemical sealant system has been used effectively by a quarry in the United Kingdom to eliminate dust emissions during transit, although benefits during dumping were not considered (ECS, 2007). The automated spray bar technology used to seal open rail cars with foam is commercially available in the United States (Midwest-coal-car, 2009).

Alternatively, other types of chemical dust suppressants could be added to the ballast mixture while it is being washed. Some types of chemical dust suppressants (e.g., polymers) have residual benefits, meaning that the dust suppressing properties remain active even after the moisture has evaporated. Another option is to wash the ballast with an organic synthetic fluid that never evaporates and retains its dust-suppressing properties indefinitely (Midwest-Edwards, 2009). Other additives, such as road salts, also can be mixed with the dry ballast. A study by Addo and Sanders (1995) examined three chemical dust suppressants (lignosulfate, calcium chloride, and magnesium chloride) applied to an unpaved roadway for 4.5 months ¹²⁵. The study found that compared with an untreated roadway, the suppressants reduced fugitive dust emissions by 50 to 70 percent. In another comparison study, KTA-Tator-Phase 3 (1999) found that silica sand treated with three different types of dust suppressants (names and types unspecified) reduced silica levels during abrasive blasting by 70 percent compared with untreated silica sand. Dust suppressants that help agglomerate small particles and reduce airborne respirable dust from sand should also be helpful where workers handle larger aggregate. OSHA preliminarily concludes that some of this benefit will translate to the less intense activity of ballast handling.

If additional dust suppression is necessary at the railroad site, wet methods might include pouring or spraying water over loaded hoppers immediately prior to dumping or spraying the ballast with water as dumping occurs. Because of the difficulty and cost of hauling large quantities of water along the length of the track, the most efficient approach would be to direct water misting/spray systems at the dumping

¹²⁴ A NIOSH-sponsored study evaluated the dust generated when various materials (including several types of slag) were used as grit for abrasive blasting. This study concluded that, while low in silica, the dust from slags "have substantially higher levels of some other health-related agents (metals), as compared to silica sand" (KTA-Tator-Phase 2., 1998). Because ballast-handling can also generate airborne dust, OSHA notes that when low-silica aggregates such as slag are used as ballast, employers must evaluate the need to protect workers from other contaminants. See also Section IV.C.22 – Abrasive Blasters.

¹²⁵ Individual product information lists products as having little or no environmental impact however specific details of chemical composition are proprietary and OSHA does not possess additional information (Midwest – Edwards, 2009).

operation. Adding a surfactant to the water, which reduces surface tension and allows the water to better encapsulate particles, also might increase the efficacy of the system (Midwest-Edwards, 2009).

Although OSHA is unaware of commercially available original equipment options including spray systems for railroad ballast cars, OSHA suggests that employers could install mobile spray systems on ballast cars (consisting of a water tank, pump, and directional spray nozzles, as used for mobile rock-crushing equipment [e.g., Komatsu America, 2010]). Water spray application systems can direct water up to 150 feet from the source (Midwest-Edwards, 2009), or approximately two to three railcars. OSHA does not have exposure reduction data specific to the spraying of railroad ballast with water and/or wetting agents; however, ERG-C (2008) reports that a directional mist adjusted for maximum dust control reduced operator exposure by 70 to 90 percent for small-scale high-energy crushing activities (workers breaking concrete with jackhammers). OSHA estimates that a directional mist applied during dumping activities could be equally effective in reducing exposure.

Engineering Controls in Conjunction With Work Practices

Remote operation of hydraulic dump doors on ballast cars has the potential to limit worker exposure to silica during ballast dumping. However, the premise of the control is creating distance between the source of the dust and the worker, not eliminating the dust source. Thus, remote operation ballast dumping requires the use of safe work practices in order to be effective. These include staying upwind of dust sources and avoiding dust clouds generated during remote operation dumping. Although workers observed by NIOSH (NIOSH HETA 92-0311, 2001) experienced difficulties in following these practices, OSHA believes that they can be accommodated in all but the most challenging circumstances. For example, workers should always be able to move up and down the length of the track (and away from the dust source). Even in the confines of narrow right-of-ways, and, with practice, workers can become proficient at monitoring dumping operations from an increased distance from the railcar. Radio remote controls for ballast cars are commercially available, and manufacturer's literature suggests that exposure to silica dust is one of several hazards that operator freedom of movement can help to control (Cattron-Theimig, Inc., no date). As an additional benefit of these remote controls, a major rail equipment manufacturer who adopted the system stated that the remote control system reduced personnel injury (Cattron Group, 2010). Although no quantitative exposure reduction data exist regarding worker positioning in relation to ballast dust, OSHA concludes that exposures will be reduced when workers do not position themselves within or downstream of silica-containing dust clouds.

Additional Controls for Machine Operators

As indicated in Table IV.C-36, additional controls are required for the 41 percent of machine operators who currently experience silica exposures above $50~\mu g/m^3$. These controls include those recommended for ballast dumpers (substitution of low-silica ballast material for high-silica railroad ballast, washing ballast before loading into hopper cars, use of wet methods or chemical dust suppression before ballast is manipulated by machinery) and the use of properly sealed and ventilated enclosed cabs with positive pressure and filtered air.

Dust Suppression

If necessary, the entire track area can be re-wetted or re-coated with dust suppressant after dumping and prior to performing maintenance operations (for example, if maintenance occurs months or years after the last aggregate dump). However, applying water or chemical suppressants prior to or during dumping will provide dust suppression for multiple dusty operations occurring over days or weeks (e.g., dumping, followed shortly by maintenance). Although no data are available for the railroad industry, very limited data from Sections IV.C.24 – Heavy Equipment Operators and IV.C.3 – Concrete Products (see especially

material handlers) suggest that the use of dust suppressants applied to the yard or aggregate piles (including chemical suppressants, water) might limit machine operator exposure to respirable dust that contains silica.

Engineering Controls

OSHA recognizes that some track maintenance equipment are unable to be equipped with cabs. In those situations, the use of material substitution and/or effective dust suppression might be the primary additional control(s) for reducing exposure. However, for the remaining machine operators, enclosed cabs represent a primary control for reducing exposure.

Data presented by NIOSH (NIOSH HETA 92-0311, 2001) clearly show the significance of the exposure reduction that might be achieved with a properly enclosed and sealed operator cab. Two full-shift area samples obtained simultaneously inside and outside of a modified (air-conditioned, pressurized, and properly sealed) ballast regulator cab showed a 97 percent reduction in the concentration of respirable quartz inside the cab. The respirable quartz reading inside the modified cab was less than or equal to 14 $\mu g/m^3$ (sample limit of detection [LOD]), while the corresponding reading outside the modified cab was 440 $\mu g/m^3$. These findings are consistent with Hall et al. (2002), who demonstrated reductions of greater than 90 percent with simultaneous testing inside and outside cabs.

Cab design features discussed in ERG-GI (2008) include enclosed cabs that are air-conditioned, tightly sealed, and positively pressurized, and that pass outdoor makeup air through a high-efficiency filter. NIOSH also recommends several additional cab design features and emphasizes the importance of maintenance and cleanliness (NIOSH 2009-123, 2009). Cabs employing several of these recommendations have achieved efficiencies exceeding 90 percent (Cecala et al., 2005; NIOSH 528, 2007).

An alternative to cabs is the use of dust control kits that are sometimes available from the manufacturer. These kits install local exhaust ventilation designed to reduce the amount of ballast dust released by the activities of heavy equipment during track maintenance. One kit investigated and described in ERG-GI (2008) exhausts dust-laden air from in and around the equipment housing, passes it through a filtration system, and then discharges it to the outside of the housing. According to the manufacturer, these kits are suitable for certain types of track maintenance machines and are usually ordered with the purchase of new equipment. Of the heavy equipment examined here, dust control kits would only be available for brooming equipment. Information regarding the effectiveness of these kits in reducing worker exposure to silica is not available from the manufacturer (HTT, 2003).

Broom operators have the greatest potential for elevated exposure, and as an alternative to modifying broom operator cabs, consideration might be given to retrofitting one or more types of broom machines to allow operation by remote control. Brooming operations do not require highly skilled operators and can be easily automated (ERG-GI, 2008).

¹²⁶ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Feasibility Finding

Feasibility Finding for Ballast Dumpers

Table IV.C-36 shows that 77 percent of ballast dumper exposures are already 50 $\mu g/m^3$ or less, and the median for this job category is 25 $\mu g/m^3$. Based on this and other information described above, OSHA preliminarily concludes that the silica exposures of all ballast dumpers in the railroad transportation industry can be reduced below 50 $\mu g/m^3$. Additional controls will be needed for the 23 percent of ballast dumpers who currently have exposures above 50 $\mu g/m^3$. Employers who provide low silica content ballast and dust suppressants (e.g., wet methods), and who require safe work practices will reduce ballast dumpers' silica exposure below 50 $\mu g/m^3$. Safe work practices include administrative controls encouraging ballast dumpers to stand at a distance from the dump point (also a good practice to avoid physical injury) and adapting ballast car doors for remote operation, a feature already commercially available to this industry (Cattron-Theimig, no date).

Feasibility Finding for Machine Operators

Based on the information discussed above, OSHA preliminarily concludes that the silica exposures of all machine operators in the railroad transportation industry can be reduced to levels of $50~\mu g/m^3$ or less most of the time. This conclusion is based in part on the finding that 59 percent of machine operator exposures are already at or below this level (see Table IV.C-36). Additional controls will be necessary for the other 41 percent of machine operators who currently experience exposure levels above $50~\mu g/m^3$. When additional controls are needed, employers who provide low silica content ballast, dust suppressants, properly sealed and ventilated cabs with positive pressure and filtered air, and automated broom machines can reduce their machine operators' silica exposure below $50~\mu g/m^3$. This conclusion is based on evidence showing that a well-ventilated and maintained cab can reduce exposures by more than 90 percent. Reducing the highest machine operator reading (440 $\mu g/m^3$) by 90 percent, a conservative estimate, yields an exposure of $44~\mu g/m^3$. If the broom machine is too small for an enclosed cab, automated equipment in conjunction with safe work practices can reduce operator exposure below $50~\mu g/m^3$.

Overall Feasibility Finding

OSHA preliminarily concludes that the railroad transportation industry can achieve exposures below 50 μ g/m³ for all workers in this industry through the use of appropriate additional controls as described above.

REFERENCES

- Addo, J.Q., and T.G. Sanders, 1995. Effectiveness and environmental impact of road dust suppressants. Mountain-Plains Consortium Report No. 95-28A. **OSHA-2010-0034-0516**
- Burgess, W.A., 1995. Recognition of health hazards in industry, 2nd Ed. New York, NY: John Wiley & Sons, Inc.: 464–473. **OSHA-2010-0034-0575**
- [Cattron Group] Cattron Group International, 2010. Wabtec finds solution with Cattron-Theimig UK. Available at: http://www.cattron.com/dnn/case_wabtec/tabid/113/language/en-US/Default.aspx. OSHA-2010-0034-0583
- [Cattron-Theimig] Cattron-Theimig, Inc., no date. Radio remote controls for ballast car unloading. Available at:

- $\frac{http://www.cattron.com/dnn/Portals/0/pdf/brochures/Ballast\%20car\%20unloading.pdf.}{OSHA-2010-0034-0584}$
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-0589**
- [ECS] Environmental Control Systems, 2007. Rail wagon treatment system at Mountsorrel Quarry. Available at: http://www.e-cs.co.uk/news/15/rail-wagon-treatment-system-atmountsorrel-quarry. Last accessed 30 November 2009. **OSHA-2010-0034-0635**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1431**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [FRA] Federal Railroad Administration, 1978. Railroad Occupational Safety and Health Standards; Termination: Policy Statement. Federal Register 43(50):10583-10590. **OSHA-2010-0034-0692**
- [FRA] Federal Railroad Administration, 2002. Track safety standards compliance manual. United States Department of Transportation, Office of Safety Assurance and Compliance. **OSHA-2010-0034-0693**
- Hall, R.M., W.A. Heitbrink, and L.D. Reed, 2002. Evaluation of a tractor cab using real-time aerosol counting instrumentation. Applied Occupational and Environmental Hygiene 17(1):47–54. **OSHA-2010-0034-0719**
- [HTT] Harsco Track Technologies, 2003. Personal communication between a Harsco Track Technologies representative and Eastern Research Group, Inc. 17 June. **OSHA-2010-0034-0725**
- Komatsu America, 2010. Internet web site for Komatsu model BR380JG-1 mobile crusher [features, including remote control]. Available at:

 http://www.komatsuamerica.com/?p=equipment&f1=view&prdt_id=919
 OSHA-2010-0034-0770
- [KTA-Tator-Phase-2] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. December. **OSHA-2010-0034-0773**

- [KTA-Tator-Phase-3] KTA-Tator, Inc., 1999. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. March. **OSHA-2010-0034-0774**
- [Midwest-coal-car] Midwest Industrial Supply, Inc., 2009. Coal dust control: Coal Car TopperTM. Available at: http://www.midwestind.com/coalcartopper-1.htm. Last accessed 1 December 2009. **OSHA-2010-0034-0809**
- [Midwest-Edwards] Midwest Industrial Supply, Inc., 2009. Personal communication between Lynn Edwards, mining dust control specialist at Midwest Industrial Supply, Inc., and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-1360**
- [MSHA] Mine Safety and Health Administration, 2003. Personal communication between the Mine Safety and Health Administration representative, a Pittsburgh Safety and Health Technical Center representative, and Eastern Research Group, Inc. July 1. **OSHA-2010-0034-0820**
- [NIOSH 2009-123] National Institute for Occupational Safety and Health, 2009. Reducing hazardous dust in enclosed operator cabs during construction. **OSHA-2010-0034-0839**
- [NIOSH 528] National Institute for Occupational Safety and Health, 2007. Recirculation filter is key to improving dust control in enclosed cabs. NIOSH 2008-100. Technology News 528:1-2. **OSHA-2010-0034-0844**
- [NIOSH HETA 92-0311] National Institute for Occupational Safety and Health, 2001. Health Hazard Evaluation Report: CSX Transportation, Inc. **OSHA-2010-0034-0884**
- [NIOSH HETA 90-341-2288] National Institute for Occupational Safety and Health, 1993. Health hazard evaluation report: Norfolk Southern Railway Company, Morgantown, West Virginia. **OSHA-2010-0034-0882**
- [NIOSH HEW Publication No. 75-120] National Institute for Safety and Health, 1974. Criteria for a recommended standard: Occupational exposure to crystalline silica. **OSHA-2010-0034-0388**
- Plinke, M.A., R. Maus, and D. Leith, 1992. Experimental examination of factors that affect dust generation by using Heubach and MRI testers. American Industrial Hygiene Association Journal 53(5):325–330. **OSHA-2010-0034-0957**
- Smandych, R.S., M. Thomson, and H. Goodfellow, 1998. Dust control for material handling operations: A systematic approach. American Industrial Hygiene Association Journal 58:139–146. **OSHA-2010-0034-1147**
- Tucker, D.M., R.B. Reger, and W.K.C. Morgan, 1995. Effects of silica exposure among railroad workers. Applied Occupational and Environmental Hygiene, 10(12):1081-1085. **OSHA-2010-0034-1188**

Ready-Mix Concrete Description

Silica-containing materials are used as fine and coarse aggregate ingredients in the manufacture of ready-mixed concrete (ready-mix concrete), which is typically made by mixing portland cement with aggregates and water. The most commonly used silica-containing aggregates include sand, gravel, and crushed stone (U.S. EPA, 2001). Ready-mixed concrete refers to concrete that is delivered to the customer in a freshly mixed and unhardened state (NRMCA-what-is-rmc, 2003). Ready-mixed concrete is produced as a truck mixed (dry batch) or as a central mixed concrete (wet batch). At dry batch facilities, the raw materials (cement and aggregate) and water are added directly to the truck, and the concrete is completely mixed in the truck mixer in the plant yard, while driving to the job site, or at the job site. At wet batch plants, the concrete is prepared in a plant mixer and then discharged after blending into a truck for delivery to the job site (NRMCA-production-of-rmc, 2003).

Concrete batch plants are dispersed nationally and are usually located in areas convenient for the delivery of raw materials (cement and aggregates). A typical facility includes storage areas for the raw materials; tanks and conveyors for holding, mixing, and dispensing raw materials; a computerized control room to weigh, mix, and load materials into trucks; a dispatch room to schedule pickups and deliveries; a yard area to wash and park trucks; a maintenance garage; and offices (Clark et al., 2001). Ready-mixed concrete facilities are classified in the six-digit North American Industry Classification System (NAICS) 327320, Ready-Mix Concrete Manufacturing.

Workers at both dry and wet batch concrete plants perform similar activities. The job categories with potential for exposure to silica include material handler, batch operator, quality control technician, maintenance worker, and truck driver (NIOSH ECTB 233-101c, 1999; Ready-Mixed Contact A, 1999). Table IV.C-37 summarizes the major activities and primary sources of silica exposure in this industry.

Baseline Conditions and Exposure Profile

The following sections describe baseline conditions and the exposure data for each affected job category based on two NIOSH research reports, two OSHA Special Emphasis Program (SEP) inspection reports, and unpublished consultant data obtained from the Georgia and Illinois state consultation programs (NIOSH ECTB 233-101c, 1999; NIOSH EPHB 247-19, 2001; OSHA SEP Inspection Reports 116152638 and 301301313; Wickman et al., 2003; Williams and Sam,

Table IV.C-37 Job Categories, Major Activities, and Sources of Exposure for Workers in the Ready-Mix Concrete Industry (NAICS 327320)									
Job Category*	Major Activities and Sources of Exposure								
Material Handler	Transferring dry aggregate and cement to bins, hoppers, and storage piles.								
	 Dust from transferring silica-containing raw materials by open material handling equipment, conveyor, or bucket elevator. Dust from outside piles of aggregates (yard dust). 								
Batch Operator	Controlling release, weighing, and transfer of aggregates, cement, and water to mixers (plant and/or truck) and discharging of central mixed concrete into haul trucks.								
	 Dust from manual batch operations (approximately 10 percent of ready- mixed concrete facilities have manual batch operations). 								
Quality Control Technician	Collecting and testing samples of dry raw materials (such as sand and gravel) and concrete.								
	 Dust from collecting and testing samples of raw materials and prepared concrete. Dust from outside piles of aggregates (yard dust). Dust from recirculation of settled dust at the plant and construction sites. 								
Truck Driver	Occasionally (e.g., twice per year) entering and cleaning interior of mixer drum to remove hardened concrete.**								
	 Dust from removing hardened concrete from mixer drums using pneumatic chippers. 								
Maintenance Operator	Performing maintenance and repair on equipment throughout plant; in some cases using hand tools (such as sledgehammers) to remove residual concrete from inside plant mixing drum.								
	 Dust from changing parts or maintaining equipment in aggregate conveyors and batch plant. 								
	 Dust from cleaning cement chute and removing residual concrete from plant mixer. 								
allocated differently, dependin **Truck mixer drum cleaning is task is increasingly performed	o represent job functions; actual job titles might differ, and responsibilities might be g on the facility. It is typically performed by truck drivers, but is an infrequent task. Alternatively, this at some plants by contractors that specialize in removing hardened concrete from MCA, 2009). Instead of infrequent exposure, contractors receive regular silica								

ready-mixed truck drums (NRMCA, 2009). Instead of infrequent exposure, contractors receive regular silica exposure from this activity, perhaps on a daily basis.

Sources: ERG-GI, 2008; NRMCA-what-is-rmc, 2003; NRMCA-production-of-rmc, 2003; NRMCA, 2009.

1999), previously described in ERG-GI (2008). 127 Although limited, these sources represent the best data available to OSHA for workers in the ready-mixed concrete manufacturing industry. Table IV.C-38 summarizes the exposure information for the affected job categories.

Baseline Conditions for Material Handler

The exposure profile shown in Table IV.C-38 suggests that 25 percent of material handlers might be exposed to silica at levels exceeding 50 micrograms per cubic meter (μ g/m³). The eight full-shift results obtained for workers whose job functions include material handling with heavy equipment include two with exposures slightly greater than 50 μ g/m³ (52 μ g/m³ and 57 μ g/m³); the remaining six respirable quartz exposure results were below 13 μ g/m³, the highest sample limit of detection (LOD) reported for these exposures (OSHA Inspection Number 301301313; Wickman et al., 2003). These findings are supported by unpublished consultant data obtained by ERG, which found exposures that were undetectable or "well below the OSHA PEL [permissible exposure limit]" (the data were not included in the exposure profile because documentation is incomplete), and 13 less-than-full-shift (less than 360 minutes) samples presented in NIOSH, OSHA, and Georgia state consultation program documents. Eleven of the 13 less-than-full-shift samples found exposures below the OSHA PEL; the remaining exposures were 71 μ g/m³ and 79 μ g/m³ for the duration of the task, but resulted in 8-hour time-weighted average (TWA) exposure levels less than 50 μ g/m³ (ERG-GI, 2008).

OSHA finds that the baseline condition for material handlers is best represented by the median for all exposure levels for this job category, as summarized in Table IV.C-38. This is because the data obtained does clearly point to one work condition that occurs most of the time. Thus, the exposure level associated with baseline conditions for material handlers is $13 \mu g/m^3$. Of the 8 samples collected for this job category, there are 2 samples associated with enclosed cabs, two samples associated with open cabs, and the rest are associated with various or unspecified conditions (OSHA Inspection Number 301301313; Wickman et al., 2003). In the absence of more detailed information, OSHA considers the results summarized in Table IV.C-38 for ballast dumpers to be the best information available for baseline exposure levels for this job category.

¹²⁷ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

¹²⁸ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-38
Silica Exposure Range and Profile for Workers in the Ready-Mix Concrete Industry (NAICS 327320)

	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Material Handler	8	23	13	10	57	6 (75%)	0 (0%)	2 (25%)	0 (0%)	0 (0%)	
Batch Operator	3	11	11	11	12	3 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Quality Control Technician	2	11	11	11	11	2 (100%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	
Truck Driver (when cleaning hardened concrete from mixer drum) ^A	3	3,467	393	205	9,804	0 (0%)	0 (0%)	0 (0%)	1 (33%)	2 (67%)	
Maintenance Operator	5	27	11	11	58	3 (60%)	1 (20%)	1 (20%)	0 (0%)	0 (0%)	
Totals	21	513	12	10	9,804	14 (66.7%)	1 (4.8%)	3 (14.3%)	1 (4.8%)	2 (9.5%)	

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour TWA exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-GI, 2008.

^A Truck drivers are included here based on their task of removing hardened concrete from the mixer drum, which they perform rarely (e.g., twice per year), but which is associated with extremely high silica exposure levels. This task is sometimes performed by contractors that specialize in removing hardened concrete from ready-mixed concrete trucks. Instead of infrequent exposure, contractors receive regular silica exposure from this activity, perhaps on a daily basis.

Higher exposures to silica might occur if material handling equipment is operated without completely enclosed, sealed, and properly maintained cabs (e.g., one or more cab windows left open, or ineffective filters for a cab air conditioning system). Some material handlers perform other yard-related tasks in addition to transfer of dry aggregate. Such tasks might include operating a hopper or material conveyor. Depending on the task and the level of dust control, somewhat higher silica exposures might occur. However, these exposures can be controlled with water and other dust suppressants within and around the plant.

Baseline Conditions for Batch Operator

As shown in Table IV.C-38, all three full-shift PBZ results for batch operators are below 50 $\mu g/m^3$ and less than 12 $\mu g/m^3$, one of the LODs reported (NIOSH ECTB 233-101c, 1999; OSHA Inspection Number 11615263814; Wickman et al., 2003). Limited additional results representative of batch operators support this finding and are described in greater detail in ERG's report (ERG-GI, 2008). Additionally, according to industry contacts, about 90 percent of batch operations are automated, and the associated operator exposure is believed to be minimal. Although manual batch operations might still occur at some readymixed facilities, OSHA was not able to obtain information regarding potential operator exposure to silica during manual batch mixing. An area sample collected beneath a dry-loading hopper might represent the worst case for batch mixers (as well as truck drivers). The result for this 296-minute sample was 19 $\mu g/m^3$ (Wickman, 2004), suggesting that silica exposure during manual batch mixing is low.

Using information obtained in NIOSH, OSHA SEP inspection reports, and unpublished consultant reports, OSHA finds that baseline conditions for ready-mixed batch operators include working within an enclosed booth or office, and that their exposure to silica is typically nondetectable or very low (NIOSH ECTB 233-101c, 1999; OSHA Inspection Number 11615263814; Wickman et al., 2003). All three results in the exposure profile are associated with these baseline conditions.

Baseline Conditions for Quality Control Technician

The exposure information for quality control technicians is limited and based on two exposure results reported in one NIOSH case study assessment (NIOSH ECTB 233-101c, 1999). Both full-shift exposure results (obtained over a 2-day period) are less than the sample LODs and substantially less than $50 \,\mu\text{g/m}^3$. The quality control technician's work tasks included performing office work (100 percent of the workshift on the first day of sampling), dry sweeping the office area, collecting aggregate samples (70 percent of the workshift on the second day of sampling), and conducting offsite visits to construction sites. At the construction sites, technicians work primarily with samples of wet or already-cured concrete.

Task-related exposure for quality control technicians is expected to be limited because silica dust-producing activities are often conducted inside a laboratory fume hood (aggregate and concrete testing) or minimized through the use of wet methods (water and other dust suppressants to minimize yard, traffic, and other dust that might be generated adjacent to or by the quality control technician). Additionally, in an earlier NIOSH survey (NIOSH-IHS, 1995) of six ready-mixed plants, no silica was detected in a 234-minute area sample obtained in the laboratory of one plant. Road dust from the plant lots was the only apparent source of silica. Based on these findings, OSHA estimates that under baseline conditions (local exhaust ventilation [LEV] in the laboratory and controlling adjacent sources of dust) quality control technicians are not likely to be exposed to silica concentrations that exceed $50~\mu g/m^3$.

Baseline Conditions for Truck Driver

Truck drivers spend most of the shift on the road delivering concrete, and thus their exposure from sources at the concrete plant or construction sites is minimal and is not addressed as part of this

analysis.¹²⁹ However, truck drivers occasionally perform maintenance to remove hardened concrete from the inside of the concrete truck mixing drums. This activity is typically performed twice per year (NRMCA, 2009),¹³⁰ but on those occasions the activity subjects truck drivers to extremely high silica exposure levels. The exposure profile for truck drivers includes only results associated with truck drum cleaning (which requires additional controls).

The exposure profile for truck drivers is based on three full-shift PBZ results obtained from a NIOSH research report and unpublished consultant data from the Georgia onsite consultation program (NIOSH EPHB 247-19, 2001; Wickman et al., 2003). All three of the results exceed 100 μ g/m³. The highest result (9,804 μ g/m³) is associated with a driver who used a pneumatic chisel to chip (break up) hardened concrete inside a truck mixer for 362 minutes. Two additional full-shift sample results (205 μ g/m³ and 393 μ g/m³) are based on approximately 90 minutes of chipping time inside truck mixers with a jackhammer (pneumatic hammer).

OSHA also reviewed a large number of partial-shift samples (less than 360 minutes sample time) for workers cleaning truck mixers (ERG-GI, 2008; Strelec, 2008). The 33 partial-shift results range from 69 $\mu g/m^3$ to 7,740 $\mu g/m^3$, with a median of 770 $\mu g/m^3$. Assuming no additional exposure throughout the remainder of the workshift, the 8-hour TWA exposures for the partial-shift samples range from 11 $\mu g/m^3$ to 4,894 $\mu g/m^3$, with a median of 148 $\mu g/m^3$. Seventy-six percent (25 samples) of the 8-hour TWAs exceed 50 $\mu g/m^3$, and 67 percent (22 samples) exceed 100 $\mu g/m^3$ (ERG-GI, 2008; Strelec, 2008). These partial-shift results generally support the exposure profile in indicating that most results are well above 50 $\mu g/m^3$.

Truck drivers who remove hardened concrete from inside truck mixer drums rarely use any dust controls (ERG-GI, 2008; Strelec, 2008). If mechanical ventilation is used, it usually consists of a fan placed over the charge hopper or within the concrete discharge chute to exhaust air out of the mixer drum (ERG-GI, 2008). However, daily truck rinsing (after the mixer is completely discharged and again at the end of the day) is an indirect baseline control that affects the amount of concrete buildup and the resulting airborne silica concentrations when truck drivers do eventually chip concrete from mixer drums. All three results in the exposure profile are associated with baseline conditions, including the practice of rinsing the drum to some extent every day. Therefore, OSHA preliminarily concludes that the median exposure for truck drivers presented in Table IV.C-38 (393 μ g/m³) represents the baseline condition for this job category.

Baseline Conditions for Maintenance Operator

As shown in Table IV.C-38, the median full-shift PBZ respirable quartz level for maintenance workers is $11~\mu g/m^3$ (LOD) with a mean of $27~\mu g/m^3$ (NIOSH ECTB 233-101c, 1999). No silica was detected in three of the five full-shift results for maintenance workers. The other two full-shift results are

 $^{^{129}}$ Based on the assumption that truck drivers spend more than 75 percent of the shift (6 of every 8 hours) making deliveries away from the plant, OSHA estimates that typical exposure levels for normal workshifts that do not involve truck drum cleaning would be less than 25 percent of the levels experienced by material handlers in this industry. As indicated in Table IV.C-38, the maximum exposure level for material handlers is 57 $\mu g/m^3$; 25 percent of that value results in an estimated maximum daily exposure level of about 14 $\mu g/m^3$ for truck drivers. While it is possible that some truck drivers occasionally experience some silica exposure at customer sites (where they deliver concrete), OSHA preliminarily concludes that these exposure levels are also minimal: concrete delivery trucks spend only a few minutes at the site (although they might need to wait on an adjacent road until they can be unloaded), and they are typically on the perimeter of the site where construction dust levels are lowest.

¹³⁰ Results of a 2008 NRMCA benchmarking survey (NRMCA, 2009) showed that mixing truck drums were typically cleaned every 6.7 months (average for more than 6 dozen establishments in the ready-mixed concrete industry that responded to the survey).

somewhat higher (43 $\mu g/m^3$ and 58 $\mu g/m^3$), but less than 100 $\mu g/m^3$. These two values reflect work conducted inside the in-plant mixer to remove hardened concrete (with a sledgehammer) during a portion of the work shift. From the information presented in Table IV.C-38, OSHA estimates that approximately 20 percent of maintenance workers might be exposed to silica at levels exceeding 50 $\mu g/m^3$ during such activities. This percentage could be higher if pneumatic tools are used, especially pneumatic chippers and chisels; however, the relative convenience of both rinsing and chipping in-plant mixing equipment (compared with truck drums) means less dusty manual methods often suffice for the in-plant equipment.

Based on information obtained from NIOSH-EPHB 247-19 (2001) and Wickman (2004), OSHA finds that maintenance workers also have the potential for silica exposure while working in the plant yard; while working on or near the aggregate conveyors and batch plant; and during the routine removal of hardened concrete inside the plant mixer. Baseline exposure controls include using water and other dust suppression methods to control adjacent sources of dust; using LEV at the loading point of the concrete batch mixing drum; and scheduling preventive maintenance activities for nonproduction intervals. No engineering controls are used while removing concrete residues from inside the mixing drum (ERG-GI, 2008). All three results in the exposure profile are associated with these baseline conditions. Therefore, OSHA preliminarily concludes that the median exposure level for maintenance operators presented in Table IV.C-38 represents the baseline condition for this job category.

Additional Controls

Additional Controls for Material Handler

The baseline conditions for this job category are associated with a median exposure level of 13 µg/m³; however, Table IV.C-38 indicates that 25 percent of material handlers at ready mix concrete plants experience exposures greater than the proposed PEL of 50 µg/m³ and will require additional controls to meet this level. Additional controls for material handlers include the use of properly enclosed, ventilated cabs (with air conditioning) in conjunction with dust suppression methods. Cab research conducted by NIOSH (Cecala et al., 2003; Cecala et al., 2005; NIOSH ECTB 233-101c, 1999; NIOSH ECTB 233-127c, 2000; NIOSH HETA 92-0311, 2001) indicates that the use of cabs reduced respirable dust or silica exposures to levels less than 50 µg/m³, representing 90 to 97 percent reductions compared with silica readings outside the cabs. Where material handling equipment might not be properly sealed and ventilated, and for other yard-related tasks performed by material handlers, the use of effective dust suppression methods will likely reduce silica exposures below the proposed PEL. Exposure observations for material handlers at concrete manufacturing facilities that implemented yard dust management controls (e.g., dust suppressants, wetted yard dust, power sweeping) show that levels substantially below 50 µg/m³ were achieved in almost all cases (NIOSH ECTB 233-112c, 1999; NIOSH ECTB 233-125c, 2000). As shown in Table IV.C-38, the highest result for material handlers is 57 µg/m³. Therefore, OSHA preliminarily concludes that even a modest improvement in cabs (e.g., ensuring proper sealing and ventilation) and dust management will result in material handler exposure levels less than the proposed PEL of $50 \mu g/m^3$.

¹³¹ Facilities use in-plant mixers to mix concrete that is then delivered by many trucks, so an in-plant mixer regularly mixes many more batches than does an individual mixing truck. Furthermore, the in-plant mixers have a more open, accessible design than mixing truck drums (although both can meet the criteria for confined spaces). Maintenance operators tend to chip hardened concrete from the in-plant mixers more frequently and for much shorter periods of time than truck drivers chipping concrete from mixing truck drums.

Additional Controls for Batch Operator

The three full-shift PBZ exposure results available for batch operators are below the individual sample LODs and well below 50 $\mu g/m^3$. OSHA does not expect that the routine activities of batch operators will expose the operators to silica concentrations in excess of 50 $\mu g/m^3$, because the batch operator's workstation (i.e., a booth or office) is typically isolated from plant operations. Therefore, additional exposure controls are not required for this job category (ERG-GI, 2008).

If batch operators at the 10 percent of plants with manual batching processes (not automated) experience elevated exposures, silica levels can be reduced by automating the batching process (including adding an operator's booth) and installing engineering controls such as LEV at the mouth of the concrete batching drum and spray bars on conveyers. ¹³² As noted previously, automation is the norm for this industry and is already incorporated into the vast majority of plants (90 percent). Automation and LEV used together, as at a concrete ready-mixed wet/dry batch plant described in NIOSH ECTB 233-101c (1999), reduced batch operator silica exposures to levels less than the LOD (reported as 11 μ g/m³) on two sampling dates, each covering the entire 8- to 9-hour shift. Automation permitted the operator to spend most of the shift in the booth. However, silica results obtained for other workers at this plant suggest that the engineering controls also did a good job controlling dust: most silica results for all job categories were below the respective LODs (all 13 μ g/m³ or less) and just one result exceeded the proposed PEL of 50 μ g/m³ (58 μ g/m³ for the maintenance operator who chipped hardened concrete from the in-plant mixer barrel).

Additional Controls for Quality Control Technician

The data and information available to OSHA suggest that the exposure levels of quality control technicians are currently well below 25 $\mu g/m^3$. Additional controls are therefore not required for this job category.

Additional Controls for Truck Driver

The exposure data available to OSHA suggests that most truck drivers who remove hardened concrete inside ready-mixed truck mixers have silica exposure levels greater than $100~\mu g/m^3$ on the rare occasions when they perform this task (e.g., twice per year)¹³³. Many of these exposures are of short duration and high intensity with some exposures approaching $10,000~\mu g/m^3$. Additional controls are required to reduce truck driver exposure while removing hardened concrete from inside truck mixers with pneumatic tools. These controls currently include: 1) wet methods, 2) mechanical ventilation, 3) a combination of wet methods and mechanical ventilation, and 4) administrative controls. These options are discussed in the paragraphs below.

Wet Methods

Wet methods for dust control during mixer cleaning include spraying the drum interior with water before and during cleaning and/or using a pneumatic tool equipped with a water spray nozzle. Exposure reductions associated with this method of control range from 70 to 98 percent and are discussed in detail

¹³² The LEV system is described as an unflanged, tapered hood (32 inches by 32 inches) with an average face velocity of 480 feet per minute [3400 cubic feet per minute]. The system is powered by a 40-horse power squirrel cage fan and connected to a bag house containing 48 4-inch bags with a reverse pulse jet cleaning system. The bags are changed annually, but inspected for leaks daily.

¹³³ Contractors that perform this work might experience the same exposures more frequently.

in ERG-GI (2008), which also addresses possible constraints associated with the use of wet methods (such as freezing hazards, slip hazards, and electrical hazards).

Specifically, Williams and Sam (1999) report that a hand-held pneumatic chipper equipped with a water supply hose and spray nozzle reduced worker exposure to silica by 70 percent during concrete truck drum cleaning. Workers periodically spray the interior surface of the drum and have a continuous water spray directed at the chisel point during chipping. The water flow rate is operator adjusted and is described as a controlled mist that does not generate excess water (Sam, 2004). Williams and Sam further report that workers were very comfortable using the water-equipped chipper and that all workers noticed a substantial reduction in dust during chipping. When using this technique, all electrical cords connected to lights or fans near the drum must be plugged into a ground-fault circuit interrupter (Williams and Sam, 1999).

The use of high-pressure and ultra-high-pressure water-blasting (or water-jetting) is an optional cleaning procedure that might be an effective alternative for some ready-mixed concrete companies. High-pressure pump manufacturers market water-jetting cleaning applications for the interior and exterior of concrete mix trucks (Cat, 2003; Gardner Denver, 2003). Additionally, a single-operator ultra-high pressure water wash system for removing hardened concrete inside mixer drums was recently commercialized (Blasters Ready Jet, 2010a). The boom-mounted washer is operated wirelessly from a work platform. No human entry into the mixer drum is required, thus eliminating the dangerous and labor-intensive job of chipping away dried concrete by hand. Limited PBZ sampling conducted by the company in 2009 suggests that the ultra-high-pressure water wash system substantially reduces silica exposures associated with cleaning the interior of mixer drums. Six partial-shift PBZ dust samples (three total dust and three respirable dust samples with sampling durations of 60, 80, and 95 minutes) obtained during "one-pass" demonstration tasks yielded no silica on any of the samples (Blasters Ready Jet, 2010b). 134 OSHA observes that the maximum concentration of respirable dust (150 μg/m³) measured during these test periods suggests that even if silica had been present on the sample filter as a relatively high percentage (e.g., 25 percent)¹³⁵ of the respirable dust, the maximum concentration of silica would have been 38 µg/m³ during periods of intensive drum cleaning.

Mechanical Ventilation

Investigators have evaluated various types of mechanical ventilation (LEV, general exhaust ventilation, forced dilution ventilation, and LEV in combination with general exhaust ventilation) alone or in combination with wet methods. For example, in an evaluation of ventilation techniques for cleaning residual concrete from ready-mixed truck drums, NIOSH investigators found that workers who used general exhaust ventilation alone reduced silica concentrations by 25 percent (from 970 μ g/m³ to 730 μ g/m³) (NIOSH, EPHB 247-19, 2001).

The most substantial silica reductions obtained using exhaust ventilation are associated with test scenarios that provided workers with: 1) a combination of LEV-equipped chipping tools and general exhaust ventilation, which achieved a 78 percent reduction in geometric mean, from 970 μ g/m³ to 220 μ g/m³ (NIOSH-EPHB 247-19, 2001); or 2) forced dilution ventilation alone, which resulted in an 81 percent

 $^{^{134}}$ OSHA notes that although silica was not detected, depending on the method used to obtain the samples, the LOD could be as high as 100 $\mu g/m^3$ for the samples with the shortest duration.

¹³⁵ The hypothetical "worst case" value of 25 percent silica in the sample is approximately twice the level reported in respirable dust during truck drum cleaning. NIOSH (NIOSH EPHB 247-19, 2001) found 7 to 13 percent silica in respirable dust air samples obtained over 6 days for truck drivers chipping concrete from mixing truck barrels on two dates. Strelec (2008) reported 7.6 and 16 percent silica in respirable dust samples obtained during truck drum cleaning.

reduction in the median respirable quartz level (reduced from $5,378 \,\mu\text{g/m}^3$ to $1,029 \,\mu\text{g/m}^3$ as calculated from results obtained by Wickman et al. [2003]). However, Williams and Sam (1999) found that the placement of fans was critical and is not effective if air flow direction moves contaminated air across workers' breathing zones.

Combined Control Methods

Strelec (2008) described a ready-mixed concrete facility where a combination of engineering controls, including a water misting device and a push/pull ventilation system, reduced breathing zone silica results. Although the silica level decreased from 1,264 μ g/m³ to 128 μ g/m³, the result still exceeded OSHA's current general industry PEL. Based on information presented by the author, OSHA estimates that the engineering controls, the reduced level of silica in the dust and other work site factors contributed in equal measure to the change in silica exposure level. 137

Administrative Controls

Administrative controls primarily include implementing good mixer drum rinsing procedures and increasing the frequency of rinsing to prevent or reduce the amount of concrete buildup. Good drum rinsing procedures include a rinse after each load is poured and a triple rinse at the end of each work shift. Additionally, Williams and Sam (1999) reported that construction site conditions can cause a driver to pour concrete from the truck slowly, which can result in excess concrete beginning to harden on the drum wall. In that case, three-quarters-inch aggregate loaded into the drum and rotated for 30 minutes will scour the hardening concrete from the inner surface of the drum and reduce the amount of buildup (the aggregate can then be used in the next batch of concrete).

OSHA believes work practices that reduce the amount of concrete buildup in drums will reduce the amount of time required later to remove the hardened concrete from the drum. All other factors being equal, a shorter period of drum cleaning during the shift will result in a correspondingly lower full-shift silica exposure level.

Additional Controls for Maintenance Operator

Although the exposure data available to OSHA suggest that 80 percent of maintenance operators in this industry have silica exposures less than $50~\mu g/m^3$, one situation in particular can result in higher levels. Additional controls are required where maintenance operators experience elevated exposures while removing hardened concrete from inside plant mixer drums. The controls available for in-plant concrete mixers are similar to those for concrete mixer trucks. Such controls might include the use of polyurethane drum liners, good rinsing procedures to remove residual concrete before it dries and builds up, increasing the frequency of mixer cleaning, wet methods, and various types or combinations of mechanical ventilation when hardened concrete must be chipped from drums. Wet methods and mechanical ventilation controls applicable to maintenance operators are described in the earlier discussion on truck drivers.

 $^{^{136}}$ At the time of OSHA's initial inspection (exposure levels 1,264 μ g/m³), the facility, which employed 33 truck drivers, had hired two workers from a local temporary employment agency to remove concrete from multiple truck drums (Strelec, 2008). These exposures correspond to the temporary workers.

 $^{^{137}}$ OSHA calculated the 8-hour TWA concentration of the workers' silica exposure based on the 8-hour TWA respirable dust concentration and the percent quartz in the respirable dust, both provided by Strelec (2008). Before controls, respirable dust was 7,900 $\mu g/m^3$ (7.9 mg/m^3) containing 16 percent quartz (1,264 $\mu g/m^3$ silica). After controls were initiated, respirable dust was 1,690 $\mu g/m^3$ (1.69 mg/m^3) containing 7.6 percent quartz (128 $\mu g/m^3$ silica).

Polyurethane drum liners are available for plant mixers and reportedly reduce the buildup of hardened concrete. Industry sources indicate that polyurethane-lined drums generally require weekly rather than daily clean out. Reducing the amount of concrete buildup should reduce worker exposure to silica during cleaning because less time will be required to remove the buildup (ERG-GI, 2008). OSHA was unable to obtain exposure data demonstrating the potential reduction in silica exposure that might be achieved because of the use of polyurethane-lined drums in plant mixers.

As noted with truck mixer drums, increasing rinse frequency and using good drum rinsing procedures (e.g., rinsing mixers with high pressure water after each batch of concrete) minimizes concrete buildup and the amount of cleaning required to remove hardened concrete (ERG-GI, 2008). In turn, the reduced cleaning time should reduce exposure to silica.

Depending on the method utilized, the additional controls described for truck drivers reduced silica exposures by 25 to 98 percent during drum cleaning. For example, in an evaluation of ventilation techniques for cleaning residual concrete from ready-mixed truck drums, NIOSH investigators found that workers who used general exhaust ventilation alone reduced silica concentrations by 25 percent, from 970 $\mu g/m^3$ to 730 $\mu g/m^3$ (NIOSH EPHB 247-19, 2001). Assuming that this control would reduce exposure to maintenance operators cleaning plant mixers by a similar amount, the highest levels reported in the exposure profile for maintenance operators removing hardened concrete with a sledge hammer (43 $\mu g/m^3$ and 58 $\mu g/m^3$) might be reduced by 25 percent to values below 50 $\mu g/m^3$ (32 $\mu g/m^3$ and 44 $\mu g/m^3$, respectively).

Feasibility Finding

Feasibility Finding for Material Handler

Based on the available information, OSHA finds that most material handlers (75 percent) in this industry are currently exposed to silica at levels less than 25 $\mu g/m^3$. For the remaining workers, OSHA concludes that the primary option for reducing exposure below the proposed PEL is the use of enclosed operator cabs that are well sealed and ventilated with positive pressure and filtered air. An additional option that will reduce exposures below 50 $\mu g/m^3$ is the application of effective dust suppression methods (in yards and during raw material handling), exclusively or in conjunction with enclosed operator cabs.

Cab research conducted by NIOSH (Cecala et al., 2003; Cecala et al., 2005; NIOSH ECTB 233-101c, 1999; NIOSH ECTB 233-127c, 2000; NIOSH HETA 92-0311, 2001) indicates that the use of cabs reduced respirable dust or silica exposures to levels less than $50~\mu g/m^3$, representing 90 to 97 percent reductions compared with silica readings outside the cabs. Exposure observations for material handlers at concrete manufacturing facilities that implemented yard dust management controls show that levels substantially below $50~\mu g/m^3$ were achieved in almost all cases (NIOSH ECTB 233-112c, 1999; NIOSH ECTB 233-125c, 2000).

The data in Table IV.C-38 show that the highest exposure for material handlers is 57 $\mu g/m^3$. Therefore, OSHA concludes that even a modest improvement in cabs (e.g., ensuring proper sealing and ventilation) and dust management will result in exposure levels less than the proposed PEL of 50 $\mu g/m^3$ for all material handlers.

Feasibility Finding for Batch Operator

The available exposure data suggest that most batch operators are not exposed to silica levels in excess of 25 μ g/m³. The three full-shift PBZ exposure results available to OSHA are less than 25 μ g/m³, and one partial shift (321 minutes) PBZ exposure result from an unpublished consultant report is 26 μ g/m³.

Additional exposure controls do not appear to be necessary for this job category. However, in the event that a batch operator is exposed to elevated levels of silica (e.g., because of dust levels at the central mix area or dust tracked into the batch operator's work station), the facility can achieve exposures of $25 \, \mu \text{g/m}^3$ or less for that worker by improving housekeeping and seals on the operator's booth or by improving maintenance on dust controls in the central mix area.

Feasibility Finding for Quality Control Technician

The two full-shift PBZ results for quality control technicians are below 25 μ g/m³. Based on these results and the available information, OSHA does not expect that the routine activities of quality control technicians will generate exposures that exceed 25 μ g/m³. Additional exposure controls do not appear to be necessary for this job category. However, if technicians are exposed to silica while obtaining samples in the raw materials storage areas, their exposure will be reduced when exposures in other job categories are controlled. Other control options for these workers include: 1) implementing administrative policies that allow quality control technicians to avoid dusty plant process areas until dust subsides; and 2) adding LEV (e.g., a laboratory fume hood) in the laboratory.

Feasibility Finding for Truck Driver

As indicated in Table IV.C-38, the silica levels of all truck drivers are greater than $100 \,\mu\text{g/m}^3$, but only on the rare occasions (e.g., twice per year) when the truck drivers chip hardened concrete from their truck mixing drums. However, contractors who move from plant to plant chipping concrete from truck drums perform this activity regularly, perhaps daily.

After reviewing the information presented in this section and in ERG-GI (2008), OSHA preliminarily concludes that the exposure levels of one-third of the truck drivers (those with current exposure levels between $100~\mu g/m^3$ and $250~\mu g/m^3$, as shown in Table IV.C-38) can be reduced to levels of $50~\mu g/m^3$ or less most of the time by using any of the methods listed below along with forced ventilation. Wickman et al. (2003) reported forced air alone reduced exposures by 81 percent; however, OSHA believes that to reliably achieve reductions to this extent, employers will need to combine forced air with either LEV or wet methods.

Additionally, OSHA preliminarily concludes that the exposure levels of most of the remaining two-thirds of truck drivers can be reduced to silica levels that fall between approximately $100~\mu g/m^3$ and $300~\mu g/m^3$ most of the time. The control methods (listed below) that have been used to reach this range of silica exposure are all associated with exposure reductions of at least 70 percent (compared with uncontrolled levels typically less than $1,000~\mu g/m^3$). Furthermore, this range of exposure levels has been achieved by several investigators using various combinations of controls for workers who spent at least half of the sampling period (and usually the entire period) chipping concrete from inside truck mixing drums. The combination of controls described here will reduce most workers' exposures during concrete-mixing truck drum cleaning to levels for which a half-facepiece respirator with an assigned protection factor (APF) of 10~will provide adequate protection.

Examples of controls for truck drivers:

- LEV-equipped chipping tool plus general exhaust ventilation: Silica levels reduced to 220 μg/m³ (NIOSH EPHB 247-19 [2001]).
- Water misting device and push/pull ventilation system: Silica levels reduced to 128 μg/m³ (Strelec, 2008).

Periodic spraying of the interior surface of the drum and directing continuous water spray at the chisel point during chipping: Silica levels reduced to "less than the PEL" (100 μg/m³ or somewhat less, calculated using OSHA's general industry standard for respirable dust containing silica) (Williams and Sam, 1999).

Additional evidence from Wickman et al. (2003) suggests that forced air dilution ventilation alone can reduce exposure levels to a substantial extent (81 percent), but does not necessarily bring the worker exposure levels down to the same TWA concentration (1,029 $\mu g/m^3$) from uncontrolled levels well above 5,000 $\mu g/m^3$. However, OSHA believes that this method in combination with one of the methods listed above can achieve results in the same range of approximately 100 $\mu g/m^3$ to 300 $\mu g/m^3$ for these truck drivers as well (a result of 5,000 $\mu g/m^3$ reduced to 1,029 $\mu g/m^3$ through forced air dilution might be further reduced by at least 70 percent to 308 $\mu g/m^3$ or less by using one of the listed methods). Alternative cleaning techniques, such as high- or ultra-high-pressure water blasting, which is available from a single-source supplier, might also be effective under some circumstances.

Until control methods for truck drivers have been further refined, OSHA preliminarily concludes that facilities will need to provide respiratory protection for these workers.

Feasibility Finding for Maintenance Operator

Based on Table IV.C-38, OSHA finds that the exposure levels of 80 percent of maintenance operators are currently well below $50~\mu g/m^3$. By using one or more additional controls, the remaining operators will achieve results below $50~\mu g/m^3$. Appropriate controls include using polyurethane drum liners, employing good rinsing procedures to remove residual concrete before it dries and builds up, increasing the frequency of mixer cleaning (to reduce the amount of hardened concrete that needs to be removed), using forced dilution or general exhaust ventilation, and using pneumatic tools equipped with LEV or a water spray. Alternative cleaning techniques, such as high- or ultra-high-pressure water blasting, also might effectively control worker exposures to silica during *in-plant* mixer cleaning and eliminate the need to send workers inside the mixer to manually remove hardened concrete buildup. Substantially higher exposure levels that might be associated with the use of pneumatic tools to clean in-plant mixers would require the same controls or combinations of controls as outlined for truck drivers.

Overall Feasibility Finding

OSHA preliminarily concludes that material handlers, batch operators, quality control technicians, and maintenance operators can achieve exposures of less than $50~\mu g/m^3$ most of the time with the controls described in this section. However, OSHA estimates that only one-third of truck drivers are likely to achieve exposures of less than $50~\mu g/m^3$. Based on the available information, respiratory protection will be necessary for the remaining truck drivers.

REFERENCES

Blasters Ready Jet, 2010a. Ready jet mixer drum concrete removal system. Blasters Ready Jet, Inc. Web site. Available at: http://www.blastersreadyjet.com/. Last accessed 15 February 2010. **OSHA-2010-0034-0556**

Blasters Ready Jet, 2010b. Industrial hygiene assessment of blasters ready jet demonstration, July 13, 2009. Inside Ready Jet - Industry Related Articles. Blasters Ready Jet, Inc. Web site. Available at: http://www.blastersreadyjet.com/pdf/43109-000051_00ReadyJet_SilicaTesting.pdf. Last accessed 15 February 2010. **OSHA-2010-0034-0557**

- Cat, 2003. Personal communication between a representative of Cat Pumps and Eastern Research Group, Inc. October 28. Additional information available at: http://www.catpumps.com
 OSHA-2010-0034-1247
- Cecala, A.B., J.A. Organiscak, W.A. Heitbrink, J.A. Zimmer, T. Fisher, R.E. Gresh, and J.D. Ashley, 2003. Reducing enclosed cab drill operator's respirable dust exposure at surface coal operation with a retrofitted filtration and pressurization system. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 314:31–36. **OSHA-2010-0034-0589**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-1563**
- Clark, N., J. Dropkin, and L. Kaplan, 2001. Ready mixed concrete truck drivers: Work-related hazards and recommendations for controls. Construction Hygiene and Ergonomics Program, Mount Sinai-Irving J. Selikoff Center for Occupational and Environmental Medicine, One Gustave L. Levy Place, New York, NY. September. Available at: http://www.cdc.gov/elcosh/docs/d0400/d000493/d000493.pdf OSHA-2010-0034-1405
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Gardner Denver, 2003. Personal communication between a representative of Gardner Denver, Inc. and Eastern Research Group, Inc. October 30. Additional information available at: http://www.gardnerdenver.com OSHA-2010-0034-0695
- [NIOSH ECTB 233-101c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 01 A ready-mix concrete plant. **OSHA-2010-0034-0214**
- [NIOSH ECTB 233-112c] National Institute for Occupational Safety and Health, 1999b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 12 Concrete block manufacturing. **OSHA-2010-0034-0220**
- [NIOSH ECTB 233-125c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 25 Concrete pipe manufacturing. **OSHA-2010-0034-0234**
- [NIOSH ECTB 233-127c] National Institute for Occupational Safety and Health, 2000b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 27 Pre-cast concrete shape manufacturing. **OSHA-2010-0034-0898**
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0245**

- [NIOSH HETA 92-0311] National Institute for Occupational Safety and Health, 2001. Health Hazard Evaluation Report: CSX Transportation, Inc. **OSHA-2010-0034-0884**
- [NIOSH-IHS] National Institute for Occupational Safety and Health, 1995. Industrial hygiene survey of respirable crystalline silica dust exposure in the ready-mixed concrete industry (unpublished). **OSHA-2010-0034-0905**
- [NRMCA] National Ready Mixed Concrete Association, 2009. An examination of the results of the Eleventh Annual NRMCA Fleet Benchmarking and Costs Survey. Concrete Infocus Magazine 8(5):7–11. **OSHA-2010-0034-0922**
- [NRMCA-production-of-rmc] National Ready Mixed Concrete Association, 2003. Production of ready mixed concrete. Available at: http://www.nrmca.org/concrete_basics/production_of_rms.html OSHA-2010-0034-0923
- [NRMCA-what-is-rmc] National Ready Mixed Concrete Association, 2003. What is ready mixed concrete? Available at:

 http://www.nrmca.org/concrete_basics/ready_mixed_concrete.html

 OSHA-2010-0034-0924
- [OSHA SEP Inspection Report 116152638] OSHA Special Emphasis Program Inspection Report 116152638. **OSHA-2010-0034-0198**
- [OSHA SEP Inspection Report 301301313] OSHA Special Emphasis Program Inspection Report 301301313. **OSHA-2010-0034-0095**
- Ready-Mixed Concrete A, 1999. Personal communication between Ready-Mixed Concrete Contact A and Eastern Research Group, Inc. June 24. **OSHA-2010-0034-0966**
- Sam, K., 2004. Personal communication between Kwasi Sam, Illinois Department of Commerce and Community Affairs (Illinois On-Site Consultation Program) and Eastern Research Group, Inc. October 8. **OSHA-2010-0034-1136**
- Strelec, F., 2008. OSHA compliance issues: Control of silica exposures in cement mixer drum cleaning operations. Journal of Occupational and Environmental Hygiene (5):D121-D123. **OSHA-2010-0034-1157**
- [U.S. EPA] U.S. Environmental Protection Agency, 2001. Concrete batching. In AP-42, Fifth Edition, Volume 1, Chapter 11: Mineral Products Industry. Available at: http://www.epa.gov/ttn/chief/ap42/ch11/final/c11s12.pdf **OSHA-2010-0034-1203**
- Wickman, A., 2004. Personal/e-mail communication from Arthur R. Wickman of Georgia Institute of Technology, Atlanta, Georgia, to Eastern Research Group, Inc. (unpublished data). October 7. **OSHA-2010-0034-1227**
- Wickman, A., R. Langton, M. Dunham, and C. Collins, 2003. An evaluation of control methods to reduce crystalline silica exposures during ready mix concrete truck drum chip-out (unpublished data). Georgia Institute of Technology, Atlanta, Georgia. Presented at the

American Industrial Hygiene Conference and Exposition, Dallas, Texas, 10–15 May 2003. **OSHA-2010-0034-1226**

Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**

Refractories

Description

The refractory products manufacturing industry uses silica-containing materials to produce a wide range of heat-resistant products. Refractory products include oven and furnace linings, investment materials used for casting molten substances (metals and glass), and insulation for high-temperature processes and equipment. Facilities manufacturing refractory products are classified in six-digit North American Industry Classification System (NAICS) codes 327124, Clay Refractory Manufacturing, and 327125, Nonclay Refractory Manufacturing.

The manufacturing facilities in this industry typically produce one or more of the following three distinct product forms: 1) pre-formed refractory items such as fire bricks and custom shapes; 2) glass-like refractory ceramic fibers (RCF);¹³⁸ and 3) unshaped powder products, called monolithic refractories. The monoliths are typically sold in sacks and intended to be either cast in place or applied as mortars or coatings at customer facilities (ERG-GI, 2008).¹³⁹

Within each of these general forms, a variety of product types exist, including refractories based on compounds of silica, aluminum, chromium, magnesium, or other minerals. Some examples of common raw ingredients for refractory materials include aluminum silicate clays, aluminum oxide ore, chromium compounds, ceramic frit, ground quartz, and calcined materials (the calcining process can convert any amorphous silica to cristobalite). Refractory materials contain silica either as a key component or as a minor contaminant. For example, new silica-based refractory products can contain upwards of 50 percent ground quartz and cristobalite, while high aluminum clay refractory products might only contain a fraction of a percent of silica. Additionally, this industry recycles a substantial amount of fired refractory material, which might contain cristobalite, as a raw ingredient for new product. As a result of this wide variability in composition, silica exposure can be variable from day to day and product to product within an individual production facility (ERG-GI, 2008).

Workers are potentially exposed to silica throughout all phases of production: when they manually manipulate and mix silica-containing raw ingredients; use dry casting methods to form bricks and shapes; finish cast shapes with grinders and saws; charge or tend melting furnaces used to form ceramic fibers; and package dry powdered refractory materials. See Table IV.C-39 for a description of the major activities and sources of exposures for affected job categories (material handler, forming operator, finishing operator, ceramic fiber furnace operator, and packaging operator). For detailed process descriptions, see ERG-GI (2008). Note that the raw materials, job activities, and production methods used in this industry are similar to those employed by the Structural Clay Products, Concrete Products, Glass Products, and Pottery Products industries (also described in this report).

Table IV.C-39
Job Categories, Major Activities, and Sources of Exposure of Workers in the Refractories Industry (NAICS 327124 and 327125)

Job Category* Major Activities and Sources of Exposure

¹³⁸ Refractory ceramic fiber production accounts for approximately 1 percent (800 million pounds per year) of the total U.S. man-made vitreous fiber manufacture. In total, about 800 workers are involved in RCF manufacturing (RCFC, 1999).

¹³⁹ In the mid-1990s, monolithic refractories accounted for 50 percent of the refractories market. Significant improvements in this product type over the previous 20 years account for the widespread acceptance (Heine, 1996).

Job Categories, Major Activities, and Sources of Exposure of Workers in the Refractories Industry (NAICS 327124 and 327125)								
Material Handler	Operating forklifts and loaders to transport materials; transferring, weighing, and dumping raw materials by hand or using automated equipment; charging and operating mixing and milling machines.							
	 Dust from manual emptying of bags of silica-containing materials into batch bins, hoppers, mixers, and milling machines. Dust disturbed during transfer of silica-containing materials using open conveying equipment. Dust released while operating unventilated, open mixing, or blending equipment. 							
Forming Operator	Transferring dry or wet mixed ingredients into molds and compacting using automated or manually operated equipment; removing formed product from molds; cleaning molds.							
	 Dust that becomes airborne during compacting of dry silica-containing ingredients using vibrating machinery or mechanical presses. Dust disturbed during cleaning of molds, surfaces, and floors using brooms or compressed air. 							
	Using automated processes to extrude and cut refractory clay brick.							
	 Dust from spilled clay and handling dried bricks (unfired). 							
Finishing Operator	Cutting, shaping, and grinding products by hand or with semi-automated equipment.							
	 Dust from grinding and sawing fired products by hand or with automated equipment. Dust disturbed during cleaning of floors and surfaces using brooms or compressed air. 							
Ceramic Fiber Furnace Operator	Charging melting furnaces with silica-containing ingredients and raking raw materials; operating fiber production equipment; performing housekeeping in the furnace area.							
	 Dust released while charging furnaces with raw materials. 140 Dust disturbed during cleaning of floors and surfaces using brooms or compressed air. 							
Packaging Operator	Filling bags with loose, dry powder or aggregate products using automated or semi-automated equipment; handling filled bags manually or using automated equipment.							
	 Dust escaping from bag packing equipment. Dust emitted from newly filled bags during stacking and palletizing activities. Dust disturbed during cleaning of floors and surfaces using brooms or compressed air. 							
*Job categories are intended allocated differently, depend	I to represent job functions; actual job titles might differ, and responsibilities might bing on the facility.							
Source: ERG-GI, 2008.								

¹⁴⁰ Newly manufactured RCF contain little or no silica. Thus, handling raw ingredients presents the greatest opportunity for exposure to silica. Once the raw ingredients are melted (to the amorphous form), silica exposure is unlikely to occur.

Baseline Conditions and Exposure Profile

To evaluate silica exposure in refractory product manufacturing facilities, OSHA reviewed personal breathing zone (PBZ) respirable quartz exposure monitoring data from two OSHA Special Emphasis Program (SEP) inspection reports and a NIOSH report, previously described in ERG-GI (2008). Lach of these facilities produces multiple product forms (e.g., shapes or bricks, ceramic fibers, packaged monolithic refractory materials). Table IV.C-40 summarizes the full-shift exposure monitoring results for each of the affected occupational categories. Note that the exposure profile for forming operators is based on surrogate data. Exposure monitoring data for each job category are discussed in detail below.

Baseline Conditions for Material Handlers

The 27 PBZ silica results for material handlers range from 13 to 526 micrograms per cubic meter ($\mu g/m^3$), with a median of 34 $\mu g/m^3$ and mean of 77 $\mu g/m^3$. Twelve results (44 percent) exceed 50 $\mu g/m^3$, and six results (22 percent) exceed 100 $\mu g/m^3$. These results were obtained at the three facilities during manufacture of a variety of products (shapes, bricks, fibers, aggregate).

The six results above $100~\mu\text{g/m}^3$ were obtained from all three facilities and are associated with manual bag dumping. These six results range from $120~\mu\text{g/m}^3$ to $526~\mu\text{g/m}^3$, with a median of $164~\mu\text{g/m}^3$ and mean of $220~\mu\text{g/m}^3$. Quartz values were reported for all of these samples, but one contained cristobalite as well. The result for this sample ($170~\mu\text{g/m}^3$ of total silica) was composed of respirable cristobalite at $100~\mu\text{g/m}^3$ and respirable quartz at $70~\mu\text{g/m}^3$; however, the report offered no information on the percentages of these types of silica in the materials that this worker handled. Respirable dust concentrations associated with these six elevated samples range from $3{,}000~\mu\text{g/m}^3$ ($3~\text{mg/m}^3$) to $11{,}000~\mu\text{g/m}^3$ ($11~\text{mg/m}^3$), suggesting incomplete dust control during the bag dumping task at all three facilities (ERG-GI, 2008).

Although several silica results below 25 μ g/m³ were obtained for workers dumping bags at some of the same workstations where elevated results were obtained, these values were generally associated with handling of materials with very low silica levels (i.e., silica levels below the limit of detection (LOD), which was less than 1 percent in the sample) and lower respirable dust concentrations (between 1,000 μ g/m³ [1 mg/m³] and 3,000 μ g/m³ [3 mg/m³]). These findings likely represent variations in work practices or respirable-size silica content of materials dumped. Other silica results below 25 μ g/m³ were obtained for material handlers operating transportation equipment (e.g., forklift, mullite dump truck) and overseeing automated material conveyance (ERG-GI, 2008).

¹⁴¹ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-40

Respirable Crystalline Silica Exposure Range and Profile for Workers in the Refractories Industry (NAICS 327124 and 327125)

Job Category	Exposure Summary			Exposu	re Range	Exposure Profile					
	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Material Handler	27	77	34	13	526	9 33.3%	6 22.2%	6 22.2%	5 18.5%	1 3.7%	
Forming Operator ^A	22	47	30	6	238	10 45.5%	6 27.3%	3 13.6%	3 13.6%	0 0.0%	
Finishing Operator	8	13	13	13	14	8 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Ceramic Fiber Furnace Operators	4	13	14	12	14	4 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Packaging Operator ^B	12	32	24	10	118	6 50.0%	5 41.7%	0 0.0%	1 8.3%	0 0.0%	
Totals	73	50	30	6	526	37 50.7%	17 23.3%	9 12.3%	9 12.3%	1 1.4%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-ceramic-tile, 2001; ERG-GI, 2008.

^AThese data for forming operators are surrogate data from the structural clay, pottery, and concrete products industries. Detailed information of the calculation of the surrogate dataset is described in text.

^BExcludes one less-than-full-shift sample that was previously reported for a packaging operator in ERG-GI (2008).

All three facilities had local exhaust ventilation (LEV) installed for some of their mixing and charging operations. The four results for material handlers definitively associated with LEV are less than or equal to $14~\mu g/m^3$ (the LOD), $36~\mu g/m^3$, $53~\mu g/m^3$, and $87~\mu g/m^3$ (OSHA SEP Inspection Reports 301529053 and 302110408). ¹⁴² However, the LEV air velocity provided at one of the facilities was below that recommended by ACGIH (2010) (OSHA SEP Inspection Report 302110408). NIOSH (NIOSH-site-5, 2001) indicated that the facility it visited was equipped with a "dust control ventilation system" in the mixing area, but that it operated intermittently and "disbursed dust from holes in the duct elbows" that had been worn through by abrasion. The report did not indicate which sampling results (if any or all) were associated with LEV at the workstation.

Based on the available literature, OSHA has preliminarily determined that baseline conditions for material handlers include routine manual bag dumping. Ventilation systems for mixing and dumping equipment, if available, have been observed to function sub-optimally (ERG-GI, 2008). In the absence of more definitive information, OSHA has preliminarily determined that the results for material handlers summarized in Table IV.C-40 were obtained under baseline conditions, thus the exposure profile for this job category represent the baseline exposures for material handlers, represented by the median of 34 $\mu g/m^3$.

Baseline Conditions for Forming Operators

OSHA identified only one silica result for a forming operator in a refractory products facility: a state agency consultant found no silica in a composite sample associated with a forming operator at a facility that OSHA evaluated (OSHA did not evaluate the forming operator exposures individually). The consultant reported the result as a range of values "0 to 60 μ g/m³" (the LOD in this case, due to a short duration sample) (OSHA SEP Inspection Report 301529053). The report mentions LEV in other plant areas, but not in the forming area, leading OSHA to conclude that LEV was not present for this activity.

In contrast, results from the structural clay, pottery products, and concrete products manufacturing industries offer particularly robust exposure profiles for forming operators in these industries and provide an indication of possible exposure levels associated with forming operators in the refractory products industry. In these three industries, forming operators also perform the same tasks of extruding clay, pressing clay dust into molds, and molding wetted ceramic/concrete slip or slurry, all of which involve silica-containing materials. Based on information presented in ERG-GI (2008), OSHA has preliminarily determined that data from these industries is relevant to the refractory products manufacturing industry and has constructed a surrogate data set of 22 values for this job category based on an appropriately weighted ratio of

¹⁴² Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

the 145 results for forming operators from these other industries. ¹⁴³ Certain refractory ingredients might contain a notable amount of silica, while more commonly factory-cast refractory products (e.g., alumina refractories) contain a very small percentage of silica (typically less than 1 percent [e.g., C-E Minerals, 2006; Washington Mills, 2005]). In contrast, the major ingredients for pottery slip, nonrefractory clay, and concrete most often contain an intermediary amount of silica: up to 30 percent quartz (ERG-GI, 2008). OSHA acknowledges that upper and lower exposure levels anticipated in the refractory products industry might be higher or lower than those in the surrogate industries. Nevertheless, OSHA has determined that this surrogate exposure profile is based on the best data available to represent the forming operators in the refractory products industry.

The 22 values in the surrogate dataset have a median silica exposure of 30 $\mu g/m^3$ and a mean of 47 $\mu g/m^3$, and range from 6 $\mu g/m^3$ to 238 $\mu g/m^3$. Six results (27 percent) exceed 50 $\mu g/m^3$, and three results (14 percent) exceed 100 $\mu g/m^3$.

Some of the highest results from the original datasets (upon which the surrogate exposure profile is based) are associated with workers operating low-moisture clay powder presses at a structural clay (ceramic tile) manufacturing facility where the exhaust ventilation system did not fully capture visible dust at any of the product lines and the ventilation system was disconnected entirely at one press, where the most visible dust was released. In addition, an automated air jet blew residual clay powder from the press mold several times per minute, and dust-laden air entered the pressing area from the nearby spray-drying room (ERG-ceramic-tile, 2001). Another elevated result, the highest value for a forming operator (238 μ g/m³), was obtained in the pottery industry, where forming operators removed products from molds after casting and cleaning the molds (ERG-GI, 2008).

In the absence of more detailed information about baseline conditions for forming operators at refractory product manufacturing facilities, OSHA has relied on information from reports on both the refractory manufacturer mentioned above and the structural clay, concrete, and pottery industry facilities described by ERG-GI (2008). These conditions appear to cover a wide range of working environments, including forming areas without ventilation and some with ventilation that is not operating effectively. OSHA preliminarily determines that the results summarized in the exposure profile were obtained under this range of conditions and that the surrogate median of 30 $\mu g/m^3$ can serve as the baseline median for this group of workers.

¹⁴³ OSHA constructed a surrogate data set for forming operator exposure in the refractory products industry based on all 42 results for forming operators in the concrete products industry, all 90 results for forming operators in the pottery products industry, and a subset of 13 results for forming operators from the structural clay industry (excluding results for workers involved with decorative coatings application, as these workers have an additional source of silica exposure not found in the refractory products industry). The mean, median, minimum, and maximum exposures as well as the exposure distribution were calculated from these 145 results from the structural clay, pottery products, and concrete products industries. However, so as to maintain a realistic balance in the exposure profile between the number of forming operators and other refractory product workers, the surrogate data were weighted to fit the refractory product industry by using the following ratio: the number of forming operator results in the surrogate industries (i.e., 145) to the total number of results from all other job categories excluding forming operators in the surrogate industries (i.e., 330 [including workers applying decorative coatings in the structural clay industry]). This ratio was applied to the 51 results in the refractory products industry for job categories other than forming operators; thus, OSHA determined that 22 results are appropriate to represent the proportion of forming operators in the refractory products industry. These 22 theoretical results were distributed across the exposure profile according to the percent distribution calculated from the entire surrogate dataset. No discrete values were assigned to these results.

Baseline Conditions for Finishing Operators

Eight full-shift finishing operator results were identified for a refractory products manufacturing facility visited by NIOSH. On the days that sampling was conducted, finishing operators performed manual grinding on low-temperature fire brick (hydrous aluminum silicate clay and plaster) at ventilated grinding stations. All eight exposures were below the LOD (13 μ g/m³ to 14 μ g/m³), and silica was present only in modest quantities (ERG-GI, 2008).

These results for finishing operators are associated with LEV, which was present on all the manual grinding stations. The adjacent automated grinding machines, drill presses, and saws (not operated during the evaluation) were also fitted with LEV. NIOSH determined that air velocity 1 inch from the 36-inch grinding wheels was 300 feet per minute, with half the grinder/LEV stations operating (volumetric airflow was not provided). However, settled dust in the area and high respirable dust results suggest that the LEV did not completely capture grinding dust. Dust control is further reduced when workers manually open dampers to the remaining grinding stations when those other machines are also in use. Dry sweeping also contributes to the workers' dust exposure (ERG-GI, 2008). LEV or ventilated booths were also associated with manual grinders and automated grinders (respectively) at a second refractory brick manufacturing plant evaluated by NIOSH, but for which no PBZ silica samples were obtained (NIOSH CT-144-19A, 1983).

Based on the information from these two NIOSH reports, OSHA preliminarily concludes that LEV is a baseline condition in the finishing areas of refractory product manufacturing facilities and that the exposure levels summarized in Table IV.C-40 for finishing operators are associated with the baseline condition and a median of $13 \mu g/m^3$.

Baseline Conditions for Ceramic Fiber Furnace Operators

Four results were identified for ceramic fiber furnace operators. Although limited, these represent the best data available to OSHA for ceramic fiber furnace operators in the refractory products industry. NIOSH collected these air samples on two consecutive days at a facility that manufactured refractory fibers. The four results for the furnace operator and production assistant all were less than or equal to the limits of detection ($12 \mu g/m^3$ to $14 \mu g/m^3$), despite the fact that silica sand quartz accounted for 50 percent of the ingredients added to the furnace (NIOSH ECTB 233-109, 1999). The furnace operator spent 75 percent of the time in a control room and occasionally checked on equipment or collected samples outside the booth. The assistant spent both shifts working and cleaning around the furnace and fiber production equipment. The furnace was equipped with a low-volume ventilation system (designed to remove heat rather than air contaminants). The production assistant charged the furnace by dumping silica flour into the charge hopper from 2-ton sacks suspended from a pallet jack (NIOSH ECTB 233-109, 1999).

The high-quality sand required for the delicate process of vitreous fiber production is one factor that might contribute to the low silica exposure of furnace operators. Clean, uniform sand particles optimize melting and minimize impurities that can cause problems in the production process or reduce product quality. NIOSH indicated that the silica flour used in spun ceramic fibers was of mesh number 140 or less (meaning the maximum particle size was relatively large compared with respirable-size particles [ERG-GI, 2008]).

The glass manufacturing industry typically uses automated equipment to charge melting furnaces (see Section IV.C.9 – Glass); however, it was not observed at the refractory product facility visited by NIOSH (NIOSH ECTB 233-109, 1999). Based on limited information contained in a NIOSH report, OSHA preliminarily finds that baseline conditions for furnace operators include a control booth for the operator and only heat extraction ventilation on the furnace. Silica ingredients for fiber production are typically

sized larger than the respirable range, which might limit respirable-size particles fed to the furnace (ERG-GI, 2008). The results summarized for this job category in exposure profile were obtained under baseline conditions; therefore, the baseline condition is represented by the median value ($14 \mu g/m^3$) provided in Table IV.C-40.

Baseline Conditions for Packaging Operators

OSHA identified 12 full-shift silica results for packaging operators in three refractory product manufacturing facilities. The results range from less than or equal to 10 μ g/m³ (the LOD) to 118 μ g/m³, with a median of 24 μ g/m³ and mean of 32 μ g/m³. Only one result (eight percent) exceeds 50 μ g/m³, whereas seven results (58 percent) are 25 μ g/m³ or less.

The highest exposure, $118~\mu g/m^3$, was associated with a worker who spent the 8-hour shift alternating between tending a bag-packing machine and charging blending equipment with the ingredients needed for the next product to be packaged by the bag-packing machine. This latter activity involved manually dumping bags of raw materials into the ventilated charge hopper. A significant source of exposure for this worker was an adjacent bulk-bag filling station, which leaked a substantial amount of dust that was subsequently pulled through the worker's breathing area by the charge hopper ventilation. Operators at other unventilated bag-packing stations who did not charge hoppers had exposures of $23~\mu g/m^3$, less than or equal to $30~\mu g/m^3$, and $41~\mu g/m^3$ (ERG-GI, 2008). OSHA recommended that the employer add LEV to all packing stations.

NIOSH results from a second facility also suggest that bag dumping and mixing activities are a greater source of exposure than packaging. NIOSH reported four packaging operator results (bag-packing only): one at $19 \mu g/m^3$, and three below the LOD. However, a supervisor who also managed the mixing area had an exposure of $38 \mu g/m^3$ (twice that of highest packaging operator result) (ERG-GI, 2008).

Based on the information from ERG-GI (2008) and NIOSH, OSHA preliminarily concludes that baseline conditions for packaging operators in this industry typically include unventilated bag-packing equipment and potential exposure from adjacent uncontrolled or inadequately controlled processes. The majority of the results summarized in exposure profile were obtained under these conditions. As a result, OSHA estimates that the median exposure level for packaging operators in this industry (24 μ g/m³) represents the baseline exposure level.

Additional Controls

Additional Controls for Material Handlers

As noted in the exposure profile, OSHA preliminary finds that 44 percent of material handlers in this industry currently are exposed to silica levels above 50 μ g/m³ and require additional controls, including improved ventilation at bag dumping stations, associated ventilated bag compactors, and increased use of automated equipment to charge hoppers and mixing equipment.

One control option involves bag dumping stations with properly ventilated enclosures, which capture dust release during both bag emptying and bag disposal. Although no exposure information was identified for refractory products facilities using such bag dumping stations, comparable respirable quartz exposure monitoring data exist for workers using bag dumping stations to empty 50-pound bags of silicacontaining materials at a paint manufacturing facility (ERG-paint-fac-A, 1999). A bag dumping station

¹⁴⁴At this facility, ingredients for the products the workers packaged could contain up to 20 percent quartz, but were typically in the range of 0.5 to 5 percent quartz (NIOSH ECTB 233-109, 1999).

with fully functioning LEV was found to reduce silica exposure by at least 95 percent. The stations consisted of hoppers topped with grates that were enclosed by LEV hoods. After each bag is emptied, the worker releases it, and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area. Other types of bag dumping stations also have been proven effective (ERG-GI, 2008). Ventilated bag stations are readily available from commercial sources (Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a; Whirl-air, 2003).

Automated material transfer equipment also can help reduce dust released as hoppers are filled. A result below the LOD ($13 \mu g/m^3$) was obtained for a material handler monitoring automated transfer of raw materials (NIOSH ECTB 233-109, 1999). Although the value of this result is limited by the low silica content of the respirable dust sample (less than 1 percent, the LOD), results obtained in similar industries further demonstrate the value of automated equipment for reducing exposure. For example, at a structural clay facility inspected by OSHA, an 86-percent reduction in respirable quartz exposure readings occurred after management installed an enclosed, automated sand transfer system (OSHA SEP Inspection Report 300523396). The inspection report noted that sand leaked from the conveyor leading to the hopper because it was not the correct size. With tightly sealed components, exposures could be reduced further.

Additional Controls for Forming Operators

Although exposure results are not available for forming operators, surrogate data from related industries suggest that an estimated 73 percent of forming operators already experience exposures below 50 μ g/m³. By controlling dust release from adjacent operations (bag dumping and mixing performed by material handlers), OSHA estimates that roughly half of the operators exposed above 50 μ g/m³ (no more than 14 percent) might achieve the lower level. For the remaining forming operators (13 percent), additional controls include improving maintenance on existing LEV at forming stations or installing new LEV systems, and using wet methods or a high-efficiency particulate air (HEPA)-filtered vacuum rather than compressed air to clean molds.

In particular, combination "push-pull" ventilation—designed to exhaust contaminated air near the source, while supplying a similar amount of clean air behind or above the worker's head—has been demonstrated to be very effective. Experimental data from Heine et al. (1996) using a dusty flour showed that compared with general ventilation alone, breathing zone total dust concentrations were reduced by 98 percent (from 42 mg/m³ to 1 mg/m³ or less) when the work surface was fitted with exhaust ventilation (at the front, side, or as a downdraft) in combination with local clean air supply above the workers head. Although information on the effectiveness of this type of system in refractory product facilities was not available, OSHA believes this type of "push-pull" ventilation system would be similarly effective for reducing levels of silica for refractory products forming operators that work at specific stations.

As noted previously, some of the highest silica exposures, $141 \,\mu\text{g/m}^3$, $144 \,\mu\text{g/m}^3$, and $188 \,\mu\text{g/m}^3$, obtained from a ceramic tile facility with widespread problems of dust control, were associated with poorly functioning LEV and an automated air jet which blew residual clay from molds on an automated clay dust press machine. Improved maintenance on the existing LEV (reconnecting and repositioning exhaust ducts) would improve dust control at individual presses. Further control options focus on limiting dust emitted from the mold cleaning process, which occurs every few seconds. For example better enclosure of the area around the mold and increased exhaust ventilation rate will capture more of the dust disbursed during mold cleaning. Alternatively, use of a HEPA-filtered vacuum brush to clean residual clay from the molds (rather than compressed air) would reduce airborne concentrations of silica; however, this control strategy would require changes to the automated press design.

Additional Controls for Finishing Operators

The exposure profile indicates that finishing operators' silica results are well below $50 \,\mu g/m^3$. However, OSHA expects that the exposure profile might underestimate the potential for exposure for finishing operators in the refractory products industry. This is because all of the data in the exposure profile were collected at a single facility during work with alumina-based refractory products that contained only a small percentage of silica. If operators work on materials containing a modestly higher proportion of silica, the existing exhaust ventilation systems will continue to maintain exposures at or below $50 \,\mu g/m^3$. However, at the limited number of facilities where finishing operators cut or grind high-quartz or high-cristobalite materials (used especially for shaped products such as fire bricks, no data available for the exposure profile), exposures are likely to be significantly higher. At these facilities, additional controls might be required. Appropriate engineering controls associated with finishing equipment include LEV and water-fed equipment.

Although no data are available for cleaning/finishing operators in the refractory products industry, exposure monitoring data from the foundry industry (use grinding equipment to remove residual refractory mold material, typically a mixture of sand and clay, from metal castings) provide good evidence for the effectiveness of LEV. The use of downdraft benches was associated with a 69-percent reduction in mean silica concentration for grinders (OSHA SEP Inspection Report 122040488). Limited data are available to support the use of water-fed equipment with refractory products. OSHA reported a silica concentration of 25 μ g/m³ in the breathing zone of a construction worker using a water-fed stationary masonry saw to cut refractory fire brick during a 340-minute sampling period (less than full shift) (OSHA SEP Inspection Report 113451538). For further discussion of water-fed finishing equipment and LEV, refer to the section on additional controls for finishing operators in Section IV.C.3 – Concrete Products.

LEV combined with wet methods was associated with manual grinders at a second refractory brick manufacturing plant evaluated by NIOSH (NIOSH CT-144-19A, 1983). There, the automated grinders were partially enclosed in a ventilated cabinet, and cutting was performed using a water-fed saw. Although no PBZ silica samples were obtained at this facility, OSHA SEP inspection reports from the stone and stone products industry suggest that a combination of controls can reduce silica levels. For example, the median full-shift PBZ silica exposure level was 30 $\mu g/m^3$ for eight sawyers at four facilities that implemented housekeeping in combination with other control measures, such as enclosing the saw in a booth with a fan; pre-washing stone; managing slurry; increasing water flow for wet processes; and controlling dust from adjacent processes (ERG-GI, 2008).

Additional Controls for Ceramic Fiber Furnace Operators

The data in the Table IV.C-40 suggest that the exposure levels of furnace operators handling quartz-containing batch mixes are less than 25 $\mu g/m^3$. The exposure results summarized in the exposure profile were obtained using sized ingredients that minimized the amount of respirable particles. Furthermore, a chemical glass manufacturing facility also reported results below the LOD during delivery and transport of size-separated bulk quartz that included a uniform range of particles considerably larger than respirable size (ERG-GI, 2008). Thus, where raw materials containing larger-than-respirable-size particles are used, additional controls would not be required for this job category.

Additional Controls for Packaging Operators

As suggested by Table IV.C-40, most packaging operator exposure levels are below 50 μ g/m³. Ninety-two percent of packaging operators in the refractory products industry already experience exposures of this level or less. However, the results for 8 percent of the workers in the job category (1 of 12) exceed

this level. Information presented in ERG-GI (2008) suggests that the exposure levels of most of these workers will be reduced when silica emissions from adjacent operations (e.g., material handling) are better controlled. In some cases, the bag-packing equipment might also require additional controls, which can include adding to and improving existing ventilation at bag filling equipment and hoppers, installing a dual nozzle system on bag filling equipment, and using effective bag valves.

As described in the baseline conditions discussion, the single packaging operator result exceeding 50 µg/m³ is associated with adjacent unventilated and leaking bulk bag filling equipment. This worker also manually dumped bags of silica-containing material to charge the bag filling equipment. OSHA recommended that the employer add ventilation to the bag filling equipment (ERG-GI, 2008). Additional sources of exposure at typical bag-packaging equipment, noted in a report on the concrete products industry, can include dust generated while bags are filled; when filled bags are dropped and impact the conveyor; and when workers use compressed air to clean their clothing (ERG-GI, 2008). Recommendations for reducing exposures included repairing leaks in the LEV system, installing LEV hoods on the fill nozzles, reducing the distance that filled bags must fall to the conveyor, and prohibiting the use of compressed air to clean clothing.

OSHA SEP inspection results illustrate the effectiveness of well-designed LEV for analogous packaging tasks. At a concrete products facility, installation of a more powerful fan motor and new filter bag for the bag filling machine LEV and moving the hoods closer to the packaging operator's position reduced respirable dust exposure by 92.5 percent. After these improvements, a packaging operator had a full-shift silica exposure of less than or equal to 11 μ g/m³ (LOD). An inspection at another facility obtained a full-shift exposure reading of 12 μ g/m³ (LOD) for a worker who operated a dry concrete mix bagging machine equipped with a dust collection system (ERG-GI, 2008). Another type of ventilation for bag filling operations, an overhead air supply island system (OASIS) (described in ERG-GI [2008]), has been shown to reduce respirable dust exposure by 98 percent and 82 percent for packaging operators at two mineral processing facilities. OSHA estimates that OASIS would be similarly effective at reducing silica exposures of packaging operators in the refractory products industry.

A dual nozzle system for bag filling machines can also reduce exposures for packaging operators. This system consists of an inner fill nozzle (to load the bag with material) surrounded by an outer nozzle (to depressurize the filled bag and remove dust from bag valve, thereby preventing dust release). This type of system has been shown to reduce respirable dust levels by 83 percent at a mineral processing facility (ERG-GI, 2008). The use of bag valves that seal effectively and prevent product leakage from filled bags is another way to control exposure. Respirable dust exposures were reduced by more than 60 percent with the use of 6-inch extended polyethylene valves compared with standard paper valves, and by more than 45 percent with the use of 4-inch foam valves (ERG-GI, 2008). OSHA estimates that a dual nozzle system and effective bag valves can be used to reduce silica exposures of packaging operators in the refractory products industry.

Bags that break during filling can be a notable source of silica dust and can contribute to operator exposures of two to three times the current permissible exposure limit (PEL). On a busy production line, improperly handled or low-quality bags might break frequently, up to 10 to 20 times an hour (ERG-GI, 2008). In addition, leakage from bags which are inappropriate for the product type can also be a major source of exposure. Workers should be trained on proper techniques for filling and handling bags as well as provided with high-quality bags of a type recommended for the product type, filling equipment, and subsequent handling requirements (ERG-GI, 2008). In one dry concrete bagging facility, changing the type of bag used in packaging from a three-ply bag perforated throughout to a two-ply bag perforated only on the inner layer reduced respirable dust by 83 percent (Klein, 2009).

Feasibility Finding

Feasibility Finding for Material Handlers

OSHA estimates that more than half (56 percent) of all material handlers in this industry already achieve exposure levels of $50 \,\mu\text{g/m}^3$ or less. OSHA finds that by improving or adding ventilation at bag dumping stations and adding ventilated bag compactors, as well as by enclosing and ventilating mixing equipment, the remaining material handlers also will be able to achieve this level. This conclusion is based on results from the paint manufacturing industry indicating that a well-functioning ventilation and bag disposal system at manual charge hoppers can reduce exposures by 95 percent (ERG-paint-fac-A, 1999). Based on the exposure profile, a similar reduction in the Refractory Products industry would yield a maximum exposure of $26 \,\mu\text{g/m}^3$, well below the proposed PEL of $50 \,\mu\text{g/m}^3$.

Based on the information included in this section, OSHA preliminarily concludes that the enclosure and ventilation controls alone will effectively reduce the exposure level of all material handlers to the desired level. However, in the event that further controls are needed for material handlers working with specific refractory materials with very high silica content, automated material transfer equipment is another option. An 86-percent exposure reduction (observed in the structural clay industry for an enclosed, automated sand transfer system) would reduce all but the highest exposure below 50 μ g/m³.

Feasibility Finding for Forming Operators

Based on exposure data from comparable job activities in related industries, OSHA estimates that most forming operators (73 percent) already experience exposure levels below 50 $\mu g/m^3$. OSHA finds that by controlling dust released during adjacent material handling activities, increasing maintenance on existing LEV systems in the forming area, and using wet methods to clean molds, this level can be achieved for most forming operators most of the time.

Feasibility Finding for Finishing Operators

Table IV.C-40 indicates that finishing operator exposures are already well below the proposed PEL of 50 μ g/m³. Thus, additional controls are not required for most finishing operators. However, if finishing operators experience exposure levels greater than those indicated in the exposure profile (e.g., when they cut or grind high-silica products), their exposure levels can be reduced through improved LEV on saws and grinders, such as that recommended by ACGIH (2010).

Feasibility Finding for Ceramic Fiber Furnace Operators

Based on the best available exposure monitoring data, OSHA preliminarily concludes that the exposure of all ceramic fiber furnace operators is already less than 50 $\mu g/m^3$. Thus, additional controls are not required. However, if higher exposure levels are encountered, the use of sized ingredients can limit the number of respirable particles.

Feasibility Finding for Packaging Operators

As suggested by the information presented in Table IV.C-40, silica levels for most (92 percent) packaging operators are already below 50 $\mu g/m^3$. For the remaining packaging operators, whose exposures exceed 100 $\mu g/m^3$, OSHA finds that improved workstation ventilation can control exposure to levels of 50 $\mu g/m^3$ or less. If further controls are required, a dual-nozzle filling system and/or the use of effective bag valves can reduce exposures. In some cases, the exposure levels of packaging operators will be reduced when facilities control adjacent sources of airborne silica associated with other job categories.

Overall Feasibility Finding

Based on information presented above, OSHA preliminarily concludes that the exposures of all workers in the refractory products manufacturing industry can be controlled to below 50 μ g/m³. This level has already been achieved for many (73 percent) of the workers in this industry.

REFERENCES

- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-1607**
- Carolina Conveying, 2010. Bag dump stations. Available at: http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0034-0581**
- C-E Minerals, 2006. Material safety data sheet for CE Chinese bauxite. Available at: http://www.ceminerals.com/China%20MSDS/Cebauxite.pdf. Last accessed 2 March 2010. **OSHA-2010-0034-0588**
- Chicago Conveyor, 2004. Bag dump stations. Available at:
 http://www.chicagoconveyor.com/bagdump.html;
 http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010.
 OSHA-2010-0034-1429
- [ERG-ceramic-tile] Eastern Research Group, Inc., 2001. Site visit report Ceramic Tile Manufacturer A. 27 September. **OSHA-2010-0034-0202**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- [ERG-sand-products] Eastern Research Group, Inc., 2002. Site visit report Sand Products Manufacturing Facility B. 25 February. **OSHA-2010-0034-0205**
- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-1498**
- Heine, H.J., 1996. Refractories revisited: A review and outlook. Foundry Management & Technology 124(3) (ISSN:0360-8999). Penton Publishing Inc. **OSHA-2010-0034-1392**
- Klein, P., 2009. Controlling silica dust exposure during dry concrete product bag filling. Poster No. 331, American Industrial Hygiene Conference and Exposition (AIHCe), Toronto, Canada. 2 June. **OSHA-2010-0034-0765**

- [NIOSH CT-144-19a] National Institute for Occupational Safety and Health, 1983. An evaluation of control technology for bag opening, emptying and disposal the self-contained filter/bag dump station, The Young Industries, Inc., Muncy, Pennsylvania. OSHA-2010-0034-1369
- [NIOSH ECTB 233-109] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 09 Refractory brick manufacturing. **OSHA-2010-0034-0266**
- [NIOSH-site-5] National Institute for Occupational Safety and Health, 2001. Site 5 (Facility 9056) Results of workplace-environmental sampling (transmitted with letter dated November 8 from L.M. Blade of NIOSH to C. Freeman of OSHA regarding occupational hexavalent chromium exposures at a refractory-brick manufacturing facility). **OSHA-2010-0034-0909**
- [OSHA SEP Inspection Report 113451538] OSHA Special Emphasis Program Inspection Report 113451538. **OSHA-2010-0034-0102**
- [OSHA SEP Inspection Report 122040488] OSHA Special Emphasis Program Inspection Report 122040488. **OSHA-2010-0034-0130**
- [OSHA SEP Inspection Report 300523396] OSHA Special Emphasis Program Inspection Report 300523396. Includes pages from related inspections 300530805, 302005772, and 302547674. **OSHA-2010-0034-0161**
- [OSHA SEP Inspection Report 301529053] OSHA Special Emphasis Program Inspection Report 301529053. **OSHA-2010-0034-0193**
- [OSHA SEP Inspection Report 302110408] OSHA Special Emphasis Program Inspection Report 302110408. **OSHA-2010-0034-0089**
- [RCFC] Refractory Ceramic Fiber Coalition, 1999. Common questions about refractory ceramic fibers (information sheet). **OSHA-2010-0034-0965**
- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1212**
- Washington Mills, 2005. Material safety data sheet for white aluminum oxide. Available at: http://washingtonmillselectrominerals.net/msds/MSDS-009(WHITE%20ALO).pdf. Last accessed 2 March 2010. **OSHA-2010-0034-1222**
- Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Refractory Repair Description

Refractory materials, also known as refractories, are typically used to line refractory equipment where commercial production processes exceed temperatures of 1,000 degrees Fahrenheit. These readily available refractories are produced with raw materials that include silica-containing minerals such as quartz, cristobalite, bauxite, and fireclay. Refractory materials are used in the construction of furnaces, boilers, cupolas, hot gas stacks, ladle linings, smelting pits, and incinerators. High-temperature applications requiring refractory equipment occur in a wide range of industries, including brick and pottery manufacturing, glass manufacturing, metal casting (foundries), smelting operations, steel production, chemical plants, and waste incineration.

While some facilities utilize their own maintenance workers to repair and replace refractory materials, others subcontract this work to firms that specialize in refractory repair. In-plant foundry workers who handle refractory material are covered in Section IV.C.8 – Foundries. Other industries (as well as most foundries planning to completely reline furnaces) are more likely to use the services of contractors. These workers, who specialize in refractory repair and are addressed in this section, are classified under the six-digit North American Industry Classification System (NAICS) code 423840, Industrial Supplies Merchant Wholesalers. Additionally, the increased automation of many industries means they no longer have enough workers to rapidly perform a large refractory replacement and achieve proper installation (Glass Products Manufacturer G, 2000; Turner and McKelvie, 1997). The use of contractors is common; up to 75 percent of all companies across all industries use a contract service to reline their furnaces (Refractory Products Supplier A, 2010).

Workers who repair and replace refractory materials as their primary activity are typically employed by refractory repair and replacement services contractors. Table IV.C-41 summarizes the job categories, major activities, and primary sources of silica exposure for workers performing refractory repairs. These workers travel to customers' facilities, or, less frequently, customers' equipment is brought to them for refractory relining.

Job Category*	Major Activities and Sources of Exposure							
Contract Refractory Worker	Removing old or damaged refractory material from furnaces and other equipment.							
	Dust generated by using hand-held or hydraulically controlled demolition tools (e.g., chisels, jackhammers, rakes).							
	Preparing new refractory materials for installation.							
	Dust released when mixing dry ingredients.Dust generated by dry cutting bricks with saw.							
	Installing new dry refractory materials.							
	 Dust released by emptying sacks of product. Dust raised by compacting product with vibrating tools. Dust released by applying product with air gun. 							
	Installing new refractory brick or precast shapes using refractory mortar or grout to seal surfaces and cracks.							
	Dust raised when handling dry, powdered mortar.							
	Performing cleanup and housekeeping activities.							
	 Dust raised from dry sweeping, shoveling, and transporting silica- containing debris and materials. 							

The relining process involves two basic steps: 1) removal of the old or damaged lining (or portion thereof), and 2) installation of new or replacement refractory material. The refractory materials are chipped and torn out using hammers, jackhammers, pneumatic chisels (hand-held or mounted on wheeled equipment), and rakes (Grady, 2000; Maxim et al., 1999; Refractory Services Provider A, 2003b). Refractory workers then use shovels, brooms, buckets, and cranes to transfer the resulting waste materials to waste bins. Although refractory workers use remote mechanical removal processes (e.g., hydraulically controlled chisels attached to a small tractor) for as much as 70 percent of their work, nearly all refractory removal jobs require some work with hand-held tools (Refractory Services Provider A, 2003b). Workers use hand tools exclusively in tight spaces and around delicate portions of the equipment.

New linings are applied by various methods; the method depends on the type of lining being installed. In some cases, workers pour and ram (i.e., compact using gas- or electric-powered vibrating equipment) low-moisture powdered refractory materials. These materials also can be blown into place using air guns that introduce a small amount of water into the spray as a "shotcrete"-type operation. Alternatively, refractory workers (sometimes classified as masons) position prefabricated refractory ceramic shapes, bricks, bats, or tiles and use refractory mortar (mixed from powdered product received in sacks) to seal the spaces between the shapes (Grady, 2000). Other lining materials are mixed (in a bucket or tote) from powder and liquid ingredients by refractory workers who then trowel or pour the resulting "plastic" paste into position, in processes similar to plastering or casting concrete. Workers typically perform much of refractory installation work manually, within arm's length of the worker's breathing zone and often within the enclosed confines of the furnace or oven (which might be classified as a confined space).

Refractory workers employed by refractory product suppliers are likely to service a range of industries and work with diverse refractory materials (Glass Products Manufacturer G, 2000; Refractory Products Supplier B, 2004). Refractory workers typically perform a variety of activities during a work shift (e.g., set up, tear out, installation, and cleanup). Several sources suggest that workers rarely remove (demolish) refractory material for a full shift; up to 2 hours per day is more typical, particularly if the job is small (OSHA SEP Inspection Report 122209679; Refractory Services Provider A, 2003a).

Baseline Conditions and Exposure Profile

OSHA has determined that the best available personal breathing zone (PBZ) silica monitoring data for the refractory repair industry are found in two OSHA Special Emphasis Program (SEP) inspection reports (OSHA SEP Inspection Report 108048900, previously described in ERG-GI [2008]; OSHA SEP Inspection Report 300989381). The five results, which are summarized in Table IV.C-42, range from 30 micrograms per cubic meter (μ g/m³) to 196 μ g/m³, with a median of 49 μ g/m³ and mean of 80 μ g/m³. These limited results include three values (60 percent) less than or equal to 50 μ g/m³.

The three results below the proposed permissible exposure limit (PEL) were obtained by OSHA while workers relined a furnace at a customer's facility (ERG-GI, 2008; OSHA SEP Inspection Report 300989381). During the refractory removal process, the workers used a jackhammer and shovel to chip the lining and collect debris. One worker used a crane to transport refractory waste to a trash receptacle, while the other used a "wet vacuum" (and changed the vacuum filter). The samples were also analyzed for cristobalite, but none was detected in the any of the samples. The remaining two results, $90~\mu g/m^3$ and $196~\mu g/m^3$ as quartz (cristobalite was not analyzed), were obtained at a refractory service provider's work site where workers were reconditioning a furnace. These elevated results are associated with two workers who used a jackhammer and crowbar to remove the refractory furnace lining during the entire shift (ERG-GI, 2008; OSHA SEP Inspection Report 108048900).

¹⁴⁵ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Table IV.C-42
Respirable Silica Exposure Range and Profile for Workers in the Refractory Repair Industry (NAICS 423840)

	Ex	Exposure Summary			e Range	Exposure Profile					
Job Category	Number of Samples	Mean (μg/m³)	Median (μg/m³)	Min (μg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Refractory Worker Baseline conditions (manual or semi-remote mechanical processes, general ventilation)	5	80.0	49.0	30.0	196.0	1 20.0%	2 40.0%	1 20.0%	1 20.0%	0 0.0%	

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-GI, 2008; OSHA SEP Inspection Report 300989381.

OSHA also examined other full-shift results for maintenance workers who maintain refractory material in the foundry industry, discussed in greater detail in Section IV.C.8 – Foundries in this technological feasibility analysis (ERG-GI, 2008). OSHA considers much of the information on refractory removal and relining activities by in-plant workers at foundries (and other industrial facilities) to be relevant to contract refractory workers because the workers use common equipment and materials to perform similar activities and processes. The data suggest that in-plant workers in foundries might experience a wider range of exposure than seen in the exposure profile for contract refractory workers (results for the in-plant foundry workers range from less than 50 μ g/m³ to 5,851 μ g/m³). The highest silica reading associated with refractory repair at a foundry was obtained for a maintenance operator who dumped buckets of a dry silica refractory product into a furnace and used vibrating equipment to compact the powder. Other elevated exposures include 265 μ g/m³, 215 μ g/m³, 324 μ g/m³, 456 μ g/m³, and 786 μ g/m³ (ERG-GI, 2008).

These examples from the foundry industry indicate that, at times, refractory removal and relining activities can result in exposures well above $200~\mu\text{g/m}^3$ and exceed the levels identified for refractory workers providing contract services. However, OSHA believes the most elevated foundry results might not be typical of the highest exposures likely to be experienced by contract refractory workers. Contract refractory service providers perform the same work on a daily basis and, compared with foundry workers, are more experienced and better equipped to reduce exposure levels during removals by using engineering controls and installing refractory materials in a manner that is less likely to generate dust.

Researchers have extensively studied refractory ceramic fibers (RCF), a special class of refractory material that is typically manufactured containing little or no silica, but can become contaminated with silica where refractory cements are used or if the RCF is exposed to extremely high temperatures. Thus, silica exposures are not expected to occur during installation of RCF, but could be possible during after-service removal activities. Two older studies previously described by ERG (ERG-GI, 2008) reveal that elevated silica exposures can (but do not always) occur during removal of RCF (Cheng et al., 1992; Gantner, 1986); however, more recent data suggests that elevated silica exposure is not common during RCF removal work (Maxim et al., 1999).

In a study designed to investigate possible silica exposure during removal of after-service RCF, Maxim et al. (1999) reviewed 158 personal air samples collected by the Refractory Ceramic Fiber Coalition during 42 different RCF removal projects involving industrial furnaces. The sampling period specifically covered removal of RCF only, and removals typically were completed in less than one full work shift (mean of 260 minutes sample duration). The authors reported a notably lower range of exposures for RCF removal compared with the older studies. All but 14 of the 158 results were below the limit of detection (LOD) for quartz, which ranged from 10 μ g/m³ to 100 μ g/m³. The 14 samples that did contain measurable respirable quartz included 11 results below 30 μ g/m³ and 3 results above 50 μ g/m³ (90 μ g/m³, 100 µg/m³, and 440 µg/m³). These results were excluded from the exposure profile because individual sample durations were not provided. Maxim et al. (1999) calculated the mean task-based TWA quartz concentration to be 43 µg/m³ after conservatively replacing results below the LOD with the LOD value. Cristobalite was detected in three of the 158 samples, suggesting that under conditions of real use, deteriorating RCF forms cristobalite less often than previously suggested. OSHA notes that workers involved in this study might have had additional silica exposure if they removed other non-RCF refractory materials during the same shift, but after-service RCF does not appear to be a significant source of silica exposure for most workers.

¹⁴⁶ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

OSHA obtained additional information about baseline controls in the refractory material and repair industry from the published literature and industry members. Up to 70 percent of refractory work is performed using hydraulically controlled tools mounted on equipment outside the furnace and a few feet away from the point where dust is generated (Refractory Services Provider A, 2003b). Another semi-remotely controlled process involving a hydraulic "pusher" system is increasingly common for removing refractory lining from cylindrical induction furnaces. Manufacturers now build this capability into all induction furnaces over 4 tons and sell approximately 50 percent of new furnaces with this option (Foundry Products Supplier C, 2000a; Foundry Products Supplier C, 2010).

The ventilation systems routinely associated with high-temperature equipment cannot be considered an effective control for refractory workers. These ventilation systems are designed to exhaust rising fumes or gas during heating and are inadequate to control silica dust generated during periodic refractory replacement activities. The overhead design that is most effective for capturing rising heat exhaust is inappropriate for capturing dust generated on the walls and floor of the furnace because it pulls contaminated air through the worker's breathing zone. Facilities for which OSHA has process information rarely report that exhaust ventilation is used to reduce the spread of silica (or refractory ceramic fibers). Thus, OSHA estimates that few refractory workers operate with the benefit of local exhaust ventilation (LEV).

Some refractory workers use vacuums for cleanup (Burmeister, 2001; OSHA SEP Inspection Report 300989381). Other sources report at least occasional use of wet dust control methods during refractory demolition or installation, and OSHA assumes that water-fed masonry saws are typically used for cutting firebrick (Burmeister, 2001; OSHA SEP Inspection Report 113451538; Refractory Services Provider A, 2003a, 2003b).

Based on a review of inspection reports, published literature, and industry contacts, OSHA has determined that refractory workers most commonly perform a combination of manual processes and semi-remote mechanical processes in areas with only general ventilation. These are considered the baseline conditions. The median exposure for this job category (49 μ g/m³), presented in Table IV.C-42, is based on results obtained while workers repaired and replaced refractory materials under these baseline conditions.

Additional Controls

The exposure profile suggests that 60 percent of all contract refractory workers are currently exposed to silica levels below $50~\mu g/m^3$. The remaining 40 percent will require additional controls, such as use of low-silica-content refractory materials, preformed materials, local exhaust ventilation, and wet methods; increased use of semi-remote or automated removal processes; improved work practices; and additional worker training. In describing these controls, OSHA has drawn from the experiences of foundries and other industries, whose workers perform work similar to that of contract refractory workers. OSHA expects that these controls will be equally effective for controlling silica exposure during refractory demolition and installation.

Reduced-Silica Refractory Materials

Refractory materials with low silica content (0-5 percent silica compared with 90 percent silica) are readily available from commercial sources, although each low-silica refractory material is not necessarily compatible with every application for which refractory materials are used (Foundry Equipment Manufacturer J, 2000). OSHA visited a foundry that reduced the silica exposure of workers who relined furnaces by 90 percent after implementing a comprehensive exposure control program that included switching to a low-silica gunning refractory applied to furnace walls (for exposure levels reported at this

facility, see below in the section on combined control methods) (ERG-GI, 2008; OSHA SEP Inspection Report 122209679). Because the replacement refractory material was stronger and lasted longer, refractory workers also were able to use less material during cupola repair operations.

When switching from high-silica- to low-silica-content refractories, employers will need to consider the possible hazards of substitutes. For example, under high temperatures and oxidative conditions (as in a furnace), the chromite compounds contained in some refractories can be converted to hazardous chromium VI (ANH, 2004; Brenneman, 2010). Because both installation and removal activities can generate airborne dust, employers must evaluate the need to protect workers from other contaminants found in refractories before and after service-life.

Automated and Remotely Controlled Processes

Automated refractory demolition and installation methods can reduce the number of workers exposed, the duration of exposure, and possibly the exposure levels of refractory workers. A "pusher" system installed in coreless induction furnaces allows refractory linings to be automatically pressed out by push plates installed in furnace bottoms. The refractory materials are pushed or extruded out of the furnace, which has been tipped to lie horizontally. Waste falls directly into a disposal bin positioned at the furnace mouth (Foundry Products Supplier B, 2000a). New induction furnaces fitted with push equipment are commercially available, accounting for 50 percent of new furnace sales, and all larger induction furnaces (over 4-ton capacity) have built-in push capability (Foundry Products Supplier C, 2000a; Foundry Products Supplier C, 2010). Additionally, existing furnaces might be retrofitted (Foundry Products Supplier C, 2000a).

Although the push process is reportedly quite dusty, it requires fewer workers and substantially less time than traditional removals. For properly equipped induction furnaces, a "push" removal can be completed in 15 to 30 minutes, while traditional methods might take up to 2 full days of using chipping hammers operated by foundry workers standing or crouching inside the furnace (Foundry Products Supplier B, 2000b; Foundry Products Supplier C, 2000b; Gradmatic, 2000). No data are available to quantify the exposure reduction that a pusher system provides; however, a rough estimate can be made by comparing the relative time spent on the task under each removal method. Assuming that each method generates comparable breathing zone silica concentrations, a 30-minute push process would expose the worker for just 6 percent of a 480 minute shift; thus, exposure would be 94 percent lower for workers using the push process (97 percent lower if the traditional method would take 2 days). In reality, it is also likely that some additional cleanup would be necessary for both removal methods.

For furnaces that cannot be fitted with pusher systems, large amounts of refractory material can be removed using chipping equipment attached to a hydraulically controlled articulated arm commonly available on some types of construction equipment. The operator remains outside the furnace and manipulates the arm from inside the equipment cab. The arm can be fitted with a camera to allow the worker to see the work area. Although this method is not suitable for very small furnaces or work around delicate instrument controls, one company that uses such methods estimates that 70 percent of large-scale lining removal jobs are performed this way (Refractory Services Provider A, 2003b). OSHA estimates that the increased distance between the source of the dust and the worker's breathing zone and a well-ventilated cab would each substantially reduce worker exposure. Although no data are available for the refractory repair industry, researchers have shown that well-ventilated cabs fitted and maintained to minimize dust can reduce in-cab dust levels by more than 90 percent (Cecala et al., 2005).

Automation also is an option for reducing exposures during furnace relining. Grady (2000) described an automated system for installing dry rammable refractory material in coreless induction furnaces. With this system, 70 percent fewer workers are required to complete the job, and the reported exposure levels

during furnace relining ranged from less than or equal to $10 \mu g/m^3$ to $20 \mu g/m^3$ at five foundries using the automated equipment (Gradmatic, 1999). Exposure levels were "significantly above OSHA's PEL" during conventional relining processes using rammable refractories, which involved workers dumping and sieving powdered refractory material, then manually tamping the material in the bottom of the furnace (Gradmatic, 1999; Grady, 2000).

Precast Refractory Materials

Relining of induction and other furnace types also might be accomplished using precast refractory materials that are set in place as units, with minimal risk of exposure. Precast refractory materials can look like typical construction bricks, or they can have more sophisticated geometries that facilitate installation. For example, curved shapes can be cast that sit flush against the furnace wall. The custom-made precast materials are sealed with refractory grout, mixed from a powder (Gradmatic, 2000; Refractory Products Supplier A, 2000). When appropriate for a particular application, preformed refractory shapes can reduce installation labor, improve performance, and provide a longer service life compared with some brick and poured materials. When repairs are required, standard shapes mean that replacement parts can be kept on hand and that repairs can be isolated to the worn section of the lining (eliminating the need for complete tear-out) (TFL, Inc., 2009). Because of these and other advantages, companies are more frequently using precast shapes instead of powdered products (monolithics) for certain applications (Gradmatic, 2000), and the growth of precast refractory shapes in the United States is expected to exceed monolothics in 2011 (Business Wire, 2008).

Work Practices

Work practices, such as limiting the number and location of operators working in a furnace at one time, can reduce refractory worker exposures during removal activities. Sweeney and Gilgrist (1998) reported a higher silica exposure level (170 μ g/m³) for a refractory worker operating in a lower position than a second refractory worker (78 μ g/m³) within an 1,100-pound holding furnace for molten aluminum. The authors reported 8-hour TWAs for both exposures, assuming zero exposure for approximately 1 hour of the 8-hour shift. The worker who experienced higher exposure levels reportedly bent over to grab and toss (to discard) the pieces of refractory material debris while the other worker operated the jackhammer. This put the lower worker's breathing zone closer to the jackhammer's point of operation and dust generation than the breathing zone of the jackhammer operator. However, both workers were overexposed to the respirable dust containing silica (Sweeney and Gilgrist, 1998).

Where faulty equipment contributes to awkward work practices, a preventive maintenance program can help reduce worker silica exposures. Workers experienced an exposure reduction of approximately 90 percent when a foundry initiated several control measures, including a preventive maintenance program to ensure proper function of air guns and related equipment used to spray refractory furnace lining materials (OSHA SEP Inspection Report 122209679). (For exposure levels reported at this facility, see the section below on combined control methods.) In a second foundry, a worker's silica exposure level decreased after a foundry replaced the missing tool restraint on a pneumatic chipper used to remove the refractory lining from a large ladle. The tool restraint eliminated the need for this worker to lean into the ladle (where dust was generated) to hold the chipping blade in place (Burmeister, 2001). This improvement to the tool, in conjunction with other controls, reduced exposure levels of the worker by 70 percent.

Local Exhaust Ventilation

Several options are available to control dust generated when refractory workers must chip or apply refractory linings from a position inside the furnace. In addition to using low-silica materials, appropriate controls include temporary LEV installed in the furnace, LEV on the chipping tool, and wet methods.

A company that provides refractory overhaul services developed a method for installing temporary LEV in a gas-fired furnace. This method is used for complete lining removals, but also is applicable to smaller patching jobs. The method, associated with silica exposures between 50 µg/m³ and 100 µg/m³, involves company-built exhaust fans fitted with air filters (three filters of increasing efficiency in series). Plastic sheeting is used as necessary to ensure that fresh air enters the furnace only from the most advantageous point, causing clean air to flow past the worker's breathing zone (Refractory Services Provider A, 2003a). Fan/filter boxes are set into the opposite and lower end of the furnace to exhaust dusty air from near the chipping point (ERG-GI, 2008). The position of sheeting and boxes might need to be moved in order to continue providing optimal air flow as the work progresses to other sections of the furnace. Although the fan/filter boxes are specially built for this purpose, they are made of materials readily available at hardware stores (Refractory Services Provider A, 2003b).

LEV also is a dust control option for refractory workers who empty bags or mix refractory powders. For smaller jobs, workers who dump bags of silica-containing materials can empty the bags into a movable hopper (or other receptacle), then use a flexible sleeve to guide material from the hopper to the distribution point (e.g., a furnace bottom). A portable exhaust trunk (preferably with a semicircular slot or flanged hood) positioned near the bag dumping hopper can capture a portion of the dust released during that activity. Because additional silica exposure can occur when workers compress empty bags, this task also should be located near a portable exhaust trunk. Bag dumping for large jobs can sometimes be eliminated by obtaining powdered materials in bulk bags (e.g., 1-ton sack) filled by the supplier with the predetermined amount of product required for the job. As a standard feature, bulk bags come fitted with a sleeve through which material is dispensed. Bulk bags and sleeves are used for installing high-silica rammable refractory powder in induction furnaces (Foundry Equipment Manufacturer J, 2000; Gradmatic, 1999). Maintaining the bottom of the sleeve, which releases material, at a level just below the surface of deposited material can keep dust emissions to a minimum.

Workers who mix high-silica refractory materials also would benefit from the use of a portable exhaust hood which is similar to the portable exhaust trunk discussed above (both are forms of LEV). The hood is able to capture some of the dust released while workers mix materials. Information from Section IV.C.15 Pottery, shows that the silica exposure of a coatings preparer (mixes silica-containing material) was reduced from 983 μ g/m³ to 47 μ g/m³ after exhaust ventilation was installed at the raw material hopper and the ball mill hatch (ball mill is a type of mixing equipment), and dust leaks were sealed elsewhere in the plant (OSHA SEP Inspection Report 103010542).

Ventilated Chipping Tools

The benefits of tool-mounted systems for controlling silica have been demonstrated in other industries, including the construction and the ready-mixed concrete industries. The chipping of refractory materials is similar to chipping concrete, another silica-containing material. NIOSH tested two tool-mounted LEV shrouds for hand-held pneumatic chipping equipment (impact drills): one custom built, the other a commercially available model. Comparing multiple short-term samples, NIOSH found that the shrouds reduced respirable dust by 48 to 60 percent (NIOSH EPHB 282-11a, 2003).

In a separate evaluation, NIOSH showed that this type of LEV system controls dust equally well for larger chipping equipment. NIOSH collected short-term samples while workers used 25- or 30-pound jackhammers to chip concrete from inside concrete mixer truck drums. During 90- to 120-minute periods of active chipping, mean silica levels decreased 69 percent (from 970 µg/m³ to 300 µg/m³) when the workers used a tool-mounted LEV shroud in these enclosed spaces (NIOSH EPHB 247-19, 2001). NIOSH also evaluated a combination of ventilation controls as part of the same study. The tool-mounted LEV shroud plus general exhaust ventilation provided an additional exposure reduction compared with uncontrolled conditions, resulting in a 78 percent decrease in silica readings and a 54 percent decrease in

respirable dust levels (the difference was due to a lower percentage of silica in the respirable dust sample associated with the combined control). These ventilated chipping tools do reduce worker exposures from both impact drills and jackhammers. However, compared with equipment without LEV shrouds, their use is more complicated in very tight spaces (such as some furnaces), where maneuvering the additional air hose can be awkward (Refractory Services Provider A, 2003a).

Wet Methods

Wet methods can be successfully used to control silica exposures in a number of operations, including chipping, sawing, spraying, and handling of dusty refractory materials.

Studies have quantified the benefit of using wet methods to control respirable dust generated during chipping with hand-held equipment. NIOSH (NIOSH EPHB 282-11a, 2003) investigated a water spray dust control used by construction workers breaking concrete with 60- and 90-pound jackhammers. A spray nozzle was fitted to the body of the chipping tool, and a fine mist was directed at the breaking point. Using both a direct reading instrument and a high-flow cyclone and filter media, NIOSH collected 10-minute readings with and without the spray activated, and found respirable dust concentrations were between 72 percent and 90 percent lower when the water spray was used (NIOSH EPHB 282-11a, 2003). Williams and Sam (1999) reported that a water spray nozzle mounted on a hand-held pneumatic chipper decreased respirable dust approximately 70 percent in the worker's breathing zone. Tool-mounted water spray devices can be manufactured using materials obtained from a hardware store and include a garden spray nozzle, tubing, clamps, and a control valve (Hoffer, 2007; NIOSH 2008-127, 2008; NJDHHS, no date; Williams and Sam, 1999). NIOSH completed another study evaluating water spray devices to suppress dust created while jack hammering. The study reported a 77 percent reduction in exposures (NIOSH EPHB 282-11c-2, 2004).

Two more sources also show the effect that water misting devices have on dust control. Beamer et al. (2005) conducted a study of dust suppression using misting nozzles to reduce silica while brick cutting using a stationary saw. The effectiveness of misting at three different flow rates compared with free-flowing water was tested. The respirable mass fractions of dust were reduced by 63 percent with the mist on low (4.8 gallons per hour total flow), 67 percent on medium (8.6 gallons per hour total flow), and 79 percent on high (17.3 gallons per hour total flow). Water-fed saws are readily available and effectively control dust during sawing of concrete, stone, and bricks. Use of a bench-top water-fed masonry saw was associated with a less-than-full-shift (340 minutes) result of 23 μ g/m³ for a worker cutting refractory brick (OSHA SEP Inspection Report 113451538).

Water spray also is useful for suppressing dust during cleanup. After chipping, Refractory Services Provider A (2003b) uses a garden mister to wet refractory debris in the bottom of the furnace. This step helps control dust as the waste is removed from the furnace. The same employer also tested high-pressure water blasting as a refractory removal method; the process controlled dust, although workers found it difficult to manage the amount of water released in the process (Refractory Services Provider A, 2003b). This method could be effective in cases where water can be captured efficiently.

Workers must use caution when introducing water into a furnace. Some refractory materials crumble and become muddy or slippery when wet with excessive amounts of water (Cheng et al., 1992; Refractory Services Provider A, 2003a). Additionally, wetting portions of the furnace lining that will not be removed (when making smaller repairs) requires an extra step to dry the refractory material before the furnace is brought to working temperature. However, despite these complications, wet methods remain the best option for controlling silica dust from high-energy activities such as pneumatic chipping and should be

¹⁴⁷ This value is not included in the exposure profile because it was less than full shift.

considered when high-silica materials are involved. A spray of fine mist directed at the point of dust generation has been shown to be effective. At an open-air location, a flow rate of 350 milliliters (12 ounces) per minute reportedly dried quickly, without adding a substantial amount of water to the work site (NIOSH EPHB 282-11a, 2003). In indoor environments, workers can use a shop vacuum to collect the water (Flanagan et al., 2001), but need to ensure that general dilution ventilation is sufficient and to treat or duct vacuum exhaust air so that it does not become an additional source of exposure in the work area.

Combined Control Methods

Depending on the sources of respirable dust, a combination of control methods can reduce silica exposure levels more effectively than a single method. A routine cupola relining (removal and replacement) in the ferrous foundry industry demonstrates the benefit of a combination of controls by achieving up to a 92-percent reduction in exposures (ERG-GI, 2008). Before implementing controls, OSHA collected samples for three workers with 8-hour TWA results of 270 $\mu g/m^3$, 368 $\mu g/m^3$, and 630 $\mu g/m^3$. This facility then substituted refractory material with reduced silica and greater moisture content, improved equipment and materials to reduce malfunction and task duration, wet refractory material before removal, and assigned a consistent team of trained workers to the task. After the foundry made these changes, a contractor collected silica exposure samples on three dates. The eight 8-hour TWA exposures included six exposures between 30 $\mu g/m^3$ and 50 $\mu g/m^3$, one exposure of 61 $\mu g/m^3$, and one exposure below the LOD (<70 $\mu g/m^3$) (ERG-GI, 2008; OSHA SEP Inspection Report 122209679). ¹⁴⁸ Reduced silica in the respirable dust sample and shorter exposure times (relining required less time with the improved methods) account for most of the exposure reduction.

A second report on a facility performing refractory relining also demonstrates the benefits of a combination of control measures (Burmeister, 2001). A full-shift silica result of 215 µg/m³ was obtained while a worker chipped away the old refractory lining using faulty equipment, and then mixed the replacement refractory material. According to the manufacturer's material safety data sheet, the ladle lining contained 56-percent silica. Burmeister noted that the "pneumatic chipper lacked a tool retainer, requiring the worker to hold the chipping bit, putting the worker much closer to the source of the exposure than would have been necessary had the pneumatic chipper been equipped with a retainer." The foundry responded by holding a training meeting and seeking worker input on abatement actions, implementing a "water control system to reduce dust generated during the pneumatic chipping process," purchasing chisel retainers (thereby eliminating the need for the worker to reach into the ladle during chipping), and purchasing a vacuum to remove dust and debris from the ladle. With these changes in place, a consultant found that exposure was reduced to 74 µg/m³, representing a 66-percent reduction. OSHA notes that this facility might have achieved still lower silica exposure levels by using LEV or toolmounted vacuum suction to capture dust, or by managing fresh air flow past the worker's breathing zone.

Feasibility Finding

Based on the information described above and in Table IV.C-42, OSHA preliminarily concludes that exposure levels of 50 µg/m³ or less have already been achieved for 60 percent of refractory workers by

 $^{^{148}}$ One of the results of 30 $\mu g/m^3$ was also below the LOD (ERG-GI, 2008; OSHA SEP Inspection Report 122209679).

implementing a combination of engineering and work practice controls. The other 40 percent of these workers will require additional controls to meet this level.

Depending on the sources of respirable dust, a combination of control methods can reduce exposure levels more effectively than a single method. These controls include:

- Increased reliance on remote and semi-automated methods for replacing refractory materials.
- Use of portable exhaust ventilation units configured to capture dust as it is generated and design of ventilation to direct fresh air flow past the workers' breathing zone.
- Use of chipping equipment fitted with water mist nozzle or LEV exhaust hood on the tool.
- Use of upgraded spray guns that allow workers better control of the refractory/water mix during spray application.
- Improved worker training.
- Substitution of high-silica refractories with low-silica-content refractory materials and precast refractory shapes that minimize airborne silica exposures.

Use of automated or remotely operated methods can reduce refractory worker exposure levels to $50~\mu g/m^3$ or less. Automated equipment used to install powdered refractory material in an induction furnace reduced foundry worker silica exposures during this operation from "significantly above the OSHA PEL" to $20~\mu g/m^3$ or below (Grady, 2000). This technology is available from a single-source supplier and might be effective in some circumstances.

Additionally, in the foundry industry, the use of a combination of controls has been demonstrated to reduce worker exposures by 66 to 90 percent of the original value, resulting in exposure levels below 50 $\mu g/m^3$ in most cases. Two foundries replacing refractory linings using combinations of controls obtained six 8-hour TWA silica exposure results less than 50 $\mu g/m^3$ and three results between 51 $\mu g/m^3$ and 77 $\mu g/m^3$ (the LOD, in the case of this sample) (Burmeister, 2001; OSHA SEP Inspection Report 122209679). OSHA believes that because of more ready access to specialized equipment, such as portable exhaust systems, tool mounted vacuum suction, and water spray tool fittings, contractors performing refractory removals on a regular basis can be expected to achieve lower silica exposure levels (i.e., all results less than 50 $\mu g/m^3$) than refractory repair workers (maintenance operators) who previously performed most of this refractory removal work in the foundry industry. For example, Refractory Services Provider A (2003b) described remote chipping equipment attached to a hydraulically controlled articulated arm and used as an exposure control by full-time refractory repair workers, but which is unlikely to be available to a foundry maintenance operator. Furthermore, the trend toward greater use of pre-cast refractory shapes will reduce the exposure level of those who install these materials.

In summary, OSHA preliminarily concludes that refractory repair services can achieve silica exposure levels less than 50 $\mu g/m^3$ for most refractory repair contractors most of the time by using a combination of controls.

REFERENCES

[ANH] ANH Refractories Company, 2004. Dossolite 1410—75 Material Safety Data Sheet. Available at http://msds.domamer.anhamer.anhrefractories.com/ag/DOSSOLITE_1400-75_(USA).pdf. Last accessed 23 April 2010. **OSHA-2010-0034-0527**

- Beamer, B.R., S. Shulman, A. Maynard, and D. Watkins, 2005. Evaluation of misting controls to reduce respirable silica exposure for brick cutting. Annals of Occupational Hygiene 49(6):503-510. **OSHA-2010-0034-0549**
- Brenneman, C., 2010. Evaluating Worker Exposure to Hexavalent Chromium in Refractory Materials During Demolition Activities. Thesis submitted to the University of Cincinnati Division of Graduate Studies in partial fulfillment of the requirements for the degree of Master of Science. **OSHA-2010-0034-0568**
- Burmeister, S., 2001. OSHA compliance issues: Exposure to crystalline silica during a foundry ladle relining process (R. Fairfax, Column Editor). Applied Occupational and Environmental Hygiene 16(7):718–720. **OSHA-2010-0034-0576**
- Business Wire, 2008. Examine the US refractories market. Available at: http://www.businesswire.com/portal/site/home/permalink/?ndmViewId=news_view&newsId=20080222005277&newsLang=en. Last accessed 23 April 2010. **OSHA-2010-0034-0578**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-1563**
- Cheng, R.T., H.J. MdDermott, G.M. Gia, T.L. Cover and M.M. Duda, 1992. Exposures to refractory ceramic fiber in refineries and chemical plants. Applied Occupational and Environmental Hygiene 7(6):361–367. **OSHA-2010-0034-0358**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Flanagan, M.E., C. Loewenherz, and G. Kuhn, 2001. Indoor wet concrete cutting and coring exposure evaluation. Applied Occupational and Environmental Hygiene 16(12):1097–1100. **OSHA-2010-0034-0675**
- Foundry Equipment Manufacturer J, 2000. Personal communication between Foundry Equipment Manufacturer J and Eastern Research Group, Inc. October 2. **OSHA-2010-0034-0691**
- Foundry Products Supplier B, 2000a. Personal communication. Phone call between representative Number 1 of Foundry Products Supplier B and Eastern Research Group, Inc. November 16. **OSHA-2010-0034-0684**
- Foundry Products Supplier B, 2000b. Personal Communication. Phone call between representative Number 2 of Foundry Products Supplier B and Eastern Research Group, Inc. November 16. **OSHA-2010-0034-1358**

- Foundry Products Supplier C, 2000a. Personal Communication. Phone call between representative of Foundry Products Supplier C and Eastern Research Group, Inc. November 28. **OSHA-2010-0034-0685/OSHA-2010-0034-1269**
- Foundry Products Supplier C, 2000b. Personal Communication. Phone call between representative of Foundry Products Supplier C and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-0686**
- Foundry Products Supplier C, 2010. Personal communication. Phone call between representative of Foundry Products Supplier C and Eastern Research Group, Inc. March 24. **OSHA-2010-0034-0687**
- Gantner, B.A., 1986. Respiratory hazard from removal of ceramic fiber insulation from high temperature industrial furnaces. American Industrial Hygiene Association Journal 47:530–534. **OSHA-2010-0034-1389**
- Glass Products Manufacturer G, 2000. Personal communication between representative of Glass Products Manufacturer G and Eastern Research Group, Inc. August 23. **OSHA-2010-0034-0699**
- [Gradmatic] Gradmatic Equipment, Inc., 1999. Gradmatic refractory installation and vibratory system Economic considerations (technical paper). **OSHA-2010-0034-1367**
- [Gradmatic] Gradmatic Equipment, Inc., 2000. Phone call between A.J. Grady of Gradmatic Equipment, Inc. and Eastern Research Group, Inc. October 18. **OSHA-2010-0034-0713**
- Grady, A.J., 2000. Reducing airborne silica during coreless furnace lining using a refractory installation system Best available technology. Presentation at the 12th American Foundry Society (AFS) International Environmental, Health, and Safety Conference. 9 October. **OSHA-2010-0034-1390**
- Hoffer, K., 2007. How to make your very own jackhammer spray dust control. New Jersey Laborers Health and Safety Fund. Accessible at: http://www.njlaborers.org/health/pdfs/other/jackhammer.pdf OSHA-2010-0034-0741
- Maxim, L.D., D. Venturin, and J.N. Allshouse, 1999. Respirable crystalline silica exposure associated with the installation and removal of RCF and conventional silica-containing refractories in industrial furnaces. Regulatory Toxicology and Pharmacology 29:44–63. **OSHA-2010-0034-0793**
- [NIOSH 2008-127] National Institute for Occupational Safety and Health, 2008. Workplace solutions Water spray of hazardous dust when breaking concrete with a jackhammer. Available at: http://www.cdc.gov/niosh/docs/wp-solutions/2008-127/pdfs/2008-127.pdf
 OSHA-2010-0034-0838
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0862**

- [NIOSH EPHB 282-11a] National Institute for Occupational Safety and Health, 2003. In-depth survey report of control of respirable dust and crystalline silica from breaking concrete with a jackhammer at Bishop Sanzari companies, North Bergen, New Jersey. **OSHA-2010-0034-0865**
- [NIOSH EPHB 282-11c-2] National Institute for Occupational Safety and Health, 2004. In-depth survey report of a water spray device for suppressing respirable and crystalline silica dust from jackhammers. **OSHA-2010-0034-0867**
- [NJDHSS] New Jersey Department of Health and Senior Services, no date. NJ silicosis outreach and research alliance Engineering controls for crystalline silica Modifications to jackhammer spray dust control by NJ DOT. Available at:

 http://www.state.nj.us/health/silicosis/documents/njdotmodifications.pdf OSHA-2010-0034-0914
- [OSHA SEP Inspection Report 103010542] OSHA Special Emphasis Program Inspection Report 103010542. **OSHA-2010-0034-0174**
- [OSHA SEP Inspection Report 108048900] OSHA Special Emphasis Program Inspection Report 108048900. **OSHA-2010-0034-0050/OSHA-2010-0034-0164**
- [OSHA SEP Inspection Report 113451538] OSHA Special Emphasis Program Inspection Report 113451538. **OSHA-2010-0034-0102/OSHA-2010-0034-0113**
- [OSHA SEP Inspection Report 122209679] OSHA Special Emphasis Program Inspection Report 122209679. **OSHA-2010-0034-0121**
- [OSHA SEP Inspection Report 300989381] OSHA Special Emphasis Program Inspection Report 300989381. **OSHA-2010-0034-0037**
- Refractory Products Supplier A, 2000. Personal communication between Refractory Products Supplier A and Eastern Research Group, Inc. October 5. **OSHA-2010-0034-0969**
- Refractory Products Supplier A, 2010. Personal communication between Refractory Products Supplier A and Eastern Research Group, Inc. March 24. **OSHA-2010-0034-1159**
- Refractory Products Supplier B, 2004. Personal communication between Refractory Products Supplier B and Eastern Research Group, Inc. August 6. **OSHA-2010-0034-1160**
- Refractory Services Provider A, 2003a. Personal communication between Refractory Services Provider A and Eastern Research Group, Inc. October 6. **OSHA-2010-0034-1161**
- Refractory Services Provider A, 2003b. Personal communication between Refractory Services Provider A and Eastern Research Group, Inc. October 7. **OSHA-2010-0034-1162**
- Sweeney, J., and D. Gilgrist, 1998. Exposures to respirable silica during relining of furnaces for molten metals. In OSHA Compliance Issues column (R. Fairfax, ed.). Applied Occupational and Environmental Hygiene 13(7):508–510. **OSHA-2010-0034-1178**

- TFL, Inc., 2009. Precast refractory shapes. Available at: http://www.tflhouston.com/precast.html. Last accessed 23 April 2010. **OSHA-2010-0034-1179**
- Turner, R.C., and J. McKelvie, 1997. Hows and whys of induction furnace refractory safety. Foundry Management & Technology: 106–107, 112–113, 180. **OSHA-2010-0034-1189**
- Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**

Shipyards (Maritime Industry) Description

The maritime industries encompass all types of facilities that build, repair, salvage, dock, or load ships and boats. Abrasive blasting with silica abrasive is the principal source of silica exposure in the maritime industries and primarily occurs in ship maintenance and repair yards (shipyards). OSHA believes that most other processes performed on maritime industry facilities that can result in worker silica exposure are construction-related activities, which are covered elsewhere in this technological feasibility analysis. Examples of such activities include milling road pavement; grinding, drilling, and sawing concrete or masonry structures; and using jackhammers and impact drills on concrete. For a complete and discussion of construction activities covered by the analysis, please Sections IV.C.22 through IV.C.33.

Ship repairers and boat builders are classified under the North American Industry Classification System NAICS codes 336611, Ship Building and Repairing, and 336612, Boat Building. Shipyard workers generally use abrasive blasting to clean rust, paint, and adhesions from metal surfaces and to etch the surface in order to leave a profile or anchor pattern for paint and coating adhesion.

In the maritime sector, abrasive blasting is acknowledged to be the most effective and efficient means of surface preparation. However, in general, across all U.S. industries, silica sand use in abrasive blasting has declined (USGS, 1998; USGS, 2009). This change is evident in the maritime industry, where other abrasive media have replaced silica sand in many shipyard applications (NIOSH HETA 97-0260-2716, 1997). For instance, the U.S. Navy banned the use of silica sand or any abrasive media containing more than 1 percent silica by weight for abrasive blasting of ship hulls, through its military specification MIL-A-22262B(SH) Amendment 2 in 1996. Moreover, the American National Standards Institute (ANSI) design standard on exhaust systems for abrasive blasting operations at fixed location enclosures prohibits the use of silica sand as an abrasive blasting agent in such operations (ANSI/AIHA Z9.4-1997). This move away from silica sand abrasive is not universal. While many larger shipyards have switched to nonsilica media, some smaller shipyards, with fewer resources, continue to use sand for practical and economic reasons (MACOSH, 2010).

The primary job categories in the maritime industries with potential for exposure to silica during abrasive blasting with silica-containing materials are painters and painters' helpers. However, any workers near the abrasive blasting operation have potential for substantial silica exposure. As in other industries that conduct abrasive blasting, in the maritime industry workers sometimes perform abrasive blasting in an enclosed area, such as in the ballast or bilge tanks or the ship's holds, while on other occasions the work is performed on the ship exterior.

Table IV.C-43 summarizes the job categories, major activities, and primary sources of silica exposure of workers in the maritime industry.

	Table IV.C-43
Job Categories, Major	Activities, and Sources of Exposure of Workers in Shipyards (Maritime Industry) Industry (NAICS 336611, 336612)
Job Category*	Major Activities and Sources of Exposure

¹⁴⁹ This specification supersedes one dated April 1993 restricting the use of abrasive blasting media containing greater than 1 percent silica.

Table IV.C-43 Job Categories, Major Activities, and Sources of Exposure of Workers in Shipyards (Maritime Industry) Industry (NAICS 336611, 336612)					
Painter	Using abrasive blasting equipment to clean and etch surfaces to leave a profile for paint adhesion.				
	 Dust generated from the use of silica-containing abrasive blast media. Dust generated from abrasive blasting of silica-containing paint. 				
	Using sanding equipment to prepare surfaces for application of certain types of paint.				
	 Dust generated from sanding silica-containing paint. 				
Painter's Helper	Dry sweeping residue generated from abrasive blasting operations.				
	 Dust raised by sweeping spent abrasive material (housekeeping). 				
*Job categories are intendallocated differently, depe	ded to represent job functions; actual job titles might differ, and responsibilities might be ending on the facility.				
Sources: NIOSH ECTB 2	:33-110c, 1999; OSHA SEP Inspection Report 300316627.				

Baseline Conditions and Exposure Profile

To evaluate workers' silica exposures, OSHA reviewed personal breathing zone (PBZ) respirable quartz exposure monitoring data from a single NIOSH report (NIOSH ECTB 233-110c, 1999). Although limited, these are the best data available to OSHA. In this report, NIOSH describes a facility, the primary business of which is the construction of marine vessels designed for oceanographic research. The company employs 1,000 workers, 2 to 20 of whom are exposed to silica daily. Painters perform sandblasting with beach sand and typically spend the balance of the shift painting. The designated areas for abrasive blasting and painting movable parts have a hoisted screen curtain and rails to position pieces to be worked. While no controls were in place while NIOSH performed its assessment, the facility indicated that the designated abrasive blasting/painting area location was selected so that prevailing winds would carry aerosol away from the workers (NIOSH ECTB 233-110c, 1999).

OSHA is concerned that the data presented in NIOSH ECTB 233-110c (1999) for the maritime vessel construction facility (used to develop the exposure profile) do not provide a representative sample of maritime workers overall. These workers are not employed under larger navy contracts, where blast media with silica content greater than 1 percent is prohibited. Nor are they employed by small marina-based shipyards, which are more likely to use silica sand as blast media, but in which individual workers are more likely to have diverse duties and for whom abrasive blasting constitutes only a small portion of any work shift. The demand for maintenance in small shipyards is great. For example, in the United States there are potentially 59,000 smaller fishing vessels requiring routine repair and maintenance. ¹⁵¹ OSHA hopes to obtain additional information on exposures to maritime workers through the rulemaking process.

¹⁵⁰ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A—Methodology.

 $^{^{151}}$ The U.S. Coast Guard estimates that 79,000 vessels could be engaged in fishing activities. Of these, 20,000 are 5 gross tons (GT) or more, and 59,000 are less than 5 GT (Kemerer, 2010).

Baseline Conditions for Painters

Based on descriptions of painters' activities and equipment in the source mentioned above, OSHA preliminarily concludes that baseline conditions for this group of workers involve the use of compressor-powered equipment with dry silica-containing abrasive blast media, but no exposure controls beyond the respiratory protection (supplied-air helmets) required under 29 CFR 1915.34(c)(3)(i) – Mechanical Paint Removers (for general industry 29 CFR 1910.94 and 1910.134). Painters typically perform blasting for 10 to 70 percent of every shift. Painting also can account for a similar percentage of a shift (15 to 70 percent) (NIOSH ECTB 233-110c, 1999).

Table IV.C-44 summarizes the best available data for painters who perform abrasive blasting at maritime facilities in addition to their painting duties. The four exposure measurements for painters have a median of 463 micrograms per cubic meter ($\mu g/m^3$), a mean of 1,013 $\mu g/m^3$, and a range of 26 $\mu g/m^3$ to 3,100 $\mu g/m^3$. The highest silica exposure occurred on a day when the painter spent 45 percent of his time sandblasting and 20 percent painting. The lowest exposure occurred for the same painter on the following day when he spent 10 percent of his time sandblasting and 70 percent painting. The two other results (36 $\mu g/m^3$ and 890 $\mu g/m^3$) were obtained at the same shipyard on the same two days, but involve a second painter who spent 70 percent of the shift sandblasting and 15 percent of the time painting. On both days, the painters prepared for sand blasting during the remainder of the shift (NIOSH ECTB 233-110c, 1999). On the sampling dates both painters performed sandblasting outdoors within a screen enclosure intended to decrease the spread of silica dust to other areas. On other occasions these painters' job duties could include sand blasting inside the vessel.

The only other silica result that OSHA identified in the maritime industry was a partial-shift (202 minute) exposure for a painter at a custom fishing boat builder. OSHA obtained a result of $51~\mu g/m^3$ (22 $\mu g/m^3$ as an 8-hour time-weighted average [TWA]) for this worker, who sprayed on and sanded paint that contained silica. ¹⁵² The worker utilized both hand and pneumatic sanding and wore a full-face airline respirator (OSHA SEP Inspection Report 300316627). In many cases sanding is not a full-shift activity and workers performing sanding likely spend an equivalent duration of their shifts engaged in painting and other activities not associated with silica exposure.

While the four exposure results in Table IV.C-44 for painters might not provide a representative sample (as noted previously), these are the only data currently available to OSHA. Furthermore, the exposure scenario represents abrasive blasting conditions available to shipyards of any size for any type of vessel. Therefore, in the absence of additional data, OSHA preliminarily concludes that the median of 463 μ g/m³ represents the baseline median for this job category.

¹⁵² Because this was not a full-shift sample, the result was not included in the exposure profile.

Table IV.C-44

Respirable Crystalline Silica Exposure Range and Profile for Workers in Shipyards (Maritime Industry) Industry (NAICS 336611, 336612)

	Expo	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)		
Painter	4	1013	463	26	3100	0	2	0	0	2		
						0%	50%	0%	0%	50%		
Painter's Helper	3	175	160	85	280	0	0	1	1	1		
·						0%	0%	33%	33%	33%		
Totals	7	654	160	26	3100	0	2	1	1	3		
						0%	29%	14%	14%	43%		

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour TWA exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: NIOSH ECTB 233-110c, 1999.

Baseline Conditions for Painters' Helpers

Based on descriptions of painters' helpers activities provided by NIOSH ECTB 233-110c (1999), OSHA preliminarily concludes that baseline conditions for this group of workers include dry sweeping and brushing to clean up between the painters' abrasive blasting and painting activities. These tasks are performed wherever painting will occur, including in confined spaces (e.g., vessel engine room) and outdoors on deck. For respiratory protection, painters' helpers wear filtering face-piece respirators while dry sweeping.

The painters' helpers evaluated in NIOSH ECTB 233-110c (1999) spent their entire shifts dry sweeping and using a hand brush; the three sampling results are summarized in Table IV.C-44. These values have a median of 160 μ g/m³, a mean of 175 μ g/m³, and a range from 85 μ g/m³ to 280 μ g/m³, with the lower level associated with the worker who swept the deck. The two higher values were obtained for two helpers who spent all or part of their shifts dry sweeping in the enclosed engine room.

The sampling results for painters' helpers in the maritime industry were obtained during the typical baseline conditions; therefore, OSHA preliminarily concludes that the median of $160 \mu g/m^3$ represents the baseline median.

Additional Controls

OSHA recognizes that the data used to develop the exposure profile are sparse for determining additional controls for this activity. OSHA hopes to obtain additional information as part of the rulemaking process.

In the absence of additional information specific to silica in the maritime industry, OSHA has relied on details regarding additional controls available for abrasive blasting workers in the construction industry and other industries. As noted previously, maritime industry workers regularly perform abrasive blasting both in enclosed areas (e.g., ballast or bilge tanks, ship's holds) and on the ship exterior (decks and hull). OSHA considers examples for abrasive blasting in the construction industry to have some similar characteristics, particularly when construction workers perform abrasive blasting on large tanks (interiors and exteriors).

Additional Controls for Painters

Painters are potentially exposed to very high levels of silica. Since workers in this job category spend varying amounts of time performing blasting, exposures range from below 50 μ g/m³ to above 3,000 μ g/m³. Two of the four results (50 percent) for painters summarized in Table IV.C-44 are above 250 μ g/m³, and these workers will require additional controls. The remaining two of the four results (50 percent) are already less than 50 μ g/m³.

Controls are required not only to protect the painters performing blasting, but also the painters' helpers and any workers adjacent to the blasting operation. Workers who use silica-containing media to perform abrasive blasting in maritime industry facilities will benefit from the following exposure control options, some of which are outlined elsewhere in this technological feasibility analysis (e.g., Section IV.C.22 – Abrasive Blasters) and repeated here for convenience.

- Abrasive blasting with wet methods or other processes that reduce or eliminate dust generation.
- Automated and/or enclosed (shrouded) abrasive blasting equipment.

- Abrasive blasting cabinets for small and medium-sized parts.
- Low-silica and silica-free abrasive blasting media substitutes that are less toxic than silica sand.
- Enclosures, such as containment structures (which protect adjacent workers only).
- Local exhaust ventilation (LEV) of enclosures (with proper filtration to protect adjacent workers).

Wet Methods

Wet abrasive blasting methods will reduce the silica exposure levels of maritime workers who use silica sand. The exposure profile in Section IV.C.22 – Abrasive Blasters shows a median silica exposure of 230 $\mu g/m^3$ and a range of 12 $\mu g/m^3$ to 29,040 $\mu g/m^3$ for abrasive blasting operators performing dry, uncontrolled blasting without a booth or cabinet. In contrast, for abrasive blasting operators performing wet blasting without a booth or cabinet, the median silica exposure is 125 $\mu g/m^3$, and exposure levels range from 36 $\mu g/m^3$ to 407 $\mu g/m^3$. These values demonstrate the extent to which wet blasting can reduce exposure levels. It should be noted, however, that the construction industry data for both dry and wet abrasive blasting include samples collected under a variety of conditions, including some results obtained while workers used low-silica or silica-free abrasive blast media while blasting on silica-containing substrates, such as concrete. The maritime exposure profile only includes sample results associated with dry silica-containing blast media, which OSHA considers more typical of shipyards and marinas. Although these differences exist between the two industries, the plentiful results from the construction industry offer valuable insight into aspects of abrasive blasting that also affect the maritime industry (e.g., benefits of wet abrasive blasting).

Wet Methods and Alternatives to Dry Abrasive Blasting with Silica Sand

Many of the alternative methods for dry abrasive blasting (listed in Table IV.C-45) have been tested in shipyards, where the large expanses of near-flat surfaces available on ship decks and hulls provide optimal surfaces for comparative trials. Many of these methods effectively remove paint and eliminate worker exposure to silica by completely enclosing or eliminating use of silica-containing blasting media or eliminating the process of abrasive blasting (substituting another process, such as grinding paint off the surface).

Some of the alternative abrasive blasting methods also offer some reduction in airborne exposure to other contaminants (e.g., metals) from the surface coating being removed. For example, Flynn and Susi (2004) also reviewed vacuum blasting and automated, robotic systems for paint removal. Vacuum blasting demonstrates the potential value of a well enclosed and well ventilated process. Using this technology, worker lead dust exposures were controlled to a considerable extent, from a geometric mean of 4,200 $\mu g/m^3$ during open blasting to 55 $\mu g/m^3$ during vacuum blasting (a 98.6 percent reduction). Although these lead results cannot be translated directly to silica exposure levels, they suggest that dusty air was captured to a large extent during the abrasive blasting. Exhaust ventilation systems do not discriminate between lead dust and silica dust.

¹⁵³ The construction industry abrasive blasting data represent 8-hour TWA exposure levels, calculated with the assumption that no additional exposure occurred during any unsampled portion of the shift. Additional data would help OSHA better determine whether exposure times for maritime workers performing blasting are similar to construction industry patterns.

Furthermore, automated and semi-automated versions of hydroblasting, centrifugal wheel blasting, and vacuum blasting equipment offer quality cleaning of flat or gently curved surfaces (particularly beneficial for exterior hulls) while workers performing blasting stand at a distance from the surface being blasted. Each of these automated methods are challenged by corners, fittings, and sharp bends in the surface, where workers must still use mechanical stripping (needle gunning, grinding) or traditional abrasive blasting to finish the job. Additionally, these alternate methods result in different anchor patterns on the bare metal than traditional abrasive blasting, so workers require technical expertise to match alternate surface cleaning methods to the surface metal and paint system to be applied.

Table IV.C-45 Examples of Alternatives to Dry Abrasive Blasting						
Name	Description/Comments					
Wet Abrasive Blasting	Can be used in most instances where dry abrasive blasting is used. Includes: 1) compressed air blasting with the addition of water into the blast stream before the abrasive leaves the nozzle, and 2) water jetting with the addition of abrasive into the water stream at the nozzle. Additives and rust inhibitors might be used.					
Hydroblasting	High Pressure Water Jetting: Uses pressure pump, large volume of water, and specialized lance and nozzle. Pressures range from 3,000 to 25,000 pounds per square inch (psi). Can remove loose paint and rust; will not efficiently remove tight paint, tight rust, or mill scale. Can be used in most instances where abrasive blasting is used. Primary application is for an older surface rusted in a saline environment rather than new steel. Rust inhibitors could be required to prevent flash rusting.					
	<u>Ultra-High-Pressure Water Jetting:</u> Similar to high-pressure water blasting. Uses pressurized water from 25,000 to 50,000 psi. Removes tight paint and rust, but not mill scale.					
Centrifugal Wheel Blasting	Uses a rotating wheel assembly inside an enclosure equipped with a dust collector. Abrasive is propelled outward from the rotating wheel and removes rust, paint, and mill scale. Abrasives are recycled and include steel shot, steel grit, cut wire, and chilled iron grit. Generates no airborne dust or high velocity particles.					
Vacuum Blasting	Uses standard blast nozzle inside a shroud (head) that forms a tight seal with the work surface. Vacuum is applied inside shroud during blasting to remove dust and debris. Abrasives are recycled and include aluminum oxide, garnet, steel shot, steel grit, and chilled iron grit. When used properly, cleans effectively with minimal dust.					
Dry Ice Pellets	Dry ice blast cleaning with solid carbon dioxide. Waste is minimized and includes paint chips and rust. Storage and handling costs can be substantial.					
Thermal Stripping	Uses a flame or stream of superheated air to soften paint, allowing for easy removal. Generates one waste stream (i.e., waste paint). Effective for small parts; not suitable for heat-sensitive surfaces. Very labor intensive.					
Chemical Stripping	Uses hazardous chemical strippers such as methylene chloride-based or caustic solutions. Effective for small fiberglass, aluminum, and delicate steel parts. Requires adequate ventilation and other safety measures. Generates multiple waste streams (i.e., contaminated rinse water and waste strippers).					
Mechanical Stripping	Involves chipping, grinding, sanding, or scraping the coating off small parts or surfaces through the use of needle guns, chipping hammers, sanders, and grinders. Generates paint waste and airborne dust. Some power tools are equipped with dust collection systems.					
Sources: U.S. EPA, 1991	; Kura et al., no date.					

For shipboard use, low-silica substitutes and silica-free blasting media that are less toxic than silica sand offer another option for exposure control in areas where automated and semi-automated methods are impractical (most interior spaces and spaces with small surface areas, multiple fittings, or corners and angles) and most places where sand is used. As noted previously, some shippards are already using this control method extensively to meet customer specifications. However, a NIOSH-sponsored study (described in more detail in the Section IV.C.22 – Abrasive Blasters) notes that even blasting operations

using media with low silica content and nonsiliceous substrates can result in elevated airborne concentrations of silica. Silica exposure readings ranging from 240 μ g/m³ to 3,690 μ g/m³ were obtained for abrasive blasting operators during trials conducted by a consultant to NIOSH in an environmentally controlled laboratory with garnet and copper slag media, which both contain low amounts of quartz (KTA-Tator-Phase-1, 1998). Other investigators measured geometric mean silica concentrations of 5,000 μ g/m³ and 6,900 μ g/m³ in the breathing zone of abrasive blasters removing paint from foot bridges using recycled coal slag or steel grit (Meeker et al., 2006). Both studies also indicated the presence of other toxic substances, even in clean abrasives. Based on these studies, OSHA has determined that alternative blast media must be selected carefully.

NIOSH ECTB 233-110 (1999) notes that changing technology in the mid-1990s eliminated the need for some shipyard abrasive blasting by better preparing steel through automated shot blasting, reportedly 20 times faster than manual abrasive blasting, and anti-oxidant coatings. The resulting steel requires less abrasive blasting at the ship yard than it once did.

Another control method for workers who abrasively blast smaller, removable parts is the use of ventilated enclosures (e.g., ventilated abrasive blasting cabinet), which will isolate the abrasive blasting media and should limit (or eliminate) worker exposures to silica. In addition, proper work practices and housekeeping practices that reduce dust emissions are essential to controlling the exposures of painters and adjacent workers.

Maritime employers following 29 CFR 1915.34(c)(3)(i) protect painters from a wide range of hazards by equipping these workers with hoods and NIOSH-certified airline respirators or positive-pressure air helmets for abrasive blasting. In contrast, when maritime employers follow 29 CFR 1910.134 because they are using synthetic abrasive blasting media that contains less than 1 percent silica, they must determine the appropriate respirator by assessing the potential hazards to which painters will be exposed. For example, they will need to consider the proposed silica permissible exposure limit (PEL) of 50 μ g/m³ when selecting a respirator that offers adequate protection. For additional information regarding respiratory protection requirements for workers exposed to silica, see paragraph (g) of the proposed rule.

Additional Controls for Painters' Helpers

The three exposures for painters' helpers exceed $50~\mu g/m^3$, as presented in the exposure profile in Table IV.C-44; therefore, additional controls are required to reduce the exposure of all these workers (100 percent) to levels of $50~\mu g/m^3$ or less. The same controls for and alternatives to dry abrasive blasting with silica sand outlined for painters will benefit the helpers (regardless of the helpers' duties) to at least the same extent as those methods benefit the painters themselves. Automated, enclosed (e.g., isolating), or shrouded dry abrasive blasting methods, which employ some form of vacuum suction device to capture the media, will produce less dust and debris, which later will require less cleaning by the helpers. Wet methods such as wet abrasive blasting will limit the spread of dust and prevent silica dust from becoming airborne to the extent that the helpers can clean up the spent media while it is still damp. Low-silica substitutes and silica-free blasting media that are less toxic than silica sand will generate dust with lower silica content and reduce painters' helpers' exposures during cleaning.

Using vacuums, shovels, and scrapers to clean surfaces introduces less dust into the air than dry sweeping. Although these alternate methods have not been evaluated for abrasive blasting media and debris, Riala (1988) completed a study of Finnish construction site workers that compared the silica exposures for workers dry sweeping or using alternate cleaning methods. When compared with dry sweeping, exposures were approximately three times lower when the workers used squeegees to scrape surfaces, and approximately five times lower when workers used vacuums (Riala, 1988).

Based on the information presented here and in Section IV.C.22 – Abrasive Blasters, OSHA preliminarily concludes that the exposure levels of painters' helpers can be reduced by providing high-efficiency particulate air (HEPA)-filtered vacuums for cleaning. NIOSH recommends vacuuming with an approved HEPA-filtered vacuum (or the use of wet cleaning methods) as a method to minimize worker exposure to hazardous air contaminants such as asbestos, silica, and heavy metals during housekeeping activities in numerous industries (ERG-GI, 2008). Furthermore, when vacuum blasting was used for an abrasive blasting task, painter lead exposure levels were reduced by 98.6 percent (Flynn and Susi, 1999). A HEPA-filtered vacuum uses similar suction and filtration technology without an internal blasting component (an intense, high energy source of silica exposure), so will capture settled dust (very low energy) even more efficiently. Even if the HEPA vacuum is assumed to capture dust only 85 percent effectively, it would reduce the highest painters' helper silica exposure level from 280 µg/m³ to 42 µg/m³.

Feasibility Finding

Feasibility Finding for Painters

Based on information presented in Table IV.C-44, OSHA preliminarily concludes that among maritime industry painters that use sand as a blasting agent, 50 percent currently experience exposure levels of 50 μ g/m³ or less, primarily because they perform abrasive blasting in open air and only for a brief period of time during the shift.

OSHA also preliminarily concludes that the silica exposures of the remaining 50 percent of painters in this industry performing manual abrasive blasting using silica sand can be reduced somewhat by switching to wet abrasive blasting, but will not reach levels of 100 $\mu g/m^3$ or less even using wet methods. This determination is based on exposure results for abrasive blasting operators in the construction industry using wet abrasive blasting methods (see Section IV.C.22 – Abrasive Blasters). Exposures for these operators show a median silica result of 125 $\mu g/m^3$ (range of 36 $\mu g/m^3$ to 407 $\mu g/m^3$) compared with a median exposure of 230 $\mu g/m^3$ (range of 12 $\mu g/m^3$ to 29,040 $\mu g/m^3$) for abrasive blasting operators performing dry, uncontrolled blasting.

During open abrasive blasting using silica-containing media, engineering and work practice controls alone will not be sufficient to achieve painter exposure levels at or below the proposed PEL of $50 \,\mu\text{g/m}^3$. In order to protect workers, employers will need to provide painters with respirators according to paragraph (g) of the proposed rule for silica.

OSHA also preliminarily concludes that some painters in this industry can use automated abrasive blasting methods that include vacuum suction and isolate the worker from the blast stream. To the extent that they are isolated from the abrasive blasting media, these workers will experience silica exposure levels that are lower than those achieved using wet abrasive blasting methods. However, OSHA acknowledges that these control methods are not universally practical for all surfaces.

Furthermore, as discussed previously, OSHA finds that some shipyards use, as another exposure control for abrasive blasting operations, alternative blasting media that are less toxic than silica sand. The OSHA maritime standard permits alternate respiratory protection for workers performing open-air blasting with synthetic media containing less than 1 percent silica. Strict compliance with the OSHA standards for

¹⁵⁴ As noted previously, under each condition the operators worked either in the open or in enclosed areas, but did not use booths or cabinets. Furthermore, some operators working under each condition used silica sand on a variety of surfaces, while others used alternate abrasive media to remove paint from silica-containing substrates, such as concrete.

maritime abrasive blasting (29 CFR 1915.34(c)) and respiratory protection (29 CFR 1915.154, or for general industry 29 CFR 1910.134) is essential for protecting workers performing abrasive blasting.

Feasibility Finding for Painters' Helpers

Based on the limited exposure data in Table IV.C-44 and the additional information included in this section, OSHA preliminarily concludes that all painters' helpers are currently exposed to silica at levels that exceed $50 \,\mu\text{g/m}^3$, and additional controls will be required to reduce their exposures to or below the proposed PEL of $50 \,\mu\text{g/m}^3$. To the extent that the helpers' exposures are related to painters' activities, OSHA finds that wet abrasive blasting and adherence to 29 CFR 1910.94 also would benefit painters' helpers. In addition, employers will need to ensure that they provide painters' helpers with the appropriate level of respiratory protection, as required by 29 CFR 1915.154 (or for general industry 29 CFR 1910.134).

Where painters' helpers' silica exposures are exclusively due to dust disturbed during cleaning, their exposures can be reduced by substituting HEPA-filtered vacuums instead of dry sweeping dust from surfaces to be painted. As noted above in the discussion of additional controls for painters' helpers, NIOSH recommends using HEPA-filtered vacuums. Vacuum blasting technology can reduce abrasive blaster lead dust exposure levels by 98.6 percent (from 4,200 μ g/m³ to 55 μ g/m³) (Flynn and Susi, 1999). Similarly filtered HEPA vacuums will reduce the exposure levels of painters' helpers at least as much when they clean up settled dust. Even if the HEPA vacuum offered just 85 percent reduction in exposure (compared to dry sweeping) the highest silica result for a painters' helper (280 μ g/m³) would be reduced to 42 μ g/m³.

Overall Feasibility Finding

Based on the available information, OSHA preliminarily concludes that the silica exposure of painters will be greatly reduced using wet abrasive blasting methods, but that the proposed PEL of $50~\mu g/m^3$ will not be reliably achieved using these methods. Respiratory protection will continue to be required in accordance with 29 CFR 1915.34(c)(3)(i) and 1915.154 or, for general industry, 1910.94(a)(5) and 1910.134. These existing requirements currently protect painters who are routinely exposed to levels of other hazardous substances that exceed their PELs.

The adoption of wet methods by painters operating abrasive blasting equipment also will substantially reduce the exposure levels of painters' helpers by eliminating much of the dry dust that spreads and settles during dry abrasive blasting. Painters' helpers are responsible for cleaning up the residual dust, so reduced spread of dust translates directly to reduced exposure. The extent of the reduction will be sufficient to more reliably permit painters' helpers to wear a reduced level of respiratory protection, in the form of a half-facepiece respirator.

Painters' helpers who switch to cleaning using a HEPA-filtered vacuum instead of dry sweeping will experience substantial exposure reductions. If cleaning up after abrasive blasting is the helpers' only source of silica exposure, this control will be sufficient to reduce their exposures to $50 \, \mu g/m^3$ or less. Even if the HEPA vacuum offered just 85 percent reduction in exposure (compared to dry sweeping) the highest silica result for a painters' helper ($280 \, \mu g/m^3$) would be reduced to $42 \, \mu g/m^3$.

REFERENCES

[ANSI/AIHA Z9.4-1997] American National Standards Institute/American Industrial Hygiene Association, 1997. American national standard for exhaust systems - Abrasive blasting operations - Ventilation and safe practices for fixed location enclosures. Approved 28 February. **OSHA-2010-0034-0528**

- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Flynn, M.R., and P. Susi, 2004. A review of engineering control technology for exposures generated during abrasive blasting operations. Journal of Occupational and Environmental Hygiene 1:680-687. **OSHA-2010-0034-1328**
- Kemerer, J., 2010. Personal communication between Chief of US Coast Guard Commercial Fishing Vessel Safety Division and Eastern Research Group, Inc. April 28. **OSHA-2010-0034-0761**
- [KTA-Tator-Phase-1] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. September. **OSHA-2010-0034-0772**
- Kura, B., S. Lacoste, and P.V. Patibanda, no date. Multimedia pollutant emissions from the shipbuilding facilities. Paper presents information from a University of New Orleans research project: Integrated Environmental Management Plan for Shipbuilding Facilities. **OSHA-2010-0034-0775**
- [MACOSH] Maritime Advisory Committee for Occupational Safety and Health, 2010. Final Meeting Minutes. January 20. Available at: http://www.osha.gov/dts/maritime/macosh/january2010.html OSHA-2010-0034-1680
- Meeker, J.D., P. Susi, and A. Pellegrino, 2006. Comparison of occupational exposures among painters using three alternative blasting abrasives. Journal of Occupational and Environmental Hygiene 3:D80-D84. **OSHA-2010-0034-0802**
- [NIOSH ECTB 233-110c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 10 Abrasive blasting in a shipyard. **OSHA-2010-0034-0852**
- [NIOSH HETA 97-0260-2716] National Institute for Occupational Safety and Health, 1997. Health hazard evaluation report: Avondale Shipyards, New Orleans, Louisiana. **OSHA-2010-0034-1427**
- [OSHA SEP Inspection Report 300316627] OSHA Special Emphasis Program Inspection Report 300316627. **OSHA-2010-0034-0507**
- Riala, R., 1988. Dust and Quartz Exposure of Finnish Construction Site Cleaners. Annals of Occupational Hygiene 32(2):215-220. **OSHA-2010-0034-1163**
- [U.S. EPA] U.S. Environmental Protection Agency, 1991. Guides to pollution prevention: The marine maintenance and repair industry. Office of Research and Development. EPA/625/7-91/015. **OSHA-2010-0034-1202**

- [USGS] U.S. Geological Survey, 1998. 1998 minerals yearbook: Silica. Available at http://minerals.usgs.gov/minerals/pubs/commodity/silica/780498.pdf. **OSHA-2010-0034-1679**
- [USGS] U.S. Geological Survey, 2009. 2008 minerals yearbook: Silica [advance release]. Available at http://minerals.usgs.gov/minerals/pubs/commodity/silica/myb1-2008-silic.pdf. **OSHA-2010-0034-1211**

Structural Clay Description

Silica-containing materials are the primary ingredients in the manufacture of structural clay products, which include bricks, clay tiles, and ceramic tiles. Facilities manufacturing structural clay products are classified in six-digit North American Industry Classification System (NAICS) codes: 327121, Brick and Structural Clay Manufacturing; 327122, Ceramic Wall and Floor Tile Manufacturing; and 327123, Other Structural Clay Product Manufacturing. OSHA analyzed the facilities classified in NAICS codes 327121, 327122, and 327123 together, based on the similarity of materials, processes, and worker activities associated with potential exposure to silica throughout the majority of these facilities.

Structural clay products manufacturing typically begins with crushing, grinding, and screening silicacontaining raw materials such as clay and shale. For one shape-forming method, the processed raw materials are mixed with water in a mill to form wet clay or slurry. Next, the wet clay is either pressed into a mold or, more commonly, extruded through a die and cut into shape with a wire-cutter. In contrast, an alternate method for forming high-density products (e.g., floor tiles) uses clay slurry that is spray-dried to a low-moisture compactable powder, then compressed in a mold. Regardless of the forming method, the resulting clay shapes can be coated with silica-containing coating mixtures at various stages in the shaping process. For example, a sand mixture is sometimes applied directly to the mold and is often sprayed or sprinkled on the formed product shape. The formed products are dried, fired in kilns, and then packaged. Structural clay products typically require no further processing after the forming, coating, and firing steps are complete. Workers do not normally cut, grind, sand, or saw the finished products, except perhaps to separate units cast as groups (ERG-GI, 2008).

Based on the available literature and exposure monitoring data presented in site visit reports, NIOSH reports, and OSHA Special Emphasis Program (SEP) reports, workers in all phases of structural clay products manufacture have potential for silica exposure. The primary job categories with potential for exposure are: material handler, grinding operator, and forming line operator. Certain workers regularly perform tasks associated with multiple job categories. To demonstrate certain trends in exposure, these job categories have been further broken down into subcategories. Material handlers are split into three categories—loader operator, production line handler, and post-production handler—depending on the type of material handled (raw material, shaped but unfired product, or fired product). Forming line operators are split by job activity into three categories as well: pug mill operators, coatings blenders, and formers. See Table IV.C-46 for a complete description of the job categories, major activities, and sources of silica exposure for workers in the structural clay products industry. For detailed process descriptions, refer to ERG-GI (2008).

Table IV.C-46 Job Categories, Major Activities, and Sources of Silica Exposure of Workers in the Structural Clay Industry (NAICS 327121, 327122, 327123)								
Job Category	Major Activities and Sources of Exposure							
Material Handler	Transferring and science (a section of the section							
Loader Operator	Transferring raw materials (e.g., clay, shale) from storage piles to processing equipment or storage bins via front-end loader.							
	 Dust from open transfer of silica-containing raw materials via front-end loader. 							
	 Dust re-suspended by passing traffic (e.g., spilled materials, settled dust). Dust from conveyers and drop points. 							
Production Line Handler	Transferring unfired, shaped products within the production line (e.g., to dryers, kilns) using manual, power assisted, or automated processes.							
	 Dust generated by spilled or broken product crushed under wheels. Dust released from products during handling. 							
	 Dust from adjacent processes (e.g., forming line operators, sand coating application). 							
Post-Production Handler	Transferring finished, fired products through post-production inspection, packaging, and yard areas manually or using lifts and automated equipment.							
	 Dust released during open transfer of products manually or by lift truck. Dust disturbed by passing traffic (e.g., spilled materials, settled dust, yard dust). 							
Grinding Operator	Operating and maintaining raw material processing equipment, such as crushers, grinders, screens, and driers; performing housekeeping activities.							
	 Dust generated during manual maintenance and operation of crushers, grinders, screens, and raw material driers. 							
	 Dust from housekeeping activities (e.g., dry sweeping, shoveling silica- containing materials). 							
Forming Line Operator								
Pug Mill Operator (including all raw clay-	Mixing dry clay with water to form wet clay to be extruded or molded; spray- drying clay slurry to create compactable clay powder.							
finishing processes)	 Dust from transferring dry material into pug mills and related equipment. Dust from spray-drying of clay and associated conveyers. 							
Coatings Blender	Preparing and transferring sand-based coatings to add pigment and texture to bricks.							
	 Dust disbursed during open, manual emptying of bags of silica-containing materials into hoppers. 							
	 Dust generated by sand drying, mixing, and milling equipment used to create coatings. 							
Former	Forming product by hand or machine (molded or extruded products); applying coatings to products manually or monitoring automated application equipment.							
	 Dust released during manual or automated application of silica-containing coatings (e.g., sand) to products. 							
	 Dust that becomes airborne while sand-coating bags are emptied and compacted for disposal. 							
Note: Job categories are intende might be allocated differently, de	d to represent job functions; actual job titles might differ, and responsibilities pending on the facility.							
Source: ERG-GI, 2008.								

Baseline Conditions and Exposure Profile

To evaluate silica exposures of structural clay production workers, OSHA reviewed monitoring data on full-shift personal-breathing-zone (PBZ) respirable quartz exposure from five OSHA SEP inspection reports on brick manufacturing facilities (three of which, 300530805, 302005772, and 302547674, are all contained within OSHA SEP Inspection Report 300523396, the fifth is 301986345) and three NIOSH control technology and exposure assessment reports, also on brick manufacturing. These OSHA and NIOSH reports were previously described by ERG (ERG-GI, 2008). In addition, OSHA reviewed one report from a site visit to a ceramic tile manufacturing facility (ERG-ceramic-tile, 2001). Exposure monitoring data for each job category are discussed in detail in the following sections. ¹⁵⁵

Numerous activities at structural clay facilities produce silica dust, and the same dust often becomes resuspended. Dust arises while workers handle quantities of dry, dusty raw materials (clay, sand, and other minerals), use equipment for grinding raw materials and finishing clay (mills, mixers, spray driers), mix coatings and tend clay coating processes, and move unfinished and finished products through the plant. Dust becomes airborne during production processes, and then settles on surfaces. When performed rigorously, housekeeping can either minimize silica exposure (when settled dust is effectively removed) or contribute to worker exposure by causing spilled or previously settled dust to become airborne.

Baseline Conditions for Material Handlers

As Table IV.C-47 indicates, the median full-shift PBZ exposure level for the 64 material handler results is 21 micrograms per cubic meter ($\mu g/m^3$), with a range of less than or equal to 10 $\mu g/m^3$ (the reported limit of detection [LOD]) to 258 $\mu g/m^3$. Approximately 30 percent of material

¹⁵⁵ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) derived from samples of 6-hours or longer, assuming the exposure concentration during any unsampled portion of the shift was the same as the concentration during the period sampled. Unless explicitly stated otherwise, all results discussed in the additional controls section meet the same criteria. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A— Methodology.

of these results also exceeded 100 μg/m3. NIOSH listed the primary sources of exposure as traffic passing over ground clay and shale in the grinding plant, loader dumping and spillage in the same area, conveyer spillage, dry broom sweeping of kiln cars, and various activities associated with the sand applied to bricks for texture and pigment. NIOSH described the strengths and weaknesses of housekeeping at this facility as follows: "Extensive efforts were made at housekeeping in this facility. The notable exception was in the C plant grinding area, which had significant accumulations of settled dust. [In the other areas] dry sweeping with brooms and shovels was common, with the powered sweeper used in some plant areas and the yard. Hi-Vac systems (Model 230) were installed in both the B and C plants for the cleaning of kiln cars. The vacuum systems were not equipped with [high-efficiency particulate air] HEPA filters. Workers used shovels to remove the largest pieces of brick, followed by dry sweeping, and then vacuuming of the cars" (NIOSH ECTB 233-126c, 2000). This facility had also installed a number of engineering controls.

¹⁵⁷ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-47
Respirable Crystalline Silica Exposure Range and Profile for Workers in the Structural Clay Industry (NAICS 327121, 327122, and 327123)

	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Material Handlers							,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Loader Operators	7	61	58	10	157	3 42.9%	0 0.0%	2 28.6%	2 28.6%	0 0.0%	
Production Line Handlers	20	72	51	12	258	6 30.0%	4 20.0%	6 30.0%	3 15.0%	1 5.0%	
Post-Production Handlers (all types)	37	26	16	10	111	26 70.3%	6 16.2%	4 10.8%	1 2.7%	0 0.0%	
Material Handlers - Total	64	44	21	10	258	35 54.7%	10 15.6%	12 18.8%	6 9.4%	1 1.6%	
Grinding Operators	14	162	100	13	628	3 21.4%	1 7.1%	3 21.4%	4 28.6%	3 21.4%	
Forming Line Operators											
Pug Mill Operators (including all raw clay- finishing processes)	7	312	226	41	1028	0 0.0%	1 14.3%	1 14.3%	2 28.6%	3 42.9%	
Coatings Blenders	10	99	77	18	228	1 10.0%	1 10.0%	5 50.0%	3 30.0%	0	
Formers (all types)	37	124	73	12	794	10 27.0%	6 16.2%	6 16.2%	11 29.7%	4 10.8%	
Wet Clay Formers	10	28	20	13	78	6 60.0%	3 30.0%	1 10.0%	0 0.0%	0 0.0%	
Clay Powder Formers	3	158	144	141	188	0 0.0%	0 0.0%	0 0.0%	3 100.0%	0 0.0%	
Coatings Applicators (manual)	15	203	105	12	794	4 26.7%	1 6.7%	1 6.7%	5 33.3%	4 26.7%	
Coatings Applicators (automated)	9	87	73	35	159	0 0.0%	2 22.2%	4 44.4%	3 33.3%	0 0.0%	
Forming Line Operators - Total	54	144	78	12	1028	11 20.4%	8 14.8%	12 22.2%	16 29.6%	7 13.0%	
Totals	132	98	48	10	1028	49 37.1%	19 14.4%	27 20.5%	26 19.7%	11 8.3%	

Notes: All samples are personal breathing zone (PBZ) results for durations of 360 minutes or more and represent 8-hour time-weighted average exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Table IV.C-47

Respirable Crystalline Silica Exposure Range and Profile for Workers in the Structural Clay Industry (NAICS 327121, 327122, and 327123)

Sources: ERG-GI, 2008; ERG-ceramic-tile, 2001

handlers are exposed to silica at levels exceeding $50~\mu g/m^3$, and 11~percent are exposed above $100~\mu g/m^3$. Loader operators and material handlers working on the production line tend to have higher maximum and median exposure levels than material handlers working in post-production areas, handling finished goods. The three subcategories within the material handlers job category (loader operators, production line handlers, and post-production handlers) are discussed in the following sections. All three subcategories can be subject to silica exposure when passing vehicles crush spilled raw materials or broken product and disturb settled dust.

Baseline Conditions for the Loader Operators Subcategory

Among loader operators, the median exposure level is 58 µg/m³ for 7 results ranging from 10 µg/m³ (LOD) to 157 µg/m³. Four results (57 percent) exceed 50 µg/m³, and two results (29 percent) exceed 100 μg/m³. The highest exposure, 157 μg/m³, is associated with a loader operator in a ceramic tile facility who dumped dry materials into a hopper and monitored a partially enclosed and ventilated conveyer. Visible dust was released from the loader bucket, hopper, and conveyers, and the worker continued operations with the loader windows open for a portion of the sampling period (ERG-ceramic-tile, 2001). In contrast, exposures of 14 µg/m³ and 10 µg/m³ were obtained for loader operators at another facility moving crushed shale and schist from storage piles to hoppers. The floor was wet from the rain, and visible dust was not "particularly evident" (NIOSH ECTB 233-108c, 2000). ERG reported that typical work conditions for loader operators in this industry involve ventilated but poorly maintained or improperly used cab enclosures on all front-end loaders (ERG-GI, 2008). For example, at three facilities, workers operated cabs with ventilation systems turned off or windows left open, or allowed dust to accumulate in cabs. Loader operators also spend a portion of the shift outside the cab as they monitor raw material conveyer systems. These partially enclosed conveyers can emit silica dust when facilities have not enclosed and ventilated transition points, applied dust suppressant, or adjusted for optimal dust control. In addition, nearby raw material processing equipment (crushers, hammer mills, dry-pans, screens) is typically partially open, allowing silica dust to escape, despite some effort to provide exhaust ventilation for the equipment.

A loader operator working in an area where a dust suppressant foam system blanketed raw materials on conveyers had an exposure level of 56 $\mu g/m^3$ (NIOSH ECTB 233-124c, 2000). NIOSH noted an accumulation of dust on the loader cab interior, suggesting that results could be lower (e.g., at 50 $\mu g/m^3$ or less) if the cab interior had been kept clean.

Baseline Conditions for the Production Line Handlers Subcategory

The 20 results associated with production line handlers have a median of $51 \,\mu\text{g/m}^3$ and a range of $12 \,\mu\text{g/m}^3$ (LOD) to $258 \,\mu\text{g/m}^3$. Ten results ($50 \,\text{percent}$) exceed $50 \,\mu\text{g/m}^3$, and four results ($20 \,\text{percent}$) exceed $100 \,\mu\text{g/m}^3$. The highest concentrations occurred when workers moved dry, unfired product. While transporting unfired product in the kiln area, the forklift (or squeeze lift) wheels crushed a mixture of high-silica gravel floor lining and spilled broken product, which became a source of exposure ($258 \,\mu\text{g/m}^3$ and $216 \,\mu\text{g/m}^3$, respectively) (OSHA SEP Inspection Report 301986345). Workers with low exposures include those controlling the flow of bricks (presumably wet clay) from the molding machine ($12 \,\mu\text{g/m}^3$ and $21 \,\mu\text{g/m}^3$) and transfer car operators moving bricks between the manufacturing area and the ovens (four exposures ranging from $17 \,\mu\text{g/m}^3$ to $21 \,\mu\text{g/m}^3$).

ERG (ERG-GI, 2008) reported that production line handlers typically work without task-specific exposure controls. Local exhaust ventilation (LEV) is sometimes associated with nearby processes, such as conveyer belts and coatings application; however, dust control is incomplete, and those processes still contribute to silica exposure of production line handlers. The extent to which handlers working in large forklifts utilize the isolation afforded by the equipment cab is unclear. In at least one case, after the

facility purchased an air-conditioned cab for the lift as an exposure control measure, the ambient kiln environment caused the cab's air conditioning system to overheat, leading the worker to work with the windows open.

Baseline Conditions for the Post-Production Handlers Subcategory

Silica exposure levels tend to be lower for workers handling kiln-fired structural clay products than the other two material handler subcategories. After firing, the clay is substantially harder than in earlier parts of the manufacturing process, and thus handling creates less dust. The median exposure level for 37 post-production handler results is $16~\mu\text{g/m}^3$; however, the associated exposure levels range from $10~\mu\text{g/m}^3$ to $111~\mu\text{g/m}^3$. Nine workers (24 percent) monitored automated unloading or packaging equipment. These workers had consistently low exposures, ranging from $11~\mu\text{g/m}^3$ to $29~\mu\text{g/m}^3$. Another 19 workers (51 percent) manually unloaded fired bricks. These workers generally had higher exposures, ranging from 10 $\mu\text{g/m}^3$ to $111~\mu\text{g/m}^3$, with five results exceeding $50~\mu\text{g/m}^3$. Finally, nine post-production workers (24 percent) operated forklifts or other heavy equipment to move stacks of fired and packaged bricks around the yard. Exposures for these forklift operators were all below $50~\mu\text{g/m}^3$, ranging from $12~\mu\text{g/m}^3$ to $44~\mu\text{g/m}^3$.

ERG (ERG-GI, 2008) reported that most post-production handlers typically work with some type of task-specific engineering controls. One forklift operator using an enclosed, ventilated cab had an exposure of less than or equal to 12 μ g/m³ (LOD). Another facility that frequently sprayed water in the plant yard reduced all of its forklift operator exposures to below 50 μ g/m³ (four results less than or equal to the LOD [16 μ g/m³] and one result of 43 μ g/m³). Many facilities occasionally sprinkle water on heavily traveled routes through outdoor brickyards to suppress dust (ERG-GI, 2008). Some post-production handler results are associated with automated process control (including some obtained in areas where wet methods are also used). All results associated with automated processes are below 50 μ g/m³. Of the 19 results for workers manually unloading bricks, 13 (68 percent) are associated with some type of additional control (water spray nozzles, fans to remove dust on bricks prior to reaching the operator, or clean air supply blown in the worker's PBZ). Using these controls for manual operations was not always effective, however (e.g., an unloader supplied with clean air had an exposure of 111 μ g/m³).

Overall Baseline Conditions for All Material Handlers

While ERG-GI (2008) noted various trends in material handler work environments and suggested that some of those conditions are baseline controls, OSHA has determined that, across the industry, baseline conditions are best represented by the cross section of facilities reviewed for the exposure profile. Hence, OSHA preliminarily finds that the best description of current baseline exposures of loader operators includes all results summarized for this job category in Table IV.C-47; therefore, the median of 21 $\mu g/m^3$ for all material handlers represents their baseline exposure. OSHA acknowledges that this determination likely underestimates the baseline exposure levels for certain workers in some subcategories, but it still best represents the group as a whole.

Baseline Conditions for Grinding Operators

As Table IV.C-47 indicates, the median full-shift PBZ exposure level for grinding operators is $100 \,\mu\text{g/m}^3$, with a range of $13 \,\mu\text{g/m}^3$ to $628 \,\mu\text{g/m}^3$. These values are based on 14 readings for grinding operators obtained from four OSHA SEP inspection reports (OSHA SEP Inspection Reports 301986345 and 300523396) and three NIOSH reports (ERG-GI, 2008). Ten results (71 percent) exceed $50 \,\mu\text{g/m}^3$, and

 $^{^{158}}$ OSHA SEP Inspection Report 300523396 also contains inspections 302005772 and 302547674, which were conducted at the same facility.

seven (50 percent) exceed $100 \,\mu\text{g/m}^3$. The three highest full-shift exposure levels ($628 \,\mu\text{g/m}^3$, $410 \,\mu\text{g/m}^3$, and $362 \,\mu\text{g/m}^3$) were all associated with a single production plant and remained high despite efforts on the part of the facility to enhance dust collection at the grinder and improve ventilation and housekeeping in the control room (OSHA SEP Inspection Report 300523396). The results might have been influenced, however, by newly installed milling equipment, which reportedly generated more dust and finer particles than had been evident before the installation (but OSHA does not have access to results from the period before the new mill was installed).

Typical conditions associated with this job category include the use of ventilated control rooms for the grinding operator for at least part of the shift (ERG-GI, 2008). Other typical conditions include opened conveyers and enclosed (in a room) and ventilated grinding equipment. The most substantial exposures occur when grinding operators exit control rooms and approach the grinder to clean and maintain equipment and perform housekeeping activities (e.g., manually remove rocks from grinder teeth, clean equipment, and sweep or shovel spilled debris from floors). Grinding operators at all five brick manufacturing facilities described in the OSHA SEP and NIOSH reports used for this exposure profile performed tasks within the grinder area. Although grinding operators perform these tasks intermittently (up to eight times per day), respirable quartz levels in the grinding area often are elevated to extreme levels and thus are the primary source of exposure for grinder operators. Poorly constructed control rooms can also become contaminated with silica, however, and contribute to worker silica exposures.

Based on the conditions described for this job category, OSHA has preliminarily determined that the baseline conditions for grinding operators across this industry are best represented by the range of results summarized in the exposure profile. Thus, their baseline exposure level is represented by the median exposure for this job category ($100 \mu g/m^3$).

Baseline Conditions for Forming Line Operators

As Table IV.C-47 indicates, the median full-shift PBZ respirable quartz exposure level for 54 readings for forming line operators is 78 $\mu g/m^3$ with a range of less than or equal to 12 $\mu g/m^3$ (LOD) to 1,028 $\mu g/m^3$. Thirty five results (65 percent) exceed 50 $\mu g/m^3$, and 23 results (43 percent) exceed 100 $\mu g/m^3$. Four of the 54 results (501 $\mu g/m^3$, 690 $\mu g/m^3$, 794 $\mu g/m^3$, and 1028 $\mu g/m^3$, all from the same facility) also exceed 500 $\mu g/m^3$. Silica exposures primarily occur when workers perform open transfer of clay and coatings ingredients into hoppers and mills, operate mixing and milling equipment, and apply sand-based coatings to products.

To better demonstrate trends within the diverse forming line operator job category, OSHA has described each separately in the following paragraphs.

Baseline Conditions for the Pug Mill Operators Subcategory

As shown in Table IV.C-47, the seven exposure results for pug mill operators (and workers controlling other clay-finishing equipment) range from 41 μ g/m³ to 1,028 μ g/m³, with a median of 226 μ g/m³. Five of the seven results (71 percent) exceed 100 μ g/m³. The highest value among the data available to OSHA for this industry (1,028 μ g/m³) was obtained for a forming line operator monitoring a pug mill equipped with a poorly maintained exhaust-ventilated enclosure (OSHA SEP Inspection Report 300523396). The report noted that the enclosure doors did not seal properly. After the inspection, the facility installed a second pug mill with a better-sealed exhaust-ventilated enclosure and added a greater quantity of water to the clay mix to reduce dust emissions. During a later inspection, a result of 214 μ g/m³ was obtained for an operator monitoring this second mill (an exposure 79 percent lower than the first reading). The operational status of the first pug mill during this later inspection is unclear (Inspection 300530805,

contained in OSHA SEP Inspection Report 300523396). If the original mill was still present, it might have contributed to the worker's exposure on the second sampling date.

Two silica results ($226 \,\mu\text{g/m}^3$ and $337 \,\mu\text{g/m}^3$) were obtained by ERG for the workers finishing clay at a ceramic tile manufacturing facility where a ball mill and spray drier prepared clay powder to be compressed into tiles (ERG-ceramic-tile, 2001). These two results are associated with workers working at adjacent workstations in the same room where visible dust reportedly was observed occasionally when the mill was charged with fired tile scrap and when the operator brushed spilled material away from the mill hatch. Furthermore, an automatic LEV system associated with the storage hoppers was functioning improperly, and the spray-drying equipment constantly emitted fine dust into the surrounding room as the clay powder was sized (in a cyclone-type separator), transferred, and conveyed through the process. ¹⁵⁹ Dust release from vertical conveyors adjacent to the spray dryer was reduced with enclosures. Air samples obtained in other production processes suggested that dusty air leaking from this area (through doors and open conveyer passages through the walls) contributed to worker exposure further down the production line (e.g., material handlers and forming line operators). Although a control room was available, and the spray-drier operator spent 10 percent of the shift there, the door was frequently open and the room was unventilated. The floor, walls, windows, and equipment inside the control room were coated with a light layer of dust (ERG-ceramic-tile, 2001).

Detailed information is not available for the two lowest results (41 μ g/m³ and 70 μ g/m³) associated with the pug mill operator subcategory (OSHA SEP Inspection Report 301986345).

Baseline Conditions for the Coatings Blenders Subcategory

Exposures for 10 workers in the coatings blenders subcategory, which includes forming line operators who use mixing and milling equipment to prepare coatings (glazes) for a portion of their shift (typically working as formers for any remaining periods), range between $18 \mu g/m^3$ and $228 \mu g/m^3$, with a median of $77 \mu g/m^3$. Eight results (80 percent) exceed $50 \mu g/m^3$, and three results (30 percent) exceed $100 \mu g/m^3$. The highest exposures ($228 \mu g/m^3$ and $190 \mu g/m^3$) are associated with a worker operating a sand dryer and coatings mixer in a brick coatings preparation room. LEV was present at the dryer and at transition points between the particulate screen, bucket elevator, and weight bin; at the bag dumping station for the mixer; and at the transfer point between the mixer and skid tub; however, the dryer LEV operated at air velocities less than one-half of the 250 feet per minute recommended by the American Conference of Governmental Industrial Hygienists (ACGIH, 2010) for toxic materials and was poorly aligned with the hopper. Another worker dumping bags and mixing coatings for a different production line at the same plant had a much lower exposure, however: only $18 \mu g/m^3$. Information on the controls associated with this other production line is not available (NIOSH ECTB 233-126c, 2000).

ERG reported that typical conditions for coatings blenders include the use of enclosed mixers and open transfer of silica-containing materials (ERG-GI, 2008). LEV is typically used to control dust generated by open, manual emptying of bags or boxes of silica-containing materials; however, this LEV is frequently inadequate.

Baseline Conditions for the Formers Subcategory

As Table IV.C-47 indicates, the 37 exposure results for formers, the subcategory of forming line operators who spend the entire shift at forming stations (without milling or mixing materials), range from $12 \mu g/m^3$

¹⁵⁹ At times, the airborne dust was sufficient to reduce visibility. Furthermore, the facility provided information indicating that 30 percent of the particles in the milled clay processed through the drier were less than 4 µg in size, suggesting that a substantial portion of the clay particles were in the respirable size range.

to 794 μ g/m³, with a median of 73 μ g/m³ and a mean of 124 μ g/m³. Twenty-one results (57 percent) exceed 50 μ g/m³, and 15 results (41 percent) exceed 100 μ g/m³.

The formers who primarily work with wet clay only (molding and extrusion processes, no coatings application) have the lowest range of exposures, from 13 $\mu g/m^3$ to 78 $\mu g/m^3$, with a median of 20 $\mu g/m^3$ (see Table IV.C-47). Only one of the 10 exposures exceeds 50 $\mu g/m^3$. In contrast, the three exposure results for formers dealing with pressing dry clay powder (pressing operations, no coatings application) are higher, ranging from 141 $\mu g/m^3$ to 188 $\mu g/m^3$. An automated air jet that blew residual clay powder from the molds several times per minute contributed to these workers' exposures (ERG-ceramic-tile, 2001). Data are not available to determine whether clay powder pressing operations have elevated exposures in the absence of air spray cleaning.

Coatings application operations (especially sand coating) are associated with some of the highest exposures in this industry (only pug mill operators have higher exposure levels). Fifteen formers who manually handled coatings (either during application or while refilling hoppers) had exposures ranging from $12 \,\mu\text{g/m}^3$ to $794 \,\mu\text{g/m}^3$, with a median of $105 \,\mu\text{g/m}^3$. Nine of the 15 results (60 percent) exceed 100 $\mu\text{g/m}^3$. The lowest exposures for manual coatings application were associated with slurry application rather than dry mix coatings. Not surprisingly, higher exposures were reported for workers dumping bags of dry silica-containing materials, especially sand. Formers using automated coatings equipment experienced somewhat lower exposures, but seven of the nine results (78 percent) still exceeded 50 $\mu\text{g/m}^3$. Based on this information, OSHA preliminarily finds that, except for workers primarily handling (wet) clay slurry, all forming line workers routinely experience high exposure levels, principally from working with dry sand or dry clay.

ERG-GI (2008) found that formers typically work near local exhaust ventilation hoods, which are generally associated with the automated dry coatings application equipment (ERG-GI, 2008). Other engineering controls are not normally present on the forming line. For example, in contrast to coatings blending areas, the hoppers along the forming line into which workers dump dry coating materials are not fitted with exhaust ventilation. Additionally, ERG-GI (2008) noted that LEV is not normally available at the workstations where formers apply coatings by hand, either to molds or to product. Due to the warm conditions in facilities operating drying ovens and kilns, workers often use pedestal or ceiling fans for comfort, which can disturb settled dust and disrupt the function of ventilation systems. Workers also commonly (at least daily) clean the forming line floors by dry sweeping and using shovels to clean up spilled material as necessary.

Overall Baseline Conditions Forming Line Operators

As noted for material handlers, ERG-GI (2008) observed various trends in the work practices and control technology available (or not) for forming line operators, which might be considered baseline controls. OSHA has determined, however, that across the industry, baseline conditions are best represented by the cross section of facilities reviewed for the exposure profile. OSHA preliminarily finds that the best description of current baseline exposures of forming line operators includes the full dataset available to OSHA for this job category (summarized in Table IV.C-47). Therefore, the median of 78 $\mu g/m^3$ for all material handlers represents their baseline exposure. OSHA recognizes that this determination likely underestimates the baseline exposure level for workers who operate pug mills and other clay-finishing equipment.

Additional Controls

Additional Controls for Material Handlers

Information presented in the exposure profile (Table IV.C-47) indicates that the median exposure level for all material handlers is $21~\mu g/m^3$, and these data range from 10 to $258~\mu g/m^3$. The data summarized for material handlers are not distributed equally, however, across all three subcategories. Although Table IV.C-47 shows that 70 percent of material handlers in this industry already experience exposure levels less than $50~\mu g/m^3$, 57 percent of loader operators and 50 percent of production line handlers currently have silica exposures exceeding $50~\mu g/m^3$ and therefore require additional controls. Among data for post-production handlers (handling finished products), only 14 percent exceeded that level.

The following paragraphs describe additional controls suitable for material handlers.

<u>Local Exhaust Ventilation</u>

To obtain reductions in silica levels in raw material handling areas, the primary control methods target dust emissions from hoppers, conveyers, and transfer points associated with material handlers' duties. Such control methods include covering conveyers and augmenting ventilation at existing enclosed transfer points to meet the ACGIH recommended air velocity of 150 to 300 feet per minute across all openings in the enclosures (ACGIH, 2010). NIOSH described an enclosed conveying system associated with grinding equipment, pug mills, silos, and mixers at a brick manufacturing facility (NIOSH ECTB 233-126c, 2000). This method has been used effectively in the foundry industry, in which sand systems operators and molders are routinely exposed to high levels of silica from sand and clay used for mold material in metal casting processes.

Some of the lowest results for these foundry industry job categories were associated with sand systems operators working in areas where sand transport systems were isolated (enclosed or pneumatic) and mullers (machines that process sand and clay, materials also used by the structural clay industry) were fitted with exhaust ventilation. For example, OSHA obtained a reading of 11 μ g/m³ (LOD) for a sand systems operator controlling a muller that had both the muller belts and sand elevator fully enclosed (OSHA SEP Inspection Report 108772377). Furthermore, NIOSH and OSHA evaluated pneumatic and enclosed systems to isolate the storage and transport of dry sand in two other foundries. The four results for the molder job category from these foundries include two results of 13 μ g/m³ (LOD) and one each of 20 μ g/m³ and 23 μ g/m³ (NIOSH ECTB 233-107c, 2000; OSHA SEP Inspection Report 122122534). At another foundry, OSHA reported a 65- to 70-percent reduction in exposures (from 140 μ g/m³ to 50 μ g/m³ and 42 μ g/m³) after the facility made improvements to sand delivery systems and exhaust ventilation systems throughout the facility (OSHA SEP Inspection Report 100494079). Further details on these improvements are not available.

If exposure levels remain elevated, another type of ventilation system is available for structural clay industry workers who spend a portion of the shift at a fixed location. A combination "push-pull"

ACGIH (2010, Chapter 13.50) recommends a minimum air flow of 150 feet per minute (fpm) across bin and hopper openings for manual loading operations; however, ACGIH also recommends air velocity of one-and-a-half to two times that rate (i.e., 225 fpm to 300 fpm) when conditions create conditions more dusty than during manual loading. The need for increased air velocity depends on the material flow rate (a front-end loader will add materials at a much greater material flow rate than manual transfers), dustiness (the material at this site was apparently very dusty), and the height the material falls (influenced both by hopper design and by material handler work practices). Furthermore, ACGIH recommends that the enclosure be "large enough to accommodate the 'splash' effect." For some dust controls, ACGIH suggests increasing the baseline air flow rate from 150 fpm to 250 fpm when the materials handled include toxic dusts.

ventilation system—designed to exhaust contaminated air near the source, while supplying a similar amount of clean air behind or above the worker's head—has been demonstrated to be very effective for other types of dust. Heinonen et al. (1996) determined in an experimental study (using dusty flour) that compared with general ventilation alone, breathing zone total dust concentrations were reduced by 98 percent (from $42,000~\mu g/m^3$ to $1,000~\mu g/m^3$ or less) when the work surface was fitted with exhaust ventilation (at the front, side, or as a downdraft) in combination with local clean air supply above the worker's head. Although this study tested high concentrations of total dust, OSHA believes this type of "push-pull" ventilation system would be similarly effective for reducing levels of silica dust in the breathing zone of structural clay workers (in this case, to be considered "clean air," the air provided to the area around the worker would be free of silica). OSHA notes that for such a system to function, competing air from pedestal fans must be eliminated; however, the temperature of the provided air can be adjusted for worker comfort. A system similar to this was used on the packaging line (and also at a forming station) at a facility evaluated by NIOSH (NIOSH ECTB 233-126c, 2000).

Reduced Spillage and Adhesions Associated With Conveyers

Conveyer belts can be modified (e.g., using troughed belts or V-rollers) to reduce spilled material that also can contribute to silica exposure levels. NIOSH reported that the brick manufacturing facility that used LEV on various milling, mixing, and storage equipment (mentioned previously) also used alternative conveyers such as these to reduce the amount of raw materials lost from the conveyer belts associated with the raw material grinding equipment (NIOSH ECTB 233-126c, 2000). The same facility also uses conveyer belt cleaning (belt-scraping, rinsing) to limit the spread of silica dust from drying clay adhered to the belts. Although the benefit of this control method has not been quantified, it is part of the overall control package used by this facility to limit silica exposures, to the extent that just 1 of 32 samples (3 percent) exceeded $100~\mu g/m^3$ in the plant (compared with 28 percent for the industry as a whole, as indicated by Table IV.C-47).

Housekeeping

Housekeeping that minimizes the amount of spilled materials and settled dust in areas of vehicular traffic reduces silica exposure that occurs when those sources are crushed or disturbed by passing traffic (including machinery operated by material handlers).

Thorough, professional-level cleaning in association with improved housekeeping procedures (to maintain cleanliness) can reduce exposures in facilities where dust has been allowed to accumulate. For example, professional cleaning in a brick manufacturing facility removed "several inches" of dust from floors, as well as from all structural and equipment surfaces (Brick Industry Consultant A, 2003). Post-cleaning air samples indicated a "dramatic" decrease in exposure levels (in some cases, a greater than 90-percent reduction, to levels less than 50 $\mu g/m^3$) for workers in areas where dusty materials were transported or handled. The cleaning also allowed the facility to identify and prioritize specific sources of dust for future control efforts.

Poor housekeeping can contribute substantially to worker exposure levels in all material handling areas.

Enclosed Cabs

For facilities where elevated exposures persist for material handlers using vehicular material handling equipment (e.g., loader operators), well-sealed, air conditioned cabs maintained under positive pressure with filtered air provide an effective control option. The information summarized in ERG-GI (2008) suggests that most (essentially all) front-end loaders used in this industry are equipped with cabs.

Although data documenting the effectiveness of such enclosures at structural clay manufacturing facilities are not available (most samples available to OSHA for operators using cabs were obtained with cab windows open), data from Hall et al. (2002) from the agricultural industry are helpful. The agricultural industry is interested in protection against respirable and total dust, including from pesticides, some of which can be more toxic than silica. The data from Hall et al. (2002) suggest that a 94- to 98.5-percent reduction in respirable dust¹⁶¹ (inside, compared with outside the cab) can be achieved on tractors (a type of heavy equipment) fitted with well-sealed, air-conditioned, and filtered cabs.¹⁶²

Operators working in heavy equipment cabs designed to meet the American Society of Agricultural Engineers' (ASAE)¹⁶³ standard (ASAE S525 – Engineering Control of Environmental Air Quality) should experience exposure reductions in the same general range as described by Hall et al. (2002), who tested cabs with specification similar to the ASAE standard. Lighter equipment, such as forklifts, might achieve lower exposure reduction, but a functional air conditioning system and careful maintenance should offer notable exposure reduction (e.g., 50 to 90 percent instead of 94 to 98.5 percent).¹⁶⁴

Although these cabs require regular maintenance to function properly, and concerns exist regarding the construction standards of new heavy equipment, OSHA estimates that appropriately fitted and maintained cabs would offer an exposure reduction of at least 90 percent (the low end reported for larger equipment) for material handlers, including those using front-end loaders (ERG-GI, 2008).

 $^{^{161}}$ Hall et al. (2002) tested two cabs manufactured or retrofit to a condition similar to the ASAE S525 standard criteria. The cabs were found to offer mean protection factors of 43 (manufacturer's cab) and 16 (retrofit cab) for particles smaller than 1.0 μm . These protection factors equate to exposure reductions of 98.5 percent (manufacture's cab) and 94 percent (retrofit cab). When tested against particles 3.0 μm and larger, the cabs were found to provide protection factors of 200 and greater. Although more than half of the mass of respirable particles is usually particles greater than 3 μm , a portion of respirable particles are usually smaller. Therefore, OSHA has used the protection factors for the smaller particles to ensure workers are fully protected, although this means that OSHA is underestimating the benefit these tractor cabs likely offer workers exposed to respirable particles.

¹⁶² "At least three criteria must be met for a cab to fulfill properly its function: pressurization, minimum penetration with respect to the main pollutants, and cleaned airflow rate" (Bemer et al., 2009). The precise reduction depends on cab pressurization to exclude particles, particle penetration through filters, and clean airflow rate (Bemer et al., 2009).

¹⁶³ In 2005 the American Society of Agricultural Engineers (ASAE) changed its name to the American Society of Agricultural and Biological Engineers (ASABE).

by the surface and underground mining industry, where workers are also exposed to high levels of mineral dust that contains silica, sealed cabs can reduce (total) silica exposure levels by 42 percent to 99 percent (original equipment or retrofit). In most cases, when a loader or truck cab had a sufficiently filtered ventilation system which pressurized the cab by at least 0.04 inches of water (preferably 0.2 inches of water, or at least 25 cubic feet per minute (CFM) for a well-sealed cab), silica exposure reduction was 91 percent (MSHA, no date). Cabs offered less effective dust control (less than 80 percent reduction) when seals were poorly maintained or air filtration inadequate (e.g., metal mesh filters rather than higher efficiency paper filters). However, MSHA concluded that "a cab without additional controls provides some additional protection to the worker, because it protects the worker from peak concentrations" (MSHA, no date). Furthermore, MSHA also concluded that housekeeping practices should include vacuuming or wet wiping the cab interior daily. Some loaders tested by MSHA (Caterpillar models 992G, 992C and 980F) were similar to the model used by a structural clay facility evaluated by NIOSH (Caterpillar model 950F) (NIOSH ECTB 233-126c, 2000).

Using Low-Silica Gravel on Floors

In the kiln area of one structural clay facility, the wheels on a lift that was transporting product crushed a mixture of high-silica gravel floor covering and spilled broken product. Plant personnel reported that the material on the floor contained up to 98 percent silica content, which became a source of exposure when dust from the crushed material became airborne. The highest result (258 μ g/m³) for material handlers is attributed to this exposure source (OSHA SEP Inspection Report 301986345). Another facility, described by NIOSH, used "washed limestone pea gravel"(a low-silica stone) on kiln floors, instead of the original brick chips and dust, as the wheels on mobile equipment tend to pulverize the material and were contributing to worker silica exposure in the enclosed kiln (NIOSH ECTB 233-124c, 2000). Workers covered the pea gravel with aluminum plates to provide thermal protection, improve forklift traction, and reduce dust. Results of 57 to 60 μ g/m³ were associated with material handlers who worked on the pea gravel surface but also performed dry sweeping and spent half the shift handling unfired dry clay (two additional sources of silica exposure). NIOSH commented that the potential for silica exposure remains, due to bricks that break during firing. OSHA notes that it might be necessary to replace the pea gravel frequently to avoid increasing amounts of broken product accumulating in the gravel where it will be crushed by passing in-plant vehicles

Wet Methods, Dust Suppressants, and Conducting Operations on Damp Clay

Wet methods are a particularly effective means of controlling silica, as water spray can help capture airborne dust, and damp surfaces release less dust than dry surfaces. NIOSH ECTB 233-108c (2000) reports six exposure results, all less than 30 $\mu g/m^3$ (ranging from 12 $\mu g/m^3$ to 29 $\mu g/m^3$) for post-production material handlers who operated *automated* product handling equipment equipped with spray nozzles. At the same facility, NIOSH also collected an additional six samples indicating similar exposure levels (ranging from 11 $\mu g/m^3$ to 36 $\mu g/m^3$) for material handlers working in an area where directional water-spray nozzles were used to reduce dust released from fired products before the products were *manually* unloaded (NIOSH ECTB 233-108c, 2000). At this facility, the spray heads could be triggered by the material handlers or set to operate automatically. An additional water hose with hand sprayers also was available for manual dust control. This report demonstrates how facilities can use both automatic and manual water sprays to optimize dust control and achieve modest exposure results to control dust from fired products.

Wet methods also can reduce exposure where silica-containing dust in the yard contributes to the overall exposure levels of material handlers. Dust suppressants or frequent wetting using a water spray truck can limit the amount of dust that becomes airborne. For example, a brick manufacturing facility described in NIOSH ECTB 233-124c (2000) sprayed the yard (product storage area) with water five times per day. Five of the six results obtained for material handlers operating in the area were below the LOD ($16 \mu g/m^3$ in this case), while one result was $43 \mu g/m^3$ (NIOSH ECTB 233-124c, 2000).

Dust suppressants, such as foam sprays, can also be applied to conveyers to prevent silica dust from becoming airborne as raw materials are transferred between work areas. As noted earlier (under baseline conditions for material handler – loader operator subcategory), this method is in use at a structural clay facility visited by NIOSH and is associated with a silica result of $56 \,\mu\text{g/m}^3$, despite visible dust accumulation in the loader cab (NIOSH ECTB 233-124c, 2000). OSHA has preliminarily determined that more frequent cleaning of the loader cab would minimize dust and reduce the operator's silica

¹⁶⁵ The foam application system consisted of "a drum of citrus-based surfactant, a control panel, hoses, a manifold, and 4 spray heads. This system worked by blanketing the surface of the conveyed material with foam, preventing the generation of silica containing aerosols" (NIOSH ECTB 233-124c, 2000).

exposure to a level of $50 \mu g/m^3$ or less (a reduction of at least $6 \mu g/m^3$, or 12 percent). NIOSH has identified dust from floors and surfaces in cabs as a source of operator exposure.

Another way to reduce exposures to silica dust while transporting unfired clay is to transport or manipulate the clay objects while they are still slightly damp rather than fully dried. For example, if bricks are handled (to transfer or further process them) while still slightly damp, they will be less dusty, and material handlers (and other production workers) will experience less silica exposure. An informal review of the data available to OSHA shows that airborne silica concentrations for damp clay operations range from less than or equal to $12 \,\mu\text{g/m}^3$ (LOD) to $91 \,\mu\text{g/m}^3$, with a median exposure of $28 \,\mu\text{g/m}^3$. In contrast, manual operations of dried clay are associated with exposures ranging from $61 \,\mu\text{g/m}^3$ to $216 \,\mu\text{g/m}^3$, with a median exposure of $103 \,\mu\text{g/m}^3$. These results support the intuitive conclusion that work involving dried clay is dustier than work involving damp clay. OSHA acknowledges, however, that even when workers can perform manual operations on damp clay, the clay eventually must be allowed to dry (e.g., prior to kiln firing). Furthermore, spilled damp clay must be cleaned up before it dries and becomes an ongoing source of exposure.

Automation

Automated material handling and transfer equipment offers another opportunity to reduce worker exposures. Another informal review of the exposure data available to OSHA (see Table IV.C-47) shows that post-production material handlers performing the tasks of unloading kilns and stacking finished structural clay products had lower exposure levels when they used automated material handling equipment (all nine results less than 50 μ g/m³, with eight of those results also less than 25 μ g/m³) than did workers performing this work by hand (NIOSH ECTB 233-124c, 2000). For manual work, 25 percent of 19 total results exceeded 50 μ g/m³ and one exceeded 100 μ g/m³. Automatic material handling tools include kiln unloading equipment, automated transfer, and stacking and bundling or strapping equipment.

Summary of Controls for Material Handlers

Although most exposure control methods for material handlers are universally beneficial for all workers in this job category, some of the controls discussed previously are more appropriate for certain material handler subcategories than others. The following paragraphs summarize the control methods suitable for workers in the material handler subcategories.

Loader Operators Subcategory: The primary controls for loader operators are LEV and suitable enclosures at receiving hoppers, conveyers (including conveyers designed to limit spillage), and transfer points. Other controls include rigorous housekeeping and well-sealed enclosed cabs with air conditioning and air filtration systems.

Production Line Handlers Subcategory: Exposure control methods for this subcategory of material handlers include using low-silica stone (e.g., limestone) in place of high-silica gravel on kiln floors (where it can be crushed). Workers can also handle formed clay products in a slightly damp, rather than fully dried, state, which is less dusty. These workers will also experience a reduction in exposure when housekeeping is improved and the exposure levels of other workers in the immediate area are better controlled (e.g., forming line operators and the associated sand application processes).

Post-Production Line Handlers Subcategory: The primary controls for this group of workers include wet methods (water spray on fired product and in the yard) and automation.

Additional Controls for Grinding Operators

The data summarized in Table IV.C-47 show that 29 percent of grinding operators' exposures are already below 50 $\mu g/m^3$. OSHA finds that additional controls are needed to reduce the exposures of 71 percent of grinding operators in the structural clay products industry.

Combination Engineering Controls

A combination of engineering controls led to reduced worker exposure during grinding operations at one structural clay products facility (NIOSH ECTB 233-108c, 2000). This facility uses troughed conveyors to reduce spillage of raw materials as they are transferred to the grinding equipment, enclosed grinding machinery to minimize dust release during the grinding process, a covered conveyor to reduce dust release from ground materials as they are transferred to storage silos, and sealed bins to reduce dust release from storage units. This facility also uses raw materials with higher water content (20 percent) than the facilities described in other NIOSH reports (9 percent to 13 percent). NIOSH obtained exposure readings of 67 μ g/m³ and 13 μ g/m³ for the grinding operator at this facility. These values are substantially lower than the median of 100 μ g/m³ for this job category (see Table IV.C-47). Although the report does not indicate conditions that would explain the difference between the two readings, it does suggest that compressed air is used for cleaning and contributes to worker silica exposures. Based on information presented in the following section regarding the use of compressed air, OSHA preliminarily finds that both these levels would likely have been lower (e.g., both less than 50 μ g/m³) if the workers had not used compressed air for cleaning.

Eliminating Use of Compressed Air for Cleaning

As noted previously, compressed air for cleaning remains an ongoing source of silica exposure for grinder operators. OSHA has preliminarily determined that facilities eliminating the use of compressed air for cleaning can reduce the exposure levels of grinder operators in the structural clay industry.

NIOSH consistently cites the elimination of compressed air for cleaning when recommending methods to reduce silica exposures in this and other industries, such as the concrete products, refractory products, and foundry industries, which also use substantial quantities of sand, and clay- and concrete-based materials (NIOSH ECTB 233-109c, 1999; NIOSH ECTB 233-127c, 2000; NIOSH ECTB 233-128c, 2000; NIOSH HETA 97-0004-2642, 1997).

ERG-GI (2008) discusses the impact that compressed air use has on worker silica exposure levels in foundries. In that document, ERG describes an informal review of 26 results for cleaning/finishing operators working at five foundries where NIOSH or OSHA had observed use of compressed air to blow sand and clay molding material (similar to the silica-containing mineral dust found in structural clay facilities) off metal castings or equipment. The associated exposure levels were extremely high, as indicated by the median of 487 μ g/m³ for those 26 results. Furthermore, all 26 results (100 percent) were 230 μ g/m³ and higher. This median is more than twice as high as the overall median of 196 μ g/m³ for all 213 cleaning/finishing operator results shown in the exposure profile for cleaning/finishing operators in Section IV.C.8 – Foundries. Among this larger general group, a lower proportion (23 percent) exceeded

¹⁶⁶ These 213 values used in the exposure profile include the 26 documented as associated with compressed air use (i.e., compressed air was used to the extent that NIOSH and OSHA commented on it in the sampling notes). Compressed air might also have been used incidentally while some of the other results were being collected, but not to the extent that it attracted attention sufficient attention to be recorded and was noted in the sampling notes. If the 26 results had not been included in the exposure profile for cleaning/finishing operators, the difference between the medians would have been even greater.

 $250 \,\mu\text{g/m}^3$ and more than one-third (37 percent) were $50 \,\mu\text{g/m}^3$ or less. OSHA notes that the exposure profile median includes some values associated with compressed air use (i.e., 26 results described above) and might include some results for which compressed air usage occurred but was not documented. Even so, the group of results linked to overt use of compressed air is markedly higher than the overall group, of which the 26 results are a subset, suggesting a relationship between use of compressed air and higher exposures.

As alternatives to cleaning with compressed air, preferable practices include vacuuming using appropriately filtered vacuums and wet cleaning methods.

Operator Control Booth

Operator control booths (or rooms) can limit silica exposures to low levels (often below the LOD) during the time that the operator spends in the booth. ERG-GI (2008) noted that control booths are widely used for grinder operators in the structural clay industry; however, these booths are not necessarily maintained optimally to limit worker silica exposure levels. To provide a low-exposure environment, a control booth must be well-sealed, supplied with clean air, under slight positive pressure to help keep dusty air out, and regularly cleaned to remove any dust that is tracked in.

At a structural clay facility visited twice by OSHA, an area sample collected inside a ventilated control room used by the grinder operator resulted in an average silica concentration of $111 \,\mu\text{g/m}^3$ (OSHA SEP Inspection Report 300523396). Before OSHA's next visit, the facility sealed gaps around the main entrance door to the control room, which reduced airborne silica levels inside the room to one-tenth the original level. A 6-hour area sample taken on the second visit showed an average respirable quartz concentration of $11 \,\mu\text{g/m}^3$ inside the control room, suggesting that the room provided a substantial level of protection for any worker inside.

During the two visits, OSHA also collected personal samples for the grinder operator. The silica exposure level of the grinder operator was $362 \mu g/m^3$ during OSHA's initial visit and fell to $101 \mu g/m^3$ during OSHA's second visit, a 72-percent reduction.¹⁶⁷ Although the report does not indicate the relative amount of time the operator spent in the control room on the two sampling dates, the report attributes this reduction in the grinder operator exposure level to the improvements in the control booth.

Exhaust Ventilation

The use of effective exhaust ventilation systems for clay grinding machines is another option for reducing worker exposures. Although no information specific to the structural clay industry is available, ERG-GI (2008) identified two studies that evaluated exhaust ventilation systems for activities analogous to grinding operations (i.e., rock crushing, which often involves a similar action to this type of grinding, and raw clay processing, which is equally as dusty as structural clay). An LEV system installed at a rock crushing plant (processing rock containing as much as 60 percent silica) was associated with reductions of silica ranging from 20 to 79 percent. In another study, a total mill ventilation system (TMVS) for a clay processing facility that performed crushing and screening operations was associated with an average respirable dust reduction of 40 percent throughout the facility. OSHA estimates that similar reductions in respirable dust levels in structural clay products facilities would result in reduced silica exposures for grinding operators (ERG-GI, 2008).

¹⁶⁷ On the first sampling date the grinder operator exposure is assumed to have been concurrent with the area sample in the control room. The second grinder operator sample is known to have been obtained concurrently with the second area sample collected in the control room (OSHA SEP Inspection Report 300523396).

Housekeeping

Another potential control is diligent housekeeping with HEPA-filtered vacuums and dust suppressants to prevent settled dust from accumulating in grinding areas and control rooms. The use of HEPA-filtered vacuums and dust suppressants to clean grinding areas rather than dry sweeping and shoveling also can reduce re-suspension of silica-containing dust. Although the effectiveness of HEPA-filtered vacuums and dust suppressants for reducing exposures of grinding operators has not been quantified, a NIOSH report indicates that dry sweeping and shoveling of "fine material" in the grinding area is a notable exposure source that can be eliminated by using a vacuum cleaner equipped with an appropriate filter (NIOSH ECTB 233-124c, 2000). Additionally, as previously mentioned under additional controls for material handlers, dramatic exposure reduction was associated with professional-level cleaning in areas where raw materials were handled (Brick Industry Consultant A, 2003). At that facility, the exposure level of most workers was reduced dramatically, in some cases by over 90 percent, to levels of 50 µg/m³ or less.

Additional Controls for Forming Line Operators

The Table IV.C-47 exposure profile indicates that 65 percent of forming line operators currently experience exposure levels above 50 $\mu g/m^3$. As is the case for material handlers, the data for this job category are not equally distributed across all three subcategories: only 14 percent of pug mill operators and 20 percent of coatings blenders, but 43 percent of formers, experience exposures below 50 $\mu g/m^3$. Additional controls are needed to reduce the exposures of the remaining workers in this job category.

The following paragraphs outline additional controls for forming line operators.

Combination Engineering Controls

Pug mill operators and formers on the forming line are exposed to silica dust released as dry materials fall into the hopper and mill. Mixers with doors that seal well and enclosed, ventilated mixer hoppers can limit this dust release. For example the installation of a mixer equipped with a ventilated enclosure and improved water feed system is associated with a 79-percent reduction in respirable quartz exposure readings (OSHA SEP Inspection Report 300523396). This exposure reduction was achieved after an initial reading of 1,028 μ g/m³ (the highest among the data available to OSHA for this industry) was obtained for a forming line operator who monitored a mixer equipped with LEV and a partial enclosure (OSHA SEP Inspection Report 300523396). The enclosure had several openings, and its doors did not seal properly, allowing dust to escape. Later, the facility installed another mixer with an improved enclosure and a water-feed system to wet the materials during mixing. A reading of 214 μ g/m³ was obtained for an operator who monitored the second mixer (OSHA SEP Inspection Report 300523396). The operational status of the first pug mill at the time of this later reading is unclear. Although this level still exceeds allowable limits, it represents a notable decrease in worker exposure level. Improved ventilation of the mixer hopper—for example, to levels recommended by ACGIH (2010)—might further reduce operator exposure.

Local Exhaust Ventilation

Bag dumping stations capture silica dust during coatings preparation activities performed by some forming line operators (coating preparers and formers). To be effective, the stations require properly ventilated enclosures, which capture dust release during both bag emptying and bag disposal. OSHA has not identified any structural clay products facilities using bag dumping stations that effectively controlled dust generated by bag emptying and disposal. Comparable respirable quartz exposure monitoring data exist, however, for workers using bag dumping stations to empty similar 50-pound bags of silicacontaining materials at a paint manufacturing facility (ERG-paint-fac-A, 1999). A bag dumping station

with fully functioning LEV was found to reduce silica exposure by at least 95 percent (from 363 μ g/m³ to 12 μ g/m³). The stations consist of hoppers topped with grates enclosed by LEV hoods. After each bag is emptied, the worker releases it, and suction automatically pulls the bag into the ventilation system and transfers it to an enclosed storage area. Bag dumping stations with other types of ventilated bag disposal equipment should be equally effective as long as they capture dust as bags are compressed. Ventilated bag dumping and bag disposal stations are readily available from commercial sources (Whirl-air, 2003; Carolina Conveying, 2010; Chicago Conveyor, 2004; Flexicon, 2009; Vac-U-Max, 2006a).

Automated Coatings Transfer System

Automated material transfer equipment can also help reduce dust released as hoppers are filled (e.g., hoppers that hold sand coatings distributed onto bricks along forming lines). For example, at a facility inspected by OSHA, an 86-percent reduction in respirable quartz exposure readings occurred after management installed an enclosed, automated sand transfer system (OSHA SEP Inspection Report 300523396). Initially, a reading of $501~\mu\text{g/m}^3$ had been obtained for a forming line operator who manually cut open and emptied 120 50-pound bags of silica sand into a hopper at an unventilated sand charging station (OSHA SEP Inspection Report 300523396). After the inspection, the facility installed an automated system with enclosed conveyors to transfer sand to the hopper from a storage silo. During a subsequent inspection, a reading of $70~\mu\text{g/m}^3$ was obtained for an operator who monitored the automated transfer system (OSHA SEP Inspection Report 300523396). The inspection report observed that sand leaked from the conveyor leading to the hopper because the conveyor was not the correct size. OSHA notes that with tightly sealed correctly-sized components, it is possible that exposures could be reduced further using this type of equipment.

Housekeeping

As discussed previously (see the discussion of additional controls for material handlers in this industry), considerable exposure reduction was associated with professional-level cleaning in areas where raw materials were handled. OSHA preliminarily finds that thorough cleaning and rigorous housekeeping offers the same benefit (exposure reductions of 90 percent, in many cases to less than 50 μ g/m³) in other plant areas that have accumulated dust. Much of the dust is of similar origin, so it can be expected to behave similarly. Once emissions from grinding and conveying equipment have been reduced, eliminating this source of exposure is as effective in the grinding area as in other material handling areas.

Summary of Controls for Forming Line Operators

Although most exposure-control methods for forming line operators are effective for all workers in this job category, some of the controls discussed previously are more appropriate for certain subcategories than others. The following paragraphs summarize the control methods suitable for workers in the individual forming line operators subcategories.

Pug Mill Operators Subcategory: The primary controls for this group of workers include improved enclosures for clay finishing equipment (mills, spray driers, conveyers), LEV fitted to the equipment enclosures, and water-feed systems that help reduce dust by wetting the dry clay. In work areas where dust has accumulated, improved housekeeping also helps reduce silica exposure levels.

Coatings Blenders Subcategory: For this subcategory, which prepares coatings mixtures for structural clay products, the primary control is LEV (particularly in the form of bag dumping stations, bag disposal equipment, and LEV for mixing equipment).

Formers Subcategory: Workers in this subcategory tend equipment that shapes bricks and applies sand coatings for tint or texture. Where the sand hopper is at the production line, these worker will also benefit from LEV in the form of a ventilated bag dumping station or batch-receiving hopper and bag disposal units. Where sand-based coatings are delivered from the coatings blending area by conveyer, enclosed and ventilated conveyers will be required. In both cases, formers will require coating sand application zones with LEV that enclose the coating process and capture silica dust before it spreads through the work area.

Feasibility Finding

Feasibility Finding for Material Handlers

Based on Table IV.C-47, OSHA preliminarily concludes that 70 percent of material handlers already experience exposure levels of $50~\mu\text{g/m}^3$ or less. The same level of $50~\mu\text{g/m}^3$ or less can be achieved for the remaining 30 percent of workers in this job category most of the time by using a variety of situation-specific controls. Based on the information presented earlier in this section, OSHA has preliminarily determined that the controls necessary for this job category include covering, ventilating, and modifying conveyers; augmenting ventilation at transfer points; using well-maintained environmental cabs (for loader operators); installing push-pull ventilation (for workers performing manual transfers); using water sprays where practical (storage yards, roads, in areas where workers handle kiln-fired finished product); and performing professional cleaning. A summary of the control methods suitable for workers in the individual material handler subcategories was presented at the end of the discussion on additional controls for material handlers in this industry.

LEV is needed at hoppers, conveyers, and screens to reduce dust during material transfer and processing. In the foundry industry, where workers also move dry mixtures of sand and clay, silica exposures were reduced from a 140 μ g/m³, a level similar to that found in the structural clay industry, to 50 μ g/m³ and 42 μ g/m³ by making improvements to the sand handling equipment and exhaust ventilation systems (OSHA SEP Inspection Report 100494079).

Where additional dust control is necessary (e.g., in crushing areas), process equipment can be further isolated in an enclosed work room and foam dust suppressants applied. A loader operator at a brick manufacturing facility using this type of system had a silica exposure level of 56 μ g/m³ (NIOSH ECTB 233-124c, 2000). NIOSH noted an accumulation of dust on the loader cab interior, suggesting that results could be lower (i.e., below 50 μ g/m³) if the cab interior were kept clean.

OSHA has determined that those material handlers who are able to spend the entire shift in an environmental loader cab can maintain silica exposures at or below 25 $\mu g/m^3$. This finding is based on a conservative estimate of respirable dust reduction of 90 percent,. This estimate is lower than the reductions of at least 94 percent and 91 percent reported by Hall et al. (2002) and MSHA (no date), respectively, for well-maintained, efficiently filtered, and ventilated environmental cabs used in other industries that also generate substantial mineral dust (agriculture, mining). This 90-percent reduction would reduce a silica result of 157 $\mu g/m^3$ (the highest level among the data available to OSHA for a frontend loader operator in this industry) to less than 16 $\mu g/m^3$ (the LOD for an 8-hour sample). Although some loader operators must spend a portion of the shift working in dusty environments outside loader cabs, these workers will decrease their average daily silica exposure in proportion to the amount of time they are able to spend in a controlled cab.

In kiln areas where high-quartz aggregate covers the floor, material handler silica exposures from this source can be all but eliminated by switching to an alternate low-silica stone (e.g., low-silica limestone pea gravel), but it is necessary to also replace the gravel frequently so broken bricks are not incorporated

into the mix crushed under wheels. Results of $57~\mu g/m^3$ to $60~\mu g/m^3$ were associated with workers operating close to kiln-area gravel with low silica content at a brick manufacturer (NIOSH ECTB 233-124c, 2000). Based on the other work also performed by these workers (dry sweeping and handling unfired dry clay products), OSHA preliminarily concludes that their exposure level might have been lower if other sources of silica had also been better controlled. In contrast, a material handler at a brick manufacturer using high-silica gravel on the kiln floor (reportedly 98-percent silica) experienced a silica result of $258~\mu g/m^3$, attributed to gravel pulverized under vehicle wheels (OSHA SEP Inspection Report 301986345). Assuming all other conditions were equal, the low-silica aggregate reduced average worker exposure levels by at least 77 percent.

For workers who handle kiln-fired or unfired structural clay products at fixed locations (e.g., load and unload kiln carts), an alternate type of LEV reduces exposures to acceptable levels. In an experimental study using dusty flour, Heinonen et al. (1996) demonstrated that push/pull ventilation reduced total dust concentrations by 98 percent compared to general ventilation alone (from 42,000 μ g/m³ to 1,000 μ g/m³ as total dust). ¹⁶⁸ OSHA acknowledges that this control might not reduce exposures to the same extent in a workplace where other ventilation systems and heat currents competed with the ventilation; OSHA judges that a 90-percent reduction is more realistic. Among the results for production line handlers available to OSHA, the highest value of 258 μ g/m³ would be reduced to 26 μ g/m³ by a ventilation system control that offered a 90-percent reduction.

Additionally, many material handler exposures (including those of production line and post-production handlers) will be further reduced when silica levels associated with other adjacent job categories are also reduced below the proposed permissible exposure limit (PEL) of 50 $\mu g/m^3$. If material handler exposures in a structural clay facility continue to be elevated, rigorous housekeeping will also be necessary, beginning with a professional-level cleaning. Post-cleaning air sampling indicated a dramatic reduction decrease in exposure levels (in some cases greater than 90 percent) for workers in areas where dusty materials were transported or handled. Most worker exposures were reduced to levels less than 50 $\mu g/m^3$ (Brick Industry Consultant A, 2003).

Based on the information presented here, OSHA preliminarily concludes that the control methods listed above will reduce the exposures of most material handlers to levels of $50 \mu g/m^3$ or less most of the time.

Wet methods and automation also remain options for controlling dust released during some material handler functions. Among the data available to OHSA, all nine results associated with automated material handling in structural clay plants were less than 50 $\mu g/m^3$ and eight of the nine results were less than 25 $\mu g/m^3$. Many of these results were also associated with wet methods. For material handlers who operated automated product handling equipment equipped with spray nozzles, four of six exposures were less than or equal to 12 $\mu g/m^3$ (LOD), and the remaining two were 30 $\mu g/m^3$ or less (NIOSH ECTB 233-108c, 2000).

¹⁶⁸ In most dusty workplaces, the level of total dust is considerably higher than the respirable dust. In turn, silica levels are a fraction of the respirable dust levels. This ratio is demonstrated in research by Foreland et al. (2008), who measured total dust, respirable dust, and silica concentrations in the Norwegian silicon carbide industry and found the average (arithmetic mean) of two values for samples obtained for one job category in one facility were 22,000 μg/m3 total dust, 1,300 μg/m3 respirable dust, and 23 μg/m3 respirable quartz. OSHA preliminarily finds that a ventilation system that reduces total dust levels from 42,000 μg/m3 to 1,000 μg/m3 (regardless of whether the dust is flour or clay) can reasonably be expected to reduce silica levels dramatically too. Even if real-world performance of the exhaust ventilation system for controlling respirable quartz offers an exposure reduction of just 90 percent, then the ventilation will still reduce the maximum silica value for this job category (258 μg/m3) to a level of 26 μg/m3.

Feasibility Finding for Grinding Operators

Based Table IV.C-47, OSHA preliminarily concludes that exposure levels of 50 μg/m³ or less have already been achieved for 29 percent of grinding operators. The silica exposures of most of the remaining 71 percent of grinding operators can be controlled to the same level by using a combination of controls, including well-enclosed grinding equipment, conveyor enclosures, dust suppressants or water spray on raw materials, covered or troughed conveyors, tightly sealed storage units, and professional-level cleaning. A facility that used a combination of troughed conveyors, enclosed grinding machinery, covered conveyors, sealed bins, and raw materials with higher water content achieved exposures of 67 µg/m³ and 13 μg/m³ for a grinding operator (NIOSH ECTB 233-108c, 2000). No information is available on exposure levels at this plant without these controls in place; however, OSHA notes that most of the highest exposure levels for this job category are associated with poorly sealed, leaking equipment. In contrast, completely enclosed equipment with exhaust ventilation can be expected to nearly completely control the source of dust emissions regardless of how severely the original equipment leaked dust; therefore, results of 67 µg/m³ and 13 µg/m³ can be expected by any plant that takes these steps. In plants with older equipment, implementing these steps might mean replacing grinders and conveying equipment not originally designed to be fully enclosed. Furthermore, although the NIOSH report does not identify reasons for the difference between the two exposures (67 µg/m³ and 13 µg/m³), it does indicate that compressed air was used for cleaning.

OSHA also preliminarily concludes that, in addition to the controls listed previously, by switching from the use of compressed air to HEPA-filtered vacuums for cleaning and by using a well-sealed control booth during at least one-third of the shift, most grinder operator exposures will be reduced to levels of 50 µg/m³ or less most of the time. 169 OSHA bases this conclusion on information outlined in the section on additional controls for grinder operators. Specifically, the use of compressed air for cleaning is associated with markedly elevated exposure levels (e.g., in the foundry industry, where workers also manipulate sand and clay), and the median exposure level for 26 cleaning/finishing operators using compressed air was 487 µg/m³, more than twice the median for all cleaning finishing operators in that industry (ERG-GI, 2008). Furthermore, a structural clay industry grinding operator control room with an average respirable quartz concentration of 11 µg/m³ inside the control room provides a substantial level of protection for any worker inside. A foundry with elevated operator exposure levels repaired an existing control room to create such a space (OSHA SEP Inspection Report 300523396). If the operator described in the previous paragraph (i.e., silica exposure level of 67 µg/m³ with a combination of controls in place) had also used a control room (e.g., 12 µg/m³)¹⁷⁰ for one-third (33 percent) of the shift, the exposure level of that operator would have been reduced to 50 µg/m³. By also eliminating the use of compressed air for cleaning (which is a prohibited practice under paragraph (f)(3)(ii) of the proposed rule when it could contribute to exposures above the PEL), OSHA estimates that such a worker can experience silica exposure levels well below 50 μ g/m³.

Elevated exposures can still occur during discrete activities, such as opening the grinder housing doors. In cases where a grinder must inspect the area inside the sealed doors enclosing the grinder, the operator must deactivate the grinder and let the LEV evacuate dusty air before opening the doors. If this is not possible, the operator must wear respiratory protection to inspect the grinder. If the ventilation system is running and the grinder is turned off (but not evacuated), a respirator that provides an applied protection

 $^{^{169}}$ Approximately one-third of an 8-hour shift (i.e., 160 minutes) is the amount of time during which OSHA estimates a 67 µg/m3 exposure would need to be reduced to a typical limit of detection (12 µg/m3) in order to achieve an exposure of 50 µg/m3 or less.

 $^{^{170}}$ In this example 12 $\mu g/m3$ is used instead of the reported value of $11\mu g/m3$ because 12 $\mu g/m3$ is the typical LOD for an 8-hour sample.

factor (APF) of 10 (e.g., a half-facepiece respirator) should offer adequate protection under the proposed PEL of 50 µg/m³. The maximum use concentration (MUC) for such a respirator is 500 µg/m³.

Feasibility Finding for Forming Line Operators

Based on the data shown in Table IV.C-47, OSHA preliminarily concludes that 35 percent of forming line operators already experience results of $50 \,\mu\text{g/m}^3$ or less. Employers of the remaining 65 percent of forming line operators can achieve exposure levels below $50 \,\mu\text{g/m}^3$ for most of these workers by a combination of control measures. These controls include rigorous housekeeping, starting with thorough professional cleaning; well-ventilated and enclosed mills, mixers, hoppers, and conveyers; tightly-sealed storage units; enclosed, automated sand transfer systems or bag dumping stations with LEV; exhaust-supply ventilation at workstations, and elimination of compressed air for cleaning. Wet-clay formers will also experience reduced silica exposure when the silica exposures associated with other adjacent activities (e.g., pug mill operators and sand coating activities) are also reduced to levels of $50 \,\mu\text{g/m}^3$ or less. A summary of the control methods suitable for workers in the individual forming line operator subcategories appears at the end of the discussion on additional controls for forming line operators in this industry.

Samples collected during two visits by OSHA to a structural clay plant with a leaking pug mill showed that the facility reduced airborne respirable quartz from 1,028 µg/m³, the highest value in Table IV.C-47, to 214 µg/m³ when it installed another mixer equipped with a ventilated enclosure and improved water feed system (OSHA SEP Inspection Report 300523396). Because the operational status of the first pug mill is unclear, this 79-percent reduction might include that first mill as an ongoing source of exposure. OSHA notes that, as shown previously in the discussion of additional controls for grinder operators, it is reasonable to expect that well-sealed enclosed equipment with sufficient exhaust ventilation will not emit excessive dust during normal operations; however, other sources of respirable dust must also be controlled (e.g., hoppers, conveyers). Because all these types of equipment use aggressive action on dusty raw materials (with grinders being the most aggressive), and each type of equipment can be encased in ventilated housing, it is reasonable to expect that pug mills and related clay finishing equipment can be controlled to at least the same extent as grinding equipment (67 µg/m³ and 13 µg/m³) by using similar equipment modifications (or replacement with newer, more tightly sealed models). As described previously in the feasibility finding for the grinder operator job category in this industry, additional measures—such as using control booths or eliminating the use of compressed air for cleaning—also will further reduce most operator exposures to levels of 50 µg/m³ or less.

Forming line operators mixing coatings, applying coatings, or working where coatings are applied will require ventilated mixing equipment, ventilated bag dumping stations, and enclosed conveyers between bulk raw material storage and mixers, or between the coatings hoppers and the coatings application points to reduce exposures to $50 \,\mu\text{g/m}^3$ or less. At a structural clay facility inspected by OSHA, an 86-percent reduction in respirable quartz exposure readings (from $501 \,\mu\text{g/m}^3$ to $70 \,\mu\text{g/m}^3$) occurred after management installed an enclosed, automated sand transfer system, despite having an incorrectly sized conveyer (OSHA SEP Inspection Report 300523396). As an example of the extent of exposure reduction achieved when a ventilation system (with bag disposal option) is functioning, ERG-paint-fac-A (1999) obtained respirable quartz data for workers in the paint manufacturing industry, in which workers empty 50-pound sacks of materials with high-silica content into hoppers and mixers in a manner similar to that used by structural clay workers. Results for five paint industry workers using a ventilated bag dumping station were all less than or equal to $12 \,\mu\text{g/m}^3$, and a result for a worker who used a bag dumping station with an LEV system that was not operating for 2 hours was $263 \,\mu\text{g/m}^3$. Hence, a bag dumping station that

¹⁷¹ If the grinder remains running, a higher level of respiratory protection will likely be required (e.g., a full-facepiece respirator with an APF of 50).

reduces exposure by 95 percent would reduce the highest coatings blender exposure from 228 $\mu g/m^3$ to 11 $\mu g/m^3$.

Although the controls described previously will reduce silica levels of nearly all production line operators to levels between $12 \mu g/m^3$ and $67 \mu g/m^3$, further reductions are possible. The type of supply-exhaust ventilation system described as a control option for material handlers working near the production area will also control exposure levels for production line operators who work at fixed locations in the production area. As noted previously, such a system might reduce exposure levels by 90 percent under real-world conditions (higher levels have been show experimentally). This reduction would limit exposures on the production line to levels less than the typical LOD for an 8-hour sample ($12 \mu g/m^3$).

Using these combinations of controls, OSHA preliminarily finds that the silica exposures of all forming line operators, except operators of pug mills and related clay finishing equipment, can be reduced to levels of $50 \, \mu \text{g/m}^3$ or less. Most pug mills and related clay finishing equipment operators will experience exposure levels of $50 \, \mu \text{g/m}^3$ most of the time, but might not be able to do so consistently, particularly if they cannot spend at least a third of the shift in a control booth.

Additionally, most forming line operator exposures will further decline when silica levels associated with other worker activities (such as the operators of grinders and pug mill or other clay finishing equipment) are reduced below the proposed PEL of $50~\mu g/m^3$. ERG-ceramic-tile (2001) found that dust emitted from a ball mill and spray drier influenced exposure levels downstream along the forming line.

In the event that the exposure levels of production line operators continue to be elevated, rigorous housekeeping will also be necessary, beginning with professional-level cleaning. At a brick manufacturing plant, post-cleaning air sampling indicated a dramatic decrease in exposure levels (in some cases greater than 90 percent) for workers in areas where dusty materials were transported or handled. Most worker exposures were reduced to levels less than $50~\mu g/m^3$ (Brick Industry Consultant A, 2003).

As mentioned previously, this level might not be consistently achieved for some operators of pug mills and related clay finishing equipment if they cannot spend at least 33 percent of the shift in a well-sealed control room. In order to consistently protect these workers under the proposed PEL of 50 μ g/m³, respirator protection might be required. Based on the exposure levels that can be expected for most of the shift (67 μ g/m³ or less), a half-facepiece respirator that provides an assigned protection factor of 10 will protect workers under the proposed PEL of 50 μ g/m³.

Overall Feasibility Finding

Based on the information just described, OSHA preliminarily concludes that the exposures of all material handlers and all production line operators (except operators of pug mills and related clay finishing equipment) can be controlled to levels of $50~\mu\text{g/m}^3$ or less most of the time. Exposures of most grinder operators and most production line handlers working with pug mills and related equipment also can be controlled to levels of $50~\mu\text{g/m}^3$ or less most of the time, but these workers will likely require respiratory protection for certain activities, such as equipment inspections. Provided the controls described above are in place, a half-facepiece respirator will likely offer sufficient protection under the proposed PEL of $50~\mu\text{g/m}^3$.

REFERENCES

[ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 - Specific operations; in Industrial Ventilation - a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-1515**

- Bemer, D., I. Subra, and R. Regnier, 2009. Methods for measuring performance of vehicle cab air cleaning systems against aerosols and vapours. Annals of Occupational Hygiene 53(4):441-447. **OSHA-2010-0034-0550**
- Brick Industry Consultant A, 2003. Personal communication between Brick Industry Consultant A and Eastern Research Group, Inc. May 21. **OSHA-2010-0034-0571**
- Carolina Conveying, 2010. Bag dump stations. Available at: http://www.carolinaconveying.com/html/bag_dump_stations.html. Last accessed 22 February 2010. **OSHA-2010-0034-0581**
- Chicago Conveyor, 2004. Bag dump stations. Available at: http://www.chicagoconveyor.com/bagdump.html; http://www.chicagoconveyor.com/pdf/BAG_DU.PDF. Last accessed 22 February 2010. OSHA-2010-0034-1429
- [ERG-ceramic-tile] Eastern Research Group, Inc., 2001. Site visit report Ceramic Tile Manufacturer A. 27 September. **OSHA-2010-0034-0202**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- [ERG-paint-fac-A] Eastern Research Group, Inc., 1999. Site Visit to Paint Facility A. July 6. **OSHA-2010-0034-0199**
- Flexicon, 2009. Bag dump stations overview. Available at: http://www.flexicon.com/us/Products/BagDumpStations/index.asp. Last accessed 22 February 2010. **OSHA-2010-0034-0680**
- Hall, R.M., W.A. Heitbrink, and L.D. Reed, 2002. Evaluation of a tractor cab using real-time aerosol counting instrumentation. Applied Occupational and Environmental Hygiene 17(1):47–54. **OSHA-2010-0034-0719**
- Heinonen, K., I. Kulmala, and A. Saamanen, 1996. Local ventilation for powder handling combination of local supply and exhaust air. American Industrial Hygiene Association Journal 57:356-364. **OSHA-2010-0034-1393**
- [MSHA] Mine Safety and Health Administration, no date. Effectiveness of cabs for dust and silica control on mobile mining equipment. Available at: http://www.msha.gov/S&Hinfo/techrpt/dust/CABSUM1.pdf. OSHA-2010-0034-0821
- [NIOSH ECTB 233-107c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 07 A grey iron foundry operation. **OSHA-2010-0034-0268**

- [NIOSH ECTB 233-108c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 08 Brick Manufacturing. **OSHA-2010-0034-0232**
- [NIOSH ECTB 233-109c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 09 Refractory brick manufacturing. **OSHA-2010-0034-0266**
- [NIOSH ECTB 233-124c] National Institute for Occupational Safety and Health, 2000. Control Technology and Exposure Assessment for Occupational Exposure to Crystalline Silica: Case 24 Brick manufacturing. **OSHA-2010-0034-0239**
- [NIOSH ECTB 233-126c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 26 Wood mold and extrusion brick processes. **OSHA-2010-0034-0235**
- [NIOSH ECTB 233-127c] National Institute for Occupational Safety and Health, 2000b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 27 Pre-cast concrete shape manufacturing. **OSHA-2010-0034-0898**
- [NIOSH ECTB 233-128c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 28 Pre-cast concrete utility products manufacturing. **OSHA-2010-0034-0236**
- [NIOSH HETA 97-0004-2642] National Institute for Occupational Safety and Health, 1997. Health hazard evaluation report: Centre Foundry & Machine Company, Wheeling, West Virginia. **OSHA-2010-0034-1381**
- [OSHA SEP Inspection Report 100494079] OSHA Special Emphasis Program Inspection Report 100494079. **OSHA-2010-0034-0132**
- [OSHA SEP Inspection Report 108772377] OSHA Special Emphasis Program Inspection Report 108772377. **OSHA-2010-0034-0018**
- [OSHA SEP Inspection Report 122122534] OSHA Special Emphasis Program Inspection Report 122122534. **OSHA-2010-0034-0501**
- [OSHA SEP Inspection Report 300523396] OSHA Special Emphasis Program Inspection Report 300523396. Includes pages from related inspections 300530805, 302005772, and 302547674. **OSHA-2010-0034-0161**
- [OSHA SEP Inspection Report 301986345] OSHA Special Emphasis Program Inspection Report 301986345. **OSHA-2010-0034-0137**
- Vac-U-Max, 2006a. Internet web page for model 104121 bag dumping stations; pneumatic conveying systems and components. Available at: http://www.vac-u-max.com/104121_bag_dump_station.html. Last accessed 22 February 2010. **OSHA-2010-0034-1212**

Whirl-air, 2003. Personal communication between representative of Whirl-air, Minneapolis, Minnesota and Eastern Research Group, Inc. January 9. **OSHA-2010-0034-1224**

Abrasive Blasters Description

This section addresses miscellaneous abrasive blasting operations that occur in construction. Workers use portable abrasive blasting equipment to deliver a high-pressure stream of abrasive media to a surface. According to a review of the OSHA Special Emphasis Program (SEP) inspection reports (1990–1997), construction companies use abrasive blasting mainly to remove surface coatings or clean the surfaces of structures and equipment, such as oil tanks, water tanks, gasoline tanks, bridges, and steel beams. Workers in this industry perform abrasive blasting as part of their job or assist an abrasive blaster by refilling the abrasive blasting machine's reservoir or helping to maneuver the hoses.

Abrasive blasting workers also are employed in general industry, in which blasting is not a sector itself, but rather encompasses a cross section of related activities in numerous industries. The general industry abrasive blasters with potential exposure to silica work in a diverse range of manufacturing and service industries. Their work occurs mainly in the following sectors and is addressed in those sections of this technological feasibility analysis: IV.C.3 – Concrete Products, IV.C.4 – Cut Stone, IV.C.6 – Dental Laboratories, IV.C.8 – Foundries, IV.C.10 – Jewelry, and IV.C.20 – Shipyards (Maritime Industry).

Typically, abrasive blasting related to construction differs from industrial abrasive blasting in that construction workers perform these activities at temporary worksites without the use of a fixed-position abrasive blasting booth or cabinet fitted with exhaust ventilation. Abrasive blasting operations similar to those found on construction sites also occur on the premises of some manufacturing and nonmanufacturing general industry establishments, where the abrasive blasting operation is not a normal part of the establishments' main business (e.g., food manufacturing, retail stores). For these establishments, it is difficult to distinguish whether the blasting is performed as part of construction activities or facility maintenance. At these locations, the baseline conditions, exposure profile, and additional controls presented here apply equally, regardless of whether the abrasive blasting is for the purpose of construction or maintenance. OSHA's existing requirement that abrasive blasting workers wear respiratory protection also applies equally. 172

Construction workers who perform abrasive blasting at least occasionally are associated with numerous construction industry North American Industry Classification System (NAICS) codes, including: 236210, Industrial Building Construction; 236220, Commercial and Institutional Building Construction; 237110, Water and Sewer Line and Related Structures Construction; 237120, Oil and Gas Pipeline and Related Structures Construction; 237130, Power and Communication Line and Related Structures Construction; 237310, Highway, Street, and Bridge Construction; 237320, Paint and Wall Covering Contractors; 237990, Other Heavy and Civil Engineering Construction; 238190, Other Foundation, Structure, and Building Exterior Contractors; and 238990, All Other Specialty Trade Contractors. This section presents information from these segments of the construction industry and is representative of most construction abrasive blasting operations and conditions.

Table IV.C-48 summarizes the job categories, major activities, and primary sources of silica exposure of workers in the construction industry.

¹⁷² For OSHA's requirements for respirators and exhaust ventilation for abrasive blasting, see 29 CFR 1926.57 – Ventilation (or 1910.94 – Ventilation for general industry) and 1910.134 – Respiratory Protection.

Job Category*	Major Activities and Sources of Exposure						
Abrasive Blasting Operator	 Uses abrasive blasting equipment to clean a variety of surfaces. Dust generated from the use of silica-containing abrasive blast media. Dust generated from the abrasive blasting on concrete substrates. Dust raised by sweeping or shoveling spent abrasive material (housekeeping). 						
Abrasive Blaster's Helper (Pot Tender)	 Tends blasting equipment. Dust raised by filling abrasive blasting reservoir (e.g., emptying bags of grit). Dust generated by abrasive blasting operations carried out by the Abrasive Blasting Operator. Dust raised by sweeping or shoveling spent abrasive material (housekeeping). 						
*Job categories are intended to allocated differently, depending Source: ERG-C, 2008.	represent job functions; actual job titles may differ and responsibilities may be on the construction site.						

Baseline Conditions and Exposure Profile

The following paragraphs describe baseline conditions for the job categories abrasive blasting operator and abrasive blaster's helper, based on OSHA SEP inspection reports and NIOSH reports. These reports present information on abrasive blasting (identified by standard industrial classification number) as performed for construction purposes at building sites, steel and concrete tanks (inside and outside), swimming pools, highway/bridges, and an oilfield construction site. Together these sources provide the best data available to OSHA for workers performing miscellaneous abrasive blasting operations in construction.

For this profile, OSHA reviewed exposure data contained in OSHA SEP reports (mainly from 1990 to 1997), NIOSH studies (mainly from 1999 to 2009), New York Department of Transportation memos (NYDOT 1998, 2003), and published articles. The exposure profile summarizes the results of 59 silica samples for abrasive blasting workers at 20 commercial, storage tank, and highway construction sites, including bridge locations. ¹⁷³

Table IV.C-49 presents the exposure profile and summarizes the data available to OSHA for workers involved with abrasive blasting operations in the construction industry.

Baseline Conditions for Abrasive Blasting Operator

Based on descriptions of abrasive blasting operators' activities and equipment in those sources mentioned above, OSHA concludes that baseline conditions for this group of workers include the use of a portable abrasive blasting machine with dry silica-containing abrasive blast media. Abrasive blasting operators

¹⁷³ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

also wear respiratory protection in the form of supplied-air abrasive blasting hoods. These baseline conditions are represented in Table IV.C-49 by the data summarized for workers performing "dry blasting, uncontrolled, with no blasting booth or cabinet."

The highest silica exposure levels are associated with abrasive blasting operators dry sandblasting in unventilated enclosed spaces. For instance, a silica reading of 29,040 micrograms per cubic meter (μ galso found high readings associated with dry sandblasting in unventilated enclosures. An abrasive blasting operator ¹⁷⁴ working inside an enclosure had a respirable quartz exposure of 19,000 μ g/m³. In this case, sandblasting operations were performed inside a steel-plate water tank (NIOSH HETA 93-1037-2541, 1993).

Significant silica exposure can occur during the use of alternative nonsilica abrasives, mainly when the work surface contains silica. For example, NIOSH obtained a 90-minute short-term reading of 440 $\mu g/m^3$ (83 $\mu g/m^3$ as an 8-hour TWA) for a worker using an abrasive containing less than 1-percent quartz to remove paint from the steel understructure of a bridge. The worker blasted inside an enclosure; silica was thought to come from concrete adjacent to the steel being cleaned (NIOSH-WV-Route 1, 1992).

A result of 73 µg/m³ was collected for an operator who also used a nonsilica abrasive to blast a swimming pool (OSHA SEP Inspection Report 300219854). The specific source of the silica was not indicated; however, OSHA notes that swimming pools are typically lined with painted concrete and tile, both of which contain silica. Although this reading is markedly lower than results for workers performing abrasive blasting using sand, it nonetheless indicates the potential for exposure from abrasive blasting on materials that contain silica, even when the worker uses a nonsilica alternative blasting media. These media are a safer alternative to silica sand, but do not necessarily eliminate exposure under all conditions.

¹⁷⁴ According to NIOSH, workers typically spend the same proportion of their entire shift performing abrasive blasting as they spent performing abrasive blasting during the 4-hour sampling period. Thus silica concentrations measured during the sampling period are also representative of the workers' 8-hour exposures. Specifically, in this study NIOSH collected half-shift samples with durations of 240 minutes to reduce the chance of filter overloading. NIOSH stated that "at this operation, half-shift sample concentrations are reasonable approximations of full-shift concentrations (2 hours of sandblasting per 4-hour half-shift is similar to 4 hours of sandblasting per 8-hour full-shift). Therefore, half-shift, 4-hour time-weighted average (TWA) exposures are believed to be reasonable approximations of full-shift, 8-hour TWA exposures" (NIOSH HETA 93-1037-2541, 1993).

Table IV.C-49
Respirable Crystalline Silica Exposure Range and Profile for Abrasive Blasters

	Exposure Summary			Exposure Range		Exposure Profile					
Job Category	Numbe r of Sampl es	Mean (µg/m	Median (µg/m	Min (µg/m	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (μg/m³)	>250 (µg/m³)	
Abrasive Blasting Operator Dry blasting, uncontrolled,	27	3,582	230	12	29,040	7 25.9%	1 3.7%	3 11.1%	3 11.1%	13 48.1%	
no blasting booth or cabinet									_		
Same as baseline, with wet methods attempted	17	161	125	36	407	0 0.0%	3 17.6%	3 17.6%	7 41.2%	4 23.5%	
Abrasive Blasting Operator Subtotals	44	2,260	170	12	29,040	7 25.9%	4 9.1%	6 13.6%	10 22.7%	17 38.6%	
Abrasive Blaster's Helper Assisting with dry blasting, uncontrolled, no blasting booth or cabinet	7	926	41	10	4,700	2 28.6%	2 28.6%	0 0.0%	1 14.3%	2 28.6%	
Same as baseline, with wet methods attempted	8	60	68	12	104	2 25.0%	1 12.5%	4 0.0%	1 12.5%	0 0.0%	
Abrasive Blaster's Helper Subtotals	15	464	65	10	4,700	4 26.7%	3 20.0%	4 26.7%	2 13.3%	2 13.3%	
Totals for Abrasive Blasting Operator and Abrasive Blaster's Helper	59	1,804	111	10	29,040	11 18.6%	7 11.9%	10 16.9%	12 20.3%	19 32.2%	

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Although most construction work involving abrasive blasting is conducted outdoors, some portions of the same abrasive blasting jobs might occur inside enclosed spaces (e.g., tanks or tarp enclosures); however, from the available descriptions supporting the data, it is often not possible to tell where the samples were obtained relative to the enclosures.

Sources: Barker, 2002; ERG-C, 2008; Linch, 2002; NIOSH HETA 93-1037-2541, 1993; NIOSH ECTB-247-11c, 1999; NIOSH-WV-Route 1, 1992; NYDOT, 1998;

Abrasive Blasters

NYDOT, 2003; OSHA SEP Inspection Reports 107092223, 107094641, 108863093, 109305631, 116160821, 300190147, 300191079, 300206133, 300219854, 300390176, 300477189, 300544350, 302391594.

NIOSH evaluated a wet blasting operation in which abrasive blasting operators blasted exterior concrete surfaces of a parking garage with a wet blasting system that projected a mixture of water and silica sand (NIOSH ECTB 247-11c, 1999). Fourteen exposure readings, ranging from 36 μ g/m³ to 395 μ g/m³, were obtained for these abrasive blasting operators. These results are markedly lower than values typically associated with uncontrolled dry blasting.

Table IV.C-49 presents the exposure profile for workers using abrasive blasting equipment. This table summarizes the best exposure data available to OSHA for these workers. Of the 59 respirable quartz readings summarized in the exposure profile, 44 represent abrasive blasting operators and 15 are associated with abrasive blasters' helpers. Of the 44 abrasive blasting operator results, 27 were obtained while workers performed dry abrasive blasting, with 8-hour TWA exposure levels ranging from 12 $\mu g/m^3$ to 29,040 $\mu g/m^3$. The median for this group is 230 $\mu g/m^3$ and the mean is 3,582 $\mu g/m^3$. The remaining 17 of the 44 abrasive blasting operator results represent workers using wet blasting methods, ranging from 36 $\mu g/m^3$ to 407 $\mu g/m^3$, with a median of 125 $\mu g/m^3$ and a mean of 161 $\mu g/m^3$. Although the silica exposure levels for abrasive blasting operators routinely exceed OSHA's permissible exposure limit (PEL), OSHA already requires that employers provide these workers with respiratory protection and, when the work is in an abrasive blasting booth, ensure that these workers have the benefit of exhaust ventilation. For more information on these requirements, see 29 CFR 1926.57–Ventilation (for general industry 1910.94–Ventilation) and 1910.134–Respiratory Protection.

Baseline Conditions for Abrasive Blasters' Helpers

Baseline conditions for abrasive blasters' helpers are nearly identical to those of abrasive blasting operators except that they spend less time in close proximity to blasting operations. The helpers typically use particulate-filtering respirators. In Table IV.C-49, typical exposure levels representing these baseline conditions are summarized with the data for abrasive blasters' helpers "assisting with dry blasting, uncontrolled, with no blasting booth or cabinet."

Fifteen results in the Table IV.C-49 exposure profile represent abrasive blasters' helpers, with seven of those results associated with dry abrasive blasting. These exposures have a median of 41 μ g/m³, a mean of 926 μ g/m³, and ranged from 10 μ g/m³ to 4,700 μ g/m³ (the highest results are discussed in more detail in the next paragraph). Of the 15 results for helpers, the remaining eight, all from one concrete parking garage construction site described in NIOSH ECTB-247-11c (1999), represent exposures to abrasive blasters' helpers during abrasive blasting workers' attempts at wet dust control methods. When wet dust control methods are used the helpers have a median of 68 μ g/m³ and a mean of 60 μ g/m³, and the highest result is 104 μ g/m³. While these data imply that wet methods have the greatest impact on helpers who would otherwise be exposed at the high end of the range (their exposures are much lower than they would have been), OSHA notes that additional information from other blasting sites is needed to confirm this effect.

Exposures for abrasive blasters' helpers can vary widely depending on the activities required of the helper (e.g., refilling media reservoirs, maintaining air compressors, maneuvering hoses), the helper's proximity to the point where abrasive blasting occurs, and the amount of time spent there. As with abrasive blasting operators, some of the highest exposure levels for abrasive blasters' helpers were associated with dry blasting in unventilated enclosed spaces. For instance, NIOSH reported an 84-minute short-term exposure of $27,000~\mu g/m^3$ (4,700 $\mu g/m^3$ as an 8-hour TWA) during an evaluation of dry sandblasting operations on the interior of a 750,000-gallon steel-plate water tank sandblasting (NIOSH HETA 93-1037-2541, 1993). The worker shoveled sand from an elevated ledge to the bottom of the inside of the tank. OSHA also obtained an exposure reading of 1,466 $\mu g/m^3$ for a helper while sandblasting was performed inside a city water tower, a job that lasted 8 hours (Barker, 2002). Additionally, NIOSH measured a 72-minute short-term silica reading of 1,470 $\mu g/m^3$ (221 $\mu g/m^3$ as an 8-hour TWA) during paint removal from the steel

understructure of a bridge using a dry coal-slag blasting grit (an alternative to silica sand) (NIOSH-WV-Route 1, 1992). The abrasive blaster's helper spent the majority of the sampling period in the enclosure. OSHA notes that when helpers must work inside enclosed spaces during dry abrasive blasting, their exposure levels are dramatically higher than when their activities are limited to tending equipment and loading sand into the grit pot outside the enclosed space (all results less than $41 \mu g/m^3$).

Additional Controls

As the exposure profile indicates, abrasive blasting workers are potentially exposed to levels of silica hundreds of times higher than the current PELs. Controls are required not only to protect the abrasive blasting operator, but also the abrasive blaster's helper and any workers adjacent to the blasting operation.

Additional Controls for Abrasive Blasting Operators

Exposure control options for abrasive blasting operators include:

- Blasting with wet methods or other processes that reduce or eliminate dust generation.
- Local exhaust ventilation of enclosures (with proper filtration to protect adjacent workers).
- Enclosures, such as containment structures (protect adjacent workers only).
- Use of low-silica and silica-free blasting media substitutes.
- Respiratory protection.

The effectiveness of these options in controlling silica exposures is discussed in the following sections. Given the high levels of hazardous dust generated during abrasive blasting, OSHA anticipates that respiratory protection will continue to be necessary to reduce silica exposure to acceptable levels, even with these controls in place. Respiratory protection is also discussed further below. In addition, strict adherence to proper work practices and housekeeping practices that reduce dust emissions are essential to controlling the exposures of abrasive blasting workers and adjacent workers. Also, in all cases, employers must comply with the applicable requirements of 29 CFR 1926.57–Ventilation (for general industry 1910.94–Ventilation) and 1910.134–Respiratory Protection to protect abrasive blasting workers adequately.

Wet Methods and Alternatives to Dry Abrasive Blasting

Alternative techniques to dry abrasive blasting can be used to reduce the silica exposure levels of abrasive blasting workers and adjacent workers, although the effectiveness of these methods in reducing silica exposures has not been extensively documented. These techniques, summarized in Table IV.C-50, include wet abrasive blasting, hydroblasting, centrifugal wheel blasting, vacuum blasting, and blasting with dry ice pellets. Cleaning techniques that do not use abrasive blasting and are suitable for smaller jobs include thermal, chemical, and mechanical stripping methods. Other removal techniques that could reduce or eliminate silica dust levels during surface preparation include blast cleaning with baking soda (sodium bicarbonate), reusable sponge abrasives, or plastic media blasting (PMB); cryogenic stripping (immersing small parts into liquid nitrogen, followed by gentle abrasion or PMB); and laser paint stripping (generates no waste and uses a pulsed carbon dioxide laser as the stripping agent).

	Table IV.C-50						
Examples of Alternatives to Dry Abrasive Blasting							
Name	Description/Comments						
Wet Abrasive Blasting	Can be used in most instances where dry abrasive blasting is used. Includes: 1) compressed air blasting with the addition of water into the blast stream before the abrasive leaves the nozzle, and 2) water jetting with the addition of abrasive into the water stream at the nozzle. Additives and rust inhibitors may be used.						
Hydroblasting	High Pressure Water Jetting: Uses pressure pump, large volume of water, and specialized lance and nozzle. Pressures range from 3,000 to 25,000 pounds per square inch (psi). Can remove loose paint and rust; will not efficiently remove tight paint, tight rust, or mill scale. Can be used in most instances where abrasive blasting is used. Primary application is for an older surface rusted in a saline environment rather than new steel. Rust inhibitors could be required to prevent flash rusting. <u>Ultra High Pressure Water Jetting:</u> Similar to high pressure water blasting. Uses pressurized water from 25,000 to 50,000 psi. Removes tight paint and rust, but not mill scale.						
Centrifugal Wheel Blasting	Uses a rotating wheel assembly inside an enclosure equipped with a dust collector. Abrasive is propelled outward from the rotating wheel and removes rust, paint, and mill scale. Abrasives are recycled and include steel shot, steel grit, cut wire, and chilled iron grit. The operator has no contact with airborne dust or high velocity particles.						
Vacuum Blasting	Uses standard blast nozzle inside a shroud (head) that forms a tight seal with the work surface. Vacuum is applied inside shroud during blasting to remove dust and debris. Abrasives are recycled and include aluminum oxide, garnet, steel shot, steel grit, and chilled iron grit. When used properly, cleans effectively with minimal dust.						
Dry Ice Pellets	Dry ice blast cleaning with solid carbon dioxide. Waste is minimized and includes paint chips and rust. Storage and handling costs can be significant.						
Thermal Stripping	Uses a flame or stream of superheated air to soften paint, allowing for easy removal. Generates one waste stream (i.e., waste paint). Effective for small parts; not suitable for heat-sensitive surfaces. Very labor intensive.						
Chemical Stripping	Uses hazardous chemical strippers such as methylene chloride-based or caustic solutions. Effective for small fiberglass, aluminum, and delicate steel parts. Requires adequate ventilation and other safety measures. Generates multiple waste streams (i.e., contaminated rinse water and waste strippers).						
Mechanical Stripping	Involves chipping, grinding, sanding, or scraping the coating off small parts or surfaces through the use of needle guns, chipping hammers, sanders, and grinders. Generates paint waste and airborne dust. Some power tools are equipped with dust collection systems.						
Sources: U.S. EPA, 1991	; Kura et al., no date.						

Wet methods can be used to reduce or eliminate the amount of dust generated during surface preparation. All wet blasting techniques (such as wet abrasive blasting and hydroblasting) produce substantially lower dust emissions compared with dry abrasive blasting. For example, after reviewing other published and unpublished work, Lahiri et al. (2005) estimated that silica exposure associated with sandblasting can be eliminated by using hydroblasting (which involves no abrasive grit), even when the surface being hydroblasted contains silica (e.g., concrete). OSHA recognizes that although this method effectively cleans many surfaces with minimal silica release, it cannot replace abrasive media blasting under all circumstances.

A 2008 report from Germany's Institute for Occupational Safety and Health of the German Social Accident Insurance¹⁷⁵ indicates that silica exposures are reduced by wet methods, but that "dust emissions are influenced substantially by the type and quantity of the water feed." The German report indicates that compared with dry abrasive blasting, modest amounts of water result in some exposure reduction, but the silica levels can still be extremely high. As an extreme example, during laboratory tests using quartz-free

¹⁷⁵ At the time of the report, Germany's Institute for Occupational Safety and Health of the German Social Accident Insurance was known as BGIA, but this organization is now called by the German acronym IFA.

blasting media moistened with 10 percent water to abrasively blast concrete, 176 airborne quartz concentrations were still up to 6,000 μ g/m 3 . If silica sand had been used in this test, the quartz concentration would likely have been doubled, or higher. BGIA reports that "if materials containing quartz, such as concrete, are dry-blasted with quartz sand, over half the quartz dust exposure is attributable to the blasting agent" (BGIA, 2008).

This German report also indicates that increasing the water content to form a slurry improves dust control. A provided example involved replacing the conventional pneumatic blast unit with an ultra-high-pressure slurry blasting unit (29,000 psi) to work on a concrete silo. Under these conditions, investigators measured an average quartz concentration of 500 μ g/m³. They consider it possible that average results could be lower still, but concluded that use of such equipment is unlikely to reduce concentrations below 150 μ g/m³ (BGIA, 2008).

An intermediate amount of water added to the blasting media offers intermediate results. As mentioned in the exposure profile, NIOSH evaluated a wet blasting operation in which workers blasted exterior concrete surfaces of a parking garage (NIOSH ECTB 247-11c, 1999). Their system used a mixture of 80 percent silica sand and 20 percent water. NIOSH reported that this method appeared to reduce the silica exposures associated with abrasive blasting, but the extent of the reduction was not determined, and operators' exposures remained as high as $395~\mu g/m^3$. The same study is published as Mazzuckelli et al. (2004). NIOSH did conclude that the exposure readings obtained for this evaluation were lower than readings obtained for other abrasive blasting operations. Most of the other values for abrasive blasting operators described here support NIOSH's conclusion. Exposure readings obtained inside enclosed spaces tend to be particularly high. For example, OSHA obtained an exposure reading of 7,016 $\mu g/m^3$ for an abrasive blasting operator who performed dry blasting of hardened concrete from a cement truck using silica sand media (OSHA SEP Inspection Report 300190147).

Heitbrink (2007) conducted a field study of a wet abrasive blasting technique and obtained significantly lowered silica exposures compared with silica exposure data reported in the literature. The tested device was a water induction nozzle described as a venturi nozzle in which water is added to the abrasive-air mixture to reduce dust during blasting. Workers were monitored while blasting outdoors in open areas on concrete panels using silica sand abrasive from which the fines had been removed. ¹⁷⁷ In 10 samples, the geometric mean silica was $60 \mu g/m^3$, and the range was $20 \mu g/m^3$ to $130 \mu g/m^3$. The author found that restricting the fines content of the sand in combination with wet blasting was effective in reducing silica exposures, but noted that in this study the individual effects of the two controls were confounded (i.e., they could not be identified separately). Also, although excessive water application rates were not a problem at this site, Heitbrink noted that such water application rates could present a problem at other work sites. ¹⁷⁸ This data also appears as a study by Old and Heitbrink (2007).

The amount of water required for effective dust control during blasting depends on the device and the application, and the relation between water flow rates and dust emissions has not been widely studied to date. In some cases, a volume of water is mixed directly with a volume of abrasive. For instance, Heitbrink describes a wet abrasive blasting device that mixes water and abrasive in a pressurized tank, with a ratio of about 80 percent abrasive and 20 percent water (Heitbrink, 2007). In other devices, the

¹⁷⁶ The pneumatic abrasive blasting unit operated at a pressure of 102 to 116 psi (BGIA, 2008).

¹⁷⁷ The abrasive media had been screened through a 100-mesh sieve so that particles passing through the sieve comprised less than 3 percent of the media (Heitbrink, 2007).

¹⁷⁸ During Heitbrink's (2007) study, water was applied at rates ranging from 3.2 kilograms per minute (kg/min) to 8.6 kg/min (equal to 0.8 gallons/minute to 2.2 gallons/minute). The author noted that water puddles did occur at these water application rates.

water is supplied continuously at a given flow rate. The patent for a water induction nozzle tested by Heitbrink reported that visual dust was reduced as water flow rate increased from 1 to 5 liters per minute (Heitbrink, 2007). Heitbrink points to the need for controlled laboratory testing to develop recommended water application rates for wet blasting.

Subfreezing conditions could present an additional challenge to the use of wet methods for dust suppression. As discussed in the introductory section of this chapter, however, most workers will be able to use wet methods most of the time.

Enclosures and Local Exhaust Ventilation

Enclosures in which workers perform blasting keep silica contained, providing a measure of exposure control for other workers performing activities outside the enclosure. Unless properly ventilated, however, such enclosures concentrate the levels of silica in a small area and thus can present a significant hazard to the person performing abrasive blasting. For example, NIOSH found elevated short-term results of 820 $\mu g/m^3$, 1,730 $\mu g/m^3$, and 2,960 $\mu g/m^3$ (sample durations of 93, 96, and 93 minutes, respectively) for area samples collected inside an unventilated enclosure used to confine dust generated during the blasting process (NIOSH-WV-Route 1, 1992).

Strict compliance with the OSHA ventilation standard for abrasive blasting in construction (29 CFR 1926.57) is essential for controlling the exposures of abrasive blasting workers working in enclosures. According to that standard, all blast-cleaning enclosures must be adequately ventilated, whether silica or an alternative abrasive agent is used. Portable blast-cleaning equipment and temporary containment structures must have sufficient exhaust ventilation to: 1) prevent a build-up of dust-laden air and reduce the concentrations of hazardous air contaminants, 2) prevent any leakage of dust to the outside, and 3) provide prompt clearance of dust-laden air from the enclosure when blasting has ceased. Exhaust ventilation systems must be constructed, installed, inspected, and maintained according to the OSHA construction ventilation standard. The exhaust air from blast-cleaning equipment must be discharged to the outside through an appropriate dust collector to protect the workplace, the environment, and the surrounding community from hazardous air contaminants. The dust collector should be set up so that the accumulated dust can be emptied and removed without contaminating work areas.

Thus, local exhaust ventilation (LEV) alone is not expected to completely control the silica exposures of workers below acceptable levels. OSHA finds, nonetheless, that LEV installed in accordance with 1926.57 is essential in protecting abrasive blasting workers in enclosures. Operators working inside ventilated enclosures must also be protected by hoods and airline respirators, or by positive-pressure air helmets.

Respiratory Protection

The OSHA ventilation standard for construction, at 29 CFR 1926.57(f)(5)(ii)(A-C), requires that employers provide abrasive-blasting respirators for their workers to wear when using silica sand in manual blasting operations where the nozzle and blast are not physically separated from the operator in an exhaust-ventilated enclosure and/or where concentrations of toxic dust dispersed by the abrasive blasting might exceed the limits set in 29 CFR 1926.55 or other pertinent regulations. ¹⁷⁹

During dry blasting with silica sand inside unventilated enclosures or spaces, workers might be exposed to extremely high levels of silica, as high as $29,040~\mu g/m^3$ (Barker, 2002). A continuous-flow supplied-air respirator with an assigned protection factor (APF) of 1,000 would ideally protect a worker in these

¹⁷⁹ Similar requirements apply to general industry under the ventilation standard at 29 CFR 1910.94.

conditions, reducing the in-hood silica concentration to at least 29 $\mu g/m^3$. Another elevated silica exposure level, 19,000 $\mu g/m^3$, was reported for a worker blasting with sand in an unventilated steel-plate water tank (NIOSH HETA 93-1037-2541, 1993). At this exposure level, if properly used, the same respirator would also protect the worker by providing an in-hood silica concentration below 19 $\mu g/m^3$. Exposures in the hood could be much higher if the respirator malfunctions or if the operator fails to adhere strictly to proper work practices.

Respirators require a high degree of worker knowledge in the proper selection, use, fitting, and maintenance of such equipment, as well as worker vigilance in following work practices to prevent contamination of the respirator. For instance, high area concentrations of silica outside the respirator could result in elevated exposures if the airflow to the respirator is reduced or if the operator removes the respirator while still inside the blasting enclosure. Also, contamination of respirators can result in elevated worker exposure, as illustrated by sample results found in general industry indicating levels of respirable quartz as high as 2,567 μ g/m³ obtained under the blasting hood (OSHA SEP Inspection Report 300235389). Another reading, 1,282 μ g/m³, was collected inside the hood, while a worker blasted outdoors with silica sand on a silica substrate (concrete panels) (OSHA SEP Inspection Report 301322095). At the same site and under the same conditions, a reading of 705 μ g/m³ was collected inside a worker's blasting hood.

In a somewhat dated NIOSH study, readings of 490 $\mu g/m^3$, 690 $\mu g/m^3$, and 250 $\mu g/m^3$ (sample durations of 215, 430, and 495 minutes, respectively) were obtained for samples collected under sandblasting hoods (NIOSH HETA 80-153-881, 1980). Another NIOSH study found silica readings of 85 $\mu g/m^3$ and 87 $\mu g/m^3$ in sampling conducted inside airline respirators (NIOSH HETA 82-186-1203, 1982). The source of exposure was undetermined but was assumed to be due to contamination of the airlines.

Moreover, respirators protect only the workers wearing them. Depending on their proximity to the blasting operation, abrasive blasters' helpers and adjacent workers might have significant exposures and thus require the same level of respiratory protection as blasting operators. For example, OSHA obtained an exposure of 1,466 μ g/m³ for a helper at a site that used silica sand to remove paint from inside a city water tower (Barker, 2002). Wearing an N-95 particulate-filtering facepiece with an APF of 10, the worker was protected to a level of 147 μ g/m³, which was still in excess of the PEL.

Despite the disadvantages associated with respirator use, OSHA expects that respirators will be required to control the silica exposures of abrasive blasting workers, given the high levels of silica generated by abrasive blasting. Respirators likely will be required even when individual controls or combinations of them (for example LEV and substitution) are in place because of the extremely high levels of silica typically generated during blasting.

Housekeeping

Dry sweeping of spent abrasive blasting media and debris can be a sizeable source of silica exposure to workers. For example, a NIOSH study of abrasive blasting in a shipyard found exposure levels of 85 $\mu g/m^3$, 160 $\mu g/m^3$, and 280 $\mu g/m^3$ for workers who spent the entire sampling period dry sweeping material from surfaces, using a hand broom or a whiskbroom (NIOSH ECTB 233-110c, 1999). Using vacuums, shovels, and scrapers to clean surfaces introduces less dust in to the air than dry sweeping. Although these alternate methods have not been evaluated for abrasive blasting media and debris, Riala (1988) completed a study of Finnish construction site workers that compared the silica exposures for workers dry sweeping and using alternate cleaning methods. When compared with dry sweeping, exposures were approximately three times lower when the workers used squeegees to scrape surfaces and approximately five times lower when workers used vacuums (Riala, 1988). During wet abrasive blasting,

moisture in the abrasive media will continue to suppress dust as long as workers dispose of or recover the abrasive before it dries.

Use of Alternative Abrasive Media and Dust Suppressant Additives

Although the sand used in abrasive blasting contains as much as 96 percent silica, it has become popular as an abrasive blasting material because of its low cost, effectiveness, and availability. However, in recent years the amount of silica sand used or sold for abrasive blasting has been declining, and, in some applications, other abrasive blasting media have replaced sand. The most recent design standard developed by the American National Standards Institute (ANSI) on exhaust systems for abrasive blasting operations at fixed location enclosures prohibits the use of silica sand as an abrasive blasting agent in such operations (ANSI/American Industrial Hygiene Association [AIHA] Z9.4-1997).

To eliminate the hazards posed by using silica sand as the abrasive media, employers can select safer blasting agents. Since 1974, NIOSH has recommended the use of less hazardous abrasive blasting media containing less than 1-percent silica to control the exposures of abrasive blasting workers (NIOSH HEW Publication No. 75-120, 1974).

The choice of substitutes, however, is critical in controlling the silica exposures of blasting workers as well as preventing elevated exposure to other hazardous substances. Nonsand abrasive materials containing small amounts of silica (1 percent or less) could result in elevated respirable quartz exposure levels, even when used in ventilated enclosures. For instance, the use of blasting media containing less than 1-percent quartz resulted in an area respirable quartz level of 1,580 μ g/m³ (369-minute sample duration) inside a ventilated containment structure erected around two steel tanks (NIOSH ECTB 183-13a, 1993). NIOSH concluded that the high levels of abrasive overwhelmed the LEV.

Alternative abrasive media containing less than 1-percent silica include garnet, steel grit, aluminum oxide, and slags of copper, coal, or nickel (MSU, 1999). Employers will need to consider the possible hazards of substitutes if switching from silica. For example, depending on the abrasive, alternative media can result in elevated levels of other hazardous air contaminants such as heavy metals.

A NIOSH-sponsored study evaluating several types of abrasive media indicates that the silica exposures of abrasive blasting operators can be reduced with the use of certain media (KTA-Tator-Phase-1, 1998; KTA-Tator-Phase-2, 1998; KTA-Tator-Phase-3, 1999). Phase I of the study involved collecting exposure monitoring data during test trials, in which the abrasive blasting operator used different media to blast a steel surface inside a ventilated enclosure. Exposures ranging from 2,930 $\mu g/m^3$ to 22,030 $\mu g/m^3$ were obtained during trial runs in which silica sand media was used. No respirable quartz was detected in samples collected during trial runs in which the operator used coal slag, specular hematite, or steel grit. The study shows, however, that even blasting operations using media with low silica content and nonsiliceous substrates can result in elevated airborne concentrations of silica. Exposure readings ranging from 240 $\mu g/m^3$ to 3,690 $\mu g/m^3$ were obtained during trial runs with garnet and copper slag media, which both contain low amounts of quartz. The study also indicates that the potential presence of other toxic substances requires that alternative blast media be selected carefully (KTA-Tator-Phase-1, 1998).

In a study of exposures among painters using three alternative blasting abrasives during a New Jersey highway footbridge repainting project, Meeker et al. (2005 and 2006) reported that steel grit, specular hematite, and coal slag all resulted in elevated silica exposures, ranging from 420 μ g/m³ to 90,100 μ g/m³, likely due to the very high silica content in the paint. High variability in silica exposures during the 2- to 3-hour task-based sampling periods, however, made it difficult for researchers to detect statistical differences in exposures associated with the different abrasives. Sources of the high level of variability are unknown; however, they could be related to harsh environmental conditions during abrasive blasting

as well as the small sample size. This study also supports the conclusion that workers might potentially be exposed to other hazardous substances such as beryllium, cadmium, chromium, manganese, and nickel during the use of these alternative blasting abrasives (Meeker et al. 2006).

Additional literature suggests use of various more benign abrasive media substitutes. For example, based on a review of engineering control technology for abrasive blasting, Flynn and Susi (2004) report that dolomite (i.e., calcium magnesium carbonate) might be a good, nontoxic alternative to silica-containing abrasive blasting media. The authors also comment on the apparent potential for good results with crushed glass.

Use of dust suppressant additives provide a limited amount of dust control during blasting with silica sand. For instance, during Phase II of the study, silica sand abrasive was used to blast the side of a coal barge. Silica exposures ranged from 9,910 $\mu g/m^3$ to 50,522 $\mu g/m^3$, with a geometric mean of 27,959 $\mu g/m^3$. When a dust suppressant was used with the silica sand abrasive, silica levels in four readings had a geometric mean of 19,040 $\mu g/m^3$ (ranging from 9,180 $\mu g/m^3$ to 28,200 $\mu g/m^3$), about 68 percent of the mean for untreated silica sand (KTA-Tator-Phase-2, 1998). Although these levels are still excessive, dust suppressant methods may be used in combination with other measures, such as ventilation and work practices, to reduce silica exposures when silica sand must be used as the blasting agent. Effective dust suppressant additives will also help reduce silica exposures when workers (e.g., abrasive blasters' helpers) handle abrasives before and after the actual abrasive blasting.

Additional Controls for Abrasive Blasters' Helpers

The exposure levels associated with abrasive blaster's helpers are routinely lower than abrasive blasting operator exposures, but slightly more than half of the helpers (53 percent) still exceed $50~\mu g/m^3$, as indicated by the exposure profile for helpers presented in Table IV.C-49. OSHA preliminarily concludes that the same controls that benefit abrasive blasting operators will also benefit abrasive blasters' helpers. In fact, to the extent that helpers' exposures are due to the actions of abrasive blasting operators (including the highest helper exposures, which occurred when helpers worked inside enclosures during uncontrolled or poorly controlled abrasive blasting), control measures that reduce operator exposure will also reduce the silica concentrations to which helpers are exposed. Furthermore, wet abrasive blasting will directly benefit helpers by reducing exposures associated with sweeping or shoveling spent media during cleaning and media recovery tasks, if the helper performs these tasks while the media is still damp. Although not evaluated, OSHA assumes that other dust suppressants added to the media before abrasive blasting will also help reduce the silica exposure levels of helpers during these housekeeping activities, as well as while they empty bags of media into the grit pot.

Feasibility Finding

Feasibility Finding for Abrasive Blasting Operators

Based on the information described above, OSHA preliminarily concludes that the exposure levels for most workers performing abrasive blasting will not be reduced to below $100~\mu g/m^3$ even with the use of exposure controls such as wet methods and LEV. This conclusion is based on the median 8-hour TWA reading of $125~\mu g/m^3$ for workers who used wet abrasive blasting. As indicated in Table IV.C-49, 82 percent of this group has exposure levels that exceed the proposed PEL of $50~\mu g/m^3$ even when employing wet abrasive blasting methods. Thus, the use of appropriate respiratory protection and proper ventilation, especially within enclosures, will still be needed to protect workers from hazardous levels of contaminants that may be generated during abrasive blasting, from either the abrasive, the substrate, or both. To ensure protection, respiratory protection and ventilation must meet the requirements of 29 CFR 1926.57 and 1910.134, respectively.

Feasibility Finding for Abrasive Blasters' Helpers

Based on information presented in this analysis, including Table IV.C-49, OSHA preliminarily concludes that nearly half (46 percent) of all abrasive blasters' helpers currently experience exposure levels less than the proposed PEL of $50~\mu g/m^3$; however, even when the abrasive blasting operator uses wet blasting methods, slightly more than half (54 percent) of the abrasive blasters' helpers continue to have exposure levels that exceed this level. Until the exposures of abrasive blasters are controlled, OSHA anticipates that the assistants who help them also remain at risk of exposures above $50~\mu g/m^3$, and these workers will require respiratory protection whenever they are required to work in the vicinity of the blasting activity. When wet methods are used, however, the exposure level of most abrasive blasters' helpers will be controlled to the point where a NIOSH-approved half-facepiece respirator, with an APF of 10, can provide sufficient protection.

Overall Feasibility Finding for Abrasive Blasting Workers

Based on the available information, OSHA preliminarily concludes that the silica exposure of abrasive blasting operators will be greatly reduced using wet abrasive blasting methods, but that the proposed PEL of $50 \mu g/m^3$ will not be reliably achieved using these methods. Respiratory protection will continue to be required in accordance with the ventilation provision of 29 CFR 1926.57(f)(5)(ii)(A-C) (or, for general industry, 1910.94[a][5]) and 1910.134–Respiratory Protection. These existing requirements currently protect abrasive blasting operators who are routinely exposed to levels that exceed PELs.

The exposure levels of abrasive blaster's helpers will also be substantially reduced when abrasive blasting operators adopt wet methods. The extent of the reduction will be sufficient to permit abrasive blaster's helpers to wear a reduce level of respiratory protection, in the form of a half-facepiece respirator.

REFERENCES

- Barker, J.C., 2002. OSHA compliance issues: Lead and silica exposure during renovation of a water tower. Applied Occupational and Environmental Hygiene 17(5):324–325. **OSHA-2010-0034-0547**
- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp OSHA-2010-0034-0553
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- Flynn, M.R., and P. Susi, 2004. A review of engineering control technology for exposures generated during abrasive blasting operations. Journal of Occupational and Environmental Hygiene 1:680-687.
- Heitbrink, W.A., 2007. Field tests of a water induction nozzle as a dust control for abrasive blasting. Silver Spring, MD: Center to Protect Workers' Rights. **OSHA-2010-0034-0733**
- [KTA-Tator-Phase-1] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public

- Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. September. **OSHA-2010-0034-0772**
- [KTA-Tator-Phase-2] KTA-Tator, Inc., 1998. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. December. **OSHA-2010-0034-0773**
- [KTA-Tator-Phase-3] KTA-Tator, Inc., 1999. Evaluation of substitute materials for silica sand in abrasive blasting. Prepared for U.S. Department of Health and Human Services. Public Health Service. Centers for Disease Control and Prevention. National Institute for Occupational Safety and Health. Contract No. 200-95-2946. March. **OSHA-2010-0034-0774**
- Kura, B., S. Lacoste, and P.V. Patibanda, no date. Multimedia pollutant emissions from the shipbuilding facilities. Paper presents information from a University of New Orleans research project: Integrated Environmental Management Plan for Shipbuilding Facilities. **OSHA-2010-0034-0775**
- Lahiri, S., C. Levenstein, D.I. Nelson, and B.J. Rosenberg, 2005. The cost effectiveness of occupational health interventions: Prevention of silicosis. American Journal of Industrial Medicine 48:503–514. **OSHA-2010-0034-0776**
- Linch, K. D., 2002. Respirable concrete dust—Silicosis hazard in the construction industry. Applied Occupational and Environmental Hygiene 17(3):109–221. **OSHA-2010-0034-0784**
- Mazzuckelli, L., W. Golla, and W. Heitbrink, 2004. Control technology for crystalline silica exposures in construction: Wet abrasive blasting. Journal of Occupational and Environmental Hygiene 1(3):D26–D32. **OSHA-2010-0034-0795**
- Meeker, J.D., P. Susi, and A. Pellegrino, 2005. Case study: Exposure to silica and metals among painters using specular hematite abrasive. Journal of Occupational and Environmental Hygiene 2(8):D60–D64. **OSHA-2010-0034-1273**
- Meeker, J.D., P. Susi, and A. Pellegrino, 2006. Comparison of occupational exposures among painters using three alternative blasting abrasives. Journal of Occupational and Environmental Hygiene 3:D80-D84. **OSHA-2010-0034-0802**
- MSU, 1999. Abrasive blasting training—Preventing silicosis. User's manual. Appendix I: Silica substitutes list. Michigan State University, College of Human Medicine, Department of Medicine, Occupational and Environmental Medicine. **OSHA-2010-0034-1404**
- [NIOSH ECTB 183-13a] National Institute for Safety and Health, 1993. In-depth survey report: Control technology for removing lead-based paint from steel structures: Abrasive blasting

- using staurite XL in containment at BP oil containment, Lima, Ohio. **OSHA-2010-0034-0212**
- [NIOSH ECTB 233-110c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 10 Abrasive blasting in a shipyard. **OSHA-2010-0034-0852**
- [NIOSH ECTB 247-11c] National Institute for Occupational Safety and Health, 1999. In-depth study report: Control technology for crystalline silica exposure in construction: Wet abrasive blasting at the Nokia building construction site, Irving, Texas. **OSHA-2010-0034-0230**
- [NIOSH HETA 80-153-881] National Institute for Safety and Health, 1980. Health hazard evaluation report: Palmer Industrial Coatings, Inc., Williamsport, Pennsylvania. **OSHA-2010-0034-0879**
- [NIOSH HETA 82-186-1203] National Institute for Safety and Health, 1982. Health hazard evaluation report: Perry Nuclear Power Plant, Perry, Ohio. **OSHA-2010-0034-0880**
- [NIOSH HETA 93-1037-2541] National Institute for Occupational Safety and Health, 1995. Health hazard evaluation report: Johnson Brothers Company, Pittsburgh, Pennsylvania. **OSHA-2010-0034-0885**
- [NIOSH HEW Publication No. 75-120] National Institute for Safety and Health, 1974. Criteria for a recommended standard: Occupational exposure to crystalline silica. **OSHA-2010-0034-0388**
- [NIOSH-WV-Route 1] National Institute for Safety and Health, 1992. Environmental surveillance report: West Virginia Department of Highways, Bridge Maintenance, Route 1, Ohio County. September 10. **OSHA-2010-0034-0910**
- [NYDOT] New York Department of Transportation, 1998. Personal communication between a safety and health representative and an associate industrial hygienist. November 10. **OSHA-2010-0034-0925**
- [NYDOT] New York Department of Transportation, 2003. Personal communication between a safety and health representative and an employee safety and health representative. April 8 **OSHA-2010-0034-1255**
- Old, L.T., and W.A. Heitbrink, 2007. Wet abrasive blasting with a WIN nozzle—A case study. Journal of Occupational and Environmental Hygiene 4(6):D55–D59. **OSHA-2010-0034-0928**
- [OSHA SEP Inspection Report 107092223] OSHA Special Emphasis Program Inspection Report 107092223. **OSHA-2010-0034-0495**
- [OSHA SEP Inspection Report 107094641] OSHA Special Emphasis Program Inspection Report 107094641. **OSHA-2010-0034-0496**

- [OSHA SEP Inspection Report 108863093] OSHA Special Emphasis Program Inspection Report 108863093. **OSHA-2010-0034-0497**
- [OSHA SEP Inspection Report 109305631] OSHA Special Emphasis Program Inspection Report 109305631. **OSHA-2010-0034-0499**
- [OSHA SEP Inspection Report 116160821] OSHA Special Emphasis Program Inspection Report 116160821. **OSHA-2010-0034-0500**
- [OSHA SEP Inspection Report 300190147] OSHA Special Emphasis Program Inspection Report 300190147. **OSHA-2010-0034-0502**
- [OSHA SEP Inspection Report 300191079] OSHA Special Emphasis Program Inspection Report 300191079. **OSHA-2010-0034-0503**
- [OSHA SEP Inspection Report 300206133] OSHA Special Emphasis Program Inspection Report 300206133. **OSHA-2010-0034-0504**
- [OSHA SEP Inspection Report 300219854] OSHA Special Emphasis Program Inspection Report 300219854. **OSHA-2010-0034-0505**
- [OSHA SEP Inspection Report 300235389] OSHA Special Emphasis Program Inspection Report 300235389. **OSHA-2010-0034-0506**
- [OSHA SEP Inspection Report 300390176] OSHA Special Emphasis Program Inspection Report 300390176. **OSHA-2010-0034-0508**
- [OSHA SEP Inspection Report 300477189] OSHA Special Emphasis Program Inspection Report 300477189. **OSHA-2010-0034-0509**
- [OSHA SEP Inspection Report 300544350] OSHA Special Emphasis Program Inspection Report 300544350. **OSHA-2010-0034-0510**
- [OSHA SEP Inspection Report 301322095] OSHA Special Emphasis Program Inspection Report 301322095. **OSHA-2010-0034-0053**
- [OSHA SEP Inspection Report 302391594] OSHA Special Emphasis Program Inspection Report 302391594. **OSHA-2010-0034-1426**
- Riala, R., 1988. Dust and Quartz Exposure of Finnish Construction Site Cleaners. Annals of Occupational Hygiene 32(2):215-220. **OSHA-2010-0034-1163**
- [U.S. EPA] U.S. Environmental Protection Agency, 1991. Guides to pollution prevention: The marine maintenance and repair industry. Office of Research and Development. EPA/625/7-91/015. OSHA-2010-0034-1202

Drywall Finishers Description

After segments of drywall have been installed, drywall workers use a joint compound paste to seal the cracks between segments and to cover divots from nails. Once the joint compound is dried, workers sand the surface by hand to create a smooth finish. The drywall installer might perform the finishing, or a specialized trades worker might perform this work. Sanding dried joint compound containing silica is believed to be the primary source of silica exposure in this job category. Industries that engage in drywall work are classified in the 238310 North American Industry Classification System (NAICS) code.

The drywall itself contains little or no silica (U.S. Gypsum, 1999). Although silica-free joint compounds have become widely available in recent years, some products continue to contain silica. For example, NIOSH (NIOSH ECTB 208-11a, 1995) found that bulk samples of a commercially available joint compound contained up to 6 percent quartz, although silica was not listed on the material safety data sheet for the product. In another study, NIOSH (NIOSH HETA 94-0078-2660, 1997) determined that three of six drywall compounds purchased at a retail store contained trace amounts of silica. Eppling et al. (1999) found that four of six joint compounds tested contained between 1.1 and 3.7 percent silica. Drywall finishing jobs monitored by NIOSH (NIOSH HETA 94-0078-2660, 1997) lasted from 1.5 hours to more than 8 hours per shift.

Table IV.C-51 summarizes the single job category, drywall finisher, and its major activities and sources of exposure.

Table IV.C-51 Job Category, Major Activities, and Sources of Exposures of Drywall Finishers							
Job Category	Major Activities and Sources of Exposure						
Drywall Finisher	Applying joint compound to sections of drywall and sanding dried joint compound to create a smooth finish.						
	Dust generated while sanding dried, silica-containing joint compound.						
Source: ERG-C, 2008.							

Baseline Conditions and Exposure Profile

Fifteen sample results obtained by NIOSH (NIOSH HETA 94-0078-2660, 1997) form the basis of this exposure profile (Table IV.C-52). NIOSH, in collaboration with the Center to Protect Workers' Rights, obtained these results for 10 drywall sanders working at two work sites (an office renovation job and a project renovating a low-income public housing apartment complex) (NIOSH HETA 94-0078-2660, 1997). Workers in this study used silica-free joint compounds or compounds with very low silica content and performed sanding by hand or with a pole sander. No work practices were identified.

As Table IV.C-52 indicates, the median 8-hour time-weighted average (TWA) personal breathing zone (PBZ) respirable quartz concentration for drywall finishers is 12 micrograms per cubic meter ($\mu g/m^3$).

 $^{^{180}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Seven of the 15 results are at or below the limit of detection (LOD), and the mean concentration is 17 $\mu g/m^3$. The highest respirable quartz result among drywall finishers is 72 $\mu g/m^3$, obtained for a worker performing overhead sanding (NIOSH HETA 94-0078-2660, 1997); this is the only reading greater than 50 $\mu g/m^3$. A single result from a worker in Canada, also below the LOD, demonstrates comparable exposure levels elsewhere in North America (Verma et al., 2003).

The past potential for drywall workers to be exposed to higher levels of silica, however, is indicated in the Rozanowski (1997) review of OSHA Integrated Management Information System (IMIS) data. The summary information presented in that review shows that 22 percent of samples collected during OSHA inspections in the 1980s through the early 1990s in Standard Industrial Classification (SIC) 1742 (plastering, drywall, insulation) exceeded the PEL. In that case the PEL was based on OSHA's general industry formula for respirable dust containing silica. ¹⁸² Individual exposure results were not provided in the review, and as a result these samples were not included in the exposure profile.

Baseline conditions for drywall finishers include using low-silica or silica-free joint compounds and manual sanding without specific work practices or other controls. All of the results in the exposure profile are associated with these baseline conditions.

Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

 $^{^{182}}$ In this case, although evaluating a construction industry activity, the investigator elected to compare silica exposure results with OSHA's gravimetric general industry PEL for silica. This might be due to the fact that the construction industry PEL for silica is based on the units millions of particles per cubic foot (mppcf), requiring an obsolete analytical method not available through most analytical laboratories. Instead, laboratories typically report silica air sampling results as mass-based gravimetric values (e.g., mg/m^3) for respirable dust, along with the percent silica, which are also used in the gravimetric general industry PEL for silica. Investigators compare these results with the gravimetric general industry PEL because the units are compatible. An alternative has been available since 2008, when OSHA published a compliance directive, National Emphasis Program (NEP)–Crystalline Silica CPL 03-00-007 (Appendix E), providing a conversion factor to convert air sampling results between mppcf and mg/m^3 or $\mu g/m^3$. However, some investigators continue to use the more familiar gravimetric units and compare construction industry air monitoring results with the gravimetric general industry PEL for silica.

Table IV.C-52 Respirable Crystalline Silica Exposure Range and Profile for Drywall Finishers

	Exposure Summary Exposure Range					Exposure Profile						
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Мах (µ g /m³)		<25 (μg/m ³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Drywall Finisher												
Baseline Conditions	15	17	12	8	72		13	1	1	0	0	
							86.7%	6.7%	6.7%	0.0%	0.0%	

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008.

Additional Controls

Substitution

The primary source of exposure for drywall workers is the use of silica-containing joint compounds. In cases of elevated exposure, the best control mechanism is substitution: changing to a joint compound that does not contain silica. NIOSH has indicated that there are a number of commercially available compounds that do not contain silica, and OSHA believes that substitution in new construction is possible most of the time. However, some joint compounds that do not list silica as an ingredient might still contain small amounts of silica (NIOSH HETA 94-0078-2660, 1997), and during remodeling projects drywall finishers might be exposed while refinishing existing drywall surfaces that had used silica-containing joint compound. When working with silica-containing joint compound, ventilated (or vacuum) sanders, wet methods, and pole sanders are all options for dust control.

Ventilated Sanders

NIOSH tested the effectiveness of five off-the-shelf ventilated sanding systems during drywall finishing: three designed to control dust during pole sanding and two to control dust during hand sanding. Total dust area sample results revealed that all five systems were effective for reducing total airborne dust by at least 80 percent, ranging up to 97 percent (NIOSH ECTB 208-11a, 1995). The effectiveness of ventilated sanders was confirmed in a study by Young-Corbett and Nussbaum (2009a), which found that using a ventilated sander during drywall sanding reduced respirable dust in the PBZ by 88 percent compared with a block sander (no controls). Although ventilated sanders are the most effective control option after substitution and offer indirect benefits to workers and managers (NIOSH Appl Occup Environ Hyg 15, 2000), there are many perceived barriers to their adoption in the workplace. Workers and managers are concerned about: 1) maneuverability in small spaces, 2) reliance on a nearby power source, 3) product cost, 4) delays in learning the new equipment, and 5) maintenance (NIOSH ECTB 208-11a, 1995; Young-Corbett and Nussbaum, 2009b). Furthermore, some models of ventilated sanders require a water source for their use (NIOSH ECTB 208-11a, 1995).

Wet Methods

Young-Corbett and Nussbaum (2009a) found that a wet sponge sander reduces respirable dust in the PBZ by 60 percent compared with a block sander (no controls). A wet sponge sander, literally a sponge with an abrasive surface, is one type of wet method. Other wet methods include wiping a clean, damp sponge over the still damp joint compound to smooth the seam and rinsing the sponge in a bucket of water as it becomes loaded with compound, or wetting dried joint compound with a spray bottle and sanding with sandpaper (NIOSH ECTB 208-11a, 1995). Although wet methods are technologically simple and can be used wherever a water source is available, less than 10 percent of firms report using them regularly (Young-Corbett and Nussbaum, 2009b). Workers and managers have concerns about the finished texture, increased work time, mess, and adding moisture to the product (which could harm the product and delays painting) (Flanagan, 2001; NIOSH 99-113, 1999; NIOSH ECTB 208-11a, 1995; Ventura, 2001; Young-Corbett and Nussbaum, 2009b). OSHA suggests that the use of a heat gun can expedite the drying process if necessary.

¹⁸³ OSHA expects that drywall finishers usually sand only new joint compound, but might briefly encounter older joint compound occasionally while smoothing the junction where a new drywall segment meets a pre-existing joint.

Pole Sanders

Finally, the use of a pole sander—which creates distance between the worker and the point at which dust is generated—is a simple way to reduce exposure (NIOSH Appl Occup Environ Hyg 15, 2000). Data suggest that it is almost as effective as a wet method, reducing total respirable dust by 58 percent compared with a block sander (no controls) (Young-Corbett, 2009a).

Although silica levels were not specifically measured in the studies cited here, OSHA estimates that these controls could reduce silica concentrations by similar amounts (ERG-C, 2008).

Feasibility Finding

Based on the data described above, OSHA preliminarily concludes that most workers who finish drywall are currently exposed to silica at levels less than 50 μ g/m³. Ninety-three percent of the results summarized in Table IV.C-52 are below this level. Furthermore, OSHA preliminarily concludes that a value of 25 μ g/m³ can be achieved for all drywall finishers who are provided with drywall compound that does not contain silica.

In the event that substitution is not possible and during renovation work where silica-containing joint compound might be present, ventilated sanders, pole sanders, and wet methods are other options. Based on studies quantifying reductions in total dust levels when using ventilated sanders (Mead et al, 2000; NIOSH ECTB 208-11a, 1995; Young-Corbett and Nussbaum, 2009a), OSHA estimates that the silica exposure of all drywall finishers can be reduced to levels below 25 μ g/m³. OSHA determined this conservative estimate by reducing the highest drywall finisher reading summarized in Table IV.C-52 (72 μ g/m³) by 80 percent, the minimum amount by which ventilated sanding equipment reduced respirable dust (NIOSH ECTB 208-11a, 1995). OSHA also estimates that the use of pole sanders and wet methods can reduce the silica exposure of all drywall finishers to levels below the proposed permissible exposure limit (PEL) of 50 μ g/m³ under circumstances when these offer a more convenient form of dust control. OSHA determined this estimate by reducing the highest drywall finisher reading (72 μ g/m³) by 58 and 60 percent, the amounts by which pole sanding and wet methods, respectively, reduced total respirable dust (NIOSH ECTB 208-11a, 1995).

OSHA preliminarily concludes that exposures of less than 50 $\mu g/m^3$ can be achieved for all drywall finishers by using additional controls on the rare occasions when silica might be encountered.

REFERENCES

- Eppling, C., A. Gitelman, T. Desai, and J. Dement, 1999. Airborne exposures and ambulatory peak expiratory flow in drywall finishers. Report OSH2-98. Center to Protect Workers' Rights. **OSHA-2010-0034-0662**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- Flanagan, J., 2001. Personal communication between the Training Director of the International Brotherhood of Painters and Allied Trades District Council 21 Training Center and Eastern Research Group, Inc. November 28. **OSHA-2010-0034-0678**
- Mead, K.R., A.K. Miller, J.P. Flesch, 2000. Control of drywall sanding dust exposures. Applied Occupational and Environmental Hygiene 15(11):820–821. **OSHA-2010-0034-0800**

- [NIOSH 99-113] National Institute for Occupational Safety and Health, 1999. Hazard controls 30: control of drywall sanding dust exposures. **OSHA-2010-0034-0897**
- [NIOSH Appl Occup Environ Hyg 15] National Institute for Occupational Safety and Health, 2000. Control of drywall sanding dust exposures. Applied Occupational and Environmental Hygiene 15:820-821. **OSHA-2010-0034-0849**
- [NIOSH ECTB 208-11a] National Institute for Occupational Safety and Health, 1995. A laboratory comparison of conventional drywall sanding techniques versus commercially available controls. **OSHA-2010-0034-0213**
- [NIOSH HETA 94-0078-2660] National Institute for Occupational Safety and Health, 1997. Health hazard evaluation report: Center to Protect Workers' Rights, Washington, DC. **OSHA-2010-0034-1380**
- Roznowski, E., 1997. Crystalline silica exposure in construction. Available online at:

 http://www.osha.gov/SLTC/silicacrystalline/roznowskiei/exposure.html. OSHA-2010-0034-1167
- U.S. Gypsum, 1999. Material safety data sheet for Fiberock Brand XL Panels. **OSHA-2010-0034-1205**
- Ventura, J., 2001. Personal communication between the State Health and Safety Manager of International Brotherhood of Painters and Allied Trades District Council 6 and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-1218**
- Verma, D.K., L.A. Kurtz, D. Sahai, and M.M. Finkelstein, 2003. Current chemical exposures among Ontario construction workers. Applied Occupational and Environmental Hygiene 18:1031-1047. **OSHA-2010-0034-1219**
- Young-Corbett, D.E., and M.A. Nussbaum, 2009a. Dust control effectiveness of drywall sanding tools. Journal of Occupational and Environmental Hygiene 6:385-389. **OSHA-2010-0034-1239**
- Young-Corbett, D.E., and M.A. Nussbaum, 2009b. Dust control technology usage patterns in the drywall finishing industry. Journal of Occupational and Environmental Hygiene 6:315-323. **OSHA-2010-0034-1240**

Heavy Equipment Operators Description

Workers in this job category drive crawlers or rubber-tired tractors and maneuver large attached construction tools. Attachments include (but are not limited to) augers, backhoes, buckets, cranes, hammers, dozer blades, draglines, forklifts, graders, rippers, rollers, scrapers, shovels, and trenchers (Russell, 1985). The category also includes dump-truck drivers, as well as operators of other heavy construction equipment (e.g., power cranes and power shovels). OSHA is analyzing these workers together, based on: 1) the similarity in worker position relative to the point of tool action (operators' seat is usually 5 to 20 or more feet from the point of action); 2) the potential for enclosing (in a cab) the workers who operate this type of equipment; and 3) the large percentage of the shift that these operators typically spend in the operator's seat, rather than at a point closer to the point of tool action. Equipment reviewed here does not include, however, rock or concrete drilling rigs, rock crushers, milling machines, or tunnel boring machines. Activities associated with these types of equipment are reviewed in other sections of the feasibility analysis.

Table IV.C-53 provides an overview of tasks performed by heavy equipment operators, which include demolition; displacement (excavation); loading; and dumping of rock, soil, concrete, and other construction materials and debris. When these materials contain silica, dust generated during these activities is the primary source of exposure. Heavy equipment operators might or might not work in an enclosed cab. Unlike other construction workers, heavy equipment operators usually perform the same activity (operating their equipment) nearly constantly for more than 7 hours per shift (ERG-C, 2008).

Table IV.C-53 Job Categories, Major Activities, and Sources of Exposure of Heavy Equipment Operators									
Job Category*	Major Activities and Sources of Exposure								
Heavy Equipment Operator	From an operator's seat, manipulating tractor or vehicle-based implements (e.g., backhoe, crane, power shovel, excavator, hammer, dump truck) to perform demolition; excavation; loading; and dumping of rock, concrete, soil, and other construction materials and debris.								
	 Dust from breaking down construction materials. Dust from disturbing, transporting, or dumping soil or construction materials. 								
*Job categories are intended to allocated differently, depending	represent job functions; actual job titles might differ, and responsibilities might be on the work site.								
Sources: Russell, 1985; ERG-C	C, 2008.								

Baseline Conditions and Exposure Profile

The exposure profile (Table IV.C-54) is based on 24 8-hour time-weighted average (TWA) personal breathing zone (PBZ) respirable quartz readings. ¹⁸⁴ These results were obtained from four NIOSH reports; five OSHA Special Emphasis Program (SEP) inspection reports; and one journal article, previously described in ERG-C (2008). Two results were obtained from an additional NIOSH report (NIOSH EPHB-247-15b, 2002), which describes two operators participating in the demolition of a plaster ceiling. A track-hoe operator was responsible for pulling down the ceiling (87 micrograms per cubic meter (μ g/m³), one of the three highest results for this job category), and a skid-steer loader operator removed construction debris from the area (49 μ g/m³). Cabs were unenclosed, and both operators were paired with laborers who sprayed water specifically to suppress dust generation.

In contrast, results from a road demolition site were among the lowest available to OSHA. At this site, over the sampling period of 6 to 8 hours the operators of a crane, a backhoe, and two excavators all had 8-hour TWA results of 12 μ g/m³ (the limit of detection [LOD]) while breaking and removing pieces of asphalt and concrete road and the underlying sand bed (NIOSH ECTB 233-120c, 1999). ¹⁸⁵ At a third work site, where OSHA visited a tunnel construction site, a tractor operator removing dirt at the mouth of the tunnel experienced a result of 41 μ g/m³ (OSHA SEP Inspection Report 116179359). This result is similar to the mean (32 μ g/m³) and range (8 μ g/m³ to 59 μ g/m³) of exposure values published by Blute et al. (1999) for five operating engineers involved in the "cut and cover" and tunnel finishing phases of a major highway tunnel construction project.

As Table IV.C-54 shows, exposures range from less than or equal to $11~\mu g/m^3$ (the LOD reported by the investigator) to $170~\mu g/m^3$; the median is $12~\mu g/m^3$; and the mean is $27~\mu g/m^3$. Sixteen results (67 percent) are less than or equal to $12~\mu g/m^3$. Three results (13 percent) exceed $50~\mu g/m^3$, and only one of those results exceeds $100~\mu g/m^3$. Of the 19 results for which the status of the cab was established, 17 (89 percent) operated in unenclosed cabs (includes enclosed cabs where the windows and/or door were opened).

 $^{^{184}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

¹⁸⁵ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-54
Respirable Crystalline Silica Exposure Range and Profile for Heavy Equipment Operators

	Exp	oosure Sun	nmary	Exposure	Range	Exposure Profile					
ob Category N				Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)		
Heavy Equipment Operator											
Unenclosed cab	17	21.7	12.0	11.0	87.0	14 82.0%	1 6.0%	2 12.0%	0 0.0%	0 0.0%	
Enclosed cab	2	12.3	12.3	12.3	12.3	2 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%	
Various conditions (Inadequate information)	5	51.2	22.0	11.0	170.0	3 60.0%	1 20.0%	0 0.0%	1 20.0%	0 0.0%	
Totals	24	27.0	12.0	11.0	170.0	19 79.2%	2 8.3%	2 8.3%	1 4.2%	0 0.0%	

Notes: All samples are PBZ results and represent 8-hour TWA exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008.

Other investigators, drawing on data from a variety of sources, report slightly higher exposure levels for heavy equipment operators; however, their data sets included operators of particularly dusty equipment that OSHA instead addresses in other sections of this technological feasibility analysis (see Sections IV.C.29 - Millers Using Portable or Mobile Machines, IV.C.30 - Rock and Concrete Drillers, and IV.C.31 – Rock-Crushing Machine Operators and Tenders). Working with a large set of construction data from academic, government, construction, and consultant organizations, Flanagan et al. (2006) reported a geometric mean silica result of 50 µg/m³ for 102 workers operating all types of heavy equipment (not defined). For a subset of this data (i.e., the 45 results associated with the specific task of heavy equipment demolition), the geometric mean was lower at 30 µg/m³. The 30 results for workers specifically operating backhoes, excavators, bulldozers and bobcats tended to be even lower, with a geometric mean of 10 µg/m³ (as reported by the author), which was the lowest mean silica result among the various construction tool categories evaluated by Flanagan et al. (2006). The investigators did not provide information about controls or sample durations associated with these data; however, they did report the median sample time for the entire construction database (219 minutes). OSHA notes that these results, which were not adjusted for 8 hours, indicate that many heavy equipment operators already experience silica exposure levels of 50 µg/m³ or less.

Rappaport et al. (2003) reported a median exposure of 75 μ g/m³ for 46 heavy equipment operators involved primarily with highway construction. However, this value includes some high-exposure activities treated separately by OSHA in this analysis (e.g., earth, rock, and dowel drilling; stone crushing; concrete and asphalt milling) and is thus not representative of heavy equipment operators as defined here. Overall, the data available to OSHA for heavy equipment operators are generally lower than those for other construction workers who also spend time in an operator's cab or booth, but do so less consistently during the shift and might operate equipment that generate greater levels of airborne silica close to the operator's position (e.g., rock and concrete drilling rigs and rock crushers). As noted previously, these workers are covered by other sections of this technological feasibility analysis.

A review of OSHA, NIOSH, and other published reports conducted by ERG (ERG-C, 2008) indicates that construction workers who drive or otherwise operate tractors or other heavy construction equipment typically work outdoors without using engineering controls or specific work practice controls. When workers operated equipment from inside cabs, windows were typically open, diminishing the effectiveness of the isolation provided by the cabs. ERG determined that this typical situation represented the baseline condition for heavy equipment operators. OSHA, however, notes that the exposure profile shows some heavy equipment operators do keep windows closed under dusty conditions and that the range of conditions represented in the exposure profile also represent the baseline conditions for all heavy equipment operators in the United States. Consistent with the methods OSHA is using to calculate baseline exposure levels for other construction tasks, OSHA has preliminarily determined that the median exposure level presented in Table IV.C-54 also represents the baseline exposure level for heavy equipment operators.

Additional Controls

Where heavy equipment operators' respirable quartz exposures are elevated, properly ventilated enclosed cabs and dust suppressants are options for reducing exposure levels. OSHA believes that using a properly sealed and ventilated enclosed cab under positive pressure with filtered air is the primary additional control for reducing exposure. This finding is based on field studies reviewed in ERG-C (2008), and field and research data presented here. Rappaport et al. (2003) report an 85 percent reduction in the geometric mean silica exposure for heavy equipment operators in ventilated versus open cabs performing highway construction activities (10 μ g/m³ versus 65 μ g/m³). There is no information about whether the ventilated cabs are pressurized and/or filtered.

Pannell and Grogin (2000) find that pressurized, enclosed cabs without high-efficiency filtration can still provide a high degree of protection for operators under field conditions (e.g., performing excavation work). For 44 samples associated with workers operating a water wagon and a scraper, which were both outfitted in this way, the investigators reported mean respirable dust results of 72 μ g/m³ during approximately 4- to 5-hour sampling periods. These respirable dust values were 80 to 90 percent lower than the results experienced for operators of open-cab equipment, who had mean respirable dust exposures of 426 μ g/m³ (four results for grader operators), 672 μ g/m³ (40 results for dozer operators), and 837 μ g/m³ (10 results for workers operating a second dozer). Respirable dust samples collected inside and outside the scraper showed that this equipment reduced the operators' exposure by nearly 90 percent (Pannell and Grogin, 2000). ^{186,187,188}

Based on published research, ERG-C (2008) found that effective enclosed cabs are generally air conditioned, tightly sealed, and positively pressurized, and that they use a high-efficiency filter on outdoor intake air. NIOSH recommends several additional features for an optimally dust-reducing cab design:

- 1. Cabs should be equipped with a recirculation filter which continuously filters the air circulating within the cab (Cecala et al., 2005; NIOSH 528, 2007). This is the only way to eliminate dust that has entered the cab (e.g., on shoes, or through an open door).
- 2. Cabs should avoid the use of floor heaters or any discharge of clean air low in the cab, which entrains dust from the floor and dirty work clothes before entering the worker's breathing zone (Cecala et al., 2005; NIOSH 486, 2001). Ideally, air flow would circulate from the top of the cab to the bottom, and recirculation pick-up would occur low in the cab.
- 3. The inlet for intake air should be strategically located so that it avoids, as much as possible, the equipment's major dust sources. Typically, this means high above ground level (NIOSH 485, 2001).
- 4. Cabs must be well maintained and kept clean (Cecala et al., 2005; NIOSH 487, 2001). Filters must be changed regularly so that they do not become overloaded with dust, and seals must be maintained to preserve pressurization inside the cab. A gritless, natural base sweeping compound should be applied to the floor of the cab to bind dirt and dust tracked in during normal work activities. The compound should also be used for regular housekeeping activities.

 $^{^{186}}$ In this case, the work site was atypical: to construct a solid low-level radioactive waste disposal facility, workers in a semi-arid environment excavated 64,000 cubic meters (m³) (more than 2 million cubic feet [ft³]) of soil containing up to 65 percent silica. Using OSHA's general industry equation, the authors calculated a permissible exposure limit (PEL) of $182 \, \mu g/m^3$ for respirable dust containing silica (Pannell and Grogin, 2000).

 $^{^{187}}$ In this case, although evaluating a construction industry activity, the investigator elected to compare silica exposure results with OSHA's gravimetric general industry PEL for silica. This might be due to the fact that the construction industry PEL for silica is based on the units millions of particles per cubic foot (mppcf), requiring an obsolete analytical method not available through most analytical laboratories. Instead, laboratories typically report silica air sampling results as mass-based gravimetric values (e.g., mg/m^3) for respirable dust, along with the percent silica, which are also used in the gravimetric general industry PEL for silica. Investigators compare these results with the gravimetric general industry PEL because the units are compatible. An alternative has been available since 2008, when OSHA published a compliance directive, National Emphasis Program (NEP)–Crystalline Silica CPL 03-00-007 (Appendix E), providing a conversion factor to convert air sampling results between mppcf and mg/m^3 or $\mu g/m^3$. However, some investigators continue to use the more familiar gravimetric units and compare construction industry air monitoring results with the gravimetric general industry PEL for silica.

¹⁸⁸ Pannell and Gorgin (2000) reported summary data rather than individual results.

These recommendations, and others, are summarized in NIOSH (NIOSH 2009-123, 2009). Cabs employing several of these recommendations achieve efficiencies exceeding 90 percent (Cecala et al., 2005; NIOSH 528, 2007).

Feasibility Finding

Based on the data presented in Table IV.C-54, OSHA preliminarily concludes that the respirable quartz exposure of most (87 percent) heavy equipment operators is already at a level of 50 μ g/m³ or less, with no specific work practices or engineering controls in place. The median full-shift PBZ result of less than or equal to 12 μ g/m³ supports this assertion.

For the 13 percent of workers who require additional controls, OSHA estimates that employers who provide properly ventilated enclosed cabs can reduce the exposure of all equipment operators to levels below 50 $\mu g/m^3$. This conclusion is based on reducing the highest exposure presented in the exposure profile, 170 $\mu g/m^3$, by 90 percent, a reasonable estimate for a well-maintained, enclosed, pressurized, and ventilated cab (Cecala et al., 2005). This yields an exposure of 17 $\mu g/m^3$. Furthermore, for most heavy equipment operators who primarily experience silica exposure from intermittent activities (e.g., loading, dumping), results of 50 $\mu g/m^3$ can be achieved if the operators ensure cab windows are completely closed during these activities.

REFERENCES

- Blute, N.A., S.R. Woskie, and C.A. Greenspan, 1999. Exposure characterization for highway construction Part I: cut and cover and tunnel finish stages. Applied Occupational and Environmental Hygiene 14(9):632-641. **OSHA-2010-0034-0562**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-0590**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144-152. **OSHA-2010-0034-0677**
- [NIOSH 2009-123] National Institute for Occupational Safety and Health, 2009. Reducing hazardous dust in enclosed operator cabs during construction. **OSHA-2010-0034-0839**
- [NIOSH 485] National Institute for Occupational Safety and Health, 2001. Improved cab air inlet location reduces dust levels and air filter loading rates. Technology News 485:1-2. **OSHA-2010-0034-0841**
- [NIOSH 486] National Institute for Occupational Safety and Health, 2001. Floor heaters can increase operator's dust exposure in enclosed cabs. Technology News 486:1-2. **OSHA-2010-0034-0842**

- [NIOSH 487] National Institute for Occupational Safety and Health, 2001. Sweeping compound application re-duces dust from soiled floors within enclosed operator cabs. Technology News 487:1-2. **OSHA-2010-0034-0843**
- [NIOSH 528] National Institute for Occupational Safety and Health, 2007. Recirculation filter is key to improving dust control in enclosed cabs. NIOSH 2008-100. Technology News 528:1-2. **OSHA-2010-0034-0844**
- [NIOSH ECTB 233-120c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 20 Road demolition and construction. **OSHA-2010-0034-0226**
- [NIOSH EPHB 247-15b] National Institute for Occupational Safety and Health, 2002. In-depth survey report of exposure to silica from demolition of plaster ceilings at Frank Messer and Sons construction company, Columbus, Ohio. **OSHA-2010-0034-0858**
- [OSHA SEP Inspection Report 116179359] OSHA Special Emphasis Program Inspection Report 116179359. **OSHA-2010-0034-0192**
- Pannell, M.A., and P.W. Grogin, 2000. Quantifying the exposure of heavy-equipment operators to respirable crystalline silica dust. Journal of Environmental Health 63(2):13-17. **OSHA-2010-0034-0952**
- Rappaport, S.M., M. Goldberg, P. Susi, and R.F. Herrick, 2003. Excessive exposure to silica in the U.S. construction industry. Annals of Occupational Hygiene 47(2):111-120. **OSHA-2010-0034-00962**
- Russell, J.E., 1985. Construction equipment. Reston, Virginia: Reston Publishing Company.

Hole Drillers Using Hand-Held Drills Description

This section includes workers in the construction industry who use hand-held drills to create holes for anchors, bolts, and other means of attachment in concrete and other silica-containing construction materials. Workers use common electric drills, pneumatic drills, rotary hammers, or percussion hammer drills to drill holes. The portability and light weight of hand-held drills allow the worker to operate them at any angle. For practical reasons, drillers often must remove the dust and debris that build up in the bottom of the hole. Occasionally, hole drillers use compressed air to blow dust from holes (Hallin, 1983). Workers also often sweep the work area. A worker operating a common drill and a rotary bit may employ a technique known as pecking, in which the operator removes the drill briefly from the hole and continues to run the drill to allow the accumulated chips and dust to fly off the rotating bit (White, 1977). At least one gas-powered drill includes a self-cleaning design to clear the hole of dust by continuously forcing air through the chuck and drill shank (NIOSH HETA 2003-0275-2926, 2004). Drilling may be performed only briefly or intermittently or might be done continuously during the work shift; see ERG-C (2008) for an example. This section does not discuss concrete coring, involving stabilized equipment used with copious amounts of water to produce a large hole or opening.

Table IV.C-55 summarizes the job categories, major activities, and primary sources of silica exposure of workers in this industry.

Job Category*	Major Activities and Sources of Exposure					
Hole Driller	Create pilot holes, holes for anchors, bolts, and other means of attachment, cassist in lifting slabs.					
	Dust from action of drill bit.					
	 Dust raised by sweeping, brushing, and/or using compressed air to clear holes (including housekeeping). 					

Baseline Conditions and Exposure Profile

Based on the available information, OSHA concludes that construction workers performing hole drilling most commonly work indoors on concrete and use no engineering controls or dust-suppressing work practices. Of the fourteen 8-hour TWA PBZ respirable quartz readings summarized in the exposure profile, 7 represent hole drilling

under these conditions (Lofgren, 1993; OSHA SEP Inspection Report 103011359; McKernan et al., 2002). ¹⁸⁹ These situations are considered baseline conditions. Both ordinary drills and, more routinely, percussion or rotary drills are used for drilling holes into concrete and other substrates containing silica. Dry sweeping, brushing, the use of compressed air, and pecking are also baseline practices related to increased exposure.

ERG-C (2008) summarizes nine respirable quartz samples for hole drilling using hand-held equipment in multilevel structures and on a bridge. ERG extracted these results from one NIOSH report, an OSHA Special Emphasis Program (SEP) inspection report, and a published article (Lofgren, 1993; NIOSH ECTB 233-123c, 1999; OSHA SEP Inspection Reports 103011359, 300035557). In this report, the lowest exposure readings were obtained for two workers who spent an entire 8-hour shift alternately drilling 2-inch holes through brick and steel and installing masonry anchors in exterior and courtyard walls (NIOSH ECTB 233-123c, 1999). Two other readings at the limit of detection (LOD), reported at less than or equal to $67~\mu\text{g/m}^3$ and $69~\mu\text{g/m}^3$, were obtained for workers drilling a concrete floor indoors with pneumatic drills to make holes to help lift out floor sections (OSHA SEP Inspection Report 103011359). The highest result (286 $\mu\text{g/m}^3$) was recorded for a worker drilling holes in the floor of a concrete parking garage where air circulation was poor (Lofgren, 1993). The remaining values are all less than 75 $\mu\text{g/m}^3$.

As discussed in the following paragraphs, OSHA identified several additional results to add to the exposure profile in two reports from McKernan et al. (2002) and NIOSH (HETA 2003-0275-2926, 2004). Although limited, the results incorporated into the exposure profile represent the best data available to OSHA for workers involved in hole-drilling activities using hand-held equipment.

McKernan et al. (2002) presented one sample result of 58 micrograms per cubic meter ($\mu g/m^3$) for a worker drilling concrete and brick without controls to install rebar at an indoor construction site.

The NIOSH investigators collected four samples during outdoor rock drilling operations while workers operated by hand 75-pound or 30-pound gas-powered drills (NIOSH HETA 2003-0275-2926, 2004). As part of motor function, the larger drill was designed to generate compressed air (20 to 30 pounds per square inch [psi]) that it forced through the shank to clear the hole. This drill was considerably faster but resulted in higher 8-hour time-weighted average (TWA) exposures (120 μ g/m³ and 130 μ g/m³) than did use of the smaller, slower drill that did not include a forced air feature. Two 8-hour TWA exposure results associated with the smaller drill were obtained from original measurements that were both less than or equal to 30 μ g/m³ (LOD). The sampling method was not sensitive enough to determine whether water poured down the drilling holes during one of the small-drill sampling periods reduced worker exposure compared with dry drilling with the same equipment. NIOSH noted that the workers rarely operated either size drill more than 3 hours a day because they are heavy and difficult to control; therefore, the 8-hour TWAs that OSHA uses in the exposure profile assume that the workers did not drill beyond the sampling period and had no additional silica exposure for the remainder of the day (NIOSH HETA 2003-0275-2926, 2004).

 $^{^{189}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

¹⁹⁰ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-56 presents the exposure profile and summarizes the best exposure data available to OSHA for hole drillers using hand-held equipment. Of the 14 respirable quartz readings summarized in the exposure profile, seven represent hole drilling *indoors* under uncontrolled conditions. The median (8-hour TWA) exposure for this group is $60 \, \mu \text{g/m}^3$. The highest reading obtained for workers in this job category, $286 \, \mu \text{g/m}^3$, was recorded for a worker drilling holes in the floor of a concrete parking garage where air circulation was poor (Lofgren, 1993).

The other seven results, most of which were collected during *outdoor* drilling of brick and rock, are also spread over a wide range, but tend to be lower than the indoor values. These outdoor samples are represented by a median result of $30~\mu g/m^3$ and maximum of $130~\mu g/m^3$. The maximum and the next highest outdoor value ($120~\mu g/m^3$) are both associated with the large rock drill with a forced air feature (which blows dust into the operator's breathing zone) evaluated by NIOSH HETA 2003-0275-2926 (2004). Based on these values and the results of area samples collected downwind of the larger, faster drill, NIOSH went on to recommend that workers operating this drill continue to wear the powered airpurifying respirator (PAPR) respirator hoods provided by the employer and that other workers should stay 20~feet back to minimize their exposure. In contrast, four of the other five results obtained at three outdoor construction sites are less than $50~\mu g/m^3$. Although limited, these data suggest outdoor drilling most often results in worker exposure levels below the proposed permissible exposure limit (PEL) of 50, and results do not usually exceed 100~unless contributing factors, such as forced air combined with large, aggressive drill size, make the job particularly dusty.

Table IV.C-56
Respirable Crystalline Silica Exposure Range and Profile for Hole Drillers Using Hand-Held Drills

	Expo	sure Sumn	nary	Exposu	re Range		e			
Job Category*	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Hole Driller Using Hand- Held Drill										
Indoors, concrete substrate, no controls	7	90	60	41	286	0 0.0%	2 28.6%	4 57.1%	0 0.0%	1 14.3%
Other mixed conditions (primarily outdoors, various drills, substrates, and work practices)	7	58	30	12	130	2 28.6%	2 28.6%	1 14.3%	2 28.6%	0 0.0%
Totals	14	74	59	12	286	2 14.3%	4 28.6%	5 35.7%	2 14.3%	1 7.1%

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008; McKernan, 2002; NIOSH HETA 2003-0275-2926, 2004.

Additional Controls

As indicates in the discussion of the exposure profile for hole drillers, the median exposure reading for hole drillers is $60 \,\mu\text{g/m}^3$ when dry drilling indoors on concrete, but just $30 \,\mu\text{g/m}^3$ outdoors. Therefore, additional controls are not normally required for hole drillers working outdoors except in exceptionally dusty circumstances. Construction sites where workers drill extensively indoors, however, will require additional controls to reduce worker exposures. Local exhaust ventilation (LEV) is the primary option available for reducing the exposure level of hole drillers both indoors and outdoors.

Local Exhaust Ventilation

Shepherd et al. (2009) found that, compared with uncontrolled drilling, using dust collection cowls connected to portable vacuums reduced silica exposure by 91 to 98 percent. The researchers tested four combinations of two cowls and two vacuums (all commercially available, including a bellows-style cowl and a telescoping ring cowl) in multiple 1-hour trials. For each trial, the worker-subjects used a 6.9 amp hammer drill with a 3/8 inch bit to continuously drill a series of 3-inch holes between shoulder and waist height in a vertical concrete wall. Average respirable quartz levels varied among the different cowl/vacuum combinations, but all combinations resulted in personal breathing zone (PBZ) exposures of $28 \,\mu\text{g/m}^3$ or less during these periods of constant drilling. In contrast, periods of uncontrolled drilling resulted in a geometric mean exposure level of $308 \,\mu\text{g/m}^3$. Although the investigators note that results may vary for different drill types and drill bit sizes, OSHA estimates that even moderately effective ventilated dust collection cowls would still result in silica exposure levels that are $50 \,\mu\text{g/m}^3$ or less during periods of intense drilling and that 8-hour TWA values would be lower still.

In an earlier study of vacuum suction dust control devices conducted in Sweden, Hallin (1983) evaluated rotary and percussion hammers equipped with various LEV systems and various drill bit sizes. ¹⁹² During the study, the tools were operated indoors, usually in a test room designed to mimic a small enclosed construction area with poor air circulation (one air change per hour). Under these conditions, the study showed that the use of LEV resulted in a 57-percent reduction in the median estimated respirable quartz exposure level for workers drilling 50-millimeter-deep holes in concrete with 6-millimeter drill bits (from a median of 140 $\mu g/m^3$ without LEV to a median of 60 $\mu g/m^3$ with LEV-equipped tools). Hallin found an 85-percent reduction in the median respirable quartz exposure level for workers drilling 80-millimeter-deep holes in concrete with 10-millimeter drill bits (295 $\mu g/m^3$ without LEV compared with 45 $\mu g/m^3$ with LEV).

This same study also indicates a greater potential for overexposure during overhead drilling performed indoors. Drilling for 120 minutes in a concrete ceiling with a percussion drill and a hammer drill gave respirable quartz exposures of 1,740 μ g/m³ and 720 μ g/m³, respectively (Hallin, 1983). When the same model of percussion drill was fitted with a dust collector, however, the respirable quartz reading for a 180

¹⁹¹ The test wall was located indoors in a large enclosed space (100 feet by 60 feet by 30 feet, similar to a warehouse) for half the randomized trials with several operators each using the four combinations of equipment. The wall was moved outdoors for the other half of the trials. In this case, the investigators found no statistical difference between indoor and outdoor trials for the various equipment combinations.

¹⁹² In this study, each LEV system consisted of a suction-type connection and a dust extractor. Hallin's (1983) test readings represent actual sampling times (rather than calculated 8-hour TWAs), and were based on short sample durations (ranging from 60 to 180 minutes of intensive drilling). Additionally, silica levels were estimated from a composite of several respirable dust samples collected at the test site and using individual respirable dust samples (area samples) obtained near, but not in, the workers' breathing zones. The workers did not use compressed air to clean the holes during these tests, which took place in a room approximately 15 feet by 18 feet by 8 feet.

minute sample was only 80 μ g/m³. The authors note that because of the ergonomically stressful nature of this activity, overhead drilling should not be performed consistently for a full shift.

OSHA estimates results from drilling (including overhead drilling) in well-ventilated work areas will be lower than those reported by Hallin. The median and maximum exposure levels in Table IV.C-56 for workers drilling indoors are at least twice as high as those associated with outdoor work, where dust can dissipate more rapidly. Furthermore, NIOSH studies of exposure controls for lead-based paint removal showed that adding dilution ventilation to enclosed work areas reduced airborne lead fume concentrations by nearly half (45 percent, from $22 \mu g/m^3$ to $12 \mu g/m^3$ of lead) during lead paint removal by the heat gun method (NIOSH 98-112, 1997). NIOSH notes that in very dusty areas, increasing dilution ventilation can actually increase exposure if the additional air movement causes quantities of settled dust to be resuspended in air, so housekeeping is an important component of dust control.

Several manufacturers produce LEV dust removal systems for a variety of tool types, including most models of drills (Bosch, 2010; DeWalt, 2010; Hilti-dust-removal, 2009). When the LEV cowl is supplied with its own dust collection bag, both Hallin (1983) and Shepherd et al. (2009) suggest that better dust capture is achieved by removing the bag and attaching a vacuum hose in its place. An adaptor obtained from the local hardware store might be required (Shepherd et al., 2009). The vacuums described in detail by Shepherd et al. (2009) are also commercially available. ¹⁹⁴

Work Practices

The practice of sweeping or brushing debris from the hole appears to contribute to the exposure of workers drilling in concrete. The use of compressed air to clean the holes also increases exposure, regardless of whether the air is blown by the drill (a design feature of some drills) or by a worker using a compressed air nozzle. A pilot study indicated that respirable dust concentrations were cut to 50 percent of the original level when the worker stopped sweeping the wall after each hole was drilled (Shepherd and Woskie, 2003). A high-efficiency particulate air (HEPA)-filtered vacuum can be used instead of dry sweeping, brushing, and cleaning with compressed air.

Feasibility Finding

Considering the data described above, OSHA preliminarily concludes that all hole-driller exposures can be reduced to levels of $50~\mu g/m^3$ or less. The exposure profile shows that among workers who perform drilling with hand-held equipment, approximately 40 percent already experience exposure levels less than the proposed PEL of $50~\mu g/m^3$. No additional controls are necessary for workers drilling occasional holes outdoors.

Furthermore, data from Shepherd and Woskie (2003) suggest that simply decreasing workers' reliance on blowing or dry sweeping drilling debris from the work surface can reduce exposures by approximately 50 percent. Portable HEPA-filtered vacuums with extension wands can be used instead. This 50 percent reduction would bring exposure levels below 50 μ g/m³ for all the drill operators who are currently exposed to silica at levels of 100 μ g/m³ or less (78 percent of those represented in the Table IV.C-56

¹⁹³ Fumes are very small particles, the largest of which (1 micrometer) are in the lower end of the respirable size range (DiNardi, 2003). Like silica particles, fumes remain airborne rather than settling out of the air during a workshift.

¹⁹⁴ The two vacuums used by Shepherd et al. (2009) were rated by the vacuum manufacturers to pull 114 or 188 cubic feet per minute at 94 to 118 inches-water gauge. One of the models incorporated a cyclonic pre-separator to minimize the amount of dust reaching the filter.

exposure profile). OSHA estimates that reducing reliance on drills that blow air down the hole will offer drillers the same degree of exposure control as reducing use of other forms of compressed air to clean holes.

Additional controls, such as fitting an LEV cowl and vacuum suction to the drill described by Shepherd et al. (2009), will be required for the remaining workers (the 22 percent currently exposed to silica levels greater than 100 μ g/m³ according to Table IV.C-56). Based on evidence provided by Shephard et al. (2009), several combinations of drill cowls and portable vacuums can reduce driller silica exposures by at least 90 percent, to levels of 28 μ g/m³ or less. In contrast, the mean uncontrolled level in that study was 308 μ g/m³ during continuous drilling, leading OSHA to estimate that the commercially available test equipment could reduce even the highest value in the exposure profile to a level well below the proposed PEL of 50 μ g/m³.

OSHA also preliminarily concludes that, in addition to the controls described above (i.e., HEPA-filtered vacuum hole cleaning and LEV cowl with vacuum attachment), the activities of some workers will require improved air circulation in indoor work areas. Among these workers will be those who drill for extended periods indoors or with particularly large, aggressive drills, or who repeatedly drill overhead. Hallin (1983) showed that even workers drilling overhead benefitted from suction devices; however, silica exposures remained in the range of $80~\mu\text{g/m}^3$ during periods of intensive overhead drilling in a small, poorly ventilated, enclosed area. To achieve the proposed PEL of $50~\mu\text{g/m}^3$ for these workers, OSHA estimates that construction sites will also need to ensure the work site is kept clean (free of dust piles) and that fresh air exchange is provided to enclosed areas (e.g., temporary ducting or fans set in windows to improve air circulation and permit the free exchange of fresh air). NIOSH 89-112 (1997) reported that improving general dilution ventilation reduced lead fume particulate levels by 45 percent at lead abatement construction sites. OSHA estimates that a 45 percent reduction in the exposure level of $80~\mu\text{g/m}^3$, reported by Hallin (1983) for overhead drillers using a cowl with vacuum attachment, will result in exposures of $36~\mu\text{g/m}^3$ even during periods of intensive overhead drilling indoors.

REFERENCES

- [Bosch] Robert Bosch LLC, 2010. Dust extraction fixture for various hammers and drills. Web site available at:

 http://www.boschtools.com/products/tools/pages/BoschProductDetail.aspx?pid=1618190
 - 009. OSHA-2010-0034-0566
- [DeWalt] DeWalt Industrial Tool Company, 2010. Internet Web page for rotary hammer dust extraction D25300D. Available at http://www.dewalt.com/us/products/tool_detail.asp?productID=8468. **OSHA-2010-0034-1671**
- DiNardi, S. R. (Editor), 2003. Glossary definition of "fume." The occupational environment: Its evaluation, control and management. American Industrial Hygiene Association. **OSHA-2010-0034-0623**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**

- Hallin, N., 1983. Occurrence of quartz in the construction sector. Bygghalsan, the Construction Industry's Organization for Working Environment, Safety, and Health. Bygghalsan, Sweden, Report 1983-04-01. **OSHA-2010-0034-1391**
- [Hilti-dust-removal] Hilti Corporation, 2009. TE DRS-M dust removal system and filter. Available at http://www.hilti.com/holcom/page/module/product/prca_rangedetail.jsf?lang=en&nodeId=-17047. OSHA-2010-0034-0736
- Lofgren, D.J., 1993. Silica exposure for concrete workers and masons. Applied Occupational Environmental Hygiene 8(10):832–836. **OSHA-2010-0034-1423**
- McKernan, J.L., G.M. Piacitelli, K.C. Roegner, L. Delaney, and J.M. Boiano, 2002. Occupational exposures in seismic retrofitting operations. Applied Occupational and Environmental Hygiene 17(2):75-81.**OSHA-2010-0034-0798**
- [NIOSH 98-112] National Institute for Occupational Safety and Health, 1997. Chapter 4: Methods, devices, and work practices to control occupational lead exposures during lead-based paint activities (continuation). Protecting Workers Exposed to Lead-based Paint Hazards A Report to Congress. Available at http://www.cdc.gov/niosh/c4a98112.html. OSHA-2010-0034-1274
- [NIOSH HETA 2003-0275-2926] National Institute for Occupational Safety and Health, 2004. Health hazard evaluation report: U.S. Department of the Interior, Denver, Colorado. **OSHA-2010-0034-1253**
- [NIOSH ECTB 233-123c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 23 Masonry tuck-pointing. **OSHA-2010-0034-0229**
- [OSHA SEP Inspection Report 103011359] OSHA Special Emphasis Program Inspection Report 103011359. **OSHA-2010-0034-0155**
- [OSHA SEP Inspection Report 300035557] OSHA Special Emphasis Program Inspection Report **OSHA-2010-0034-0090**

<u>Jackhammer and Impact Drillers</u> Description

Hand-operated breaking and chipping equipment (commonly known as jackhammers, breaker hammers, drill hammers, rotary hammers, percussion hammers, impact drills, needle guns, and related tools) are used for demolition, renovation, and excavation. These tools deliver rapid repetitive blows to fracture rock, concrete, or masonry. Workers use these tools with the point of impact within 1 to 5 feet of the breathing zone and can hold the equipment at any angle, including overhead, depending on the weight of the tool (a limitation in some cases) and the configuration of the structure being chipped.

Workers can use chipping and breaking equipment for as little as a couple of hours or for as long as 7 hours or more (ERG-C, 2008). At some job sites where a large volume of concrete must be removed (e.g., bridge deck renovation), several jackhammer operators might perform pavement breaking simultaneously in the same general area, increasing the dust concentration in the area. Impact drillers frequently use dry sweeping to clear larger chipping debris from the work area and use hand-held blowers or compressed air to remove fine dust from the chipped surface (ERG-C, 2008).

Construction workers who use impact drills for drilling small holes are covered in Section IV.C.25 – Hole Drillers Using Hand-Held Drills.

Table IV.C-57 summarizes the job categories, major activities, and primary sources of silica exposure of workers in this industry.

Table IV.C-57 Job Categories, Major Activities, and Sources of Exposure of Workers Using Jackhammers or Other Impact Drills								
Job Category	Major Activities and Sources of Exposure							
Jackhammer Operator or Impact Driller	Chipping and breaking concrete, stone, and masonry during demolition, renovation, and excavation.							
 Dust from chipping or breaking action of the tool. Dust raised by sweeping, brushing, and/or using compressed air the work surface (housekeeping). 								
Source: ERG-C, 2008.								

Baseline Conditions and Exposure Profile

ERG (ERG-C, 2008) summarized 99 respirable quartz samples for jackhammering and impact drilling at multiple commercial and highway construction sites, including a bridge. These results were extracted from seven NIOSH reports, numerous OSHA Special Emphasis Program (SEP) inspection reports, a published article, and a New Jersey state construction partnership report. OSHA has identified 10 additional results, summarized below ¹⁹⁵.

OSHA determined that two samples from OSHA SEP Inspection Report 300033461, previously excluded from the ERG-C (2008) exposure profile, were acceptable for inclusion, noting that a worker notification

¹⁹⁵ Note that all exposure profile values, and, unless otherwise explicitly stated, all results discussed in the additional controls sections are considered full-shift samples. The relationship between these samples and 8-hr TWA calculations is discussed in Section IV.A – Methodology.

letter indicates that the results represent silica in respirable dust (rather than in total dust as previously thought based on related documents). These 10-hour samples, which were obtained for workers operating jackhammers on bridge expansion joints, resulted in concentrations of 18 micrograms per cubic meter $(\mu g/m^3)$ and 23 $\mu g/m^3$.

McKernan et al. (2002) reported two sample results (also included in the exposure profile) as nondetectable (ND), with sample periods of 278 and 428 minutes for workers chipping concrete and brick without controls at an indoor construction site.

OSHA also added to the exposure profile two results that NIOSH (NIOSH EPHB 247-15a, 2001) obtained for two demolition workers intermittently using 15- and 40-pound chipping hammers. Although working side by side, the silica results reported for these two workers varied greatly: $120~\mu g/m^3$ and a result below the limit of detection (LOD) (33 $\mu g/m^3$ in this case). NIOSH did not explain the difference, but OSHA judges that it could be due to a combination of factors including work practices, ventilation, and other adjacent activities.

An additional four results were added to the exposure profile based on samples collected by NIOSH during maintenance and repair activities on a waterway lock system (NIOSH HETA 2002-0014-2958, 2005). Workers used drills, operated jackhammers, or were near other workers using chipping equipment. Of the five 4-hour samples collected, four resulted in concentrations below the LOD of $24 \,\mu\text{g/m}^3$ and were included in the exposure profile. One short-term sample result fell between the LOD and limit of quantitation (LOQ) (in this case $71 \,\mu\text{g/m}^3$) and was excluded from the exposure profile because of the considerable range to which the result could belong (NIOSH HETA 2002-0014-2958, 2005).

Table IV.C-58 presents the exposure profile for workers using chipping and breaking tools. This table summarizes the best exposure data available to OSHA for these workers. Of the 109 respirable quartz readings summarized in the exposure profile, 44 results (40 percent) represent jackhammering outdoors under uncontrolled conditions. These results range from less than or equal to the LOD (12 $\mu g/m^3$) to 566 $\mu g/m^3$ and have a median of 73 $\mu g/m^3$ and a mean of 139 $\mu g/m^3$.

Table IV.C-58
Respirable Crystalline Silica Exposure Range and Profile for Workers Using Jackhammers and Other Impact Drills

	Expo	sure Sumn	nary	Exposu	re Range		Ex	posure Profil	e	
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<=25 (μg/m³)	>25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Jackhammer Operator or Impact Driller										
Baseline conditions (outdoors, concrete substrate, no controls)	44	139	73	12	566	11 25.0%	6 13.6%	8 18.2%	10 22.7%	9 20.5%
Same as baseline, with wet methods attempted	5	229	140	26	639	0 0.0%	1 20.0%	0 0.0%	3 60.0%	1 20.0%
Other conditions (various environments, equipment, substrates, and work practices)	60	419	194	12	3,059	9 15.0%	2 3.3%	9 15.0%	14 23.3%	26 43.3%
Totals	109	297	140	12	3,059	20 18.3%	9 8.3%	17 15.6%	27 24.8%	36 33.0%

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average (TWA) exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-C, 2008; McKernan et al., 2002; NIOSH HETA 2002-0014-2958, 2005; OSHA SEP Inspection Report 300033461.

Five of the results in the exposure profile (5 percent) represent jackhammering outdoors attempting wet dust control methods. Under these condition, exposures range from $26 \,\mu\text{g/m}^3$ to $639 \,\mu\text{g/m}^3$, with a median of $140 \,\mu\text{g/m}^3$ and a mean of $229 \,\mu\text{g/m}^3$. There is not enough information available to OSHA to determine how the wet method control was applied in four of these five trials (the lowest exposure indicates that water was applied continuously at the point of operation). Sample durations and silica concentration in the raw material in these four trials are comparable to outdoor trials with no engineering controls. Additionally, four of five of these "wet" operations resulted in higher exposures than some "dry" operations with similar parameters, with the amount of respirable dust created in each of these four wet operations being higher than that created from comparable dry runs. Based on this information, OSHA has reason to believe that the water dust suppression control was not applied optimally.

The 60 remaining results (55 percent) were collected during chipping and breaking activities performed under a variety of "other conditions" (e.g., various tools, degrees of enclosure, attempted controls, numbers of jackhammers operating side by side, uses of compressed air or other construction equipment) (ERG-C, 2008). This group also includes results for which no information is available regarding controls or working conditions. These exposures tend to be higher, ranging from the LOD ($12 \mu g/m^3$) to 3,059 $\mu g/m^3$, with a median of $194 \mu g/m^3$ and mean of $419 \mu g/m^3$.

Several of the highest results in the "Other Conditions" category, including the maximum value, were obtained for workers using pneumatic-powered needle guns equipped with a contractor-built water-spray system to remove epoxy surfacer from an indoor concrete block wall (NIOSH HETA 83-132-1508, 1983). Other extremely elevated results in this category were also associated with indoor work, including results ranging from 340 μ g/m³ to 2,350 μ g/m³ associated with workers using an air hammer to chip concrete in a parking garage. However, indoor exposures were not uniformly elevated to these extreme levels. Some indoor results were more moderate, including three results between 58 μ g/m³ and 111 μ g/m³ that were obtained for workers operating jackhammers in another parking garage (NIOSH ECTB 233-105c, 1999). In addition, the "Other Conditions" category includes 20 outdoor results, 12 of which exceeded 250 μ g/m³, from bridge deck job sites (NJDHSS, 2000). These unusually elevated results might result from having multiple jackhammers working side by side, using compressed air as a cleaning technique, and cross exposure from other highway equipment.

OSHA also reviewed four more reports not addressed in ERG's analysis (ERG-C, 2008) of chipper and jackhammer operators. These include Flanagan et al. (2006), Blute et al. (1999), and Valiante et al. (2004), none of which report individual silica exposure concentrations, and Nij et al. (2004), which summarizes silica results for construction workers in the Netherlands. Although individual results from the four studies do not appear in the exposure profile, as discussed in the following paragraphs, these reports do offer additional insight into the silica exposure of construction workers using chipping and breaking equipment.

In a review of data from a variety of published and private sources, Flanagan et al. (2006) analyzed multiple tools and tasks used in construction activities. Flanagan reviewed 178 respirable quartz samples associated with the use of jackhammers or chipping guns in construction and found a geometric mean of $150 \,\mu\text{g/m}^3$ for those samples. This is not inconsistent with the exposure profile provided in Table IV.C-

¹⁹⁶ Twenty-two samples obtained from the New Jersey Silica Partnership identified outdoor jackhammer work on concrete as the predominate activity contributing to silica exposure at highway construction sites (NJDHSS, 2000). Median jackhammer exposures were almost three and a half times greater among the New Jersey exposure data than among the other, principally industrial/commercial construction exposure data reviewed in ERG-C (2008). ERG noted that the use of compressed air for cleaning, the tendency to have two or more adjacent jackhammers operating simultaneously, and dust generated or disturbed by other highway construction equipment likely contributed to these higher exposure levels (ERG-C, 2008).

58, which indicates that a large percentage (more than half) of all workers using chipping and breaking equipment are exposed above $100~\mu g/m^3$. OSHA's and Flanagan's data sources likely overlap substantially because they draw from much of the same published literature and some of the same unpublished sources.

A report addressing silica exposures during underground tunnel construction, reviewed in ERG-C (2008) in the Underground Construction section of that report, also summarized respirable quartz concentrations for workers using chipping equipment in the tunnel. Over the periods monitored, the mean exposure level for 10 workers operating chipping guns was $280~\mu\text{g/m}^3$, with a range of $9~\mu\text{g/m}^3$ to $1,640~\mu\text{g/m}^3$ (Blute et al., 1999). These samples contained mean quartz content of approximately 12 to 16 percent. The exposures of the tunnel chipping gun operators are comparable to those compiled in the exposure profile for all workers using chipping and breaking equipment, supporting OSHA's estimate that, in general, underground construction worker exposure levels are typically similar to the levels experienced by workers performing the same task above ground. Although underground construction sites are enclosed (similar to an indoor construction site), the improved ventilation used in many tunnels mitigates the elevated exposures often found in poorly ventilated enclosed spaces.

Valiante et al. (2004) summarized results for 25 workers operating jackhammers at highway projects conducted by the New Jersey Department of Transportation. Silica exposures ranged from 30 $\mu g/m^3$ to 630 $\mu g/m^3$, with a mean of 276 $\mu g/m^3$. The majority of the data from this study were previously identified in ERG-C (2008) as results associated with the New Jersey silica partnership (NJDHSS, 2000) and are included in OSHA's exposure profile.

Finally, an international study conducted by Nij et al. (2004) collected samples from construction workers in the Netherlands (i.e., concrete drillers, tuckpointers, and demolition workers) whose tasks involved the use of jackhammers and other dust-generating tools. Silica results for 21 samples from 10 demolition workers ranged from the LOD of 38 μ g/m³ to 1,300 μ g/m³, with a mean exposure of 250 μ g/m³. These results provide some support for those documented in OSHA's exposure profile (Table IV.C-58), but it is important to note that, in addition to jackhammering, the workers evaluated in this study performed activities excluded from OSHA's exposure profile for jackhammers and impact drills (such as using grinding equipment and excavators fitted with breaking tools).

Based on the best available exposure information and ERG-C (2008), OSHA finds that most construction workers who use jackhammers and impact drills work outdoors on concrete structures and do not use engineering controls or dust-suppressing work practices. However, when impact drillers work indoors, they often attempt various methods of dust control, but no single method is used consistently or effectively. Other workplace conditions might be typical in the highway construction environment where silica exposures tend to be higher than in outdoor commercial or industrial construction. Specifically, in that environment multiple jackhammer operators often work in the same area and use compressed air for cleaning dust from freshly chipped surfaces.

The results included in the exposure profile represent the range of conditions under which workers use jackhammers and impact drills. Therefore, OSHA has preliminarily determined that the overall median result of $140 \,\mu\text{g/m}^3$ for the job category represents the baseline median.

Additional Controls

Wet drilling and using tools equipped with local exhaust ventilation (LEV) are the primary controls available to reduce the respirable quartz exposures of jackhammers and impact drillers. The effectiveness and availability of these measures are discussed in the following paragraphs.

Wet Methods

An OSHA SEP inspection report contains silica results for five samples, all less than $19 \,\mu\text{g/m}^3$, obtained by a consultant while workers chipped concrete with 90-pound pavement breakers and used a 2-inch water hose and pump to wet the area (OSHA SEP Inspection Report 106719750). Because the consultant did not provide supporting details (e.g., sample duration needed to calculate an 8-hour TWA), these results are not included in OSHA's exposure profile; however, they do demonstrate the potential for water-based dust suppression methods to minimize exposure.

Although OSHA was not able to identify a commercial source of jackhammers and impact drills equipped with water supply systems, individual employers, NIOSH, and an informal consortium of New Jersey organizations interested in controlling silica during road construction activities have all tested wet dust suppression methods with chipping and breaking equipment. One method is to apply water by using a garden and/or hydraulic hose taped to the tool's bit. In one instance, a continuous stream of water directed at the concrete breaking point during a 345-minute period resulted in a respirable quartz exposure level below the LOD of approximately 17 μ g/m³. This reading was obtained by OSHA for a jackhammer operator breaking concrete outdoors (OSHA SEP Inspection Report 106719750), and represents a 77-percent reduction from the median exposure level for uncontrolled outdoor work of 73 μ g/m³.

NIOSH completed several studies evaluating water spray devices to suppress dust created while workers use chipping and breaking equipment. These devices use a directed mist, which suppresses dust while conserving water compared with direct application from the mouth of a hose. NIOSH (NIOSH EPHB 282-11a, 2003) investigated water spray dust control used by workers breaking concrete with 60- and 90pound jackhammers. Using both a direct reading instrument and a high-flow cyclone and filter, NIOSH collected 10-minute respirable dust readings with and without the spray activated. Compared with concentrations during uncontrolled pavement breaking, respirable dust results were between 72 and 90 percent lower when the water spray was used. The flow rate of 350 milliliters per minute (ml/min) reportedly dried quickly, without adding a substantial amount of water to the work site (NIOSH EPHB 282-11a, 2003; Echt et al., 2003). A follow-up NIOSH study reported a similar 77 percent reduction in silica concentration during 60-minute trials with a solid cone nozzle producing water mist at a rate of 300 mL/min (NIOSH EPHB 282-11c-2, 2004). In this case, silica levels were reduced from 320 µg/m³ and 430 µg/m³ during uncontrolled trials to less than 40 µg/m³ and 130 µg/m³ when water spray was used. 197 The NIOSH findings suggest that the water mist is able to reduce dust considerably, but that work practices are necessary if construction sites want to keep results below 50 µg/m³ for all workers using chipping and breaking equipment. Employers will need to train workers to observe dust release and conscientiously adjust the flow rate or spray direction to maximize visible dust control. Additionally, workers must be trained to observe the spray quality (its effect on visible dust) and stop work to clean or replace a nozzle that becomes clogged.

Williams and Sam (1999) also evaluated a shop-built water spray nozzle mounted on a hand-held pneumatic chipper used by a worker removing hardened concrete from inside concrete mixing truck drums. Although this was not a construction worker, the task was performed in a mobile, confined space comparable to a worst-case environment for construction concrete chipping and breaking jobs. Under

¹⁹⁷ In this NIOSH study, one worker used an 80-degree nozzle supplying water at 300 milliliters per min (mL/min), and another worker used a 60-degree nozzle that delivered water at a rate of 250 mL/min. The 80-degree nozzle reduced silica exposure 77 percent, while the 60-degree nozzle provided a silica reduction of 39 percent, about half as much as the 80-degree nozzle. The nozzle with the higher flow rate and wider spray pattern reduced silica levels to a greater extent than the other nozzle. When a nozzle became clogged after striking concrete, the silica concentrations rose, which demonstrates the importance of careful maintenance and consistent use of water spray for dust control (NIOSH EPHB 282-11c-2, 2004).

those conditions, the water spray decreased respirable dust approximately 70 percent in the worker's breathing zone compared with uncontrolled chipping in the same environment.

Although not currently commercially available, simple instructions for developing this type of spray equipment for jackhammers are readily available, published by the New Jersey Laborers Health and Safety Fund (Hoffer, 2007), NIOSH (NIOSH 2008-127, 2008), and the New Jersey Department of Health and Senior Services (NJDHSS, no date). An improved design tested in New Jersey involving a double water spray (one on each side of the breaker blade) reduced peak dust concentrations by approximately 90 percent compared with the peak concentration measured for uncontrolled pavement breaking (NJDHSS, no date).

OSHA finds (from the reports described above) that wet methods can reduce exposure levels substantially when optimized, but that until properly adjusted, results can still exceed $100 \,\mu\text{g/m}^3$. This is consistent with the information in Table IV.C-58 showing a median result of $229 \,\mu\text{g/m}^3$ for workers at sites attempting wet methods of one type or another. To be effective, water spray must: 1) provide sufficient water mist (flow rate optimized), 2) provide a suitable droplet size and pattern (the right nozzle), and 3) be appropriately directed. NJDHSS (no date) suggests that a double spray nozzle, described above, improves dust suppression beyond the reported levels.

Considering the provided information on water spray controls, OSHA estimates that under normal working conditions, properly adjusted water mist spray controls can reduce typical breathing zone silica concentrations by approximately 77 percent. This percentage of reduction, reported in NIOSH EPHB 282-11c-2 (2004), is the median amount by which respirable dust or silica was reduced by wet methods evaluated in the reports described above (range of 70 to 90 percent reduction). In practice, this means that water spray controls can be expected to reduce median silica exposure level for workers using chipping and breaking equipment outdoors from the Table IV.C-58 median of 73 μ g/m³ to 17 μ g/m³. In fact, a 77-percent reduction due to installing an effective water spray will reduce baseline exposure levels that are currently up to 200 μ g/m³ (between 57 and 80 percent of all jackhammer operators currently working outdoors under uncontrolled conditions, as indicated in Table IV.C-58) to levels of 50 μ g/m³ or less. Therefore, OSHA conservatively estimates that on outdoor construction sites using water mist spray systems, but otherwise representing baseline conditions, at least 57 percent of the chipping and breaking equipment operators will experience exposure levels of 50 μ g/m³ or less.

OSHA also examined the effect that wet method controls might have on workers whose current exposure is well above the median level. OSHA used as an example two construction workers whose measured 8-hour TWA exposures were 297 μ g/m³ and 449 μ g/m³ (with 19 and 21 percent silica in the samples) over the approximately 450-minute periods monitored, putting them well within the top 20 percent highest values reported in the exposure profile (see Table IV.C-58) for outdoor uncontrolled chipping and breaking work. These impact drillers spent the entire shift chipping concrete, but otherwise worked under typical baseline conditions (i.e., outdoors, with no controls). For these two workers, exposure levels would be reduced (to 68 μ g/m³ and 103 μ g/m³) by the same water mist spray dust control method described above and reported in NIOSH EPHB 282-11c-2 (2004) as offering 77-percent reduction in silica exposures; however, results below 50 μ g/m³ would not necessarily be achieved for these highly exposed workers (in the upper 20 percent of exposed workers in Table IV.C-58) if they operated chipping and breaking equipment for their entire shift.

Flanagan et al. (2003) recorded worker activities in addition to worker exposure during a wide range of construction activities. During more than 16 hours of direct observation (combined time over at least six periods of evaluation), workers performing "demolition with handheld power tools" spent half (51 percent) of the observed time directly performing the target activity (in this case defined as using a

handheld power tool, such as a jackhammer). ¹⁹⁸ For the workers discussed in the paragraph above, daily silica exposure levels would be lower if the workers only used jackhammers or other chipping tools for half their shift (e.g., 4 hours or less) as did the workers reviewed by Flannagan et al. (2003) and as is common for many in the construction industry. In this case, OSHA calculates that 8-hour TWA exposure levels would be approximately half of the average daily concentrations produced by a whole shift of chipping and breaking using the water spray dust control. Again, as an example, consider the two workers whose exposures were in the upper 20 percent (Table IV.C-58). Suppose that this time they worked half a shift of work in a low-dust environment and used the NIOSH water spray controls. Instead of encountering exposure levels of 68 μ g/m³ and 103 μ g/m³ (estimated above) for a full day of chipping and breaking with water spray controls, the resulting daily exposure levels associated with a half shift of this work would be 34 μ g/m³ and 52 μ g/m³. Thus, OSHA estimates that even some of the most highly exposed workers (upper 20 percent in Table IV.C-58) would experience levels in the range of 50 μ g/m³ or less on days when they used jackhammers for less than 4 hours.

OSHA acknowledges that a large portion of construction workers operate chipping equipment under complex conditions (ERG-C, 2008). These workers often have much higher levels of exposure than workers operating strictly under more typical outdoor conditions, simply because workplace factors create or concentrate more airborne silica dust in their breathing zones. These workers perform their jobs outdoors but use compressed air to remove dust and debris from the chipping site, or they operate impact drills and jackhammers indoors or in enclosures (to prevent the spread of dust off the work site), or they are part of teams using pavement breakers in close proximity to each other. Based on the findings of NIOSH (EPHB 282-11a, 2003; EPHB 282-11c-2, 2004) and Williams and Sam (1999), OSHA believes that using carefully adjusted wet methods combined with low-dust cleaning methods can control the respirable quartz exposures of most impact drillers to a level equal to or less than 100 μ g/m³. The 42 percent of these workers for whom results are already less than 100 μ g/m³ will experience exposure reductions to 30 μ g/m³, but not all will be able to do so consistently with the equipment evaluated. Improvements to spray systems, such as the double spray nozzle system tested in New Jersey, might bring a larger portion of worker exposure levels (e.g., those with current exposures less than 250 μ g/m³) to levels of 50 μ g/m³ or less.

Local Exhaust Ventilation

LEV systems present an additional control option for reducing the respirable quartz exposures of impact drillers. The available information on LEV dust control systems for chipping and breaking equipment suggests that some systems might be nearly as effective as certain wet methods. In a study described above, NIOSH also tested two tool-mounted LEV shrouds: one custom built, the other a commercially available model during work with chipping hammers (intended for chipping vertical concrete surfaces). Comparing multiple short–term samples, NIOSH found that the shrouds reduced respirable dust by 48 to 60 percent (Echt et al., 2003; NIOSH EPHB 282-11a, 2003). In a separate evaluation, NIOSH showed that this type of LEV system controls dust equally well for smaller chipping equipment. That evaluation involved short-term samples taken while workers used 25- or 30-pound jackhammers to chip concrete from inside concrete mixer truck drums. During 90- to 120-minute periods of active chipping, mean silica levels decreased 69 percent (from 970 μ g/m³ to 300 μ g/m³) when the workers used a tool-mounted LEV shroud in these enclosed spaces (NIOSH EPHB 247-19, 2001). In this study, a combination of LEV and

¹⁹⁸ Because other tools were also considered part of the hand demolition activity, actual time using a jackhammer would have been less than 51 percent if the worker changed tools during the period of evaluation. The other tools listed under this activity included: chipping guns, rivet busters, sledgehammers, shovels, brooms and vacuum cleaners (Flanagan et al., 2003).

general exhaust ventilation provided additional dust control, resulting in a 78 percent decrease in silica readings. 199

During a separate manufacturer-sponsored test at an indoor demolition site, an LEV shroud mounted to a breaker hammer reduced the number of near-respirable 5-micron-sized particles by 26 percent. A company representative noted that this result could have been improved if the trial had involved the optimal airflow rate recommended for shrouds (120 cubic feet per minute [cfm]) (ESS-engineer, 2009; ESS-test, 2008). For this test, the investigators used an electric breaker hammer and a bag-style vacuum fitted with a high-efficiency particulate air (HEPA) filter, which could have affected the results. Another vacuum type might have offered greater and more consistent air flow to improve dust capture.

Relevant to all studies of LEV for chipping and breaking tools, OSHA notes that recent information on vacuum suction devices used for construction dust control indicates that some LEV methods are likely to be more effective than previously reported when paired with vacuums that consistently provide adequate air flow. Additionally, vacuum cleaners that use bags (plus HEPA filters) for dust capture might not function as consistently as vacuums that include cyclonic pre-separators to capture most of the dust (see discussion in Section IV.C.32 – Tuckpointers and Grinders in this technological feasibility analysis for the construction industry).

Several impact drill manufacturers currently offer LEV options (Atlas-Copco, 2001; Krenzer, 2000; Shave-Away, Europe, 2001; Trelawny, 2001). Other companies specialize in manufacturing after-market ventilation systems for various hand-held tools such as jackhammers and chipping equipment (Alto International A/S, 2001; DustControl AB, 1999; ESS-boot, 2008).

Combination Wet Methods and Local Exhaust Ventilation

A combination of LEV and water is another control option, although OSHA has not been able to quantify its effectiveness. Information obtained for workers operating hand-held grinders suggests that combining wet methods and LEV might reduce exposure further, in the range of 7 percent, beyond using wet methods alone (NIOSH-construction-site-16, 1998; NIOSH ECTB 247-12, 2000). OSHA has preliminarily determined that adding LEV to wet methods can provide at least as great an exposure reduction for jackhammers as for hand-held grinders. As noted above in the discussion of wet method controls alone, OSHA finds that appropriate water sprays might reduce jackhammer operator exposures by 77 percent. By adding the two (at least 7 percent and 77 percent), OSHA estimates that the combined benefit could offer an exposure reduction of at least 84 percent compared with uncontrolled impact drilling. Using the previous example of the two impact drillers, a combination of LEV and wet methods

¹⁹⁹ Decreased silica content in the second respirable dust sample was responsible for about one-fourth of the difference between results obtained during uncontrolled chipping and while using a combination of LEV and general exhaust ventilation (NIOSH EPHB 247-19, 2001).

While both are high energy operations, respirable size particles are produced rapidly by crushing action, but are not accelerated by jackhammers to the extent that they are by grinding tools, resulting in a greater ease of capture by LEV, provided that the LEV volume is sufficient. For jackhammers, the challenge is capturing a large volume of respirable dust that disburses rapidly in highly (but nondirectionally) disturbed air. In contrast, grinding wheels, release large volumes of respirable dust from a small, discrete point, but at extremely high velocity. A very high capture air velocity is required to overcome the particle speed. To achieve the high air velocity, a large air volume and strong vacuum suction are required. Collingwood and Heitbrink (2007) note that a 4.5-inch diameter (1.18 foot circumference) tuckpointing grinding wheel operates at 10,000 to 12,000 rotations per minute (rpm). At that rotation rate, OSHA estimates that the cutting edge of the blade is moving at a speed of nearly 200 feet per second (1.18 feet times 10,000 rotations per minute, divided by 60 seconds per minute), entraining the particles it releases from the surface it is grinding.

might have decreased the results of $297\mu g/m^3$ and $449 \mu g/m^3$ by at least 84 percent to $48 \mu g/m^3$ and $72 \mu g/m^3$, respectively.

As noted above in the discussion of wet method controls alone, OSHA finds that appropriate water sprays might reduce jackhammer operator exposures by 77 percent. By adding the two (at least 7 percent and 77 percent), OSHA estimates that the combined benefit could offer an exposure reduction of at least 84 percent compared with uncontrolled impact drilling. Using the previous example of the two impact drillers, a combination of LEV and wet methods might have decreased the results of $297\mu g/m^3$ and $449\mu g/m^3$ by at least 84 percent to 48 $\mu g/m^3$ and 72 $\mu g/m^3$, respectively.

Work Practices

OSHA expects that many impact drillers provided vacuums rather than compressed air to clean work surfaces could experience reduced exposures. Vacuuming collects dust particles before they become airborne while using compressed air causes them to become airborne (increasing the potential for greater exposures). In particular, if either water spray or LEV were used to reduce exposures on highway construction jobs and vacuums replaced compressed air for cleaning any residual dust on those sites, ERG estimated that most workers using chipping and breaking equipment would routinely experience silica exposure levels less than 100 µg/m³. OSHA concurs, estimating that this combination of controls would reduce the exposure limits of even the most highly exposed workers during outdoor work to 100 µg/m³. When vacuum cleaning is used in combination with improved water spray systems (i.e., adequate flow rate, appropriately directed spray, suitable nozzle), the exposures of most of these workers could be brought down to 50 µg/m³. OSHA does not possess individual studies that show the cumulative benefit of using vacuuming in combination with wet methods or LEV systems. However, the Agency knows that vacuuming will prevent dust accumulation and re-suspension which may be an additional source of exposure when the settled dust dries. Additionally, the benefits offered by wet methods and LEV systems will remain the same, and according to the percent reductions reported for both controls, most of these workers will be able to experience levels below the proposed PEL. Furthermore, the use of compressed air for cleaning will be a prohibited practice under the proposed rule.

Feasibility Finding

Based on the information described above, OSHA preliminarily concludes that the exposure levels for most workers using jackhammers and chipping equipment outdoors will be reduced to less than 100 $\mu g/m^3$ as an 8-hour TWA by using either wet methods (i.e., appropriate water sprays) or LEV systems paired with suitable vacuums (e.g., sufficient volume, cyclonic pre-separator). Furthermore, up to 80 percent of workers operating under baseline conditions and using wet methods or LEV systems will experience exposures less than the proposed PEL of 50 $\mu g/m^3$ if their job duties include using chipping or breaking equipment for less than 4 hours per day (as is typical for when they use these large, heavy tools). Thus exposure levels of 50 $\mu g/m^3$ or less can be achieved for most of these workers most of the time.

For the majority of jackhammer operators who work under more complex conditions (e.g., indoors/enclosures, multiple jackhammers), and so might currently experience exposure levels greater than those associated with baseline conditions, a combination of methods will be necessary to achieve the same results. An adequate combination of controls, including a water spray system supplemented by low-dust cleaning techniques, will reduce the exposures of these workers to $100~\mu g/m^3$. Improved water spray dust suppression includes direct spray at dust source, spray nozzles that offer droplet size similar to the dust size, and a sufficient spray rate to visibly reduce dust. NIOSH showed that jackhammers fitted with an 80-degree nozzle supplying water at 300 mL/min reduced silica exposure by 77 percent (NIOSH EPHB 282-11c-2, 2004). Low-dust cleaning involves vacuuming or wet sweeping excess dust (as a substitute for blowing with compressed air). During a manufacturer-sponsored test, an LEV shroud

mounted to a breaker hammer reduced the number of near-respirable 5-micron-sized particles by 26 percent, a result that could have been improved if the trial had involved the optimal airflow rate of 120 cfm recommended for shrouds (ESS-engineer, 2009; ESS-test, 2008). OSHA anticipates that similar exposure reductions reported by wet methods and LEV systems during outdoor work can be applied to indoor work, as long as arrangements are made to provide adequate fresh air circulation in order to prevent the accumulation of respirable dust in a worker's vicinity. As such, the Agency estimates that most workers performing indoor work may achieve levels of $50~\mu\text{g/m}^3$ or less if the appropriate control strategy is implemented.

Under the above circumstances, when workers use jackhammers for less than 4 hours of their shifts, which is typical of most work performed, OSHA preliminarily concludes that levels of $50 \mu g/m^3$ or less can be achieved for most workers most of the time.

REFERENCES

- Alto International A/S, 2001. Hazardous dust vacuums—Wet/dry vacuums. Available at: www.alto-online.com/product_frame.php3. Last accessed 23 February 2001. **OSHA-2010-0034-1264**
- Atlas-Copco, 2001. Pneumatics—Dust collector. Available at: www.atlascopco.com. Last accessed 19 February 2001.
- Blute, N.A., S.R. Woskie, and C.A. Greenspan, 1999. Exposure characterization for highway construction Part I: cut and cover and tunnel finish stages. Applied Occupational and Environmental Hygiene 14(9):632-641. **OSHA-2010-0034-0562**
- DustControl AB, 1999. DustControl 1999/2000 product catalog. Wilmington, NC: Transmatic Environmental Systems. **OSHA-2010-0034-1266**
- Echt, A., K. Seiber, E. Jones, D. Schill, D. Lefkowitz, J. Sugar, and K. Hoffner, 2003. Control of respirable dust and crystalline silica from breaking concrete with a jackhammer. Applied Occupational and Environmental Hygiene 18:491-495. **OSHA-2010-0034-1267**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- [ESS-boot] Environmental Safety Solutions, 2008. Internet Web page for Enviroboot. Available at: http://www.enviroboot.com/Enviroboots.html OSHA-2010-0034-1366
- [ESS-engineer] Environmental Safety Solutions, 2009. Personal communication between an Environmental Safety Solutions product engineer and Eastern Research Group, Inc. November 20. **OSHA-2010-0034-0651**
- [ESS-test] Environmental Safety Solutions, 2008. Internet Web page for Enviroboot TERS air quality test results. Available at: http://www.enviroboot.com/air-trends.html OSHA-2010-0034-0667

- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144-152. **OSHA-2010-0034-0677**
- Hoffer, K., 2007. How to make your very own jackhammer spray dust control. New Jersey Laborers Health and Safety Fund. Accessible at: http://www.njlaborers.org/health/pdfs/other/jackhammer.pdf OSHA-2010-0034-0741
- Krenzer, M., 2000. Personal communication between a Hilti sales representative and ERG. October 11. **OSHA-2010-0034-1700**
- McKernan, J.L., G.M. Piacitelli, K.C. Roegner, L. Delaney, and J.M. Boiano, 2002. Occupational exposures in seismic retrofitting operations. Applied Occupational and Environmental Hygiene 17(2):75-81. **OSHA-2010-0034-0798**
- Nij, E.T., D. Höhr, P. Borm, I. Burstyn, J. Spierings, F. Steffens, M. Lumens, T. Spee and D. Heederik, 2004. Variability in quartz exposure in the construction industry: Implications for assessing exposure-response relations. Journal of Occupational and Environmental Hygiene 1(3):191-198. OSHA-2010-0034-0836
- [NIOSH 2008-127] National Institute for Occupational Safety and Health, 2008. Workplace solutions Water spray of hazardous dust when breaking concrete with a jackhammer. Available at: http://www.cdc.gov/niosh/docs/wp-solutions/2008-127/pdfs/2008-127.pdf
 OSHA-2010-0034-0838
- [NIOSH-construction-site-16] National Institute for Occupational Safety and Health, 1998. Environmental surveillance report: Construction site #16, Covington, Kentucky. **OSHA-2010-0034-1385**
- [NIOSH ECTB 233-105c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 05 Parking garage construction. **OSHA-2010-0034-0850**
- [NIOSH ECTB 247-12] National Institute for Occupational Safety and Health, 2000. In-depth report: Control technology for crystalline silica exposures in construction: Exposures and preliminary control evaluation at various sites for bricklayers Local No. 9, Pittsburgh, Pennsylvania. **OSHA-2010-0034-0854**
- [NIOSH EPHB 247-15a] National Institute for Occupational Safety and Health, 2001. In-depth survey report of four sites: exposure to silica from hand tools in construction chipping, grinding, and hand demolition. **OSHA-2010-0034-0857**
- [NIOSH EPHB 247-19] National Institute for Occupational Safety and Health, 2001. Control technology for ready-mix truck drum cleaning. **OSHA-2010-0034-0862**
- [NIOSH EPHB 282-11a] National Institute for Occupational Safety and Health, 2003. In-depth survey report of control of respirable dust and crystalline silica from breaking concrete

- with a jackhammer at Bishop Sanzari companies, North Bergen, New Jersey. **OSHA-2010-0034-0865**
- [NIOSH EPHB 282-11c-2] National Institute for Occupational Safety and Health, 2004. In-depth survey report of a water spray device for suppressing respirable and crystalline silica dust from jackhammers. **OSHA-2010-0034-0867**
- [NIOSH HETA 2002-0014-2958] National Institute for Occupational Safety and Health, 2005. Health hazard evaluation report: U.S. Department of Transportation, St. Lawrence Seaway Development Corporation, Messena, New York. **OSHA-2010-0034-0874**
- [NIOSH HETA 83-132-1508] National Institute for Occupational Safety and Health, 1983. Health hazard evaluation report: Grand Gulf Nuclear Power Plant, Port Gibson, Mississippi. **OSHA-2010-0034-1371**
- [NJDHSS] New Jersey Department of Health and Senior Services, no date. NJ silicosis outreach and research alliance Engineering controls for crystalline silica Modifications to jackhammer spray dust control by NJ DOT. Available at:

 http://www.state.nj.us/health/silicosis/documents/njdotmodifications.pdf
 OSHA-2010-0034-0914
- [NJDHSS] New Jersey Department of Health and Senior Services, 2000. Update of silica sampling conducted under the New Jersey silica partnership. **OSHA-2010-0034-0912**
- [OSHA SEP Inspection Report 106719750] OSHA Special Emphasis Program Inspection Report 106719750. **OSHA-2010-0034-0019**
- [OSHA SEP Inspection Report 300033461] OSHA Special Emphasis Program Inspection Report 300033461. **OSHA-2010-0034-0088**
- Shave-Away, Europe, 2001. The dust muzzle. Available at: www.dustmuzzle.com. Last accessed 19 February 2001. **OSHA-2010-0034-1399**
- Trelawny, 2001. Tool and vacuum systems. Available at: www.trelawnyspt.com/tvs_systems.htm. Last accessed 19 February 2001. **OSHA-2010-0034-1288**
- Valiante D., D.P. Schill, K.D. Rosenman, and E. Socie, 2004. Highway repair: A new silicosis threat. American Journal of Public Health 94(5):876-880. **OSHA-2010-0034-1215**
- Williams, D.R., and K. Sam, 1999. Illinois Ready-Mixed Concrete Association industrial hygiene study: October 1997 through June 1999 (unpublished data). Illinois Department of Commerce and Community Affairs, Illinois On-Site Consultation Program, 100 West Randolph Street, Chicago, Illinois. **OSHA-2010-0034-1356**

Masonry Cutters Using Portable Saws Description

Workers in the construction industry use a variety of portable and mobile saws to perform a wide range of cutting activities. Activities include resizing bricks and blocks, cutting segments out of existing masonry structures or pavement, making straight cuts (e.g., to straighten an edge or to weaken a structure in preparation for demolition), and cutting grooves for utility installation. Exposures to silica occur when the masonry worker is cutting silica-containing material, especially concrete, asphalt, and brick.

For this analysis, OSHA divides portable and mobile saws into three primary categories: 1) hand-held saws, 2) walk-behind saws, and 3) drivable saws. A brief description of each type of saw follows; see ERG-C (2008) for more detailed descriptions of each type of saw.

Hand-held saws: The hand-held saw operator (cutter) holds the saw with both hands and leans over the work, which is typically between ground level and waist height. The cutter's breathing zone is often within an arm's length of the point of dust generation. Operators typically use hand-held saws for brief, intermittent periods; however, the process might be repeated numerous times over the course of a shift (ERG-C, 2008). Some workers use a hand-held saw as an alternative to a stationary masonry saw for cutting concrete block and brick close to where the block or brick will be installed.

Walk-behind saws: Construction workers use walk-behind saws to cut expansion joints or slabs out of existing pavement. Workers maneuver the equipment from behind using a control bar or handle(s) so that their breathing zone is typically 5 to 10 feet from cutting action. Masonry cutters using walk-behind saws most commonly work outdoors cutting concrete roadways (ERG-C, 2008).

Drivable saw: A drivable saw operator typically sits in an open cab, about 15 feet away from the pavement cut point, guiding the saw to make long cuts such as are common for utility installation along roadways. The blade housed by this vehicle can be large (e.g., 8 feet in diameter and 2 inches thick) and is typically equipped with a water-fed system to cool the blade. Because of their size, drivable saws are typically used outdoors (ERG-C, 2008).

Table IV.C-59 summarizes the job categories, major activities, and primary sources of silica exposure of workers in this industry.

Job Category*	Major Activities and Sources of Exposure							
Job Category*								
Masonry Cutters Using Por	rtable Saws							
Hand-Held (Cut- off/Chop) Saw	Using hand-held power saw to cut bricks, concrete blocks, tiles (i.e., wall, floor, roofing), and small sections of concrete structures (e.g., pavement, curbs, walls).							
	 Dust generated by cutting action of the abrasive blade in concrete or masonry. 							
Operator Walk-Behind Saw (Flat Saw) Operator	Manipulating wheeled saw using handles. Cutting existing pavement, typically to form expansion joints, slabs, or margins of pavement sections to be removed by other tools.							
	Dust generated by cutting action of the abrasive blade in concrete or asphalt.							
Drivable Saw Operator	Controlling saw from an open cab to make long cuts in existing pavement (e.g., to install underground utilities).							
	 Dust generated by cutting action of the abrasive blade in concrete or asphalt. 							

Baseline Conditions and Exposure Profile

ERG-C (2008) summarized a total of 74 8-hour time-weighted average (TWA) personal breathing zone (PBZ) respirable quartz results for construction workers using portable and mobile saws. ²⁰¹ The results were compiled from NIOSH reports, information on state and federal OSHA inspections (published and unpublished), and published journal articles. Subsequently, ERG determined that nine of those samples did not meet the criteria for this analysis, so they were withdrawn. ²⁰² OSHA has since identified an additional 26 adequately documented respirable quartz results from three NIOSH health hazard evaluation reports related to construction workers using hand-held saws while installing cement roof tiles (NIOSH HETA 2003-0209-3015, 2006; NIOSH HETA 2005-0030-2968, 2008; NIOSH HETA 2005-0031-3055, 2008). Together, the 91 respirable quartz results represent the best exposure monitoring data available to OSHA for workers operating portable and mobile saws.

 $^{^{201}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

²⁰² Sample duration was not published for nine values presented in Flanagan et al. (2001). As a result, ERG deemed the supporting detail insufficient under current exposure profile criteria. Other more fully-documented results from this study are included in the exposure profile, and all the values contribute information to the additional controls portion of this analysis.

Table IV.C-60 provides silica exposure data for all saw operators and for each category of saw operators. Exposures for all saw operators range from 11 micrograms per cubic meter ($\mu g/m^3$) to 10,318 $\mu g/m^3$, with a median of 110 $\mu g/m^3$ and a mean of 275 $\mu g/m^3$. The baseline conditions for workers operating handheld saws, walk-behind saws, and drivable saws will be discussed separately.

Baseline Conditions and Exposure Profile for Hand-Held (Cut-off/Chop) Saw Operators

Workers who use hand-held saws are the largest category of portable and mobile saw operators. Meeker et al. (2009) note that portable hand-held saws are increasingly used as a direct substitute for water-fed stationary saws. OSHA reviewed 68 results from over a dozen construction sites where workers used cut-off, chop-style, and various other hand-held saws. Silica exposures for this group range from 12 $\mu g/m^3$ to 10,318 $\mu g/m^3$, with a mean of 334 $\mu g/m^3$ and a median of 130 $\mu g/m^3$. Fifty results (73 percent) exceed 50 $\mu g/m^3$, and 42 results (62 percent) exceed 100 $\mu g/m^3$. Ten of the 68 results (15 percent) were very high, exceeding 250 $\mu g/m^3$, while 13 results (19 percent) were 25 $\mu g/m^3$ or lower. Seven of the 13 lowest results were associated with workers who used wet methods. The highest 8-hour TWA result, based on a 350-minute sample at 14,150 $\mu g/m^3$ silica concentration, was reported for a plumber who used a hand-held saw to dry-cut slabs out of concrete bathroom floors indoors on each level of a 16-story building. A floor-stand fan aimed at an open window was the only attempt at dust control (NIOSH-WV-Route 6, 1992).

²⁰³ According to Meeker et al. (2009), "Historically, stationary wet saws served as the primary tool bricklayers used to cut masonry units such as brick. However, contractors have increasingly used portable masonry abrasive cutters, often referred to as 'chop saws,' in lieu of the stationary wet saw. Stationary wet saws require the user to be on the ground to make cuts. Some contractors, therefore, view the use of portable masonry saws as a productivity gain because they can be used without getting down from scaffolding. However, gasoline-powered equipment is prohibited on suspended scaffolding [reference 29 CFR 1926.451(d)(14) – Scaffolds]. In addition, portable abrasive cutters are heavy, generate high dust levels, and pose an increased safety risk for accidental cuts and amputations if not used correctly. The stationary wet saw also offers many ergonomic advantages compared with the portable saw." Meeker et al. (2009) go on to explain that with a stationary saw the operator is able to work in an upright position and does not have to bear any of the saw's weight. In contrast, operators using hand-held saws often adopt a bent posture and must support the full weight of the saw while cutting objects at ground level.

Many of the readings below 25 μ g/m3 also were below the LOD and were obtained for workers performing actual cutting operations for significantly less than 8 hours. For example, an 8-hour TWA result of 12 μ g/m3 is calculated from an LOD reading of 40 μ g/m3 or less for a hand-held saw operator dry-cutting concrete pavement for 140 minutes (the period sampled) (Shields, 2000). The calculated 8-hour TWA value is based on the assumption that the worker had no additional exposure during the unsampled portion of the shift (ERG-C, 2008).

Table IV.C-60 Respirable Crystalline Silica Exposure Range and Profile for Masonry Cutters Using Portable Saws **Exposure Summary Exposure Range Exposure Profile** Number ≥25 and >50 and >100 and Mean Median <25 >250 Min Max **Job Category** of ≤50 ≤100 ≤250 $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ (µg/m³) $(\mu g/m^3)$ $(\mu g/m^3)$ $(\mu g/m^3)$ Samples $(\mu g/m^3)$ Hand-Held Saw Operator Sawing concrete or masonry 48 200 150 12 1,472 4 3 6 28 7 outdoors, no dust control (baseline 14.6% 8.3% 6.3% 12.5% 58.3% conditions) Sawing concrete or masonry 8 38 5 24 12 101 1 1 1 0 outdoors, wet methods (presumed 62.5% 12.5% 12.5% 12.5% 0% sufficient) 2 2 Indoors or location unspecified* 8 1,574 119 12 10,317 1 0 3 0.0% 37.5% 25.0% 12.5% 25.0% Indoors or location unspecified, wet 4 64.2 42 19 154 2 0 0 1 1 methods* 50.0% 0.0% 25.0% 25.0% 0.0% Hand-Held Saw Subtotals 68 334 12 130 10,318 5 32 10 13 8 11.8% 47.1% 19.1% 7.4% 14.7% Walk-Behind Saw Operator 12 12 61 Sawing concrete outdoors, sufficient 22 11 8 3 1 0 0 wet methods (baseline conditions) 0.0% 66.7% 25.0% 8.3% 0.0% Other conditions 8 237 65 236 461 0 0 3 4 1 0% 0% 12.5% 37.5% 50% Walk-Behind Saw 20 108 39 11 461 8 3 2 3 4 **Subtotals** 40% 15% 10% 15% 20% Drivable (Vehicular) Saw Operator Sawing concrete outdoors, wet 2 23 23 12 33 1 0 0 0 1 methods (baseline conditions) 50% 50% 0% 0% 0% Other conditions (clogged water 1 88 88 88 88 0 1 0 0 discharge) 0% 0% 0% 100% 0% **Drivable Saw Subtotals** 3 45 33 12 88 1 0 0 1 1 33.3% 33.3% 33.3% 0% 0% 91 275 110 11 22 9 11 35 14 10,318 **Totals** 24.2% 9.9% 12.1% 38.5% 15.4%

Masonry Cutters Using Portable Saws

Notes: All samples are PBZ results and represent 8-hour TWA exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

* Might include hand-held saws that are not chop saws (e.g., extension saws, hand-guided saws temporarily mounted on a wall to make repeated and progressively deeper cuts in a thick concrete wall). Additionally, the location (i.e., outdoor/indoor) was either unspecified or ambiguous for three results associated with dry cutting and one result associated with wet methods.

Sources: ERG-C, 2008; NIOSH HETA 2003-0209-3015, 2006; NIOSH HETA 2005-0030-2968, 2008; NIOSH HETA 2005-0031-3055, 2008.

Forty-eight measurements were obtained for workers using hand-held saws while the worker cut concrete or masonry *outdoors*, with no dust controls. For this subgroup, the median silica result was $150 \,\mu g/m^3$. This is substantially greater than the median of $24 \,\mu g/m^3$ obtained for the eight results from other outdoor workers who used similar saws with wet methods. Table IV.C-60 shows a similar relationship between the median exposure levels associated with dry and water-fed sawing for sawyers primarily working *indoors* (or where location was unspecified). Wet dust control methods have a marked beneficial effect on silica exposures of workers operating hand-held saws both indoors and outdoors.

In addition to the documents that contributed individual results to the exposure profile, OSHA reviewed a study by Flanagan et al. (2006) that summarized 65 results for workers using hand-held saws. The authors reported a geometric mean quartz concentration of $130 \mu g/m^3$ for this data set, which generally supports the information OSHA has summarized for this job category in Table IV.C-60.

Based on these sources, OSHA preliminarily concludes that baseline conditions for construction workers using hand-held saws typically involve outdoors work on concrete or masonry units, with no engineering or work practice dust controls in place. The median exposure level for masonry cutters working under these conditions is 150 $\mu g/m^3$. Although the same type of dry cutting using hand-held equipment is occasionally performed indoors, other equipment (e.g., a stationary or hand-operated water-fed masonry saw) is often selected for indoor cutting. The median exposure for workers (indoors or outdoors) using wet methods to control dust is substantially lower; however, some exposures remain over the proposed permissible exposure limit (PEL) of 50 $\mu g/m^3$ because wet methods are not necessarily adjusted for optimal dust control.

Overall, the exposure profile indicates that 26 percent of construction workers using hand-held saws currently experience exposure levels of 50 $\mu g/m^3$ or less.

Baseline Conditions and Exposure Profile for Walk-Behind Saw Operators

OSHA reviewed 20 silica results for workers operating walk-behind saws ranging from 11 μ g/m³ to 461 μ g/m³ (Table IV.C-60). The mean for this group is 108 μ g/m³, and the median is 39 μ g/m³. Nine results (45 percent) exceed 50 μ g/m³, and seven results (35 percent) exceed 100 μ g/m³.

Construction workers cutting concrete outdoors and using wet methods to cool the blade or suppress dust are represented by a subset of 12 results from at least six construction sites visited by OSHA and NIOSH. At three of these sites, workers used a single wet method: spraying water at the point where the saw blade cut pavement. In addition to spraying water, workers at a fourth site cut into "fresh" concrete, which had been poured within 6 hours of cutting and therefore had not set completely (ERG-C, 2008). These methods were generally effective in maintaining worker silica exposure levels below 50 μ g/m³: as summarized in Table IV.C-60, 8 of the 12 sample results (67 percent) were below 25 μ g/m³,

Flanagan et al. (2006) reported a geometric mean quartz exposure level of 70 μ g/m3 for sawyers using table saws (stationary saws), compared with a geometric mean of 130 μ g/m3 for portable saws. Although the authors did not describe the working conditions associated with each result, it is likely that practices associated with reduced exposures (e.g., wet cutting) were more prevalent with the use of stationary saws than portable saws, a trend also seen among the silica exposure data available to OSHA for workers using the two types of saws (see also Section IV.C.28 – Masonry Cutters Using Stationary Saws in this technological feasibility analysis). These practices greatly reduce both the median and the highest exposure levels (which influence the mean). Flanagan et al. (2006) do not report median exposure values for these data.

²⁰⁶ Some information sources contain results representing multiple sites.

²⁰⁷ Reports on the remaining sites indicated that workers used other or unspecified wet methods.

and only one result (61 $\mu g/m^3$) exceeded 50 $\mu g/m^3$. The median value was 12 $\mu g/m^3$. These data suggest that the standard wet methods typically used with walk-behind saws effectively control operators' 8-hour TWA silica exposure levels most of the time. However, concentrations might exceed 100 $\mu g/m^3$ during short-term sampling activity, presumably covering periods of intensive sawing, even when wet methods are used. For example, a silica concentration of 230 $\mu g/m^3$ was reported for an 85-minute period during which an operator used a water-fed walk-behind saw to cut a road surface. This sample, which contained 21 percent respirable quartz on the filter (higher than typical), resulted in an 8-hour TWA of 41 $\mu g/m^3$ (Shields, 2000). The example demonstrates that elevated silica concentrations can occur during active wet sawing; however, the available documentation does not indicate whether the water-fed system was adjusted to provide optimal dust control.

The remaining eight results for walk-behind saw operators were collected under various other conditions (i.e., other than confirmed wet cutting outdoors). The median value of 236 µg/m³ is almost 20 times higher than the median of 12 µg/m³ just described for workers using wet methods outdoors. Flanagan et al. (2001) obtained four of the eight results (ranging from 65 µg/m³ to 350 µg/m³) over 4 to 7 hours of indoor work involving wet sawing. The authors attributed at least one of the elevated exposures to the work practices common among inexperienced workers, who closely watch the progress of the blade, "...so their breathing zone was in the particle spray zone." More experienced workers tended to stand back out of the spray (particularly when cutting walls with hand-guided saws on tracks). The authors also indicate that to represent "worst case" conditions, they elected to monitor only indoor work sites where jobs with long task durations were scheduled (Flanagan et al., 2001). ²⁰⁸ The remaining four results in the "Other Conditions" group are only partially described. Working conditions are less clearly documented, and the results are somewhat higher (140 µg/m³ to 461 µg/m³, also over 4 to 7 hours) for these four workers, who appear to have used dry or ineffective wet sawing methods (NJDHSS, 2000; OSHA SEP Inspection Reports MN-302502505 and 300219979). The highest of these results is associated with a sawyer cutting repair boundaries on a bridge deck, probably under dry working conditions (NJDHSS, 2000). The difference between these groups of results points to a strong link between lower worker silica exposure levels, effective wet dust suppression, and site conditions that minimize the extent to which airborne particles linger near workers' breathing zones (e.g., outdoors).

Drawing from a variety of sources, Flanagan et al. (2006) compiled a data set of 33 results for workers using walk-behind saws. The authors reported a geometric mean quartz concentration of 90 $\mu g/m^3$ for these workers. This is generally consistent with the mean (arithmetic) of 108 $\mu g/m^3$ (median 39 $\mu g/m^3$) reported in Table IV.C-60 for the 20 results for walk-behind saw operators, which includes workers cutting under a variety of conditions. Although Flanagan et al. (2006) did not describe individual exposures or the working conditions associated with each result, OSHA notes that the data likely represent a range of conditions similar to the conditions described in ERG-C (2008).

On the basis of site visits by OSHA and NIOSH, and other published and unpublished reports, OSHA finds that typical conditions for masonry cutters using walk-behind saws vary considerably; however, use of the saws outdoors with wet cutting methods is the most frequent situation and can be considered the baseline condition. Table IV.C-60 indicates that this baseline condition is represented by a median of 12 $\mu g/m^3$. Because higher exposures can be expected with various dry or indoor cutting conditions (including indoor wet cutting), OSHA finds that additional controls will be required for the 40 percent of workers operating under those conditions, which are represented by a median of silica value of 236 $\mu g/m^3$.

²⁰⁸ This strategy of selecting only work sites with long-duration ("full-shift") sawing jobs both allowed the investigators to evaluate "worst-case" conditions and also helped ensure that silica exposure results were above the limit of detection (LOD). The authors note that "many jobs do not involve such extensive periods of cutting, with workers often working at two or three job sites per day. Time spent commuting between sites and cleanup for each job provided periods of minimal or no exposure" (Flanagan et al., 2001).

Overall, the exposure profile suggests that over half (55 percent) of walk-behind saw operators currently experience exposure levels of $50 \,\mu\text{g/m}^3$ or less and that most, if not all, of these workers are using wet methods.

Baseline Conditions and Exposure Profile for Drivable Saw Operators

Three silica results are available for workers operating water-fed drivable saws. The three samples were obtained over relatively short sampling periods, but are presented as 8-hour TWAs based on the assumption that the worker had no additional exposure during the unsampled portion of the shift. One of the results was less than or equal to $12~\mu\text{g/m}^3$ (limit of detection [LOD]), because of low respirable dust loading on the filter during the 70-minute sample period. Another result of $33~\mu\text{g/m}^3$ was based on a 125-minute sample that recorded a respirable quartz concentration of $128~\mu\text{g/m}^3$. A third result of $88~\mu\text{g/m}^3$ is based on a respirable quartz concentration of $530~\mu\text{g/m}^3$ measured over the 80-minute sampling period. Sampling notes for this highest value indicate that the water discharge onto the saw was clogged, suggesting that the wet methods controls were not operating appropriately (Shields, 2000).

These short-term results indicate the potential for elevated exposure if the worker were to operate the drivable saw continuously for the entire 8-hour shift. Although only short-term operation of these mobile saws was observed at any one location, OSHA anticipates that some workers might continue cutting after moving the saw to another work site. Consequently, these results might under-represent operators' actual silica exposures (ERG-C, 2008). Based on the information presented here, OSHA preliminarily finds that baseline conditions for drivable saw operators involve cutting pavement outdoors using water-fed equipment, although the water feed might not always function as intended. These are the conditions associated with all three results (median of 33 μ g/m³) summarized in Table IV.C-60.

Additional Controls

The primary exposure controls available for masonry sawyers using any of the three categories of portable and mobile saws are wet cutting methods or local exhaust ventilation (LEV)-equipped saws (e.g., vacuum dust collection systems).

Additional Controls for Hand-Held Saws

Wet Methods

Wet cutting methods are a highly effective dust control option for masonry saws. The worker exposure data available to OSHA (presented in Table IV.C-60) show that most (75 percent) 8-hour TWA worker exposure results are $50~\mu g/m^3$ or less when workers use water-fed saws outdoors. This also is true for operators of stationary saws working in similar conditions (see Section IV.C.28 – Masonry Cutters Using Stationary Saws). Additionally, when construction sites reduce related or contributing sources of exposure (e.g., dust from adjacent activities, dust-laden water, dried slurry, shop vacuums) workers (both saw types) experience further reductions in silica exposure. In contrast, when construction workers use handheld or stationary masonry saws without dust controls, peak exposure can reach hundreds or even thousands of micrograms per cubic meter and are often the greatest source of silica dust in the area. These parallels between the two saw types are not coincidental, as both kinds of saws function similarly and

²⁰⁹ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

workers' distance to the cutting point is generally the same for both types. As noted before, workers increasingly use hand-held saws as an alternative to a stationary saw.

However, the ease with which wet methods can be applied differs between hand-held and stationary saws. Stationary saws are typically fitted with a recirculating water basin. In contrast, water applied to the saw blade on a hand-held saw is not recirculated and generally ends up as a slurry of masonry dust and water on the ground, as described by Flanagan et al. (2001). Additional silica exposure can occur if the slurry is not captured properly (e.g., dried dust is re-suspended or released with inadequately filtered or ducted shop vacuum exhaust). Silica dust that is not effectively controlled or is re-suspended during indoor sawing can accumulate in the workspace and contribute to worker exposure levels (Flanagan et al., 2001).

Investigators have evaluated water-based dust control options specifically for hand-held saws and report worker silica exposure level reductions ranging from 90 to 96 percent with various water application methods and cutting conditions. Thorpe et al. (1999) evaluated the effectiveness of two types of water supplies commonly used with hand-held saws: 1) a pressurized portable water supply and 2) a constant water supply. During this evaluation, 15-minute PBZ samples were collected during uncontrolled and controlled (i.e., water-fed) cutting of concrete slab containing 20 percent to 40 percent silica (i.e., worstcase conditions). This short sampling duration is appropriate, because, as previously noted, hand-held saws are typically used intermittently to make short cuts. The uncontrolled mean respirable crystalline silica concentration during multiple 15-minute trials of intensive cutting ranged from 1,700 µg/m³ to 4,800 µg/m³, similar to other respirable silica results reported for brief periods of intensive cutting with hand-held saws (NIOSH 96-112, 1996; NIOSH-WV-Route 6, 1992; NJDHSS, 2000; OSHA SEP Inspection Report 302003694; Shields, 2000). With wet dust controls, respirable dust levels were reduced by up to 94 percent using pressurized portable water supply systems, somewhat less than the 96 percent reduction found using constant supplying water sources, which offer more constant pressure and water flow (Thorpe et al., 1999). All but three of the 48 exposure results presented in Table IV.C-60 for workers dry cutting outdoors are below 500 µg/m³. The most modest exposure reduction reported for wet methods (a 90-percent reduction) will bring all but those three maximum exposures (or 93 percent of all the handheld saw operators currently cutting outdoors with no controls) to levels of 50 µg/m³ or less.

Wet cutting methods also can be used indoors. OSHA identified a respirable silica measurement that was less than or equal to $21 \,\mu\text{g/m}^3$ (the LOD) for a worker using a hand-held saw indoors with wet methods. In this case, the worker spent 40 percent of a 401-minute monitoring period cutting a concrete floor (ERG-C, 2008).

However, the benefits of wet cutting *indoors* are not demonstrated as consistently as wet cutting outdoors. The indoor exposure levels of saw operators are influenced by several factors, including decreased air circulation, which prevents dust from dispersing; other workers' activities that generate airborne silica; and indoor discharge from inadequately filtered shop vacuums used with the saws.

One investigator observed several of these factors contributing to exposure levels simultaneously. Flanagan et al. (2001) reported 8-hour TWA respirable quartz levels of 240 μ g/m³ and 260 μ g/m³ for a hand-held saw operator who used wet methods indoors under worst-case conditions (e.g., longer than normal period of sawing, multiple saws being used in one area). An assistant used a wet shop vacuum to control the spread of slurry. In this case, lack of ventilation in the indoor environment might have accounted for a substantial portion of these exposure levels. The authors suggest that, "Since area and helper exposures are similar to the operator's exposure, the primary exposure might be due to a buildup of respirable aerosol within the enclosed space, rather than direct exposure to slurry spray. Judicious use of dilution ventilation with box fans and open doors and windows might reduce the exposure." Additionally, vacuums, including the wet vacuum used here, can produce airborne dust through "reentrainment of

already collected particles" (Flanagan et al., 2001). Other factors such as decreasing airflow rates can also diminish a vacuum's ability to capture dust (ERG-C, 2008).

All of these factors can contribute to elevated silica exposure levels, but exposure levels also can be controlled using methods such as attentive work scheduling, rigorous housekeeping, increased general ventilation, sufficient and more reliable vacuum suction, and proper routing or filtration of air discharged from vacuums. OSHA expects that when these related sources of dust are properly managed, the exposure levels of sawyers using hand-held saws with wet methods indoors and outdoors will be similar to those of sawyers using stationary saws with wet methods indoors and outdoors (median of 33 μ g/m³, from Section IV.C.28 – Masonry Cutters Using Stationary Saws).

In addition to the studies reviewed in ERG-C (2008), OSHA has identified additional reports that further support the use of wet methods for construction workers who use hand-held saws. NIOSH EPHB 282-13 (2007) evaluated the performance of a commercially available water spray attachment, pre-set by the attachment manufacturer to provide 1.4 liters per minute (0.36 gallons per minute), for hand-held saws during concrete-block cutting. The hand-held electric abrasive cutter was used outdoors to make cuts through concrete blocks laid lengthwise on a plank 17 inches above the ground. Although results indicate that respirable silica levels were extremely high (1,620 μ g/m³) during the 5- to 10-minute trials with water-fed saws, the water-spray attachment did reduce quartz exposures by an average of 90 percent from uncontrolled levels of up to 38,000 μ g/m³ (38 mg/m³) (NIOSH EPHB 282-13, 2007).

Evaluating different water application methods for stationary masonry saws, Beamer et al. (2005) found that freely flowing water resulted in dust reduction of about 93 percent. The authors extrapolated the results from trials in which they applied mist instead of free-flowing water and found that the results suggested that a misting flow rate between 35 and 40 gallons per hour (about 0.6 to 0.7 gallons per minute) would be essentially as effective as freely flowing water (48 gallons per hour in this case) in controlling dust. The authors saw an important benefit to misting, noting that, as an aerosol, mist tends to dry much more quickly than freely flowing water used to control dust. Because of the similarities in saw function, OSHA preliminarily concludes that these findings for stationary saws apply equally to handheld saws. Rapid drying is considered a benefit because sawyers using brick or block sometimes prefer to work with dry surfaces; however, OSHA notes that rapid drying can contribute to increased exposure from re-suspension of previously wetted dust.

Water-fed hand-held saws are commercially available from a variety of sources (CS Unitec, 2009; Hiltiwater-fed, 2009). In some cases the operator simply connects a hose to a factory-installed port. In other cases an adaptor kit is required and is pre-packaged with certain models of the saw.

Water-fed stationary saws offer an effective alternative to hand-held saws for cutting brick, concrete block, tile, and other movable construction materials. As noted previously, these saws are already being used interchangeably at many construction sites. The recirculating water pump and collection basin minimize the amount of water needed for cutting and eliminate the need for additional helpers and equipment to capture slurry on the floor. Furthermore, by using these saws as intended (clean water appropriately directed to the blade), exposure levels less than $50~\mu\text{g/m}^3$ can be achieved for most workers most of the time. For additional information, see Section IV.C.28 – Masonry Cutters Using Stationary Saws in this technological feasibility analysis.

Dust Extraction (Vacuum Suction, Local Exhaust Ventilation)

Hand-held saws can be equipped with LEV air extraction systems. OSHA was not able to obtain extended-period exposure monitoring data indicating the effectiveness of LEV-equipped saws under workplace conditions. However, experimental data indicate that such saws might be somewhat effective

in controlling respirable silica exposure. In some tests LEV-equipped saws offered as much (or more) dust control as wet methods.

Thorpe et al. (1999) found that an LEV system on a hand-held saw reduced mean respirable dust concentrations by 88 percent (from 8,000 µg/m³ to 700 µg/m³) during periods of active cutting of concrete. A more recent experimental study by Meeker et al. (2009) evaluated a commercially available LEV engineering control used with a hand-held electric abrasive saw while cutting block or brick. Breathing zone measurements collected over brief periods (5 to 25 minutes) of controlled and uncontrolled sawing showed a 91 percent to 96 percent reduction in quartz concentrations (for example, a mean of 110 μg/m³ when using LEV versus 2,830 μg/m³ for no control). The results from this study show that saw-based LEV extraction equipment can reduce respirable silica exposures to levels near 100 µg/m³ during short-term periods of active cutting. Since most workers cut intermittently even during times of active cutting (e.g., 10 or 20 seconds using the saw followed by a longer period—up to several minutesof measuring and moving materials or equipment), 8-hour TWA values are likely to be considerably lower (Flanagan, et al., 2001). For example, based on the highest result obtained by Meeker et al. (2009) during concentrated cutting with LEV (170 µg/m³), OSHA estimates that an outdoor worker who cut for 1 minute out of every 5 minutes for the entire shift (i.e., 20 percent of the shift was spent cutting) would experience an 8-hour TWA of 34 µg/m³. However, OSHA has not been able to confirm that these saw ventilation methods offer the same degree of exposure reduction to workers currently experiencing more modest, but still elevated, exposure (for example, in the range of 250 µg/m³ with no controls). Additionally, extended periods of intensive cutting and cutting indoors were not evaluated in the Meeker et al. (2009) study. Substantially higher 8-hour TWA exposures might result in areas where residual airborne dust cannot dissipate. In those cases, OSHA notes that supplemental ventilation would be required to maintain sufficient air circulation.

The NIOSH EPHB 282-13 (2007) study described earlier also evaluated the performance of a commercially available LEV system for hand-held saws during concrete-block cutting. The hand-held electric abrasive cutter was equipped with an LEV shroud connected via 3 meters of 35-millimeter (mm) (1.4-inch) diameter hose to a wet/dry high-efficiency particulate (HEPA) vacuum cleaner with filter "pulse clean." With new bags installed, this vacuum cleaner pulled 56 cubic feet per minute (cfm) through the shroud while the abrasive cutting saw was operating. This relatively modest air flow rate reduced both silica and respirable dust exposures by 95 percent—slightly better results than the water-spray attachment (90 percent reduction) (NIOSH EPHB 282-13, 2007). Despite this substantial exposure reduction, respirable silica concentrations in the worker's breathing zone remained elevated at levels of 790 μ g/m³ to 1,100 μ g/m³ during the five 10-minute trials of intensive cutting. This is consistent with the findings described elsewhere in this technological feasibility analysis. Section IV.C.32 – Tuckpointers and Grinders notes that the choice of vacuum suction has a dramatic effect on dust control efficiency. Although not tested, OSHA believes that it is reasonable to expect improved dust capture with a vacuum suction device that consistently offers greater air flow than the one tested by NIOSH.

LEV-equipped saws do not appear to offer a reliable level of dust reduction under all circumstances. ERG (ERG-C, 2008) reviewed experiments conducted by Croteau et al. (2002) on a hand-held saw equipped with an LEV system exhausted at 70 cfm. This LEV set-up did not reduce respirable silica exposure relative to the same saw without LEV. The authors concluded that the shape of the dust collection shroud opening allowed the rotating blade to push dust away from the shroud (i.e., the blade rotated in the opposite direction than that for which the shroud was designed). To be effective, some saw and LEV combinations might require the rotation of the blade to be reversed to better direct dust into the shroud.

²¹⁰ A self-cleaning feature involving a reverse air pulse that knocks dust from the filter.

NIOSH also evaluated an LEV-equipped hand-held gas-powered saw to assess its potential for reducing respirable silica in the breathing zone at two residential building construction sites during a 2004 health hazard evaluation. The results of the evaluation do not indicate a significant benefit of using the LEV-equipped saw compared with the non-LEV-equipped saw. Overall, the LEV-equipped saw did not consistently reduce exposures to respirable silica. However, the authors noted that the limited amount of data precluded a complete assessment of this type of control (NIOSH HETA 2005-0030-2968, 2008).

A ventilated booth, used with or without wet-methods, offers another control option for hand-held saws. Flanagan (1997) evaluated a booth-style enclosure used with an abrasive cut-off saw, which reduced worker exposure to silica by 85 percent during brief periods of intensive dry cutting. The same saw also was tested with a combination of controls (booth plus wet cutting), which at first reduced respirable silica concentrations by more than 99 percent. During this test, the author reported a silica concentration of 30 $\mu g/m^3$ in the operator's breathing zone. However, the filter bags became saturated with water over time, and in a subsequent test the respirable dust capture deteriorated until the silica concentration reached 2,540 $\mu g/m^3$, half the concentration observed during uncontrolled cutting (5,030 $\mu g/m^3$). The author suggests several design changes that would improve dust capture during dry cutting and extend effective dust capture during wet cutting. Specifically, she suggests using a different booth design that would reduce the booth face area, provide greater capture velocity, and provide a different style of vacuum suction device (for example, one with a cyclone dust separator).

Additional Controls for Walk-Behind Saws

Wet Methods

Wet methods are the primary dust control option for walk-behind saws, and most manufacturers offer water-fed models.²¹¹ Most of these saws, however, are designed to provide water to cool certain types of blades, rather than specifically for dust control.

The available data, summarized in the exposure profile for construction workers using walk-behind saws, provide strong evidence that workers using wet methods usually experience lower silica exposure levels. Table IV.C-60 shows that, of the 12 respirable silica results associated with wet cutting concrete *outdoors* using walk-behind saws, only one measurement exceeded 50 μ g/m³. This single elevated reading, 61 μ g/m³ (the limit of quantification), was obtained by NIOSH for a worker cutting with water supplied to the saw tip during a 231-minute sampling period (NIOSH-Concrete-Coring, 1995). Furthermore, 8 of the results obtained for this group of walk-behind saw operators were reported as less than or equal to the LOD of 12 μ g/m³. These results suggest that, in the manner most typically used (i.e., *outdoors*), water-fed walk-behind saws are generally associated with 8-hour TWA silica exposures below the proposed PEL of 50 μ g/m³.

Although the data are limited, water-fed walk-behind saws used while *indoors* might result in exposures that are considerably higher than those measured outdoors. Flanagan et al. (2001) reported higher 8-hour TWA respirable silica levels for operators and their assistants who used water-fed walk-behind saws indoors for most of their shift (worst-case conditions, resulting in four 8-hour TWA values between 130 $\mu g/m^3$ and 710 $\mu g/m^3$) compared with workers using similar water-fed saws outdoors (two results of 50 $\mu g/m^3$). As noted in the previous discussion of this study regarding hand-held saws, the author suggests that factors such as inadequate ventilation or poor wet vacuum capture efficiency likely contributed to higher indoor respirable silica levels.

²¹¹ Water-fed walk-behind saws (manual and self-propelled) are widely available from many manufacturers and construction tool distributors (Grainger-cat-Husqvarna-concrete saw, 2001; EDCO-E-MPS-I-1007, 2007; Toolfetch-MK-diamond-walkbehind-saw, 2010; EDCO-self-propelled-saws, no date; CS-Unitec-catalog, 2009).

Flanagan et al. (2001) also demonstrated the importance of water flow rates in dust suppression. These investigators reported 8-hour TWA respirable quartz levels as high as 350 μ g/m³ for a worker and assistant who spent 4 hours cutting concrete using a water-fed walk-behind saw and wet shop vacuum (to collect the slurry) at an indoor construction site. Water was supplied to the cutting blade at 0.5 gallons per minute. When similar work was performed with a water-feed rate of 2 gallons per minute, the 8-hour TWA dropped to 110 μ g/m³, one-third of the original value. As previously noted, the authors suspected that the exposure remained somewhat elevated because of a buildup of respirable aerosol within the enclosed space rather than direct exposure to slurry spray. OSHA preliminarily concludes that results lower than 110 μ g/m³ are possible for operators of walk-behind saws working *indoors* if they use sufficient water and ensure that other sources do not contribute exposure (including those related to managing slurry from water-fed saws).

When elevated exposures occur during the use of wet methods, especially indoors, additional efforts need to be taken to ensure that sufficient amounts of water are reaching the cutting point and that water-fed systems are working correctly. In some cases, the water supply or water pump might need to be upgraded to ensure optimal water flow, if the original equipment is insufficient. Construction sites also might need to put in place administrative controls and equipment to ensure that workers capture all slurry (including that on clothing) before it dries and that vacuums do not emit respirable particulates in the work area (ERG-C, 2008).

Dust Extraction (Vacuum Suction, Local Exhaust Ventilation)

Although some manufacturers offer an LEV option for walk-behind saws, ²¹³ OSHA could not obtain exposure monitoring data on the effectiveness of LEV under either actual working conditions or experimental conditions (ERG-C, 2008).

Based on the information reported here for hand-held and drivable saws, OSHA preliminarily concludes that LEV for walk-behind saws should perform equally well, provided a shroud or blade housing and sufficient vacuum suction are available. For most walk-behind saws, OSHA expects that adequate performance will require a relatively large vacuum cleaner. For example, the instruction manual for one relatively small walk-behind saw indicates that the vacuum hood over the blade is intended to be used with a high-volume vacuum that provides more than 200 cfm of suction (EDCO-E-C10-I-0209, 2009). Larger walk-behind saws are likely to require even larger vacuums. As discussed elsewhere in this technological feasibility analysis (see Section IV.C.32 – Tuckpointers and Grinders), insufficient vacuum suction (regardless of the cause) severely limits the effectiveness of vacuum-based dust controls. Industry literature suggests that, as with other types of saws, LEV for walk-behind saws might not reliably achieve silica exposure levels below the current general industry PEL (100 μg/m³) for the workers who use the

²¹² The manufacturer of a walk-behind saw with an original-equipment water port also recommends connecting a hose providing 2 gallons per minute (EDCO-E-MPS-I-1007, 2007).

²¹³ Examples of walk-behind saws that have an LEV option are described in the following: CS-Unitec-CSR-150 (2009), EDCO-accessories-walk-behind-saw (2010), EDCO-E-C10-I-0209 (2009), and EDCO-E-MPS-I-1007 (2007). In some cases the saw is factory equipped with vacuum ports; in other cases the manufacturer offers an optional vacuum-compatible blade guard.

²¹⁴ This walk-behind saw is a "crack-chaser" style for use with 7- to 10-inch blades and a blade housing (hood) that encloses the blade nearly to ground level, which provides more complete enclosure than the guards used on many walk-behind saws. The manufacturer also recommends several other features that a vacuum for this saw might include, such as a self-purging system and filtration designed to capture "submicron" silica particles (EDCO-E-C10-I-0209, 2009).

saws. 215 For example, a manufacturer of walk-behind saws instructs owners to provide a respirator in addition to connecting the saw to a dust control system during dry cutting. In contrast, the instructions do not mention respiratory protection for wet cutting with a minimum water flow (EDCO-E-MPS-I-1007, 2007). Thus, OSHA preliminarily concludes that the LEV systems that have been tested to date are unlikely to consistently control exposures below the proposed PEL of 50 μ g/m³ in typical work environments.

Combination of Controls

Exposure reductions for these workers can also be achieved using a combination of controls that both suppress dust and prevent dust from accumulating in the air. An appropriate combination of control methods includes use of sufficient wet methods; meticulous maintenance of the water-fed system; rigorous control of slurry; an efficient system for discharging the slurry vacuum exhaust air outside the work space (or HEPA-filtering it); and arrangements to improve fresh air exchange in enclosed areas (e.g., via exhaust trunks). Although OSHA could not obtain data on the effectiveness of the above controls combined for walk-behind saws, each control has independently been shown to reduce airborne respirable dust concentrations. Furthermore, a similar combination of controls has proven highly effective for reducing silica exposures of sawyers in the stone and stone products industry (described in Section IV.C.4 – Cut Stone). In the stone products industry, saws are typically water fed and produce a substantial quantity of stone dust slurry that contains silica (granite can be up to 45 percent quartz). This slurry can be a continuing source of exposure if not carefully managed. ERG (ERG-GI, 2008) reviewed full-shift silica exposure results and identified a median exposure level of 30 μ g/m³ for eight sawyers working indoors at four stone fabricating facilities that used a combination of dust control measures:

- Using water-fed saws.
- Using vacuum suction ducted outdoors from saw enclosure.
- Using pre-washed stone (to wet and remove dust).
- Managing slurry by removing it from the work area before it dried.
- Reducing dust from adjacent activities.
- Performing general housekeeping to prevent dust from building up where it could be disturbed.

²¹⁵ Although evaluating a construction industry activity, investigators generally elect to compare silica exposure results with OSHA's gravimetric general industry PEL for silica. This might be due to the fact that the construction industry PEL for silica is based on the units millions of particles per cubic foot (mppcf), requiring an obsolete analytical method not available through most analytical laboratories. Instead, laboratories typically report silica air sampling results as mass-based gravimetric values (e.g., mg/m³) for respirable dust, along with the percent silica, which are also used in the gravimetric general industry PEL for silica. Investigators compare these results with the gravimetric general industry PEL because the units are compatible. An alternative has been available since 2008, when OSHA published a compliance directive, National Emphasis Program (NEP)-Crystalline Silica CPL 03-00-007 (Appendix E), providing a conversion factor to convert air sampling results between mppcf and mg/m³ or μg/m³. However, some investigators have continued in their studies to use the more familiar gravimetric units and compare construction industry air monitoring results with the gravimetric general industry PEL for silica.

²¹⁶ In this case, full-shift is defined as greater than 360 minutes sample duration, with the 8-hour TWA value calculated assuming exposure continued at the same level for any unsampled portion of the shift.

Although the saws in these cases were stationary saws (not walk-behind), the water was sometimes permitted to run across the floor, creating a condition similar to that of walk-behind saw operators working indoors. The median of $30 \, \mu g/m^3$ is 44 percent lower than the median of $54 \, \mu g/m^3$ for all sawyers in that industry (see the exposure profile for Section IV.C.4 – Cut Stone in this technological feasibility analysis).

Additional Controls for Drivable Saws

Wet Methods

Drivable saws are typically factory equipped with water-fed systems that apply water directly to the cutting blade. Two of the three samples in the exposure profile were collected for saw operators using sufficient wet-cutting methods. One 8-hour TWA result was reported as less than or equal to the LOD of $12~\mu\text{g/m}^3$ (actual sample duration 70 minutes), and the other 8-hour TWA result was reported as $33~\mu\text{g/m}^3$ (actual sample duration 125 minutes) (ERG-C, 2008). These levels could potentially be reduced further by adjusting the water spray to optimize dust capture.

In contrast, the highest result in the drivable saw group was obtained for a saw operator who cut pavement while the water nozzle at the saw blade was clogged. The 8-hour TWA measurement of 88 $\mu g/m^3$ was based on an 80-minute sample with an actual respirable quartz reading of 530 $\mu g/m^3$ during the period monitored. This high reading demonstrates the benefit of using sufficient amounts of water to reduce silica exposures and highlights the importance of ensuring that water-fed equipment works properly. In this case, unclogging the water nozzle would almost certainly have resulted in a lower exposure level, although follow-up sampling was not performed (ERG-C, 2008). Based on these limited data, OSHA preliminarily concludes that water-spray optimized for dust suppression can control worker silica exposure below 50 $\mu g/m^3$.

Dust Extraction (Vacuum Suction, Local Exhaust Ventilation)

Another approach that should be considered for controlling the exposures of drivable saw operators is to equip the saws with LEV. But, as is the case with walk-behind saws, OSHA could not obtain exposure monitoring data indicating the effectiveness of LEV under either actual working conditions or experimental conditions (ERG-C, 2008). However, the benefits that such an approach might offer have been demonstrated by an LEV system for drivable asphalt road milling machines developed by a team from the Netherlands. Asphalt milling machines aggressively remove more road surface material (greater volume per minute) than a saw, suggesting that LEV sufficient to control dust from a milling machine also would be sufficient to control dust from a drivable saw. Silica exposure levels were reduced from a range of 20 µg/m³ to 290 µg/m³ (uncontrolled) to a range of 1.9 µg/m³ (as reported) to 17 µg/m³ when the milling machine was fitted with an LEV system. Tests of different control methods demonstrated that for this road milling machine model (also available in the United States), the LEV approach to dust management offered more effective control of respirable silica than wet methods (OSHA-Europa, 2004). The Netherlands group reported that the key to successful dust control is to enclose the milling drum (road-grating tool) and provide sufficient vacuum suction to keep the drum area under constant negative air pressure (which prevents dust from escaping). OSHA believes that this strategy could be equally effective for drivable saws, should an alternative to wet dust control methods become necessary; however, OSHA knows of no examples of commercially available drivable saws fitted with vacuum suction for dust control.

Feasibility Finding

Feasibility Finding—Hand-Held Saws

Based on the evidence presented in the exposure profile for hand-held saws (Table IV.C-60), OSHA preliminarily concludes that wet methods can control the silica exposure of most workers using hand-held saws to levels of 50 μ g/m³ or less. The profile indicates that currently, when wet methods are used by workers using hand-held saws, 75 percent of those working outdoors and 50 percent of those working indoors experience exposure levels of 50 μ g/m³ or less. Table IV.C-60 also shows a median silica reading of 24 μ g/m³ for hand-held saw operators using wet methods outdoors.

Additional controls will be required to reach this level for the remaining operators. For workers who currently perform dry cutting with hand-held saws (comprising the vast majority of all workers using any type of portable or mobile saw), the additional controls involve switching to water-fed saws. Where workers currently experience exposure levels above $50~\mu\text{g/m}^3$ while using wet sawing methods, additional controls include increasing attention to the rate and application position of water used for wet dust suppression, carefully managing slurry (for example, adding an assistant to help capture slurry before it dries and routing vacuum exhaust outdoors or adding HEPA filtration to the vacuum), using work practices that limit the amount of slurry spray (coming off the saw blade) that directly contacts the worker, and controlling silica exposure from adjacent sources (including other saws). Indoors, in addition to the controls just mentioned, increased general or exhaust ventilation (fans, exhaust trunks, or fresh air ducts) also will be required to minimize accumulation of airborne dust in the work area. These sources of silica exposure (slurry, dust from adjacent activities) and the absence of effective ventilation are implicated in the elevated concentrations measured for workers who spent particularly long portions of the shift working with hand-held water-fed saws indoors (Flanagan et al., 2001). OSHA believes that to a large extent silica exposure can be controlled using the methods just described.

Where it proves particularly difficult to control exposures below 50 μ g/m³ for workers who currently use hand-held saws to cut block, brick, and tile, switching to water-fed stationary (tabletop) masonry saws is an alternative that will offer the benefits of wet sawing while simultaneously reducing the challenges of controlling slurry in the work area and other safety concerns associated with hand-held portable saws (e.g., cuts, increased risk of amputations, ergonomic stressors) (Meeker et al., 2009). In Section IV.C.28 – Masonry Cutters Using Stationary Saws, OSHA preliminarily concludes that most construction workers using stationary masonry saws will experience exposure levels of 50 μ g/m³ or less most of the time when they operate water-fed saws in a manner that optimizes dust control.

When wet methods are not possible, LEV-equipped hand-held saws might reduce silica exposures to levels of $100~\mu g/m^3$ when saws are used outdoors. However, the available data are not adequate to determine whether all workers using such saws can reliably and consistently achieve the proposed PEL of $50~\mu g/m^3$. The LEV option provides sufficient dust control that the use of a half-facepiece respirator outdoors and indoors (a full facepiece respirator may be needed on occasions during indoor work) will offer workers adequate protection under the proposed PEL of $50~\mu g/m^3$ until the reliability of LEV can be confirmed over extended work periods.

Feasibility Finding—Walk-Behind Saws

Based on OSHA's review of available data summarized in Table IV.C-60, the silica exposures of most (92 percent) walk-behind saw operators who work *outdoors* using water-fed machines are already controlled to a level less than or equal to $50 \,\mu\text{g/m}^3$. Most workers who use walk-behind saws typically operate under these conditions (i.e., wet methods, outdoors). The median result for 12 workers cutting (mainly concrete) under these operating conditions is less than or equal to $12 \,\mu\text{g/m}^3$. It is reasonable to

expect that the small percentage of walk-behind saw operators who are exposed at levels above $50 \,\mu\text{g/m}^3$ can reduce their exposures through frequent, meticulous maintenance of water-fed systems (e.g., ensuring nozzles are cleaned or replaced as often as necessary to keep them functioning as intended) and sufficient use of water (e.g., according to the saw manufacturer's directions). In some cases this might require adding a supplemental water source or pump.

Walk-behind saw operators working *indoors* generally experience higher respirable silica concentrations. However, OSHA estimates that levels of $50~\mu\text{g/m}^3$ or less can be achieved for most of these workers by using a combination of controls that both suppress dust and prevent dust from accumulating in the air. The necessary control methods include use of sufficient wet methods; meticulous maintenance of the water-fed system; rigorous control of slurry, an efficient system for discharging the slurry vacuum exhaust air outside the work space (or HEPA filtering it); and arrangements to improve fresh air exchange in enclosed areas (e.g., via exhaust trunks). A similar combination of controls has proven highly effective for reducing silica exposures of sawyers in the stone and stone products industry where workers cut granite (up to 45 percent quartz) indoors using water-fed saws that sometimes permit stone slurry to run across the floor. Using the combination of controls, sawyer exposures were reduced by more than 40 percent to a median full-shift silica level of $30~\mu\text{g/m}^3$ (ERG-GI, 2008). A combination of controls will be particularly important when workers use walk-behind saws for unusually long periods (e.g., more than half of the shift).

Vacuum suction systems for walk-behind saws are available, but OSHA requires additional information to confirm that these saws can consistently control worker exposures below the proposed PEL of 50 $\mu g/m^3$.

Feasibility Finding—Drivable Saws

Based on a very small number of respirable silica measurements summarized in Table IV.C-60, OSHA preliminarily finds exposure levels of 50 $\mu g/m^3$ or less have already been achieved for 67 percent of drivable saw operators. The same level can be achieved for the remaining 33 percent of operators by improving maintenance of water-fed systems (for example, by implementing a maintenance program for the dust control equipment). However, as discussed above, drivable saw operators might visit more than one site per day and thus might be subject to respirable silica exposure levels higher than those reported in the limited partial-shift data available. To ensure that all drivable saw operator exposures remain below the proposed PEL of 50 $\mu g/m^3$ even when they cut at more than one job site per shift, an additional 33 percent of the operators (those in Table IV.C-60 with exposures between 25 $\mu g/m^3$ and 50 $\mu g/m^3$) will need to operate equipment covered by a maintenance program for the water-fed/dust control equipment.

Overall Feasibility Finding for Portable and Mobile Saws

Based on the information presented above, OSHA preliminarily concludes that silica exposure levels of $50~\mu g/m^3$ or less can be achieved for most workers using portable and mobile saws most of the time by increasing the number of these construction workers who use wet sawing methods optimized to provide dust control. Among workers already using wet methods outdoors, the data suggest that silica exposures of $50~\mu g/m^3$ or less are already experienced by 75 percent of those who use hand-held saws, 91 percent of the workers using walk-behind saws, and 67 percent of drivable saw operators. This exposure level can be achieved for most of the remaining workers by switching from dry to wet sawing or improving the way existing wet methods apply water (e.g., by cleaning/replacing nozzles or increasing water flow rate). For workers sawing indoors, controls also will need to include work practices and equipment to carefully control slurry before dried particles become reentrained (e.g., suitably filtered or ducted wet/dry shop vacuums) and to improve work area air circulation (e.g., fans, fresh air trunks). In the event that wet methods cannot be used for a particular job, saws fitted with LEV remain an option. While the available

data are not adequate to show that workers using hand-held saws can reliably and consistently achieve the proposed PEL of $50~\mu g/m^3$ using this method, the LEV option provides sufficient dust control that the use of a half-facepiece respirator outdoors and indoors (a full-facepiece respirator may be required on occasions during indoor work) will offer workers adequate protection under the proposed PEL of $50~\mu g/m^3$ until the reliability of LEV can be confirmed over extended work periods.

Vacuum suction options are available for hand-held and walk-behind saws, but information is insufficient to confirm that these will reliably control worker exposures to the proposed PEL of 50 µg/m³.

REFERENCES

- Beamer, B.R., S. Shulman, A. Maynard, and D. Watkins, 2005. Evaluation of misting controls to reduce respirable silica exposure for brick cutting. Annals of Occupational Hygiene 49(6):503-510. **OSHA-2010-0034-0549**
- Croteau, G.A., S.E. Guffey, M.E. Flanagan, and N. S. Seixas, 2002. The effect of local exhaust ventilation controls on dust exposures during concrete cutting and grinding activities. American Industrial Hygiene Association Journal 63(4):458–467. **OSHA-2010-0034-0611**
- [CS-Unitec-catalog] CS-Unitec, Inc., 2009. Internet Web page for CS-Unitec's saw catalog. Available at:

 http://www.csunitec.com/pdf_files/saws/CS%20Unitec%20Saw%20Catalog.pdf

 OSHA-2010-0034-0614
- [CS-Unitec-CSR-150] CS-Unitec, Inc., 2009. Internet web page for model CSR-150 walk-behind air powered concrete saw. Available at: http://www.csunitec.com/concrete-saws/
 OSHA-2010-0034-0616
- [EDCO-accessories-walk-behind-saw] EDCO, Inc., 2010. Internet Web page for walk-behind saw accessories. Available at: http://www.edcoinc.com/accessories-walk-behind.html OSHA-2010-0034-0639
- [EDCO-E-C10-I-0209] EDCO, Inc., 2009. Operator's instruction manual –EDCO crack chaser model C-10 Concrete/asphalt saws random crack saw (EDCO document number E-C10-I-0209). Available at: http://www.edcoinc.com/docs/products/concrete-sawing-drilling/E-C10-I-0209.pdf OSHA-2010-0034-0640
- [EDCO-E-MPS-I-1007] EDCO, Inc., 2007. Operator's instruction manual Concrete/asphalt saws manual-portable (EDCO document number E-MPS-I-1007). Available at: http://www.edcoinc.com/docs/products/concrete-sawing-drilling/SK10-Sk14-SB14-DS18%20Instruction%20manual.pdf OSHA-2010-0034-1676
- [EDCO-Self-propelled-saws] EDCO, Inc., no date. Brochure for EDCO self-propelled concrete & Asphalt saws. Available at: http://www.edcoinc.com/docs/products/concrete-sawing-drilling/Self-Propelled Broch.pdf OSHA-2010-0034-0643

- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- [ERG-GI] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for General Industry, Volume 1 and 2. **OSHA-2010-0034-1365**
- Flanagan, M.E., 1997. Masonry saw ventilation evaluation for jobsite concrete cutting. University of Washington, Department of Environmental and Occupational Health Sciences, Field Research and Consultation Group. Available at http://depts.washington.edu/cnstsafe/concrete_eval.pdf OSHA-2010-0034-1432
- Flanagan, M.E., C. Loewenherz, and G. Kuhn, 2001. Indoor wet concrete cutting and coring exposure evaluation. Applied Occupational and Environmental Hygiene 16(12):1097–1100. **OSHA-2010-0034-0675**
- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144-152. **OSHA-2010-0034-0677**
- [Grainger-cat-Husqvarna-concrete saw] www.Grainger.com, 2010; Online catalog page for: Walk behind concrete saw, 18 In, HP 13 Gas. Available at: http://www.grainger.com/Grainger/wwg/search.shtml?searchQuery=2LDU1&op=search&Ntt=2LDU1&N=0&sst=subset OSHA-2010-0034-0715
- [Hilti-water-fed] Hilti Corporation, 2009. Internet Web page for Hilti's DSH700/900 sawing products and DD water supply/control. Available at: http://www.us.hilti.com/holus/page/module/product/prca_catnavigation.jsf?lang=en&nodeI=-66486; http://www.us.hilti.com/holus/page/module/product/prca_rangedetail.jsf?lang=en&nodeI=-75458 OSHA-2010-0034-0737
- Meeker, J.D., M.R. Cooper, D.L. Lefkowitz, and P.Susi, 2009. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing. Public Health Reports, 124 (Supplement 1):101–111. **OSHA-2010-0034-0803**
- [NIOSH 96-112] National Institute for Occupational Safety and Health, 1996. Alert: request for assistance in preventing silicosis and deaths in construction workers. **OSHA-2010-0034-0846**
- [NIOSH-Concrete-Coring] National Institute for Occupational Safety and Health, 1995. Environmental surveillance report: Concrete Coring, Inc., Enon, Ohio. **OSHA-2010-0034-1384**
- [NIOSH EPHB 282-13] National Institute for Occupational Safety and Health, 2007a. In-depth survey of dust control technology for cutting concrete block and tuckpointing brick at the

- International Masonry Institute Bordentown Training Center, Bordentown, New Jersey. **OSHA-2010-0034-0868**
- [NIOSH HETA 2003-0209-3015] National Institute for Occupational Safety and Health, 2006. Health hazard evaluation report: Diversified Roofing Inc., Phoenix, Arizona. **OSHA-2010-0034-0875**
- [NIOSH HETA 2005-0030-2968] National Institute for Occupational Safety and Health, 2008. Health hazard evaluation report: Haedlee Roofing, Mesa, Arizona. **OSHA-2010-0034-0876**
- [NIOSH HETA 2005-0031-3055] National Institute for Occupational Safety and Health, 2008. Health hazard evaluation report: C&C Roofing, Phoenix, Arizona. **OSHA-2010-0034-0877**
- [NIOSH-WV-Route 6] National Institute for Occupational Safety and Health, 1992. Environmental surveillance report: West Virginia Department of Highways, Bridge Demolition, Route 6, Ohio County. May 18. **OSHA-2010-0034-0911**
- [NJDHSS] New Jersey Department of Health and Senior Services, 2000. Update of silica sampling conducted under the New Jersey silica partnership. **OSHA-2010-0034-0912**
- [OSHA-Europa] European Agency for Safety and Health at Work, 2004. Building in safety: prevention of risks in construction in practice. Section 2.2 Controlling the exposure of workers to respirable dust and crystalline silica from road milling machines (pages 17-20). Available at: http://osha.europa.eu/en/publications/reports/108 OSHA-2010-0034-0945
- [OSHA SEP Inspection Report 300219979] OSHA Special Emphasis Program Inspection Report 300219979. **OSHA-2010-0034-0111**
- [OSHA SEP Inspection Report 302003694] OSHA Special Emphasis Program Inspection Report 302003694. **OSHA-2010-0034-0177**
- [OSHA SEP Inspection Report MN-302502505] OSHA Special Emphasis Program Inspection Report MN-302502505. **OSHA-2010-0034-0815**
- Shields, C.J., 2000. Database sent by OSHA North Aurora Area Office, Illinois, to Eastern Research Group, Inc. via e-mail. September 14. **OSHA-2010-0034-1143**
- Thorpe, A., A.S. Ritchie, M.J. Gibson, and R.C. Brown, 1999. Measurements of the effectiveness of dust control on cut-off saws used in the construction industry. Annals of Occupational Hygiene 43(7):1443–1456. **OSHA-2010-0034-1181**
- [Toolfetch-MK-Diamond-Walk-behind-saw] www.toolfetch.com, 2010. Online catalog page for MK Diamond MK-2020KSP 20" propane walk behind saw (part #158776). Available at: http://www.toolfetch.com/special-deals-158776.shtml OSHA-2010-0034-1185

Masonry Cutters Using Stationary Saws

Description

Workers in the construction industry use stationary saws to cut silica-containing masonry materials, such as bricks, concrete blocks, stone, and tile. These table-top or stand-mounted saws include a flat platform where the work piece (e.g., a brick) sits. To form a cut, the worker brings a rotating circular abrasive blade into contact with the work piece, either by pressing a swing arm-mounted blade down onto the piece, or by moving the piece on a sliding platform into contact with a fixed-position blade (depending on the saw design). In either configuration, the masonry is brought to the saw, and the saw's orientation is fixed. The cutting surface is generally about waist-high and little more than arm's length from the worker's breathing zone. Most stationary masonry saws are designed for use with wet dust control methods. The necessary pump and basin equipment are widely available for nearly all stationary masonry saw models; however, workers often cut brick and block dry, particularly when working outdoors.

Many saw operators alternate cutting with laying masonry and/or mixing mortar, and thus might cut for only a short portion of the shift. Some saw operators, however, cut masonry nearly continuously throughout the shift (ERG-C, 2008). Table IV.C-61 summarizes the job categories, major activities, and primary sources of silica exposure of workers in this industry.

Job Category*	Major Activities and Sources of Exposure						
Masonry Cutter Using	Cutting block, brick, or stone.						
Stationary Saw	 Dust generated by abrasive cutting wheel during dry cutting. Re-suspended dust particles released when dust-laden water or slurry from wet cutting dries and becomes airborne (particularly under extremely hot or dry conditions). 						
*Job categories are intende	ed to represent job functions; actual job titles might differ, and responsibilities might be						

Baseline Conditions and Exposure Profile

ERG-C (2008) summarizes the best exposure monitoring data available to OSHA, which include 28 sampling results for typical masonry cutting conditions indoors and outdoors from 13 construction sites. ²¹⁷ These results were reported in eight OSHA Special Emphasis Program (SEP) reports, two NIOSH visits, a Minnesota OSHA inspection report, an ERG site visit, and one independent investigation.

Of these 28 measurements, 12 readings were for workers dry cutting outdoors with no controls. The mean 8-hour time-weighted average (TWA) silica concentration for the 12 results is equal to 354 micrograms per cubic meter ($\mu g/m^3$), although the median notably lower at 50 $\mu g/m^3$. The two lowest results, 21 $\mu g/m^3$ and a result at or below the limit of detection (LOD) of 12 $\mu g/m^3$, were obtained for a worker dry-

²¹⁷ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

cutting concrete block for approximately 45 minutes during each of two 8-hour sampling periods (NIOSH ECTB 233-118c, 1999). The concrete block being cut during these sampling periods contained 4 percent and less than 3 percent silica, respectively. The maximum silica concentration reported in this 12-sample subset was 2,005 μ g/m³ (an 8-hour TWA obtained over a 350-minute work period), associated with a sawyer dry-cutting concrete blocks containing 15 percent silica (OSHA SEP Inspection Report 122316805).

Exposure levels were considerably lower when workers used wet methods. Among the seven results for workers using water-fed masonry saws to cut brick and block, the highest 8-hour TWA was 93 μ g/m³, with a median of 33 μ g/m³ and a mean of 42 μ g/m³ (ERG-C, 2008). The median percentage of silica in these samples was 9 percent. An additional nine results for workers dry cutting using various administrative and engineering controls resulted in a mean of 210 μ g/m³ and median of 90 μ g/m³. Table IV.C-62 summarizes the exposure profile for masonry cutters using stationary saws under various conditions, including dry cutting, dry cutting with administrative or engineering controls, and wet cutting.

Flanagan et al. (2006) compiled a dataset of 51 results for workers using table (i.e., stationary) saws from a variety of sources (likely including some of the data used in OSHA's exposure profile). The authors reported a geometric mean quartz concentration of $70~\mu\text{g/m}^3$, suggesting that stationary saws generate lower exposure levels than most other tools and equipment used by construction workers. Among the 12 types of equipment evaluated, lower geometric mean exposures were reported only for workers in three groups: those operating cement mixers, heavy equipment (e.g., backhoe, bulldozer), or brooms and shovels. Because the authors did not describe individual exposures or the working conditions associated with each result, the utility of the dataset is limited; however, these results likely represent a mixture of wet methods and uncontrolled dry cutting, as have been reported for the data available to OSHA.

On the basis of the NIOSH and other published and unpublished reports described here, OSHA determined that typical conditions for masonry cutters using stationary saws vary widely, with common conditions including wet cutting methods (any location) and dry cutting outdoors with no engineering controls. Although most masonry saws can be operated using wet methods, the data available to ERG suggest that these saws are often operated without active water flow (ERG-C, 2008). The option of dry cutting with administrative or engineering controls (e.g., local exhaust ventilation [LEV]) is increasingly available, but not used widely.

Overall, the exposure profile suggests that nearly half (46 percent) of masonry cutters using stationary saws currently experience exposure levels of $50 \mu g/m^3$ or less.

IV-445

²¹⁸ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-62
Respirable Crystalline Silica Exposure Range and Profile for Masonry Cutters Using Stationary Saws

Job Category	Exposure Summary			Exposure Range		Exposure Profile				
	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Masonry Cutter Using										
Stationary Saw										
Dry cutting methods	12	354	50	12	2,005	2	4	1	1	4
(no engineering controls)						16.7%	33.3%	8.3%	8.3%	33.3%
Dry cutting methods (mix	9	210	90	12	824	2	0	4	0	3
of administrative or						22.2%	0.0%	44.4%	0.0%	33.3%
engineering controls)										
Wet cutting methods	7	42	33	11	93	2	3	2	0	0
						28.6%	42.9%	28.6%	0.0%	0.0%
Totals	28	230	63.2	11	2,005	6	7	7	1	7
						21.4%	25.0%	25.0%	3.6%	25.0%

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008.

Additional Controls

Based on ERG-C (2008), OSHA has determined that the primary exposure controls available for masonry cutters using stationary saws are wet sawing methods, LEV-equipped saws (e.g., vacuum dust collection systems), ventilated booths, and administrative controls.

Wet Methods

The most reliable data in the literature providing evidence of substantial reductions in silica exposures involve wet sawing methods. As noted previously, ERG identified seven respirable quartz samples for masonry sawyers using wet methods (ERG-C, 2008). The mean of 42 μ g/m³ associated with wet cutting is substantially lower than the mean of 354 μ g/m³ for dry cutting operations. The available exposure monitoring data, however, include examples of concentrations higher than the proposed permissible exposure limit (PEL) of 50 μ g/m³ even when wet cutting methods are used. These exposure levels can result when wet methods are used improperly or when housekeeping is inadequate. For example, a reading of 80 μ g/m³ was obtained for a sawyer wet-cutting concrete brick and block for only 20 percent of a shift (about 96 minutes) (NIOSH ECTB 233-118c, 1999). NIOSH observed that a significant dust cloud was generated during cutting, suggesting that the wetting was not sufficient to provide optimal exposure control. No details are available for the other elevated result (93 μ g/m³) associated with wet cutting methods (Shields, 2000).

In addition to the studies reviewed in ERG-C (2008), OSHA has identified additional reports that further support the use of wet methods. NIOSH investigators collected silica samples during dry cutting and wet cutting of brick and block at a masonry construction site. Silica exposure measured over a short duration (10 minutes) ranged from 3,385 to 15, 913 μ g/m³ (dry cutting of block using portable saws), compared with a range from below the LOD to 87.5 μ g/m³ for two samples taken during wet cutting of block with stationary saws. The investigators report that the average respirable dust concentration during wet cutting is 154 times lower than during dry cutting, a reduction of 99.3 percent (NIOSH HETA 2000-0226-2890, 2001). These findings are supported by a review performed by OSHA and NIOSH, which indicates that wet masonry saw operators' exposures are routinely below 100 μ g/m³ and usually below 50 μ g/m³, not only when averaged over an 8-hour shift, but also during just the sampled portion of the shift (OSHA 3362-04, 2009).

In a recent study under experimental conditions, Meeker et al. (2009) ran trials of intensive masonry cutting for 5 minutes (uncontrolled) or 25 minutes (using exposure controls). Because of the short sample durations, these results are not included in OSHA's exposure profile. The investigators separated results associated with stationary wet sawing into groups obtained while a worker cut either block (mean of 260 $\mu g/m^3$ for the duration sampled) or brick (mean of 90 $\mu g/m^3$ for the duration sampled). Not surprisingly, these mean respirable quartz concentrations measured during short periods of intensive cutting were somewhat higher than the silica concentrations obtained for workers using wet methods on construction sites, as reported in ERG-C (2008). On construction sites, even workers cutting "continuously" will pause to move materials, measure upcoming cuts, adjust the saw, and take breaks, resulting in less intensive cutting (and lower exposures) than occurs during brief experimental trials.

Differences have also been observed in the various wet cutting methods used. Beamer et al. (2005) conducted experiments using a stationary saw to cut bricks in order to compare respirable dust suppression through water misting using three different flow rates—low (4.8 gallons per hour), medium (8.6 gallons per hour), and high (17.3 gallons per hour)—and free-flowing water application. The results showed that low-misting nozzles reduced the respirable mass fraction of dust by about 63 percent,

²¹⁹ Meeker et al. (2009) did not test stationary saws using dry cutting methods.

medium-misting nozzles by about 67 percent, and high-misting nozzles by about 79 percent. The greatest impact occurred with freely flowing water, resulting in dust reduction of about 93 percent and confirming the benefits of water flowing over the stationary saw cutting blade, the most common configuration used for these saws. Because the misting data showed a generally linear relationship between misting rate and dust reduction, the authors extrapolated the results to suggest that a misting flow rate between 35 and 40 gallons per hour (about 0.6 to 0.7 gallons per minute) would be essentially as effective in controlling dust as freely flowing water (48 gallons per hour in this case). Nevertheless, the authors saw an important benefit to misting, noting that, as an aerosol, mist tends to dry much more quickly than freely flowing water used to control dust (Beamer et al., 2005). Rapid drying is considered a benefit because sawyers using brick or block often prefer to work with dry surfaces; however, OSHA notes that rapid drying can contribute to increased exposure from re-suspension of previously wetted dust. Rigorous housekeeping with a high-efficiency particulate [HEPA]-filtered vacuum can limit exposure from re-suspended dust.

On the basis of the available literature, OSHA finds that wet cutting substantially reduces, but does not entirely eliminate, worker exposure to respirable silica.

Local Exhaust Ventilation

ERG-C (2008) reviewed literature suggesting that additional controls for workers could include the use of LEV-equipped stationary masonry saws or stationary saws set into ventilated enclosures (e.g., a ventilation booth that permits the operator to stand outside the enclosure). There is evidence that workers who cut blocks using saws located in site-built ventilation booths throughout their shifts can consistently reduce silica exposures to levels below $100 \,\mu\text{g/m}^3$ (ERG-C, 2008). For example, a 78-percent reduction in respirable quartz exposures (to a mean of $66 \,\mu\text{g/m}^3$) was observed when workers used a site-built ventilated booth outdoors compared with cutting outdoors with no booth (mean of $354 \,\mu\text{g/m}^3$ from Table IV.C-62) (ERG-C, 2008). OSHA concurs that ventilated booths can decrease worker exposure and might provide additional benefit if used together with wet methods (e.g., water-fed saw set in a booth).

Although OSHA estimates that controlling silica exposure is best achieved by cutting brick and block wet, some construction methods specify dry cutting to avoid discoloration or because dry brick is desirable for subsequent processes (NIOSH EPHB 247-18, 2001). NIOSH evaluated dry-cutting methods with and without the use of LEV using a commercially available masonry saw factory-equipped with two exhaust take-offs (one below the blade and one surrounding the blade guard). After enclosing the masonry saw in a test cell, a worker operated the saw to dry cut bricks with and without the saw LEV activated. NIOSH designed the test cell's independent exhaust system to pull air at a steady rate (2800 cubic feet per minute [cfm]) from the cell, and this air was evaluated with a dust analyzer to determine the extent to which the LEV system connected to the saw captured dust (i.e., prevented it from dispersing in the test cell). With the saw LEV turned off, the respirable dust concentration in air drawn from the cell was 13,000 μ g/m³ (13 mg/m³). However, when the saw LEV was activated, the measured respirable dust concentration was notably lower at 50 μ g/m³ (0.05 mg/m³) (NIOSH EPHB 247-18, 2001). Although these concentrations do not relate directly to worker exposure levels, they do indicate that the LEV system captured dust well during the tests. NIOSH concluded that exhaust ventilation can be used to reduce respirable dust emissions by at least 99 percent when LEV air flow rates are sufficient (206 cfm in this

 $^{^{220}}$ OSHA obtained four 8-hour TWA results for workers using the masonry saw in a ventilated booth: 15 $\mu g/m^3,\,70~\mu g/m^3,\,86~\mu g/m^3,\,and\,93~\mu g/m^3$ (OSHA SEP Inspection Report 302007034). The mean of these values is $66~\mu g/m^3,\,and$ the median is $78~\mu g/m^3.$

 $^{^{221}}$ As standard features, this EDCO GMS-10 masonry saw is designed for use with both LEV and wet dust control methods (EDCO-GMS-10, 2008).

case, with suction divided between two vacuum cleaners). However, NIOSH also recommended enlarging the exhaust take-off below the blade to minimize airflow restrictions (to reduce the static pressure loss from greater than 30 inches of water), increase the transport velocity (to 4500 feet per minute [fpm]), and prevent captured dust from settling where it could block air flow (NIOSH EPHB 247-18, 2001).

Administrative Controls

A review of the literature also finds that worker exposures to airborne silica could be reduced by employing specific administrative controls. For example, locating the worker downwind of a stationary saw caused a four- to five-fold higher respirable dust exposure compared with locating the worker upwind of the saw (NIOSH HETA 2000-0226-2890). OSHA recognizes that administrative controls such as this are beneficial, but not always practical (particularly because workers cannot always adjust their orientation to stationary equipment to step out of a dust plume). These methods are helpful, but should be used in conjunction with other exposure controls.

Saw dust controls work best when construction managers ensure workers know how to use the equipment to its best advantage (e.g., how to adjust water flow to minimize dust, when to empty vacuums and clean filters), and choose equipment that is appropriate to their needs (e.g., appropriately sized vacuums that will consistently provide sufficient suction) (OSHA 3362-04, 2009). Additionally, saws with either water filtration or LEV systems require regular maintenance and servicing to limit clogging of hoses and filters (ERG-C, 2008). Furthermore, Yereb (2003) noted that worn saw blades should be replaced to minimize the amount of fine particles produced.

Feasibility Finding

Based on the information presented in this section, OSHA preliminarily concludes that when wet sawing methods are employed, most respirable quartz exposures can be reduced below 50 $\mu g/m^3$. This conclusion is based on the median 8-hour TWA reading of 33 $\mu g/m^3$ for workers who used wet methods to cut masonry with stationary saws. Based on the exposure profile (Table IV.C-62), OSHA estimates that wet cutting methods across the construction industry will need to be employed, or employed more rigorously than at present, for just over half (54 percent) of masonry cutters. OSHA anticipates that those workers who are already using wet methods but experiencing exposure levels above 50 $\mu g/m^3$ (29 percent of the workers now using wet cutting methods) will need further instruction to achieve optimal dust control with these methods (e.g., what level of water flow to use, how water flow should be directed on the blade, and/or when to change dust-laden water in the tank). NIOSH ECTB 233-118c (1999) described a sawyer wet-cutting concrete brick and block for part of the shift and generating a significant dust cloud in the process. The result of 80 $\mu g/m^3$ confirmed that the wetting was not sufficient to provide optimal exposure control for this worker and further adjustments or administrative actions were needed.

Other administrative actions supplement water flow adjustments. In order to consistently reduce exposures to workers using stationary saws to below 50 $\mu g/m^3$, OSHA expects construction employers will need to replace saw blades when worn, maintain LEV systems in good working condition, and ensure that workers accompany wet methods with rigorous housekeeping to prevent dust particles from becoming airborne when dust-laden water dries.

²²² By attaching hoses from two powerful vacuums to the two saw exhaust ports, the investigators prepared the LEV system to exhaust 93 cfm from below the blade and an additional 113 cfm from the guard surrounding the blade. This configuration resulted in a 99 percent reduction in respirable dust emissions. In the same study, but using lower air flow rates, NIOSH found that the LEV system reduced respirable dust emissions to a smaller extent (NIOSH EPHB 247-18, 2001).

Although most masonry cutters can use wet methods with good results, wet methods might be less effective for a small portion of the workforce (ERG-C, 2008). For example, extremely hot, dry atmospheric conditions can cause dust-laden mist particles from the saw to dry while still airborne. In small or enclosed spaces this condition will permit silica to accumulate in the air. Similarly, if spilled water/slurry is permitted to dry, silica-containing dust particles can become re-suspended if disturbed. Or, wet methods might simply be inappropriate for certain construction techniques. For these alternative working environments OSHA estimates that the use of LEV will be necessary to reduce exposures to levels below $50 \, \mu \text{g/m}^3$. When possible, a combination of controls (exhaust ventilation and wet methods) should be employed. For example, positioning a water-fed saw in a site-built ventilated booth would provide significant additional protection. This combined approach would also make it possible to use wet methods in indoor locations where mist might otherwise complicate their use.

In summary, OSHA preliminarily concludes that most construction workers using stationary masonry saws will experience exposure levels of $50~\mu\text{g/m}^3$ or less most of the time when they operate water-fed saws in a manner that optimizes dust control. Construction managers will also need to develop programs to ensure that equipment is well-maintained to maximize dust control benefits. Specifically, administrative policies must encourage workers to change dust-laden water routinely, replace worn saw blades, and maintain LEV systems to ensure consistent suction.

REFERENCES

- Beamer, B.R., S. Shulman, A. Maynard, and D. Watkins, 2005. Evaluation of misting controls to reduce respirable silica exposure for brick cutting. Annals of Occupational Hygiene 49(6):503-510. **OSHA-2010-0034-0549**
- [EDCO-GMS-10] EDCO, Inc., 2008. Internet website for GMS-10 hardscape masonry saw. Available at: http://www.edcoinc.com/hardscape-saws-gms-10.html OSHA-2010-0034-0641
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144-152. **OSHA-2010-0034-0677**
- Meeker, J.D., M.R. Cooper, D.L. Lefkowitz, and P.Susi, 2009. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing. Public Health Reports, 124 (Supplement 1):101–111. **OSHA-2010-0034-0803**
- [NIOSH ECTB 233-118c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 18 Cutting brick and concrete masonry units. **OSHA-2010-0034-0231**
- [NIOSH EPHB 247-18] National Institute for Occupational Safety and Health, 2001. In-depth study report: Control technology for crystalline silica exposures in construction: The effect of exhaust flow rate upon the respirable dust emissions for tuck pointing operations and a preliminary evaluation of a ventilated tool for brick cutting. **OSHA-2010-0034-0861**

- [NIOSH HETA 2000-0226-2890] National Institute for Occupational Safety and Health, 2001. Health hazard evaluation report: Foeste Masonry, Cape Girardeau, Missouri. **OSHA-2010-0034-1252**
- [OSHA 3362-04] Occupational Safety and Health Administration, 2009. Controlling silica exposures in construction. **OSHA-2010-0034-0933**
- [OSHA SEP Inspection Report 122316805] OSHA Special Emphasis Program Inspection Report 122316805. **OSHA-2010-0034-0103/OSHA-2010-0034-0114**
- [OSHA SEP Inspection Report 302007034] OSHA Special Emphasis Program Inspection Report 302007034. **OSHA-2010-0034-0181**
- Shields, C.J., 2000. Database sent by OSHA North Aurora Area Office, Illinois, to Eastern Research Group, Inc. via e-mail. September 14. **OSHA-2010-0034-1143**
- Yereb, D.J., 2003. Case studies: Evaluation of dry and wet block cutting and recommendation for a masonry company (D. Tharr, ed.). Applied Occupational and Environmental Hygiene 18(3):145–150. **OSHA-2010-0034-1238**

Millers Using Portable or Mobile Machines Description

Millers are workers who use milling equipment to grate or grind solid surfaces, such as concrete floors, masonry walls, sidewalks, and asphalt roads. OSHA has divided this job category into three subcategories to describe baseline conditions and control options:

- Workers who operate large driven (or road) milling machines from seats on top of the equipment.
- Workers who tend the large milling machines by walking beside the equipment.
- Workers who operate walk-behind milling machines.

Milling machinery often uses a rapidly rotating drum or a bit covered with nibs to abrade surfaces, although other mechanisms are also common (e.g., systems based on impact, shot-blast, or rotating abrasive cups). The operator can drive larger models from above (e.g., road milling equipment used in recycling/resurfacing operations) or guide smaller milling equipment by hand (e.g., walk-behind equipment used for small pavement areas and floor work). Laborers or construction workers operate the smaller machines during specialty tasks such as resurfacing floors, repairing pavement, or installing electrical systems (i.e., creating grooves for conduit).

While some smaller milling equipment is operated dry, all road milling equipment is designed with a water feed at the milling drum to cool the blades. Regardless of the equipment size, the operator is often responsible for sweeping and disposing of debris after milling is complete, although for larger equipment an assistant might also be involved. For example, a NIOSH report described a laborer working with a shovel who walked beside a large road mill driven by another worker (NIOSH-Swank, 1995). On road milling sites, a vehicular street sweeper is also usually present.

As in other construction job categories, the duration of milling activities might vary substantially from shift to shift. For example, at a site evaluated by NIOSH, workers milled a road for more than 8 hours the first day but only 3.5 hours the next day because the job was finished (NIOSH-Swank, 1995). Duration varies even more—from 1 to 8 hours—for smaller milling equipment.

Table IV.C-63 summarizes the job categories, major activities, and primary sources of silica exposure of millers.

Job Category	Major Activities and Sources of Exposure						
Large Driven Milling Machine Operator	Grating or grinding solid surfaces such as asphalt roads; operator often seated on top.						
	Dust from action of cutting blades.						
Large Milling Machine Tender	Assisting operation of large milling machines while walking beside the machines.						
	Dust from action of cutting blades.						
	Dust from related activities, such as sweeping or shoveling debris.						
Walk-Behind Milling Machine Operator	Grating or grinding solid surfaces such as concrete floors, masonry walls, and sidewalks; operator often guides from behind.						
	Dust from action of cutting blades.						
	Dust disturbed during cleanup/housekeeping tasks.						

Baseline Conditions and Exposure Profile

The following sections describe baseline conditions for each affected job category based on an ERG site visit report, OSHA SEP inspection reports, and NIOSH reports. Table IV.C-64 presents the exposure profile and summarizes exposure results for workers in each job category. Although limited, these results represent the best data available to OSHA for workers using milling equipment. ERG initially obtained six results for workers in this job category (ERG-C, 2008). OSHA subsequently identified additional results in five NIOSH reports (NIOSH EPHB 282-11b, 2004; NIOSH EPHB 282-12a, 2007; NIOSH EPHB 282-14a, 2009; NIOSH EPHB 282-15a, 2009; NIOSH EPHB 282-16a, 2009). Furthermore, several results for workers using gas-powered routers on pavement (OSHA SEP Inspection Report 300442977) were added to the exposure profile when they were re-categorized as more closely associated with milling equipment than with hand-held grinding tools, which are described in a different section of this analysis.

OSHA also identified two recent reports by Flanagan et al. (2003, 2006) that provide summary data for milling equipment operators and two studies on pavement milling machine dust controls used in the Netherlands (TNO Bouw, 2002; Van Rooij and Klaase, 2007). Although these studies do not provide individual results suitable for the exposure profile, as discussed in the following paragraphs, these reports do offer additional insight into the silica exposure of construction workers involved with milling equipment.

 $^{^{223}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

Baseline Conditions and Exposure Profile for Large Driven Milling Machine Operators

As indicated in Table IV.C-64, 14 exposure results were obtained for large driven milling machine operators. The median exposure level is 17 micrograms per cubic meter ($\mu g/m^3$), with a mean of 40 $\mu g/m^3$ and a range from 5 $\mu g/m^3$ to 181 $\mu g/m^3$. Three of the fourteen results (21 percent) exceed 50 $\mu g/m^3$, and only one result (7 percent) exceeds 100 $\mu g/m^3$. Construction workers operating large driven milling machines most commonly perform their duties from the tops of the machines. A typical asphalt milling machine has a built-in reservoir from which water is applied to the cutting drum (NJDHSS, 2000). The operators use the same water-fed equipment (with different teeth) for concrete milling, but since the vast majority of U.S. roadways are paved with asphalt, concrete milling is performed less frequently (Wirtgen, 2010). The machines are available with or without cabs, although sources suggest that cabs are uncommon because of concerns about visibility and safety (Burstyn et al., 2000; Wirtgen, 2010).

The contractor report (ERG-C, 2008) originally identified two readings, both less than or equal to the limit of detection (LOD) of $12~\mu\text{g/m}^3$, for asphalt milling machine drivers performing wet milling (NIOSH-Swank, 1995). ²²⁴ All of the additional data in the current exposure profile comes from more recent research in which NIOSH conducted a series of five studies in association with the National Asphalt Paving Association investigating wet methods of dust control during asphalt milling (summarized in Table IV.C-65). All of these studies had an experimental component in which some aspect of the water spray was systematically varied. Thus, 8-hour time-weighted averages (TWAs) were calculated from two to four consecutive samples (the majority being 2 hours or shorter) during which various water treatments were applied (e.g., high- and low-flow). The total duration of sampling for each operator was at least 4 hours for the majority of samples and only incorporated periods of active milling. Zero exposure was assumed for the unsampled portion of the shift. The results of these studies were included in the exposure profile because working conditions reflect those actually experienced by milling operators on the job (contracted road work was performed during these studies), although on some dates the amount of time spent milling might have been on the low end of the normal range for milling machine operators.

Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

Table IV.C-64
Respirable Crystalline Silica Exposure Range and Profile for Millers Using Portable or Mobile Machines

	Expo	Exposure Summary			re Range	Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Large Driven Milling	14	39	17	5	181	10	1	2	1	0	
Machine Operator						71.4%	7.1%	14.3%	7.1%	0.0%	
Large Milling Machine	15	58	27	13	340	6	4	4	0	1	
Tender						40.0%	26.7%	26.7%	0.0%	6.7%	
Walk-Behind Milling	6	32	20	12	80	3	2	1	0	0	
Machine Operator						50.0%	33.3%	16.7%	0.0%	0.0%	
Totals	35	46	20	5	340	19	7	7	1	1	
						54.3%	20.0%	20.0%	2.9%	2.9%	

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour TWA exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-C, 2008; NIOSH EPHB 282-11b, 2004; NIOSH EPHB 282-12a, 2007; OSHA SEP Inspection Report 300442977; NIOSH EPHB 282-14a, 2009; NIOSH EPHB 282-15a, 2009; NIOSH EPHB 282-16a, 2009.

	Table IV.C-65 Overview of Five NIOSH Asphalt Milling Machine Studies Conducted 2003 Through 2006									
Study Date	Type of Milling	Average Water Spray	8-hour TWA PBZ Silica Results ^A	Percent Silica	Important Findings and Conclusions	Report No.				
Oct 2003	Road demolition (12-inch	Cutter drum: 6 to 9 gpm	Operator: 14 to 100 µg/m ³	4 to 9 percent silica on filters.	The deep cut created more dust than typical jobs because of the large gap it created between the bottom of machine and the milled surface (allowing more dust to escape) and the	NIOSH EPHB 282- 11b (2004)				
	removal)	Conveyor: ^B 4 to 3.7 gpm	Tender: 27 to 66 µg/m ³	12 to 28 percent quartz in bulk samples.	greater quantity of material removed. This is not a typical job.					
Jul 2004	Typical "mill and fill" (1 to 4-inch removal)	Cutter drum: 5 to 9 gpm Conveyor:	Operator: 22 to 91 µg/m³ Tender:	10 percent silica on filters.	Increased water application rate resulted in 50 percent overall reductions in dust emissions.	NIOSH EPHB 282- 12a (2007)				
Jun 2006	Typical "mill and fill" (1 to 4-inch removal	2 to 3 gpm Cutter drum: 16 to 18.5 gpm Conveyor: Not available	15 to 25 μg/m ³ Operator: 5 to 8 μg/m ³ Tender: 13 to 28 μg/m ³	5 percent silica on the filters.	No substantial difference in dust control was found between the two relatively similar flow rates.	NIOSH EPHB 282- 15a (2009)				
Aug 2006	Typical "mill and fill" (1 to 4-inch removal	Cutter drum: 7 to 12 gpm Conveyor: 5 to 6.5 gpm	Operator: 15 to 20 µg/m ³ Tender: 15 to 20 µg/m ³	ND to 4 percent silica on filters.	Dust levels were reduced when water flow rate increased. The hot weather caused the asphalt to become sticky, which might have helped suppress dust.	NIOSH EPHB 282- 14a (2009)				
Sep 2006	Typical "mill and fill" (1 to 4-inch removal	Cutter drum and conveyor (total): ^C 12.5 to 20 gpm	Operator: 39 to 181 µg/m ³ Tender: 60 to 82 µg/m ³	14 to 17 percent silica on filters.	There was no correlation between water flow rates and dust levels. Pressure spray at higher flow rate might have stirred dust into the air. The cold weather might have caused the asphalt to become brittle, contributing to particularly high levels of dust.	NIOSH EPHB 282- 16a (2009)				

Notes: gpm = gallons per minute; ND = none detected.

Sources: Blade, 2010; NIOSH EPHB 282-11b, 2004; NIOSH EPHB 282-12a, 2007; NIOSH EPHB 282-14a, 2009; NIOSH EPHB 282-15a, 20 282-16a, 2009.

^A Eight-hour TWAs were calculated from two to four consecutive samples (the majority being 2 hours or shorter) during which various water treatments were applied (e.g., high- and low-flow). The total duration of sampling for each operator was at least 4 hours for the majority of samples and only incorporated periods of active milling. Zero exposure was assumed for the unsampled portion of the shift.

B When water flow to the cutter drum increased, water flow to the conveyor decreased.

C Separate values for cutter drum and conveyor are not available.

In the first study (October 2003), NIOSH investigators collected air samples while evaluating an asphaltmilling machine water spray dust suppression system using two different types of nozzles, high-flow and low-flow (NIOSH EPHB 282-11b, 2004). NIOSH obtained an exposure result of 14 μ g/m³ for the milling machine operator on the first day, which was a typical day of wet-milling (although water flow rate was not evaluated). A higher result of $100~\mu$ g/m³ was obtained for the operator on the day that investigators evaluated nozzle types (average flow rates between 10 and 12.7 gpm). NIOSH noted that the effect of wind speed and direction is uncertain. At this site, workers removed 12 inches of pavement all at once. This is a highly unusual operation, essentially a specialized form of road demolition, and reportedly does not represent typical "mill and fill" repaving activity (Blade, 2010). During mill-and-fill type jobs, only the top layer(s) (usually 1 to 4 inches) of pavement is removed prior to resurfacing. In this first NIOSH study, the removal of excess pavement during milling machine demolition-type work created a large gap between the road and the milling machine drum enclosure, allowing more dust to escape than during typical milling conditions. Milling operators will rarely encounter these "worst case" conditions during their careers (Blade, 2010).

Subsequently (in July 2004), NIOSH completed a similar study to determine if the engineering controls supplied with new asphalt milling machines and operated according to the manufacturer's recommendations were adequate to control worker exposures. Two results of 91 µg/m³ and 22 µg/m³ were obtained for the milling machine operator during this typical "mill and fill" job, while water spray flow rate averages ranged from 5 gpm to 9 gpm at the cutting drum (NIOSH EPHB 282-12a, 2007). The system tested provided additional spray at the conveyor. The next study in this series (June 2006) compared several new milling machines equipped with the manufacturer's spray system, which were tested at 80 percent and 100 percent of their respective maximum flow rates. Two of three operator quartz exposure levels were below the LOD (less than or equal to 5 μ g/m³), and the third result of 8 μ g/m³ also was very low (NIOSH EPHB 282-15a, 2009). Similarly low results were observed in the fourth study (August 2006), which tested a late-model mill retrofitted with the newest manufacturer spray system with average total (cutter drum and conveyor) water spray flow rates between 12 gpm and 19 gpm. The three operator quartz exposures were below the LOD (two results of less than or equal to 20 ug/m³ and one result less than or equal to 15 µg/m³) (NIOSH EPHB 282-14a, 2009). Although percent silica in the asphalt was relatively low (containing an average of 14 percent quartz), respirable dust also was well controlled. NIOSH suggested that the high summer temperatures (85° to 100° Fahrenheit [F]) caused the asphalt to become sticky, which helped limit respirable dust emissions.

The final study in this series (September 2006) again tested a late-model milling machine retrofitted with the newest manufacturer spray system; average total water spray flow rates ranged between 12 gpm and 20 gpm. Quartz exposures obtained at this site, $39 \,\mu\text{g/m}^3$ and $181 \,\mu\text{g/m}^3$, were higher than those at the previous site (NIOSH EPHB 282-16a, 2009). As previously noted, the PBZ exposure levels are composites of samples taken during both high- and low-flow trials, so they do not correlate with specific flow rates. Milling was conducted at nighttime when temperatures were very cool (in the $40s^{\circ}\text{F}$). NIOSH noted that it is unclear whether this influenced the silica results, although it is possible that the tendency of asphalt to fracture when cold contributed to the difference in results from this and the warm weather trial of August 2006.

In a separate review of construction data from a variety of sources, Flanagan et al. (2006) summarized 48 respirable quartz samples associated with the use of road milling machines in construction and found a geometric mean of 11 μ g/m³. Flanagan's dataset was drawn from a variety of published and private data (not all of which are available to OSHA), and likely overlaps substantially with OSHA's. The results in the larger Flanagan dataset support the results in OSHA's exposure profile, which show that most milling machine operator exposures are below the proposed permissible exposure limit (PEL) of 50 μ g/m³.

OSHA also examined differences between asphalt and concrete milling and believes that the exposure of operators milling concrete roads might be somewhat higher than the exposure during milling of asphalt, but not necessarily to the extent shown by the concrete milling data available to OSHA. The New Jersey Department of Health and Senior Services (NJDHSS, 2000) reported that, while none of the eight asphalt road millers it evaluated were exposed to silica above the current PEL (average level was one-half the calculated PEL for respirable dust containing silica), the average of the results for two concrete road millers was more than 12 times the PEL. ^{225,226} In these cases, the asphalt milling was performed as a wet process while the concrete milling was a dry operation (NJDHSS, 2000). A milling machine manufacturer notes that the manufacturer's recommended operating procedures include wet processes for all road milling to protect the equipment; because dry milling quickly results in costly equipment damage, it is not an accepted normal practice for asphalt or concrete (Wirtgen, 2010).

Wirtgen (2010) also indicates that there are no practical contraindications to using water sprays during concrete milling, although with equivalent water spray, silica emissions could still be higher during concrete milling than asphalt milling. This difference is due to the potential for higher silica content in concrete compared with some asphalts and also due to the softness and "stickiness" of asphalt milled warm, which likely helps reduce separation of the pavement components and perhaps limits dust release in hot weather (NIOSH EPHB 282-14a, 2009; Wirtgen, 2010). Because the same milling machines (fitted with different models of interchangeable teeth on the milling drum) can be used to mill asphalt and concrete roads (Wirtgen, 2005), OSHA expects that operators use these machines on both materials.

Based on information described above, OSHA preliminarily concludes that the baseline conditions for road milling machine operators consist of no cabs or open cabs (which would not provide substantial isolation from the outdoor environment) and use of wet milling methods (with varying degrees of attention to water flow). Furthermore, baseline conditions include primarily "mill and fill" asphalt replacement, with only occasional road demolition jobs (i.e., deeper milling action). Because the results included in the exposure profile represent a similar range of conditions, OSHA preliminarily concludes that the exposure profile for driven milling machine operators represents the normal baseline exposure for these workers (median of $17 \mu g/m^3$, mean of $40 \mu g/m^3$, and range of $5 \mu g/m^3$ to $181 \mu g/m^3$). Operators of road milling machines typically experience silica exposure levels less than $50 \mu g/m^3$, but airborne

²²⁵ NJDHSS (2000) calculated the PEL using OSHA's general industry silica PEL equation based on the percent of quartz in a respirable dust sample. The percent silica in the respirable dust samples varied, so the value of the PEL (as a concentration of respirable dust) ranged from 630 μg/m³ to 5,000 μg/m³ (0.63 mg/m³ to 5.00 mg/m³) for samples obtained during asphalt milling using wet methods. Note that when the percent silica in a material is non-detectable a value of zero is given to the "% SiO_2 " variable, and the equation yields a PEL of 5,000 μg/m³ for respirable dust. This is also the same PEL value in table Z-1 in OSHA's Air Contaminant Standard (29 CFR 1910.1000) for all particulates not regulated by the table. The value of the silica PEL (again as a concentration of respirable dust) was 670 μg/m³ (0.67 mg/m³) during the dry concrete milling, while the measured 8-hour TWA respirable dust level was 7,620 μg/m³ (7.62 mg/m³), approaching 12 times the calculated PEL.

 $^{^{226}}$ In this case, although evaluating a construction industry activity, the investigator elected to compare silica exposure results with OSHA's gravimetric general industry PEL for silica. This might be due to the fact that the construction industry PEL for silica is based on the units millions of particles per cubic foot (mppcf), requiring an obsolete analytical method not available through most analytical laboratories. Instead, laboratories typically report silica air sampling results as mass-based gravimetric values (e.g., mg/m^3) for respirable dust, along with the percent silica, which are also used in the gravimetric general industry PEL for silica. Investigators compare these results with the gravimetric general industry PEL because the units are compatible. An alternative has been available since 2008, when OSHA published a compliance directive, National Emphasis Program (NEP)–Crystalline Silica CPL 03-00-007 (Appendix E), providing a conversion factor to convert air sampling results between mppcf and mg/m^3 or $\mu g/m^3$. However, some investigators have continued in their studies to use the more familiar gravimetric units and compare construction industry air monitoring results with the gravimetric general industry PEL for silica.

concentrations can be higher, particularly when workers mill concrete road surfaces, but also depending on environmental conditions, status and design of the water feed system, and depth of milling.

Baseline Conditions and Exposure Profile for Large Milling Machine Tenders

Table IV.C-64 describes the 15 results for tenders of large milling machines. This job category has a median silica exposure of $27~\mu g/m^3$, a mean of $58~\mu g/m^3$, and range of $13~\mu g/m^3$ to $340~\mu g/m^3$. Five results (33 percent) exceed $50~\mu g/m^3$, and one result (7 percent) exceeds $100~\mu g/m^3$. Construction workers tending large milling machines most commonly perform their duties while walking beside the machines. These duties can include operating the ground-based rear controls of the milling machine, which require the worker to walk beside the milling machine.

The two highest exposure results in this job category (97 μ g/m³ and 340 μ g/m³) were obtained at a site where minimal water spray was used to cool the equipment. This was the job site where the highest milling machine operator exposures also were obtained, and where NIOSH had strongly suggested that the water spray volume and position needed to be improved (NIOSH-Swank, 1995).

The series of five NIOSH studies investigating water spray dust suppression described above also measured exposures of milling machine tenders. During the first study, two 8-hour TWA exposure results of 66 µg/m³ and 27 µg/m³ were obtained for the foreman and a skid steer loader operator, respectively. NIOSH noted that both of these workers spent half of the first (most typical) day working at ground level while operating the rear controls of the milling machine, which were located on the side of the machine. They spent the remainder of the shift on tasks elsewhere at the construction site. A result of 44 µg/m³ was obtained on the second day of sampling for another crewmember, who operated the rear controls for the entire day (NIOSH EPHB 282-11b, 2004). At another construction site, NIOSH investigators obtained two exposure results of less than or equal to 15 μ g/m³ and 25 μ g/m³ for a foreman who operated the ground-based rear controls of a milling machine (NIOSH EPHB 282-12a, 2007). A ground man performing these same duties during the third study had exposures of 28 µg/m³, 18 µg/m³, and 13 µg/m³ on three consecutive days (NIOSH EPHB 282-15a, 2009). At the fourth site, the foreman divided his time between operating the controls alongside the mill and driving the water truck. The exposures for this worker were below the LOD (two results of less than or equal to 20 µg/m³ and one result of less than or equal to 15 µg/m³) (NIOSH EPHB 282-14a, 2009). Finally, the ground man at the last study site, who operated controls alongside the mills, had elevated exposures of 82 µg/m³ and 60 µg/m³ (NIOSH EPHB 282-16a, 2009). These reports from NIOSH suggest that water spray design, environmental conditions, and depth of milling can affect the exposures of ground-based construction workers near asphalt milling machines and operators of such machines to a similar degree.

Based on information described earlier in this section OSHA preliminarily concludes that the baseline conditions for road milling machine tenders consist of operating controls alongside the milling machine where wet milling methods are in use (with varying degrees of attention to water flow). Furthermore, baseline conditions include primarily "mill and fill" asphalt replacement, with only occasional road demolition jobs (i.e., deeper milling action). OSHA preliminarily concludes that the exposure profile for milling machine tenders represents the baseline exposure for these workers. Tenders of road milling machines typically experience silica exposure levels less than 50 $\mu g/m^3$, but airborne concentrations can be higher, particularly when workers mill concrete road surfaces, but also depending on environmental conditions, status and design of the water feed system, and depth of milling.

Baseline Conditions and Exposure Profile for Walk-Behind Machine Operators

Table IV.C-64 presents the exposure profile for walk-behind milling machine operators. The six results have a median of 20 μ g/m³, a mean of 32 μ g/m³, and a range of 12 μ g/m³ to 80 μ g/m³. The 80 μ g/m³

exposure reading is the only one exceeding $50 \,\mu\text{g/m}^3$. Millers in this third job category operate walkbehind machines.

ERG (ERG-C, 2008) summarized two results (both below the LOD of 12 $\mu g/m^3$) obtained by ERG for workers using water-fed walk-behind milling machines indoors while producing a terrazzo floor. For the present exposure profile, OSHA has added four more results that represent operator exposures under baseline conditions. OSHA collected two of the results (14 $\mu g/m^3$ and 80 $\mu g/m^3$) while visiting a work site at which workers used a gas-powered walk-behind router-style milling machine as part of asphalt road pavement repair. Two additional follow-up monitoring results of 26 $\mu g/m^3$ and 48 $\mu g/m^3$ were obtained while workers of the same company used similar equipment on pavement at an airport (OSHA SEP Inspection Report 300442977). During the sampling period, another worker also used compressed air to clean the dust from the grooves. Dust controls were not mentioned on either occasion.

OSHA reviewed an additional study designed to evaluate exposure to silica during common dust-producing construction activities. Flanagan et al. (2003) summarized nine sample results for concrete floor sanding activities and reported a geometric mean of $70~\mu g/m^3$. However, because the study did not provide the individual sample results, OSHA was unable to include them in the exposure profile. Based on worker position and abrasive action of the tool, OSHA has grouped floor sanding activities (described as a concrete finishing process using a sandpaper disk attached to equipment operated from a standing position) with walk-behind milling machine operations for the purpose of this analysis.

In a separate study, short-term experimental silica results for operator exposure associated with a walkbehind scabbler used on a covered 228 (semi-enclosed) concrete parking garage floor were as high as 2,100 $\mu g/m^3$ over an 8-minute test period evaluating dry milling (at during other test periods, intense use of wet methods controlled the exposure) (NIOSH EPHB 247-15d, 2002). Based on the available information, OSHA preliminarily concludes that the results in the Table IV.C-64 exposure profile represent the baseline exposure levels for walk-behind milling machine operators. However, OSHA acknowledges that the experimental results of NIOSH EPHB 247-15d (2002) suggest that when using certain types of particularly aggressive equipment indoors, some workers likely encounter higher airborne silica concentrations during short periods of intensive milling without dust controls.

Vacuums can be connected to walk-behind milling machines to exhaust dust generated during milling. Although most walk-behind milling machines are currently manufactured with vacuum ports (to which a vacuum can be connected), older equipment might not include this feature (ERG-C, 2008). Moreover, even when a port is available, workers might not connect an appropriate vacuum to the machine (ERG-C, 2008). None of the results in the exposure profile were collected with local exhaust ventilation (LEV); thus OSHA preliminarily concludes that baseline conditions for walk-behind milling machine operators do not include appropriate use of vacuums to control dust. In contrast, wet methods appear to be used more commonly with certain types of walk-behind milling equipment, including the terrazzo-milling equipment for which results are included in Table IV.C-64; thus, OSHA preliminarily concludes that use of wet methods is within the range of normal baseline conditions for this diverse group of equipment as a whole, but is not universally used (e.g., wet methods were associated with one-third of the results summarized in Table IV.C-64).

²²⁷A variety of equipment is available for "chasing cracks," which was the type of road repair being performed at this work site. Some walk-behind equipment models are similar to masonry saws. In this case, the OSHA representative called the machine a router, suggesting it was more closely related to milling equipment (OSHA SEP Inspection Report 300442977).

²²⁸ The semi-enclosed configuration of the parking garage is inferred from photos of the milling trials that show support columns in the area being milled (NIOSH-EPHB 247-15d, 2002).

Additional Controls

Additional Controls for Large Driven Milling Machine Operators

Water spray and LEV are the primary dust controls for this job category. These methods are described in detail in the following paragraphs.

Wet Dust Control Methods

Cooling water applied to the cutting drum helps reduce the dust exposure of milling machine operators. All of the results in Table IV.C-64 for road milling machine operators are associated with the use of wet dust suppression, and 79 percent of the results were $50 \, \mu g/m^3$ or less. Purpose-built systems for wet dust suppression can be even more effective at reducing silica exposure.

In a study conducted in the Netherlands, a novel wet dust emission suppression system reduced the PBZ respirable quartz exposure of asphalt milling machine drivers to a mean of 20 μ g/m³ (n = 4), with a range of 9 μ g/m³ to 30 μ g/m³ (Van Rooij and Klaasse, 2007). The system consists of 24 spray nozzles (located at the picks drum, collection conveyer, and loading conveyer), which spray aerosolized water containing an additive (likely a foam, based on the product name) onto the milled asphalt material (Van Rooij and Klaasse, no date, 2007). The additive foam causes the dust to become tacky and aggregate, and expands rapidly to encompass small particles generated by the tool's aggressive action. This technology can offer more effective dust suppression than plain water. Milling machine tenders benefitted equally from the system, having a mean PBZ respirable quartz exposure of 8 μ g/m³ (n = 4) with a range of 4 μ g/m³ to 12 μ g/m³. Compared with a standard milling machine, which uses only cooling water (not aerosolized) on the blade, the use of the aerosolized water and foam system reduced the mean exposure for drivers and tenders combined by 97 percent. Without the added controls (i.e., cooling water only), mean exposure was 418 μ g/m³ (n = 2) for drivers and 509 μ g/m³ (n = 1) for tenders.

Investigators Van Rooij and Klaasse (2007) also reported results for the use of aerosolized water without the additive foam. Aerosolized water alone provided a substantial benefit, giving PBZ respirable quartz exposures of 42 μ g/m³ and 57 μ g/m³ for drivers, and 56 μ g/m³ and 104 μ g/m³ for tenders. Aerosolized water reduced the mean exposure for drivers and tenders combined by 86 percent compared with cooling water only; however, three of four exposures remained above the proposed PEL of 50 μ g/m³. The authors did not report individual sample durations, but the average sampling time for all 15 results was 254 minutes (range: 60 to 388 minutes). The investigators concluded that exposure results were lower when the additive was used in the spray water.

The series of five NIOSH studies (described previously and summarized in Table IV.C-65) on water spray controls (without added dust suppressants) on cold milling machines compared the effectiveness of varying water flow rates on silica concentrations using the standard cooling water system available in milling machines. Taken as a body of work, the results of these studies are inconclusive and highlight the need for wet methods purposefully adjusted to control dust (as has been found effective for other construction tasks). Based on the descriptions, the spray used in these NIOSH studies is possibly a larger droplet spray than the mist described in the Netherlands study. Even so, many of the results are suggestive of the potential for wet methods to control silica. However, outlying results indicate the need for continuing research to optimize the use of manufacturer water-alone spray systems as an effective dust control under all milling conditions.

²²⁹ Although more costly than a simple water spray, foams are more effective (by volume applied) than water spray. Foam can be adapted to control dust from most tasks, including applications that require a rugged design (Midwest-Edwards, 1999).

Since the NIOSH studies were conducted (2003 through 2006), improved dust control has been a topic of interest to milling machine manufacturers, some of which have begun installing modified, or separate, water sprays intended to reduce dust emissions (Wirtgen, 2010; Blade, 2010). One of these systems, available in the United States since 2009, reportedly reduces machine maintenance requirements and improves visibility (by reducing emitted dust) on and around the milling machine. The design provides the operator with more options for controlling a second, separate spray system, applying more spray where needed, and conserving water where it is not needed.

Milling concrete can pose additional challenges for controlling silica exposure compared with milling asphalt.²³⁰ Additionally, the smaller teeth on concrete milling drums produce more fine dust (Schill, 2000). Despite these differences, some of the same milling machines (high-power equipment) can readily be adapted to mill concrete (Wirtgen, 2005). Thus, OSHA believes that water spray nozzles applied to asphalt milling machines will function similarly when the same machine is used for concrete. Although the available data are not enough to conclude with certainty that workers milling concrete roads would achieve the same exposure level as seen for asphalt millers, there is evidence suggesting wet methods work well for managing concrete dust. For example, in a study of tunnel construction workers, Blute et al. (1999) reported silica results of 10 μ g/m³, 49 μ g/m³, and 79 μ g/m³ for workers removing concrete with heavy equipment (e.g., forklifts, backhoes) having grinder or scabbler attachments (analogous action and worker positioning to large milling machines). The authors posited that these relatively low exposures (not exceeding the current silica standard)²³¹ resulted from the use of hoses to wet down the concrete and the distance between the source of the silica dust and the worker. Therefore, OSHA preliminarily concludes that work on open concrete roadways using wet methods may result in exposure levels similar to those reported during asphalt milling using wet methods. The use of dust suppressants (e.g., foams that offer binding and surfactant properties, such as used in studies by Van Rooij and Klaasse [2007]) should further reduce exposures.

Based on the information reviewed here, OSHA concludes that wet methods for large milling machines are most effective when flow rate, direction, and droplet size are optimized for dust suppression rather than drum cooling, and when chemical suppressants are added to the water. Spray nozzles should be directed at all dusty locations, which include the conveyers in addition to the drum blades. Water spray should be misted (i.e., aerosolized) to enhance dust capture. Larger water droplets create an air slipstream as they move, which prevents capture of small dust particles (Raring Corporation, 2009). In addition, higher flow rates than are typical for milling equipment can sometimes improve dust suppression. Finally, the addition of a tackifying agent, foaming agent, or surfactant to the water can substantially enhance dust suppression. Several U.S. manufacturers produce a wide variety of foaming and tackifying agents and surfactants, which serve the same function as the foam employed in the Van Rooij and Klaasse (2007) study.

Spray systems for dust control have only recently become available as original equipment on road milling machines (supplemental to cooling water applied to the cutting blades) (Wirtgen, 2010). One design was described as a two-part system that permits fine-tuning of where and how much water spray is applied

²³⁰ In one evaluation, the percentage of silica on respirable dust sample filters was higher with concrete milling (15 percent) than with asphalt milling (7 percent) (NJDHSS, 2000). However, in the series of five NIOSH asphalt milling machine studies summarized in Table IV.C-65, the amount of silica in respirable dust on the sample varied to an even greater extent just among asphalt milling jobs (NIOSH found samples from 4 to 17 percent silica on the filters). These findings suggest that the amount of sand and the type of aggregate contained in the road surface are more important factors influencing the amount of silica in the sample than whether the substance milled is asphalt or concrete.

²³¹ Blute et al. (1999) used the general industry equation to calculate the PEL for respirable dust containing silica.

(Wirtgen, 2010). Spray systems purpose-designed for dust suppression also can be retrofit to older models of milling machines as custom shop installations.

Local Exhaust Ventilation

An additional control option for driven milling machine operators involves LEV to minimize release of dust from the machine. A cooperative effort between a road construction company, a road milling machine manufacturer, labor organizations, and a governmental group in the Netherlands resulted in the development of a prototype LEV system for road milling machines after attempts at using wet methods did not provide the desired results (OSHA-Europa, 2004). A study by TNO Bouw (2002) measured TWA exposure levels for a milling machine operator over a 5-day period with the exhaust system fitted on the machine; exposures ranged from less than 4 μ g/m³ to 28 μ g/m³. The study found similar exposure results for workers on the ground (rear control operator) ranging from less than 3 μ g/m³ to 29 μ g/m³. A street sweeper cleaned up loose debris behind the milling machine when milling involved less than the full road surface depth.

Initially, the construction company in the Netherlands started with an asphalt milling machine with a 2-meter (approximately 79-inch) drum. Modifications to the milling machine included improvements to make the milling drum compartment airtight and addition of an air exhaust system that kept the drum compartment under negative pressure. Ductwork carried the dusty exhaust air from the milling drum to the long conveyer extending out from the front of the milling machine (used to transfer milled material to a dump truck or reprocessing equipment). The conveyer was covered, so dusty air followed the path of the conveyer to its terminal transfer point, adding distance and elevation between the point of road milling and the point where dusty air was released to the environment. The TNO Bouw (2002) report suggests that certain wind conditions could blow dusty air back to the milling machine, increasing operator exposure to respirable dust and silica. The report further suggests that this blow-back was the reason that the highest 8-hour TWA result ($29~\mu g/m^3$) was greater than the other results obtained for the milling machine operator during the test period (TNO Bouw, 2002). However, even this result is below OSHA's proposed PEL.

A follow-up article on the same construction company in the Netherlands indicated that the firm subsequently retrofit all of its front-loader milling machines (various models) with LEV to improve dust control company-wide. The article states: "Using unmodified machines, exposure measurements were between 0.02 and 0.290 mg/m³ [20 and 290 μ g/m³]. This has been reduced to between 0.0019 and 0.017 mg/m³ [1.9 and 17 μ g/m³] for machines fitted with the exhaust system" (OSHA-Europa, 2004). The exhaust system resulted in a 94 percent reduction in the highest reported exposure levels, and OSHA anticipates that comparable results could be achieved by milling machines in the United States fitted with a similar dust extraction system. In fact, such systems are, as of 2010, being commercially offered on

²³² The multi-day test period covered by this report encompassed work on wet and dry pavement (due to rainy and clear weather); still and breezy days; highway, residential, and bicycle path pavements; and asphalt road grinding to several depths, ranging from 2 centimeters (top layer of about three-quarters of an inch removed) up to 25 centimeters deep (nearly 10 inches, involving total demolition/removal of the road surface and some of the supporting layers). Actual road milling occurred over 35 to 67 percent of each monitoring session, which lasted 3 to 4 hours per morning session and 2 to 3 hours per afternoon session (8-hour TWA calculated based on both sessions for the day, typically a total of 6 to 7 hours). In most samples, 6 to 13 percent of respirable dust on the sample filter was quartz, although values as low as 2 percent and as high as 28 percent quartz were recorded on occasion.

 $^{^{233}}$ Low value of 0.0019 [1.9 $\mu g/m^3$] is as reported by the authors (OSHA-Europa, 2004). The article does not specify whether these exposure levels are time weighted for 8-hour shifts.

several models of front-loading milling machines in the United States (Wirtgen, 2010).²³⁴ Furthermore, the model of road milling machine that the construction company in the Netherlands initially retrofit with LEV is commercially available in the United States, and the company is able to similarly modify other models of milling machines (OSHA-Europa, 2004; WirtgenAmerica, no date).

TNO Bouw (2002) suggests that other improvements could further reduce exposure by minimizing airborne dust blow-back. These improvements include: 1) redesigning the exhaust duct outlet over the conveyer so released exhaust air does not create turbulence that kicks up more dust from material on the conveyer and 2) adding water spray nozzles to the exhaust discharge to suppress dust (TNO Bouw, 2002).²³⁵ Additionally, the construction company was reportedly testing filtration systems to capture dust in exhaust air to minimize blow-back on operators even in a head-on wind (OSHA-Europa, 2004). However, no further information is available to date regarding the implementation or effectiveness of these additional controls.

Additional Controls for Large Milling Machine Tenders

OSHA believes that drum-level dust control methods can reduce airborne silica concentrations for milling machine tenders to a similar extent as they can for machine operators. When milling machines are fitted with LEV or appropriate wet dust suppression systems at the grinding drum, dust release is controlled at the source (i.e., at ground level). During intermittent periods when they work immediately adjacent to the drum the tenders can experience greater exposures during uncontrolled milling than do operators seated on top of the machine. This means that controls on the milling drum that reduce exposures from that source can particularly benefit tenders, by reducing these peak exposures. Effective control measures of this type benefit workers in both job categories, but operators on top of the machines might continue to experience exposures from more diffuse sources, while the primary source of exposure for tenders is minimized by drum-level controls. The studies by Van Rooij and Klaasse (2007) and TNO Bouw (2002), described in the discussion of additional controls for milling machine operators, both found comparably low results for both machine operators and tenders (exposures below 50 μ g/m³).

Additional Controls for Walk-Behind Milling Machine Operators

Additional controls for walk-behind milling machine operators include LEV and improved water application. These classes of controls function effectively for large milling machines, as described in the previous sections, and can likely be adapted for walk-behind milling machines. Control measures used with large milling machines (wet methods and LEV) can be scaled down and should provide similar results for smaller equipment performing analogous activities (e.g., grating, grinding) under comparable working conditions (e.g., generally flat surface permitting minimal gap between surface and machine). Tenders of large vehicular milling machines often stand or walk adjacent to the milling drum box (as a walk-behind milling operator would). The milling drum on a vehicular milling machine is frequently 10 or more times wider than the milling drum on a walk-behind model and removes correspondingly more material. Therefore, OSHA anticipates that controls for vehicular milling machines will work at least as well for walk-behind machines, and, in fact, dust from the smaller walk-behind equipment might be easier to control.

²³⁴ The exhaust system is not promoted as a silica exposure control, but rather as a means to reduce dust for the purpose of enhancing visibility (WirtgenAmerica, 2009). A German organization that certifies exposure controls acknowledged good dust capture efforts in this equipment, but requested additional testing (Wirtgen, 2010).

²³⁵ Based on previous experience with a modified sandstone milling machine, the report suggests a water application rate of 5 liters per 2 hours, equal to a little more than one half-gallon per hour (TNO Bouw, 2002).

Wet Methods

Wet methods are widely used to protect equipment on most types of milling machines, such as drivable milling machines, walk-behind machines used for grinding and polishing terrazzo, and some types of stationary stone milling equipment used in cut stone fabricating shops (ERG-C, 2008; see also Section IV.C.4 – Cut Stone in this technological feasibility analysis). In tests of road milling equipment, NIOSH has shown that water spray on the cutting drum can offer effective dust control under some working conditions. Water spray adjusted specifically for dust suppression on milling machines results in better dust control than water applied simply to wet surfaces. Water attachments for walk-behind milling machines can be a standard or optional feature, depending on the equipment (Allen Engineering, 2003; EDCO-scarifiers-CPM-8, 2010).

As described in the earlier discussion of wet method controls for vehicular milling machines, adding a dust suppressant to the water improves the results. Compared with a standard milling machine, which uses cooling water on the blade only (no spray aerosol), the use of the aerosolized water and foam system reduced the mean exposure for drivers and tenders combined by 97 percent (Van Rooij and Klaasse, 2007).

ERG (ERG MTF-A, 2000) measured exposure levels below the LOD ($12 \mu g/m^3$) for workers using wet methods while milling a newly installed terrazzo floor indoors. Echt et al. (2002)²³⁶ tested a custom-built water-fed system that provided a copious amount of water (15 gpm) to the concrete work surface (not the cutting teeth) milled by a scabbler with an 8-inch cutting width. The investigators compared results from alternating 5-minute periods of milling with and without the water-feed activated. The water reduced average respirable dust levels by at least 80 percent. Because of low filter loading, respirable dust was often below the LOD in samples associated with the water control, and none of these samples could be analyzed for silica. However, one measurable PBZ respirable dust level of $400 \mu g/m^3$ was obtained during the wet process, and OSHA estimates that the silica concentration in that sample would be substantially lower (likely $52 \mu g/m^3$ or less, based on the maximum of 13 percent silica measured in respirable dust on the filters during dry milling at this test site). Measurements taken during similar brief periods of intensive dry milling found respirable dust levels of $13,000 \mu g/m^3$ and $17,000 \mu g/m^3$ ($13 mg/m^3$ and $17 mg/m^3$), with silica values of $1,700 \mu g/m^3$ and $2,100 \mu g/m^3$. Work practices also contributed to the operator's exposure during the scabbler study because the worker generated the most airborne dust when passing the machine over a previously milled area.

OSHA notes that, although an effective control, the copious water flow of 15 gpm (equal to 1.9 gpm per inch of cutting width) used by the investigators is impractical and probably more than is necessary for walk-behind milling machines. The investigators acknowledge, and OSHA concurs, that in general carefully directed spray nozzles that deliver an optimally sized water mist can achieve better dust suppression with substantially less water. Recent experience with vehicular milling machines demonstrates this point. NIOSH EPHB 282-14a (2009) reports that under common road milling conditions, water spray provided to the cutting drum area at 12 gpm is capable of suppressing dust generated by a 7-foot wide (84 inches) vehicular milling machine cutting drum (an application rate of just 0.14 gpm per inch of cutting width). OSHA preliminarily concludes that, with careful adjustment, water spray methods using a fraction of the water used in the Echt et al. (2002) scabbler study should prove at least as effective in reducing silica dust exposures generated by scabblers. As a simple example, if the same "gpm per inch of cutting width" ratio holds for both the vehicular and walk-behind milling machines, then an estimated water mist application rate of 1.1 gpm (0.14 gpm x 8 inches cutting width) would be appropriate for the walk-behind 8-inch scabbler as used in the Echt et al. (2002) study. OSHA recognizes that differences in the way these machines function and other environmental factors (e.g.,

.

²³⁶ This same study also is published as NIOSH EPHB 247-15d (2002).

indoors, outdoors) might mean that this model for estimating water flow is too simplistic. However, even if the water application rate is doubled to compensate for these uncertainties, the resulting estimated flow rate needed for the 8-inch scabbler is 2.2 gpm.

As discussed previously in conjunction with driven milling machines, Blute et al. (1999) evaluated the silica exposure of workers using wet dust control methods for scabbling and large-scale grinding tasks at an underground construction site. In this case, rather than being walk-behind equipment, the scabblers and grinders were attached to the articulated arm of heavy equipment. Although these workers are classified here as heavy equipment operators (addressed in Section IV.C.24 – Heavy Equipment Operators) and they used drivable machines (removing more material than the typical walk-behind milling machine), their work scabbling and grinding excess concrete from tunnel walls demonstrates the value of wet methods when these activities are performed in enclosed spaces. This is particularly relevant to walkbehind milling machines that are used indoors to mill concrete surfaces. In the underground work environment, all three workers experienced task-based silica concentrations below the current PEL.²³⁷ The authors suggested that this was "most likely due to the use of hoses to wet down the concrete and the greater distance from the source of silica dust to the worker."²³⁸ Although one of the results (79 μ g/m³) exceeds the proposed PEL of 50 µg/m³, these values are substantially lower than results available for workers performing dry milling of any type, even aboveground. As discussed below, adding LEV near the scabbling and grinding attachments or increasing general dilution ventilation would likely have further reduced all three values.

Local Exhaust Ventilation

The similarity between vehicular and walk-behind milling machines also supports use of vacuum dust collection (exhaust suction) methods for the smaller form of milling equipment. As discussed previously, the TNO Bouw (2002) study found that when exhaust suction methods were applied to the milling drum area of vehicular milling machines, exposure levels for operators obtained over a 5-day period ranged from less than 4 $\mu g/m^3$ to 28 $\mu g/m^3$. The study also found similar exposure results for machine tenders, who walk next to the machine, ranging from less than 3 $\mu g/m^3$ to 29 $\mu g/m^3$. Additional exposure sources for tenders include conveyers and transfer points, neither of which are components of walk-behind milling machines; instead, on these smaller milling machines the vacuum suction immediately carries all dust and small debris into the vacuum cleaner where the air is filtered before release. However, operators of walk-behind milling machines can experience additional exposure when they empty the vacuum cleaner and clean or change the dust filter. Accepted emptying and disposal methods limit exposure during these activities.

In a European study of control equipment (Hallin, 1983), walk-behind milling machines equipped with dust extractors (i.e., LEV) were tested indoors. The study estimated a median concentration of $280~\mu g/m^3$ for short-term samples ranging from 10 to 60 minutes. Noting that the machine still released a substantial amount of dust into the surrounding environment, Hallin recommended redesigning the exhaust train to release dust outside the work space. Using a vacuum fitted with a high-efficiency particulate air (HEPA) filter would minimize this concern by filtering out airborne particles prior to releasing the air back into the work environment, thus eliminating the need to exhaust the vacuum air outside the workplace. In addition, recent research suggests that studies such as this one might not have used vacuum suction equipment that provided an adequate or consistent level of exhaust ventilation. As discussed in more

²³⁷ The PEL was calculated using OSHA's general industry PEL equation for silica in respirable dust (Blute et al., 1999).

²³⁸ Blute et al. (1999) did not mention the presence of equipment cabs as a control, and so these might not have been available or did not influence exposure because windows were open.

detail in Section IV.C.32 – Tuckpointers and Grinders, construction sites that use LEV must choose a portable vacuum with the capacity and design to offer consistent vacuum suction. Many of the challenges associated with tuckpointing also must be addressed for construction sites where workers perform aggressive floor milling with walk-behind machines. Specifically, both of these construction activities generate a quantity of debris that can rapidly reduce vacuum suction. To prevent this, vacuum cleaner design should protect filters from rapid dust loading (e.g., cyclonic pre-separation) and offer sufficient suction (measured in inches of water gauge) to move air even when filters begin to load.

One milling machine manufacturer that produces walk-behind scabblers specifically for removing layers of contaminated concrete from floor surfaces recommends the use of a vacuum source that provides at least 75 to 90 cubic feet per minute (cfm) suction for a 6-inch wide scabbler. The contaminants mentioned by the equipment manufacturer (e.g., lead paint and radioactive materials) generally have occupational exposure limits similar to the proposed PEL for silica, suggesting that this rate of exhaust would also be protective of silica (Pentek-Squirrel-III, 1997). Proportionally greater exhaust rates would be required for larger walk-behind milling equipment. For example, another manufacturer of commercially available scabblers recommends specific vacuums for use with specific scabblers: a 160 cfm vacuum with a smaller scabbler and a 500 cfm vacuum with a larger scabbler, for which an industrial dust control vacuum system is recommended as an alternative (EDCO-E-CD3,5-I-0809, 2009). Some scarifiers, particularly those intended for indoor use, are available with both a vacuum port (for connecting a portable industrial vacuum system) and water mist system as standard equipment (EDCO-scarifiers-CPM-8, 2010).

However, several limitations to the use of LEV-equipped walk-behind milling machines exist. First, the vacuum suction device needs to be emptied frequently. Workers might need to empty the dust extractor as frequently as every 30 minutes in some work environments, which requires shutting down the vacuum (Concrete Grinding Company, 2000). A vacuum with a pressure gauge can alert workers when the vacuum needs to be emptied and filters cleaned. Second, a vacuum powerful enough to support most common walk-behind milling machines will be large and heavy. A vacuum with a cyclonic pre-separator that achieves sufficient airflow to support a scabbler can weigh 100 to 200 pounds when full. Furthermore, the dust collector generally needs a generator for power, and workers might need to transport the generator with an additional truck or heavy handcart. Although gasoline and propane powered models are available, in general, the need for an electrical power source makes the use of LEV outdoors uncommon.

Another limitation is that the effectiveness of vacuum suction depends on minimizing the gap between the bottom of the machine and the surface being milled (as discussed for drivable milling machines and tuckpointing equipment). To achieve acceptable dust control, milling must proceed in a manner that limits the gap between the bottom of the walk-behind milling machine and the surface being milled (e.g., the floor). As has been shown for road milling equipment, construction sites will find it difficult to control dust emissions if walk-behind milling machines remove excessive depth in one pass. The resulting drop between milled and unmilled surfaces prevents the milling machine from sealing properly against the surface, allowing dust to escape. Workers can achieve better dust control during deep removals by milling to the final desired depth in several incremental phases. However, milling a previously milled surface has been shown to create high levels of airborne dust, and so care must be taken to clean areas with a HEPA-filtered vacuum prior to making a second pass.

Finally, unlike vehicular milling machines, walk-behind machines can be used indoors where natural ventilation is poor and the surface being milled is likely to be concrete. Under these circumstances, special precautions will be needed to prevent airborne silica dust from accumulating. Supplemental

²³⁹ The same company produces a remote control option for their milling equipment, allowing the operator to work a greater distance from the abrasive action or even stand in another room (Pentek-Squirrel-III, 1997).

general exhaust ventilation (in addition to vacuum exhaust or wet methods), in the form of large fans set in open windows or exhaust trunks creating air exchange similar to an outdoor environment, will help prevent silica dust from collecting in the space.

To date OSHA has not been able to quantify the effectiveness of currently available LEV in controlling respirable quartz levels associated with walk-behind milling operations; however, OSHA believes that evidence from similar construction tasks supports its value for workers performing milling. Although walk-behind milling machines are larger than tuckpointing grinders, the grinding blades operate at lower speeds²⁴⁰ (dust particles are released at lower energy), and the worker's breathing zone is a greater distance from the point of dust release. Thus OSHA believes that the LEV dust control option might work at least as effectively (and likely more effective) for milling machines as for tuckpointing grinders. Collingwood and Heitbrink (2007) report a 95-percent reduction in silica exposure compared with the geometric mean of 1,140 µg/m³ for a group of uncontrolled tuckpointing exposure levels. Although the tuckpointers using LEV still experienced a geometric mean result of 60 µg/m³, walk-behind milling machine operators have the advantages of lower uncontrolled exposure levels, greater distance between the tool and their breathing zone, and equipment that is self-supporting (the milling drum enclosure more easily kept sealed against the floor), rather than hand-held. Therefore, an LEV system with an appropriately sized vacuum will likely reduce most walk-behind milling machine operator exposures to levels lower than those experienced by tuckpointers. For example, even a hypothetical 80 percent reduction in exposure (well below the 95 percent demonstrated for tuckpointers) would reduce the highest walk-behind milling machine operator exposure (80 μ g/m³) to 16 μ g/m³.

Housekeeping

Cleanup is critical for both LEV and wet method controls for walk-behind milling machines. Echt et al. (2002) reported that airborne dust increased when the scabbler described above passed over previously milled areas. Milling debris must be cleaned up using a HEPA-filtered vacuum prior to making a second pass over an area, regardless of whether the miller uses wet or dry dust controls. This step prevents the milling debris from interfering with the seal between machine and floor and minimizes the gap. Additionally, it prevents debris from being re-suspended and acting as another source of contamination.

Feasibility Finding

Feasibility Finding for Large Driven Milling Machine Operators

Results presented in the exposure profile indicate that 79 percent of all large driven asphalt milling machine operators already experience silica levels less than 50 $\mu g/m^3$ as a result of using water spray adjusted to cool the cutting drum. Considering information presented by NIOSH EPHB 282-14a (2009) and NIOSH EPHB 282-15a (2009) demonstrating low silica exposure (12 8-hour TWA results below 50 $\mu g/m^3$) for both operators and tenders across varying flow rates, OSHA preliminarily concludes that improved water spray intended to reduce dust will help reduce exposure levels of the remaining 21 percent of large driven milling machine operators who currently experience exposures above 50 $\mu g/m^3$. However, information is insufficient to confirm that this method alone will reliably control most workers' exposures. Until water spray can be adjusted in a manner that consistently maintains exposures to levels of 50 $\mu g/m^3$ or less, this control method will need to be paired with either additional spray on the conveyer and a dust suppressant, as described by Van Rooij and Klaasse (2007), or a vacuum suction system, as described by TNO Bouw (2002).

²⁴⁰ As an example, one type of walk-behind scabbler drum rotates at 1,700 rotations per minute (rpm) (SPE USA, 2006) compared with 11,000 rpm for a tuckpointing grinder blade (Boschtools-rpm, no date).

Van Rooij and Klaasse (2007) tested a novel wet dust emission suppression system and found that it reduced the PBZ respirable quartz exposure of asphalt milling machine drivers to a mean of 20 $\mu g/m^3$ (n = 4) with a range of 9 $\mu g/m^3$ to 30 $\mu g/m^3$. TNO Bouw (2002) reported that, after retrofitting milling machines to add exhaust ventilation and make modifications to the grinding drum box so that it can be held under negative pressure by the ventilation system, driven milling machine operators in Europe experienced exposure levels of 29 $\mu g/m^3$ or less. OSHA preliminarily concludes that these methods, combined with water spray systems purposefully designed to control dust at the cutting drum, transfer points, and conveyers, will control vehicular milling machine operators' silica below 50 $\mu g/m^3$ during "mill and fill" operations under the typical range of conditions (e.g., day and night, warm and cool weather, asphalt and concrete road surfaces).

However, these control measures, even in combination, might not be sufficient to maintain exposure levels below the proposed PEL of $50~\mu g/m^3$ during road demolition activities, such as full-depth removals or removals greater than 4 inches deep. For these rare occurrences, respiratory protection will be required to protect the milling machine operators until additional controls can be developed.

Feasibility Finding for Large Milling Machine Tenders

Based on the information presented in this section, OSHA preliminarily concludes that the exposure levels for most tenders of large milling machines can be reduced to $50~\mu g/m^3$ or below most of the time using the same methods described for the operators of large milling machines. As presented in Table IV.C-64, the exposure levels for 66 percent of large milling machine tenders are already $50~\mu g/m^3$ or less. Workers on the ground near driven milling machines in the Netherlands experienced results in the same range as the operators (from less than $3~\mu g/m^3$ up to $29~\mu g/m^3$) regardless of whether or not a mechanical sweeper followed the milling machine (TNO Bouw, 2002). With LEV and wet method control options, both of which prevent dust release from the bottom of the machine, tenders on the ground had exposures similar to those reported for the operators at the top of the machine.

As is the case for milling machine operators, these control measures, even in combination, might not be sufficient to maintain milling machine tenders exposure levels below the proposed PEL of $50~\mu g/m^3$ during full-depth removals or removals greater than 4 inches deep. For these rare occurrences, respiratory protection will be required to protect the milling machine tenders until additional controls can be developed.

Feasibility Finding for Walk-Behind Milling Machine Operators

Based on the data described above, OSHA preliminarily concludes that construction sites can achieve an exposure level of $50 \,\mu\text{g/m}^3$ or below for most workers operating small, walk-behind milling machines most of the time by providing vacuum suction dust collection or wet methods with added dust suppressant (or both). OSHA draws this conclusion from success with dust controls for larger milling machines and for tuckpointing and grinding equipment. As discussed previously, similar control measures (wet methods and LEV) can be adapted to walk-behind milling machines and should provide similar results during grating activities in comparable work environments. OSHA finds compelling evidence that controls effective for vehicular milling machines are adaptable to the smaller (and thus potentially easier to control) walk-behind milling machines.

Even in indoor environments, results below $50~\mu\text{g/m}^3$ can be achieved for most walk-behind milling machine operators most of the time through vigorous use of controls, conscientious housekeeping (including cleaning up debris between passes of the machine) and general ventilation that promotes good air circulation in the space. ERG (ERG MTF-A, 2000) measured exposure levels below the LOD (12 $\mu\text{g/m}^3$) for two milling machine operators using wet methods indoors.

Overall Feasibility Finding

OSHA preliminarily concludes that silica exposure levels of $50~\mu g/m^3$ or lower can be achieved for most milling machine operators and tenders most of the time using wet dust controls or vacuum suction methods. In situations where wet methods alone do not adequately capture dust, foam additives will help bring exposure to an acceptable level. Workers milling concrete or milling in enclosed indoor or tunnel environments for extended periods will likely require both wet methods and some form of exhaust ventilation.

If, on a rare occasion, a milling job calls for milling equipment to cut deep into a surface, operators and tenders of large driven milling machines will require respiratory protection. Operators of walk-behind milling machines will require administrative controls to ensure that workers remove the material incrementally and perform housekeeping after each pass, particularly in indoor work areas. Making several passes with moderate cut depth minimizes large depth changes between milled and un-milled surfaces. These controls will protect both the milling machine operators (vehicular and walk-behind) and the tenders who assist them.

REFERENCES

- [29 CFR 1910.1000] Title 29 Code of Federal Regulations, Occupational Safety and Health Administration. Part 1910.1000 Air Contaminants. **OSHA-2010-0034-1756**
- Allen Engineering, 2003. Diamond head grinders. Available at: www.alleneng.com/html_grinders/. Last accessed 7 January 2003. **OSHA-2010-0034-0524**
- Blade, L.M., 2010. Personal communication between Leo Blade and Eastern Research Group, Inc. January 12. **OSHA-2010-0034-0555**
- Blute, N.A., S.R. Woskie, and C.A. Greenspan, 1999. Exposure characterization for highway construction Part I: cut and cover and tunnel finish stages. Applied Occupational and Environmental Hygiene 14(9):632-641. **OSHA-2010-0034-0562**
- [Bosch] Robert Bosch LLC, no date. 5" Tuckpoint Grinder/ Model: 1775E. Available at http://www.boschtools.com/Products/Tools/Pages/BoschProductDetail.aspx?pid=1775E. OSHA-2010-0034-0567
- Burstyn, I., H. Kromhout, and P. Boffetta, 2000. Literature review of levels and determinants of exposure to potential carcinogens and other agents in the road construction industry. American Industrial Hygiene Association Journal 61:715-726. **OSHA-2010-0034-1353**
- Concrete Grinding Company, 2000. Personal communication between Concrete Grinding Company and Eastern Research Group, Inc. August 16. **OSHA-2010-0034-0599**
- Echt, A., W. Seiber, A. Jones, and E. Jones, 2002. Case studies—control of silica exposure in construction: scabbling concrete (D. Tharr, ed.). Applied Occupational and Environmental Hygiene 17(12):809-813. **OSHA-2010-0034-0633**
- [EDCO E-CD3,5-I-0809] EDCO, Inc., 2009. Operator's Instruction Manual Model CD-3 & CD-5 EDCO CHIP DEK (EDCO document number E-CD3,5-I-0809). Available at:

- http://www.edcoinc.com/docs/products/removal-demolition/E-CD3,5-I-0809.pdf OSHA-2010-0034-0636
- [EDCO-scarifiers-CPM-8] EDCO Inc., 2010. Internet Web page for Walk-behind 8" Scarifier. Available at: http://www.edcoinc.com/scarifiers-cpm-8.html OSHA-2010-0034-0642
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- [ERG-MTF-A] Eastern Research Group, Inc., 2000. Site visit report for Masonry Training Facility A. **OSHA-2010-0034-0200**
- Flanagan M.E., N. Seixas, M. Majar, J. Camp, and M. Morgan, 2003. Silica dust exposures during selected construction activities. American Industrial Hygiene Association Journal 64(3):319-328. **OSHA-2010-0034-0676**
- Flanagan, M.E., N. Seixas, P. Becker, B. Takacs, and J. Camp, 2006. Silica exposure on construction sites: Results of an exposure monitoring data compilation project. Journal of Occupational and Environmental Hygiene 3:144-152. **OSHA-2010-0034-0677**
- Hallin, N., 1983. Occurrence of quartz in the construction sector. Bygghalsan, the Construction Industry's Organization for Working Environment, Safety, and Health. Bygghalsan, Sweden, Report 1983-04-01. **OSHA-2010-0034-1418**
- [Midwest-Edwards] Midwest Industrial Supply, Inc., 2009. Personal communication between Lynn Edwards, mining dust control specialist at Midwest Industrial Supply, Inc., and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-1360**
- [NIOSH EPHB 247-15d] National Institute for Occupational Safety and Health, 2002. In-depth survey report: Control of silica exposure in construction—scabbling concrete at Frank Messer and Sons construction company, Hebron, Kentucky. **OSHA-2010-0034-0860**
- [NIOSH EPHB 282-11b] National Institute for Occupational Safety and Health, 2004. Results of a pilot study of dust control technology for asphalt milling at Payne & Dolan, Inc., US Route 12 Project, Wisconsin. **OSHA-2010-0034-0866**
- [NIOSH EPHB 282-12a] National Institute for Occupational Safety and Health, 2007. In-depth survey of dust control technology for asphalt milling at Northeast Asphalt, Inc., US Route 22 and SR 64 projects, Wisconsin. **OSHA-2010-0034-1362**
- [NIOSH EPHB 282-14a] National Institute for Occupational Safety and Health, 2009. In-depth field evaluation, dust control technology for asphalt milling at: South Dakota Highway 79 resurfacing project Border States Paving and Industrial Builders, contractors; Buffalo Gap, South Dakota, August 15 through 17, 2006. **OSHA-2010-0034-1251**
- [NIOSH EPHB 282-15a] National Institute for Occupational Safety and Health, 2009. In-depth field evaluation, dust control technology for asphalt pavement milling at U.S. Highway 2

- resurfacing project; Midwest Asphalt, contractor, Wilton, Minnesota, June 20 through 22, 2006. **OSHA-2010-0034-0869**
- [NIOSH EPHB 282-16a] National Institute for Occupational Safety and Health, 2009. In-depth field evaluation, dust control technology for asphalt pavement milling at New York State Thruway (Interstate Highway 90) resurfacing project; Donogal Construction, contractor; Hamburg, New York, September 25 and 26, 2006. **OSHA-2010-0034-0870**
- [NIOSH-Swank] National Institute for Occupational Safety and Health, 1995. Environmental surveillance report: Swank Associated Companies, Inc., New Kensington, Pennsylvania. **OSHA-2010-0034-1386**
- [NJDHSS] New Jersey Department of Health and Senior Services, 2000. Update of silica sampling conducted under the New Jersey silica partnership. **OSHA-2010-0034-0912**
- [OSHA-Europa] European Agency for Safety and Health at Work, 2004. Building in safety: prevention of risks in construction in practice. Section 2.2 Controlling the exposure of workers to respirable dust and crystalline silica from road milling machines (pages 17-20). Available at: http://osha.europa.eu/en/publications/reports/108 OSHA-2010-0034-0945
- [OSHA SEP Inspection Report 300442977] OSHA Special Emphasis Program Inspection Report 300442977. **OSHA-2010-0034-0036**
- Pentek-Squirrel III, 1997. Product literature for Squirrel III model scabbler. Bulletin M-205 Pentek USA, Decontamination Division. **OSHA-2010-0034-1276**
- Rappaport, S.M., M. Goldberg, P. Susi, and R.F. Herrick, 2003. Excessive exposure to silica in the U.S. construction industry. Annals of Occupational Hygiene 47(2):111-120. **OSHA-2010-0034-0962**
- Raring Corporation, 2009. Personal communication between David Raring, President, and Eastern Research Group, Inc. November 11. **OSHA-2010-0034-0963**
- Schill, D., 2000. Personal communication during presentation: Silica exposure in New Jersey highway workers. Tri-Agency Silica Workshop. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Morgantown, West Virginia. June 28. **OSHA-2010-0034-1699**
- [SPE USA] Surface Preparation Equipment, USA, 2006. BEF 200: 220V 60 Hz Single Phase Electric Multiplane. Available at: http://www.spe-usa.com/productdetails.asp?cid=1&ct=BEF+Multiplane+Range&prid=1&prt=BEF+200+Multiplane&pid=1&prt=BEF+200+GHz+Single+Phase+Electric+Multiplane&pid=2.

 OSHA-2010-0034-1149
- TNO Bouw, 2002. Respirabel kwartsblootstellingsmetingen bij aangepaste asfaltfrees K2100 [Measurements of respirable quartz exposure with the modified K2100 asphalt milling

- machine]. TNO Bouw, Netherlands. Produced under TNO Contract 2002-GGI-R003 to Nederlandse Frees Mij. **OSHA-2010-0034-1184**
- Van Rooij, G.M., and J. Klaasse, 2007. Effect of additive in spray water of asphalt milling machine on the dust and quartz exposure. Tijdschrift voor toegepaste Arbowetenschap 1:3-5. Presentation available at: http://www.arbeidshygiene.nl/UserFiles/File/symposium05/28-
- 4%20sessie%202H%20Joost%20van%20Rooij.pdf. **OSHA-2010-0034-1217**Wirtgen, 2005. Personal communication between a representative of Wirtgen America,
- Nashville, Tennessee, and Eastern Research Group, Inc. April 20. **OSHA-2010-0034-1230**
- Wirtgen, 2010. Personal communication between a representative of Wirtgen America and Eastern Research Group, Inc. January 11. **OSHA-2010-0034-1231**
- Wirtgen America, Inc., no date. Wirtgen America Internet Web page for Wirtgen Cold Milling Machines; section on W 2100 milling machine. Accessible at:

 http://www.wirtgenamerica.com/us/products/wirtgen/cold-milling-machines/index.php
 OSHA-2010-0034-1229

Rock And Concrete Drillers Description

This section covers workers who use vehicle-mounted drilling rigs to produce deep holes in the ground or in concrete. The holes typically range from 1 inch to more than 6 inches in diameter and can reach a few inches to more than 100 feet deep. The workers typically guide and activate drill bits from control panels mounted on their vehicles and remove a substantial volume of rock or concrete over the course of a shift. This section also includes roof bolters who work at construction sites and use rig-based drills to produce holes in tunnels, both overhead and in wall surfaces. Although the equipment used for each type of drilling varies, OSHA concludes that workers using drilling rigs of all types for rock, earth, and concrete can be addressed together in this section because the worker activities have much in common and the general methods of silica control are also similar. Specifically, these workers control the vehicle-mounted or rig-based drills from more than an arm's length from the drill bit(s). They also perform certain intermittent tasks near the drilling point, such as fine-tuning the bit position, moving debris away from the drill hole, and working directly or indirectly with compressed air to blow debris from deep within the holes.

When drilling rock, workers typically use rigs that are vertically oriented and equipped to produce a deep hole through the addition of bit extensions, often for purposes such as inserting explosives in rock formations or creating hydrogeological wells. Drill bits can be solid or hollow. These track-, truck-, or trailer-mounted rigs are frequently equipped with compressed bailing air, which is continuously forced through a bit's hollow core (when available) to "bail" rock or concrete dust and debris from the bottom of the deep hole (ERG-C, 2008).

To drill concrete, workers often use rigs that consist of an array of one or many drills fixed to the maneuverable arm of a construction vehicle (e.g., backhoe, bulldozer, forklift) or purpose-built mobile machine, which permits the operator to produce a series of precisely spaced mid-size holes, typically a pre-set depth of a few inches to 4 feet, at any orientation. The holes might be used as part of demolition work (as anchor points for lifting gear or to insert explosives), but commonly are intended to receive rebar and dowel-pin reinforcements in concrete repair work (e.g., when replacing part of a concrete bridge deck). As with rock drilling, the drill bits can be solid or have a hollow core through which compressed air or water is forced to clear the hole (Minnich, 2009a). Workers who use these rigs routinely use handheld compressed air nozzles to blow debris from completed holes (NIOSH EPHB 334-11a, 2008). As a standard practice, some types of rock or concrete drill bits (e.g., diamond tip) are water fed to improve function and extend the useful life of the bit.

Table IV.C-66 presents job categories, major activities, and sources of silica exposure for workers using drilling rigs. Although rig-based drilling is often a one-person job, some of the associated activities, such as fine-tuning the drill position and clearing debris from in or around the holes, can be performed by a second worker (ERG-C, 2008).

	IV.C-66	
	Job Categories, Major Activities, and Sources of Exposure	
	of Workers Using Rock and Concrete Drilling Rigs	
Job Category*	Major Activities and Sources of Exposure	

²⁴¹ Most roof bolters work in the mining industry, but are sometimes employed in construction tunnels. Only roof bolters who work at construction sites are covered in this analysis.

	IV.C-66 Categories, Major Activities, and Sources of Exposure of Workers Using Rock and Concrete Drilling Rigs
Worker Using Drilling Rigs	Position and operate drill rigs from control panel mounted on vehicle or rig.
	Dust from action of drill bit.
	Adjust bit position.
	Dust from action of drill bit and bailing air or compressed air nozzle.
	Clear tailings and dust from in or around the hole, during or after drilling.
	Dust raised by bailing air or compressed air nozzle.

Baseline Conditions

Baseline Conditions for Workers Using Drilling Rigs

Sources: ERG-C, 2008; ACPA, 1995; FHWA, 2006; NIOSH EPHB 334-11a, 2008.

ERG-C (2008) summarizes the best exposure monitoring data available to OSHA for drilling rig operators, which include 39 sampling results for various drilling rig configurations including trackmounted rigs drilling holes 80 feet deep through granite and multi-drill sets (dowel packs) drilling a few inches into concrete. The various sites range from a concrete highway repair construction site to a 10-acre rock excavation site where drilling rig operators produced blast holes during the demolition phase prior to building a parking lot and below-ground theaters. These data were reported in four OSHA Special Emphasis Program (SEP) reports, four NIOSH investigations, unpublished data from a state health department, and a published article (Lynch, 2002; NIOSH-Breckenridge, 1992; NIOSH ECTB 233-120c, 1999; NIOSH ECTB 233-122c, 1999; NIOSH-Shelly, 1995; NJDHSS, 2000; and OSHA SEP Inspection Reports 200458362, 300035557, 300340908, and 301459095).

ERG reviewed working conditions for construction workers (drillers as well as laborers) using drilling rigs and found that the exposures and controls vary from job to job (ERG-C, 2008). Significant sources of variability include:

- The substrate being drilled (rock or concrete).
- The silica content of the substrate (silica levels often vary by 20 to 50 percent from site to site, with the greatest range occurring between different types of rock).
- The type of hole being drilled, which influences the type of bit used (water-fed diamond/coring bits cut more slowly but are preferred when workers need to minimize chips and fractures in the substrate ["spalling"]).

 $^{^{242}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

- The work location and proximity of other activities (including whether the location requires dust emissions control and if these controls are used effectively).
- Whether the rig has an enclosed cab.

Based on ERG's report (ERG-C, 2008) and the exposure profile presented in Table IV.C-67, OSHA concludes that baseline conditions for workers using drilling rigs include a range of conditions, from no controls to systems that integrate one or more of the following: dust extraction (in the form of local exhaust ventilation [LEV]), wet methods at the drill hole, and dust management techniques (such as enclosure and wet methods) at the point where the system ultimately dumps extracted dust. Information from industry sales representatives serving the construction industry suggests that water-fed bits are used frequently for many types of drilling, but dust extraction systems and augmented water pumps are less common (Minnich, 2009a; Drilling Rig Manufacturer A, 2009). ²⁴³ This information suggests that the industry profile underestimates the proportion of workers using drilling rigs that might require controls.

Using the best available data, OSHA reviewed 17 exposure results associated with a group of workers using drilling rigs with no controls, described previously in ERG-C (2008). These results, summarized in Table IV.C-67, include 8-hour time-weighted average (TWA) exposure levels obtained at six worksites for 16 workers using concrete drilling equipment and one worker using a rock drilling rig. These data indicate that in the absence of controls, nearly 20 percent of these workers have silica exposure levels of 50 micrograms per cubic meter (μ g/m³) or less, and approximately 60 percent are exposed to levels above $100 \ \mu$ g/m³ (including workers drilling either rock or concrete). Substantially lower exposures have been reported for a second group (workers who routinely use drilling rigs fitted with one or more features that reduce exposure, such as some form of wet methods, air exhausted from the bit entry point, or an enclosed cab). Among the data that are available to OSHA for this second group, more than 80 percent of the results were less than $50 \ \mu$ g/m³, and just one of the 22 workers experienced an exposure exceeding $100 \ \mu$ g/m³. Overall, the exposure profile shows that 21 of the 39 workers (54 percent) who use drilling rigs, with or without any controls, have exposure levels of $50 \ \mu$ g/m³ or less.

The highest exposure for this job category $(1,190 \ \mu\text{g/m}^3)$, based on an 8.5 hour sample) is associated with a drilling assistant who stood at the back of the rig to help position the drill during a highway construction project (NIOSH-Shelly, 1995). Other results for this job category are substantially lower, but still often exceed $100 \ \mu\text{g/m}^3$ when dust controls are ineffective or not used. For example, an 8-hour TWA value of 540 $\mu\text{g/m}^3$ was reported for a drill operator dry drilling with the dust collection system out of operation, to produce holes in rock that contained 17 to 42 percent quartz (NIOSH-Breckenridge, 1992). This 8-hour TWA was based on a result of $800 \ \mu\text{g/m}^3$ collected over 324 minutes. Not unexpectedly, some of the lowest concentrations were associated with dust controls at the drill hole. Results of 12, 31, 35, and 54 $\mu\text{g/m}^3$ were reported for workers who spent the whole shift operating or assisting with drilling rigs fitted

²⁴³ Conversations with drilling rig manufacturers indicate that it is rare for new rigs to be ordered with the upgraded water pumps that permit optimal water flow for dust control (the water pumps provided as standard equipment support only water-fed bits, but not other uses, such as water mist spray in dusty areas above ground, for which a pump upgrade is helpful). In contrast, hollow-core bits are relatively common in certain sectors of the rock drilling industry, such as for core drilling in granite, and when diamond-tipped bits are used, some water is added to the bailing air to protect the bit. Rock-drilling rig customers, however, rarely purchase the more versatile pumps that permit more than a minimal amount of cooling water to be added (Drilling Rig Manufacturer A, 2009). Water-feed kits for concrete drilling rigs are also purchased infrequently, in part because the process requires considerable water (often 1 to 3 gallons per minute). Minnich (2009a) indicates that these water-fed systems are used primarily in underground construction operations. Furthermore, although diamond-tipped bits are more likely to be hollow, the slower action of these bits reduces their popularity. A diamond-tipped bit can take four to 10 times as long to produce a hole of the same size, compared with other bit styles (Minnich, 2009a). Finally, among employers purchasing concrete drilling rigs, water-fed systems are being phased out in favor of dust collecting equipment.

with water feeds or vacuum dust collection (or both) (SEP Inspection Report 300340908; NIOSH ECTB 233-122c, 1999).

OSHA was not able to obtain information on exposures of roof bolters (a type of drilling rig operator) at U.S. construction sites; however, mining data reviewed by NIOSH showed that in coal mines 70 percent of respirable dust samples for roof bolters in the United States contain more than 5 percent silica, and 25 percent of those (or 17.5 percent of the total) exceed 100 µg/m³. NIOSH considers exposure from adjacent sources of silica dust a primary cause of the elevated exposures (Goodman and Organiscak, 2002). Although roof bolters work underground and most other drilling rig operators work above ground, this percentage of operators exposed to silica at levels above 100 µg/m³ is similar to, but slightly less than, the exposure profile for rock and concrete drillers presented in Table IV.C-67, which indicates that 28 percent of these workers experience exposure levels greater than 100 µg/m³. Among the results available to OSHA, dust in drilling rig operator samples also routinely exceeds 5 percent silica. International information published by Bakke at al. (2002) suggests that roof bolters at a Norwegian tunnel construction site would experience a geometric mean quartz concentration of roughly 100 µg/m³ during drilling; however, the tunnel construction site workers spent no more than a quarter of the shift on this activity. In the absence of other information, these studies from the U.S. mining and Norwegian construction industries demonstrate that, although underground, roof bolter exposure levels may be generally comparable to the exposure of other drilling rig operators. This is likely due to ventilation routinely installed at tunnel construction sites and rock bolters' current regular use of engineering controls, such as vacuum suction collector boxes described later in this section.²⁴⁴

²⁴⁴ See Section IV.C.33 – Underground Construction Workers for further details regarding other in-tunnel sources of silica exposure, as well as current requirements and recommendations for tunnel ventilation.

IV.C-67
Respirable Crystalline Silica Exposure Range and Profile for Workers (Drillers and Laborers) Using Rock and Concrete Drilling Rigs

	Exposure Summary			Exposu	re Range	Exposure Profile					
Job Category	Number of Samples	Mean (μg/m³)	Median (μg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Worker Using Drilling Rigs											
No Controls	17	219	125	12	1,190	1 5.9%	2 11.8%	4 23.5%	6 35.3%	4 23.5%	
One or More Controls	22	30	19	10	110	13	5	3	1	0	
						59.1%	22.7%	13.6%	4.5%	0.0%	
Totals	39	112	50	10	1,190	14	7	7	7	4	
						35.9%	17.9%	17.9%	17.9%	10.3%	

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: Lynch, 2002; NIOSH-Breckenridge, 1992; NIOSH ECTB 233-120c, 1999; NIOSH ECTB 233-122c, 1999; NIOSH-Shelly, 1995; NJDHSS, 2000; and OSHA SEP Inspection Reports 200458362, 300035557, 300340908, and 301459095.

Additional Controls

Additional Controls for Workers Using Drilling Rigs

ERG (ERG-C, 2008) reviewed literature suggesting that additional controls for workers using drilling rigs could include environmentally controlled cabs for operators; more consistent use of wet methods specifically adjusted to maximize dust control; optimized dust collection systems involving adequate exhaust air, effective shrouds and shroud placement, and appropriate filtration (when used); and worker position (out of the dust plume). OSHA concurs that these factors affect worker exposure levels and finds that, when used together, wet methods and dust collection systems benefit workers as they perform all activities associated with drilling rigs. Reducing workers' reliance on compressed air for cleaning holes will minimize another notable source of silica exposure. Worker exposures will be further reduced by supplemental controls on dust collector discharge points and use of remote control devices that give operators the freedom to adjust their positions within the local work area.

Construction and mining investigators have long known that routine use of wet dust suppression methods substantially reduces worker exposure to dust. Historically, investigators have reported dust control efficiencies of 96 to 98 percent, depending on the methods used; however, adequate water flow for dust control created problems under certain working conditions (e.g., moisture shortening life of tricone roller bits, high-pressure water causing spalling of the drill hole wall). Advances in recent decades have produced equipment that permits workers to use wet methods in a wider range of circumstances. New "water separator sub" designs extend bit life beyond the previous norm and reduce spalling in a variety of rock types (NIOSH EPHB 334-11a, 2008).

Consistent use of dust extraction shrouds or hoods reduce worker exposures at both rock and concrete drilling sites. NIOSH showed that dust collector efficiency is optimal when workers use an appropriate suction rate, maintain the shroud (surrounding a bit) in good condition, and keep the shroud positioned to fully enclose the bit as it enters the hole. NIOSH reviewed dust control research conducted from the 1920s through the early 2000s and found that when used properly, modern shroud designs now help achieve this objective more consistently for rock drilling rigs than they once did (Reed et al., 2008). Dust collectors and shrouds are commercially available (Drilling Rig Manufacturer A, 2009). NIOSH sought to quantify reductions in respirable dust emissions associated with LEV from a dowel drilling machine in a controlled setting. For these concrete drilling rigs, NIOSH found that close-capture dust collection hoods ("boots") fitted onto each drill on the array reduced respirable dust concentrations by 89 percent compared with drilling without the boots. The equipment tested included an array of five drill bits and associated hoods (NIOSH EPHB 334-11a, 2008). These dust collectors are also commercially available (Minnich, 2009a; EZ-Drill, 2009).

NIOSH recommends several modifications to typical concrete drilling rig dust collection equipment. OSHA anticipates that these upgrades could help ensure that optimal dust collection efficiency is maintained over time. The modifications include using smooth ducts and maintaining a duct transport velocity of 4,000 feet per minute to prevent duct clogging; providing pipe clean-out points; installing pressure gauges across dust collection filters so the operator can clean or change the filter at an appropriate time; and installing static pressure taps in hoods and vacuum gauges on the operator's panel, enabling the operator to confirm that the hoods are operating as designed (NIOSH EPHB 334-11a, 2008). Furthermore, a video of concrete drilling using dust collection equipment showed an initial plume of dust that lasted 5 to 15 seconds after the worker activated the drill (Minnich, 2009b). OSHA also believes that the overall collection efficiency would be improved by activating the exhaust suction prior to initiating drilling and deactivating it after the drill bit stops rotating. Over the course of the work shift, modifications such as those suggested by NIOSH and OSHA would both reduce worker exposure levels.

OSHA finds that both water-fed bits with sufficient water flow, and a combination of wet methods and dust collectors, further reduce exposures to the extent that the majority of workers experience silica exposure levels less than $50~\mu g/m^3$. Exposure results from the late 1990s for workers operating or tending rock drilling rigs support this conclusion. With one exception, the 13 workers who operated or tended rock drilling rigs equipped with either water-fed bits or water-fed bits and dust collectors experienced silica exposure levels less than $50~\mu g/m^3$ (ERG-C, 2008). The respirable dust levels from four sites, from which the silica results were obtained, ranged $50~\mu g/m^3$ to $400~\mu g/m^3$. The silica content in the respirable dust ranged from below detectable to 25 percent of the respirable fraction. Sample durations ranged from 408 to 480 minutes. Associated bulk dust samples contained up to 40 percent silica. The one exception was a result of $61~\mu g/m^3$ (17 percent quartz, 450 minutes duration) for a worker operating one of two side-by-side rock drilling rigs, each of which used less than 1 gallon of water during the work shift to implement its "wet methods" that rainy day (ERG-C, 2008). In contrast, a water flow rate of 0.2 gallons per minute (equal to 1 gallon every five minutes, or 12 gallons per hour) is typically recommended for the type of equipment used (Organiscak and Page, 1995, as reported in Reed et al. [2008]).

Both the rock and concrete drilling rigs are increasingly available with dust collectors that draw air from around the point where the drill bit(s) enter the rock or concrete. Modifications to dust collector discharge areas (e.g., cyclones, shrouds, distance) have reduced exposure from this source by 63 to 89 percent (reported in NIOSH EPHB 334-11a, 2008). Research shows that in the vicinity of the rock drilling rig, dust collector dumping operations were the largest single contributor of airborne respirable particulates. Maksimovic and Page showed that in rock drilling rigs this source contributed 38 percent of the respirable dust emissions, while the deck shroud contributed 24 percent, and the table bushing contributed 24 percent (reported in Reed et al., 2008). These figures indicate that a 63- to 89-percent reduction in discharge dumping emissions can translate into a 24- to 34-percent reduction in the overall airborne particulate burden near the rig. ²⁴⁵

NIOSH also tested a similar ventilation system: the dust collector boxes used by roof bolters in the mining industry (vacuum system pulls dust through the drill steel back to the collector box, where it is captured on a filter). NIOSH concluded that when maintained properly, these systems can be "very effective in capturing and removing dust generated by drilling" (Colinet and Thimons, 2007). These authors report that effectiveness can be increased by adding dust collector bags to the system. With collector bags added, filter loading was reduced by 80 percent (so the filter needs cleaning less often and lasts longer), and it was much easier for the bolter operator to service the box, resulting in far less dust exposure (Colinet and Thimons, 2007). Listak and Beck (2008) reported that the collector (with bag) ran longer between filter cleaning and captured more than 99 percent of a test dust. Since the test dust was finer than typical drilling dust, the collector would capture at least as much dust produced by the drill.

The same investigators suggested air curtains as another option for reducing roof bolter silica exposure underground. In this case, a fan pulls air through a filter and releases this cleaned air over the worker, enveloping the worker in a curtain of clean air (Colinet and Thimons, 2007). Laboratory tests showed a 40- to 60-percent reduction in dust levels under the curtain and respirable quartz levels that were 40 µg/m³ below concentrations in a nearby area (Goodman et al., 2006).

Wireless or tethered remote controls are becoming more readily available for some types of construction equipment. A concrete drilling rig tested by NIOSH was fitted with a commercially available remote control that permitted the operator to activate the rig from a moderate distance (e.g., 5 to 20 feet) (NIOSH EPHB 334-11a, 2008; Minnich, 2009b). OSHA anticipates that when workers have access to wireless

 $^{^{245}}$ A 63-percent reduction in the 38-percent dust emissions attributed to discharge dumping operations could result in a 24-percent reduction in the overall level of respirable dust near the drilling rig (0.63 x 0.38 = 0.24, and 0.89 x 0.38 = 0.34).

controls, this technology can help minimize worker silica exposure by permitting the worker to move freely within the local work area. When given an opportunity, workers typically step away from plumes of visible dust (Lynch, 2002; Minnich, 2009b; Modern Contractor Solutions, 2009).

Cecala et al. (2005) studied modifications designed to lower respirable dust levels in an enclosed cab on a 20-year-old surface drill at a silica sand operation. The researchers incorporated a number of modifications into the drill's filtration and pressurization system, along with other areas, to improve performance. They studied respirable dust levels collected inside and outside the cab before and after modification. They found that effective filtration and cab integrity (e.g., new gaskets, sealing cracks) to maintain a positive-pressure environment are the two key components necessary for dust control in an enclosed cab. OSHA notes that cabs benefit the operator in the cab and do not affect the worker's exposure during positioning or hole-tending activities.

By using a high-efficiency particulate air (HEPA)-filtered vacuum instead of compressed air to clean holes, worker exposure from this source could be eliminated, except when workers empty the vacuums. Because the vacuum nozzle must be inserted into each hole (potentially hundreds to thousands), workers using vacuums to clean holes are likely to require extra time to complete the task compared with using compressed air, which requires less precision.

Feasibility Finding

Feasibility Finding for Workers Using Drilling Rigs

Based on the information presented in Table IV.C-67, OSHA preliminarily concludes that construction sites have already achieved exposure levels of $50 \,\mu\text{g/m}^3$ or less for more than half (54 percent) of workers operating rock and concrete drilling rigs. Although a few of these workers were using drilling rigs with no controls, most of these exposures were achieved through the use of one or more controls. The controls used include: 1) wet dust suppression methods (water-fed drill bits, misting points of dust release, and in some cases using a more powerful water pump than typically provided with the drilling rig), 2) shrouds and hoods connected to dust extraction equipment, and 3) managing dust collection dump points. Twelve of 13 workers using drilling rigs associated with one or more of these controls on the test date had exposure levels less than 50 (the 13th worker used an inadequate water flow rate). Note that there are 9 samples associated with the use of enclosed cabs and 13 samples associated with the use of the controls mentioned in this paragraph (a total of 22 samples associated with some kind of exposure control). As noted previously, however, OSHA acknowledges that the available data might underestimate the proportion of rock and concrete drillers using rigs that might require controls.

To reliably achieve exposure levels of $50~\mu\text{g/m}^3$ or less, employers of workers who use drilling rigs must ensure that both water and local exhaust air flow are used and optimized each time the drill is operated. For concrete drills that are heavily used, optimization might include adding improvements recommended by NIOSH to help ensure that effective dust collection is maintained over time (convert from rough to smooth ducts with sufficient transport velocity, add pipe cleanout points, and include pressure gauges to indicate filter loading and hood function). If excessive exposure persists, rig owners can take additional steps. They can modify the dust extractor to better capture the particles released as the drill starts and stops. If the dust extractor is activated simultaneously with the drill, the extractor likely will not have reached full power before the drill begins generating dust. By activating the dust extractor before the drill starts and by turning the dust extractor off only after the drilling stops, the dust extractor will be able to capture silica particles that would otherwise escape into the work zone air. Rig owners can also modify (enclose, or moisten) the dust collector discharge area to minimize re-suspension of dust at dust collection areas. Additionally, use of hand-held compressed air nozzles for cleaning holes must be replaced with HEPA-filtered vacuums to avoid suspension of crystalline silica containing dust.

These controls will benefit all workers working around the drilling rig, not just rock drill operators. Drilling rig operators who spend at least part of their shift in an enclosed cab or have the option of remote controls will experience exposure levels that are even lower. These methods are already in use by some drillers (ERG-C, 2008).

Some drilling rig operators, who already experience very high exposures (e.g., the 10 percent of workers with exposure levels exceeding 250 μ g/m³ in Table IV.C-67), will need to wear a respirator until their exposures have been effectively controlled.

In summary, OSHA preliminarily concludes that for most workers operating most rock and concrete drilling rigs, silica exposure levels of $50 \,\mu\text{g/m}^3$ can be achieved most of the time by using additional exhaust ventilation, water spray equipment, and HEPA-filtered vacuums. Further measures may be required for the workers who are currently most highly exposed.

REFERENCES

- [ACPA] American Concrete Pavement Association, 1995. Fast full-depth pavement repair (RP334P). Skokie, IL: http://www.pavement.com/Downloads/RP334P.pdf OSHA-2010-0034-0530
- Bakke, B., P. Stewart, and W. Eduard, 2002. Determinants of dust exposure in tunnel construction work. Applied Occupational and Environmental Hygiene 17(11):783-796. **OSHA-2010-0034-0546**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63.
- Colinet J.F. and E.D. Thimons, 2007. Dust control practices for underground coal mines. Proceedings of the 32nd International Conference of Safety in Mines Research Institutes, 28-29 September 2007, Beijing, China. Beijing, China: National Center for International Exchange & Cooperation on Work Safety (SAWS):332-338. **OSHA-2010-0034-0598**
- Drilling Rig Manufacturer A, 2009. Personal communication between Drilling Rig Manufacturer A and Eastern Research Group, Inc. August 11. **OSHA-2010-0034-0625**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- EZ-Drill, 2009. Product Literature: Drilling clean. Available at http://www.ezdrill.com/articles/downloads/EZ20080304134148108.pdf. Last accessed retrieved 13 August 2009. **OSHA-2010-0034-0669**
- [FHWA] Federal Highway Administration, 2006, May. Pavements Section 5: Full-depth repairs. U.S. Department of Transportation, Federal Highway Administration. Retrieved July 16, 2009, from http://www.fhwa.dot.gov/PAVEMENT/concrete/full5.cfm. **OSHA-2010-0034-0673**

- Goodman, G.V.R.; T.W Beck; D.E. Pollock; J.F. Colinet; J.A. Organiscak, 2006. Emerging technologies control respirable dust exposures for continuous mining and roof bolting personnel. Proceedings of the 11th U.S./North American Mine Ventilation Symposium, University Park, Pennsylvania, June 5-7, 2006 Mutmansky JM, Ramani RV. eds., London, U.K. Taylor & Empty Francis Group 211-216. **OSHA-2010-0034-0712**
- Goodman, G.V.R. and J.A. Organiscak, 2002. An evaluation of methods for controlling silica dust exposures on roof bolters. SME Annual Meeting, Feb 25-27, 2002, Phoenix, Arizona, preprint 02-163. Littleton, CO: Society for Mining, Metallurgy, and Exploration, Inc. **OSHA-2010-0034-0711**
- Listak, J.M. and T.W. Beck, 2008. Laboratory and field evaluation of dust collector bags for reducing dust exposure of roof bolter operators. Min Eng 60(7):57-63. **OSHA-2010-0034-0785**
- Lynch, K.D., 2002. Respirable concrete dust silicosis hazard in the construction industry. Applied Occupational and Environmental Hygiene. 17(3):209-221. **OSHA-2010-0034-0784**
- Minnich, 2009a. Personal communication between Shane Geer, sales and service representative at Minnich Manufacturing, Mansfield, Ohio, and Eastern Research Group, Inc. August 11. **OSHA-2010-0034-0813**
- Minnich, 2009b. YouTube video: Minnich Manufacturing remote operated dowel drill unit. Retrieved August 13, 2009, from http://www.youtube.com/user/Buckeyeque#play/uploads/1/35lEtJk1EOM. OSHA-2010-0034-0814
- Modern Contractor Solutions, 2009. 2009 New Product Reviews: Minnich Manufacturing the future of dowel pin drilling. Modern Contractor Solutions (March). Retrieved August 13, 2009 from http://www.moderncontractorsolutions.com/articlesdetail.php?id_articles=498&id_artcatg=16 OSHA-2010-0034-0819
- [NIOSH ECTB 233-120c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 20 Road demolition and construction. **OSHA-2010-0034-0226**
- [NIOSH ECTB 233-122c] National Institute for Occupational Safety and Health, 1999b. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 22 Rock drilling. **OSHA-2010-0034-0228**
- [NIOSH EPHB 334-11a] National Institute for Occupational Safety and Health, 2008a. In-depth survey: Preliminary evaluation of dust emissions control technology for dowel-pin drilling at Minnich Manufacturing, Mansfield, Ohio. **OSHA-2010-0034-0871**

- [NIOSH-Breckenridge] National Institute for Occupational Safety and Health, 1992. Environmental surveillance report: Breckenridge Construction Drilling, Westover, West Virginia. **OSHA-2010-0034-0904**
- [NIOSH-Shelly] National Institute for Occupational Safety and Health, 1995. Environmental surveillance report: The Shelly Company, Thornville, Ohio. **OSHA-2010-0034-0907/OSHA-2010-0034-0908**
- [NJDHSS] New Jersey Department of Health and Senior Services, 2000. Update of silica sampling conducted under the New Jersey silica partnership. **OSHA-2010-0034-0912**
- [OSHA SEP Inspection Report 200458362] OSHA Special Emphasis Program Inspection Report 200458362. **OSHA-2010-0034-0512**
- [OSHA SEP Inspection Report 300035557] OSHA Special Emphasis Program Inspection Report 300035557. **OSHA-2010-0034-0090**
- [OSHA SEP Inspection Report 300340908] OSHA Special Emphasis Program Inspection Report 300340908. **OSHA-2010-0034-0034**
- [OSHA SEP Inspection Report 301459095] OSHA Special Emphasis Program Inspection Report 301459095. **OSHA-2010-0034-0022**
- Reed, W.R., J.M. Listak, S.J. Page, and J.A. Organiscak, 2008. Summary of NIOSH research completed on dust control methods for surface and underground drilling. Pittsburgh, PA: National Institute for Occupational Safety and Health. **OSHA-2010-0034-0967**

Rock-Crushing Machine Operators and Tenders Description

Rock crushing machines are used to crush rocks, concrete, or construction rubble down to sizes suitable for various construction uses. ²⁴⁶ Workers control machine functions and clear foreign or impacted material from the machine. Once crushed, material exits the hopper and is carried along conveyor belts into a pile or into secondary and tertiary crushers (ERG-C, 2008). Rock crushing operations might also include magnetic separation, powdering, and vibratory screening (sieving).

Workers can be exposed to silica generated during crushing operations while they manage the machine's controls, oversee the operation, and signal the tractor operator (typically a worker in the heavy equipment operator job category) about dumping loads into the crusher hopper. At most construction sites, the worker overseeing machine function spends a substantial portion of the shift in a "crow's nest" next to the primary hopper to allow the operator to view the inside of the hopper, at which point the operator's breathing zone is about 5 to 10 feet from the edge of the hopper opening. The operator's platform is typically not enclosed and has an area of about 10 square feet.

The same worker might also periodically tend the rock crushing machinery from platforms or on the ground at various points along the moving conveyor belts, ensuring that foreign material (wood, rebar, wire) does not proceed through the process. The worker might also pick up debris that has fallen off the conveyor belts, or clear material that becomes impacted in the crusher, hoppers, or belts. At some construction sites, particularly where construction rubble contains a significant amount of foreign material, other workers (e.g., laborers, belt pickers, utility operators) perform these tasks (ERG-C, 2008).

Table IV.C-68 summarizes job categories, major activities, and sources of exposure of rock crushers.

²⁴⁶ Rock crushing operations at fixed sites are considered quarrying operations and fall under the jurisdiction of the Mine Safety and Health Administration. Only "portable" rock crushing operations, such as those associated with construction sites, fall under OSHA jurisdiction.

IV.C-68 Job Categories, Major Activities, and Sources of Exposure of Rock-Crushing Machine Operators and Tenders								
Job Category* Major Activities and Sources of Exposure								
Worker Operating Rock Crushing Machines	Managing mobile rock crushing machine function while working at control position(s).							
	 Dust from crushing, grinding, and screening operations. Dust from open transfer of silica-containing materials (e.g., open conveyors, material loading or discharge points, sizing screens). 							
	Working at access points tending crushers and conveyers to clear foreign or impacted material. Keeping the area clean (picking up debris).							
	 Dust from crushing, grinding, and screening operations. Dust from open transfer of silica-containing materials (e.g., open conveyors, material loading or discharge points, sizing screens). 							
*Job categories are intended to repre allocated differently, depending on the	sent job functions; actual job titles might differ, and responsibilities might be e operation.							
Source: ERG-C, 2008.								

Baseline Conditions and Exposure Profile

The exposure information available to OSHA for rock crushers is limited to workers either controlling the machine, or alternately controlling and tending the equipment to clear foreign or impacted material; no construction industry data are available for workers strictly tending crushing machines without also spending time operating them. Table IV.C-69 summarizes the exposure results for workers associated with crushing machines. These results come from three OSHA Special Emphasis Program (SEP) inspection reports (OSHA SEP Inspection Reports 11345975, 2116507, 300441862). Although limited, these values represent the best data available to OSHA for workers involved in rock crushing operations.

²⁴⁷ Two of the OSHA SEP inspection reports are associated with the construction industry, and one is associated with the asphalt paving products industry; however, at the time of the evaluation, the rock crusher at the asphalt industry site was recycling concrete construction debris with no more (and possibly fewer) exposure controls than is typical for a construction site (OSHA SEP Inspection Report 2116507).

 $^{^{248}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

IV.C-69 Respirable Crystalline Silica Exposure Range and Profile for Rock-Crushing Machine Operators and Tenders

	Expo	sure Sumn	nary	Exposu	ire Range	Exposure Profile					
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (μg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)	
Rock Crusher (machine operators and tenders)	5	798	300	172	1,860	0 0%	0 0%	0 0%	1 20%	4 80%	

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average (TWA) exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008.

In Table IV.C-69, the exposure profile for workers operating crushing machines summarizes five 8-hour TWA silica exposure results based on samples of 2 to 8 hours duration. Sample results range from 172 micrograms per cubic meter ($\mu g/m^3$) of air to 1,860 $\mu g/m^3$, with a median of 300 $\mu g/m^3$ and a mean of 798 $\mu g/m^3$.

Based on a review of ERG-C (2008), OSHA finds that baseline conditions for construction workers associated with rock crushing machines include the use of some form of dust suppression additive (e.g., water, asphalt), but application is either inconsistent or inefficient. Workers typically do not use engineering controls or dust-suppressing work practices. Because the sample results summarized in Table IV.C-69 were obtained under baseline conditions, OSHA estimates that the baseline median exposure for workers using concrete crushers is represented by the median value (300 μ g/m³) reported in Table IV.C-69.

At one of the construction sites, where full-shift respirable quartz PBZ results of $172~\mu g/m^3$ and $300~\mu g/m^3$ were measured, workers stated that conditions were atypical on the day of sampling: the supply of asphalt, which was usually added to the primary hopper to control dust, had run out early in the day. A water hose was aimed at the conveyer instead (ERG-C, 2008). Although these data might not represent typical conditions at this site, they indicate the potential for exposure in poorly controlled conditions. The highest results for this job category (1,380 $\mu g/m^3$ and 1,860 $\mu g/m^3$) were obtained at another construction site where a water mist was applied at two points on the crusher (OSHA SEP Inspection Report 11345975). Although the OSHA official who visited this work site commented favorably on the attempt to use a wet dust suppression method, OSHA noted that the construction site could achieve better dust control using techniques such as matching spray nozzle to the situation, adjusting spray position and angle, and modifying water flow.

Additional Controls

The primary additional controls for rock crushers include improving water application methods, applying wetting agents and/or dust suppressant materials, installing local exhaust ventilation (LEV) at the hopper and other locations along the conveyors, using enclosed operator control stations equipped with LEV (which benefits the worker only when inside the station), and employing work practices that position the worker away from dust-generating processes as much as possible (e.g., using remote control devices, implementing management controls to limit the amount of foreign material that enters the crusher).

Wet Methods

As noted in the previous section, the water spray might not have been optimal in the cases available to OSHA. As will be shown here, the use of greater quantities of water, multiple water spray (mist) outlets into the hopper and along conveyor belts, and better designed and directed water sprays effectively reduce the exposures of workers both while they are controlling the crushing machine and while they are working as tenders at access points or on the ground.

Evidence that improved water dust control can reduce silica levels is provided by a full-shift (PBZ) silica result of $54~\mu g/m^3$ obtained for the operator of a stationary crusher at a temporary concrete recycling facility using fine-mist water spray (ERG-concr-crush-A, 2001). Multiple water spray nozzles were located at the crusher hopper, the post-crusher conveyer, the sizing screens exit point, and each major transfer point, including the point where crushed material eventually fell to a pile on the ground. The

²⁴⁹ Although it could be disassembled and moved, this equipment was not mobile, and the crusher system size was more typical of an extensive fixed location crushing operation (ERG Concr Crush A, 2001). Therefore, the exposure profile (Table IV.C-69) does not include exposure results associated with this crusher.

crusher operator controlled the nozzles from a panel in the control booth. The number of nozzles in action varied according to site conditions. The objective was to eliminate all visible dust using the least amount of water. The crusher staff noted that water sprayers were checked frequently and replaced if they became clogged, dripped, or squirted water, rather than producing a mist spray. At this site, the machine operator spent much of the shift inside a poorly sealed booth directly over the crusher, but left the booth frequently to spray extra water (large droplets from a hose with a garden nozzle) as material was dumped into the crusher. During the shift, this worker also inspected conveyers and shoveled dry impacted crushed concrete from clogged hoppers and conveyers (performed without dust suppression). Silica concentrations inside the booth were below the limit of detection (LOD) (19 μ g/m³ in this case), while the concentration outside the booth was higher (103 μ g/m³) over the entire shift. OSHA estimates that if the water hose (used by the operator at the crusher) had provided a finer mist, and if water spray had been available at the clogged hoppers cleared by the operator, then this operator's exposure level would have been well below 50 μ g/m³ on this sampling date. However, wet ground conditions meant that the concrete being crushed was wetter than usual, which might have helped minimize airborne dust. More extensive water application would be necessary on days when the ground was dry.

An international report on wet dust control methods for rock crushers in India offers further strong evidence that water mist reduces silica for rock crushing operations under some circumstances. At several small, tightly clustered rock crushing machine sites in India, five initial respirable quartz results obtained during dry crushing operations ranged from 60 μ g/m³ to 360 μ g/m³, with a median of 290 μ g/m³ and a mean of 246 μ g/m³ (Gottesfeld et al., 2008). Although the stationary (movable, but apparently not mobile) crushers were mechanized (powered), the workers loaded the crusher hopper manually and carried off the crushed material by hand in sacks. None of the crushing machines was equipped with an operator's booth. Among the sites evaluated for this study, the bulk stone quartz content ranged from below 4 percent to 27 percent, with an additional 3 to 6 percent cristobalite at some sites.

Results were markedly lower when water spray systems were installed. Of the 150 small Indian crushing mills in the study area, 40 subsequently agreed to install atomizing water spray dust suppression systems. The 18 follow-up breathing zone and area samples collected during the monsoon season range from 5 μ g/m³ to 55 μ g/m³, with a median of 11 μ g/m³, and a mean of 14 μ g/m³ (sampling durations not reported). A second set of follow-up samples were collected during the dry season. These 27 post-control dry season samples (15 PBZ and 12 area samples), obtained over approximately 2 to 5 hours, range from 10 μ g/m³ to 630 μ g/m³, with a median of 20 μ g/m³, and a mean of 63 μ g/m³. Gottesfeld et al. (2008) note that the higher sample results observed after spray systems were installed (29 percent exceeded 50 μ g/m³) might have been due to one or more spray nozzles that did not function and neighboring rock crushing mills that did not have dust control equipment (dust drifted between neighboring operations). Although the wide exposure range indicates that elevated exposure occurred occasionally, both the median and the mean were dramatically lower after the control system was installed.

²⁵⁰ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

²⁵¹ The water spray systems were provided by an international partnership studying silica exposure in the crushing mills, where the workforce primarily consisted of tribal women and adolescent girls (Gottesfeld et al., 2008).

²⁵² The researchers intended for both area and personal breathing zone samples to represent individual worker exposures. They placed sampling pumps in a stationary location in the immediate work area when workers were reluctant to wear a sampling pump.

Table IV.C-70 summarizes the Gottesfeld et al. (2008) results obtained before and after water spray installation. This table shows that, after water spray installation, even during the dry season, 55 percent of the breathing zone and area results were less than 25 $\mu g/m^3$, and just one result (4 percent) exceeded 250 $\mu g/m^3$. In contrast, before the water mist system was added, all results exceeded 50 $\mu g/m^3$, and 60 percent were greater than 250 $\mu g/m^3$, a condition similar to those in OSHA's exposure profile for workers associated with rock crushing machines.

OSHA acknowledges that the small mechanical crushing machines evaluated by Gottesfeld et al. (2008) are not completely analogous to the rock crushers used on U.S. construction sites. The authors mentioned that workers loaded the crusher manually, suggesting that the crushers might have been lower power and crushed less material per minute than the equipment typically used in the United States, where front-end loaders dump tons of rock at a time into crusher hoppers and the pieces of concrete and stone often weigh several hundred pounds. However, the workers in India used more manual processes than are typical of U.S.-based rock crushing, putting the breathing zone of more Indian workers in closer proximity to the primary exposure sources: crushers, conveyer belts, and discharge. The medians of the data collected in the United States and in India prior to installation of the water spray dust suppression system, are remarkably similar (300 μg/m³ vs. 290 μg/m³, respectively). However, without further detail on the rock crushing activities in India, OSHA is unable to determine if similar water spray systems would be equally effective if installed on the rock crushing equipment typically used in the United States. Though the more manual process used by the Indian workers puts them in closer proximity to dust sources, OSHA cannot determine from the available information if the (presumably) lower power of these crushers and manual operations mean dust is generated at a lower rate, making misting more effective than it might be with the types of equipment typical in the United States. OSHA is interested in receiving additional information on the effectiveness of water mist and other dust suppressant methods with construction industry crushing machines in the United States.

IV.C-70

Comparison of PBZ Respirable Quartz Results for Rock Crusher Activities in India Before and After Installation of Water Spray Controls

			Qı	ıartz Exposu	re	Qu	artz Result Dis	tribution amon	g Exposure Ra	nges
Job Category	Number of Samples	Respirable Dust	Mean (μg/m³)	Median (μg/m³)	Min-Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	> 250 (µg/m³)
Rock Crusher in India— before controls added ^A	5	2.63	246	290	60 to 360	0 0%	0 0%	1 20%	1 20%	3 60%
Rock Crusher in India— after atomizing water spray added (monsoon season) ^B	18	0.19	14	11	5 to 55	17 94%	0 0%	1 6%	0 0%	0 0%
Rock Crusher in India— after atomizing water spray added (repeated in the dry season) ^{C, D}	27	0.96	63	20	10 to 630	15 55%	4 15%	4 15%	3 11%	1 4%

Notes: The duration was not available for all samples, but when reported they ranged from 102 minutes to 319 minutes. Quartz in stone = 4 to 27 percent; cristobalite in stone = 3 to 6 percent.

This table summarizes and compares quartz results obtained by Gottesfeld et al. (2008) in India under two conditions: during dry rock crushing and after water spray dust control was added (measured in two seasons). The information in this table are not intended as a substitute for the exposure profile for rock crushers in the United States, which appears in Table IV.C-69. Cristobalite exposure is not presented here.

Source: Gottesfeld et al., 2008.

^A Results from TWA PBZ quartz samples. Mean for the cristobalite result was 90 μg/m³.

B Results are from 6 PBZ and 12 area quartz samples (an area sample was collected in the worker's immediate area if a worker was reluctant to wear a pump; the investigator intends these samples to represent a reasonable approximation of the worker's exposure). All cristobalite results were below the limit of detection (mean of 20 µg/m³).

^C Results are from 15 PBZ and 12 area quartz samples. Most cristobalite results were below the limit of detection (mean of 30 μg/m³).

Investigators hypothesized that spray nozzles malfunctioned in a few cases and neighboring rock crushing mills without dust controls might also have influenced some results.

ERG-C (2008) discusses water dust control techniques in greater detail. For small-scale high-energy crushing activities (workers breaking concrete with jackhammers), ERG reports that a directional mist adjusted for maximum dust control reduced operator exposure by 70 to 90 percent. Based on these results, OSHA estimates that crusher operators could achieve similar reductions with more extensive and improved water delivery systems.

Spray systems are commercially available as original equipment options on some mobile crushers can be added as retrofits or can be added by the owner as shop installations (Komatsu America, 2007; NESCO-dust-control, 2007; NESCO-products, 2007; NESCO-spray, 2007). Replacement nozzles are readily available. It is important to match the nozzle type and spray pattern to the dust source (i.e., location within the crushing machine) that is to be controlled (Bartell and Jett, 2005; Spray Systems, no date). Spray systems can be installed for remote control activation (ERG-concr-crush-A, 2001; NESCO-dust-control, 2007).

Other wet dust suppression options that can offer a substantial benefit include water expanded into foam, steam, compressed water fog, and wetting agents (surfactants added to water to reduce surface tension) (ERG-C, 2008). For example, given a set of conditions, an effective foam system can be designed to predictably achieve nearly any dust control objective, including dust control objectives for rock crushing (Midwest-Edwards, 2009). Simple foam has a short period in which it is effective (20–30 minutes in some climates) (Midwest-Edwards, 2009), but that amount of time is sufficient for material to pass through a crushing machine. Although ERG was not able to specifically determine the effectiveness of dust suppressants for reducing rock crusher exposures, OSHA believes that when used properly and consistently, they could reduce silica concentrations at least as effectively and more consistently than directional water mist spray alone (i.e., dust suppressants such as foams can achieve an exposure reduction of 70- to 90-percent, or possibly greater).

Local Exhaust Ventilation

The use of LEV systems at feed hoppers and along conveyor belts can also be somewhat effective in reducing respirable quartz levels. The available data, however, suggest that LEV alone is not always effective in substantially reducing exposure levels associated with mobile crushing equipment. One sample, obtained by Ellis Drewitt (1997) for an Australian worker crushing quartzite with a dust extraction system as the only control method, resulted in an 8-hour TWA respirable quartz result of 300 $\mu g/m^3$. ERG-C (2008) describes this study in more detail.

Another international report, this one from Iran, describes a site where workers used rock crushers with LEV. Bahrami et al. (2008) evaluated small mechanized, stationary, "traditional" (loaded by hand) stone crushing operations before and after the controls were added. The authors report that respirable dust results (area samples) were 99 percent greater without the use of LEV at hoppers, rotary grinders, screeners, and conveyor belts at eight different rock crushing operations producing quartz powder in Iran. The average respirable dust results for 20 area samples collected at four points on crushers prior to the installation of LEV range from 111,000 μ g/m³ to 179,000 μ g/m³. After the installation of LEV, the mean area respirable dust results for 20 follow-up samples range from 770 μ g/m³ to 1,480 μ g/m³. The LEV systems were associated with a marked decrease in respirable dust.

 $^{^{253}}$ Before controls were installed, area samples revealed mean respirable dust concentrations of 111,000 $\mu g/m^3$ at hoppers, 153,000 $\mu g/m^3$ at secondary screeners, 170,000 $\mu g/m^3$ at primary screeners, and 179,000 $\mu g/m^3$ at rotary grinders. After the LEV systems were installed, mean respirable dust levels in similar areas were reduced to 770 $\mu g/m^3$ at secondary screeners, 1,300 $\mu g/m^3$ at primary screeners, 1,440 $\mu g/m^3$ at rotary grinders, and 1,480 $\mu g/m^3$ at hoppers. PBZ respirable silica levels were 30 $\mu g/m^3$ for administrative workers (9 samples),

Bahrami et al. (2008) also sampled the respirable quartz exposure among rock crushing workers after the LEV systems were installed. Because of the high percentage of silica in rock in the Iranian quartz powder production region, worker silica exposure levels were not reduced to the extent that they might have been in another area. Among 20 personal silica samples for process and hopper-filling workers associated with rock crushers after LEV was installed, the mean PBZ respirable quartz results were 190 $\mu g/m^3$ to 400 $\mu g/m^3$ respectively (Bahrami et al., 2008). Despite the LEV systems, rock crushing site workers' personal exposure levels continued to exceed 100 $\mu g/m^3$.

These levels would likely have been lower if the rock had not been nearly pure silica. As a hypothetical example, if the respirable dust sample had contained the more typical 12 percent silica on the filter, OSHA estimates that the corresponding initial uncontrolled airborne silica concentrations would have been 92 $\mu g/m^3$ to 178 $\mu g/m^3$. Furthermore, if samples obtained under controlled conditions (with LEV installed) had contained 12 percent silica, the results would have ranged from 27 $\mu g/m^3$ to 56 $\mu g/m^3$. However, in reality airborne silica concentrations were somewhat higher: bulk samples of this Iranian rock contained 85 to 97 percent quartz. Regardless, as with the rock crushers in India described by Gottesfeld et al. (2008), the equipment used in Iran is not necessarily directly analogous to U.S. rock crushers used in the construction industry.

Although LEV shows promise for some types of construction equipment, it has yet to be proven practical for mobile construction rock crushing equipment. As described below (see Combination of Controls), a notable amount of air (6,500 to 8,500 cubic feet per minute [cfm], with a wet air scrubber system) must be exhausted from crushing machines used underground in the mining industry. A somewhat lesser amount might suffice above ground, but other challenges would need to be overcome, and this technology has not become popular for dust control in the construction industry. The challenges include problems with maintaining airtight enclosures around the crusher and conveyers on this type of equipment, which vibrates violently, and with housing a power generator, fan, and air-cleaning device of sufficient size on the mobile crusher chassis. One alternative, where the machine can be left in place for days at a time, is to use a portable generator and large industrial vacuum suction system with air cleaner on one platform (e.g., a parked trailer), connected by ductwork to the nearby crushing machine. Due to the vibration generated by crushing equipment, maintaining an airtight enclosure would likely require that the construction site also maintain numerous replacement parts and perform daily maintenance on the housing.

Crusher Operator Control Booth

An isolated and ventilated operator control booth can significantly reduce the respirable quartz exposures of workers associated with rock crushing to the extent that they are able to spend time in the booth. In the same study of the South Australian extractive industry (mentioned above), six full-shift respirable quartz results obtained for rock crushing operators who controlled the dry process from inside air-conditioned cabins range from less than or equal to the limit of detection (LOD) of 30 μ g/m³ to 165 μ g/m³, with a median of 60 μ g/m³ (Ellis Drewitt, 1997). At least two of the sampled workers occasionally exited the cabins to free machinery blockages. When compared with the measurement of 300 μ g/m³ reported above for the rock crushing operator using LEV but no cabin, the median of 60 μ g/m³ represents an exposure reduction of 80 percent. Other studies of operator cabs also report silica or dust exposure reductions ranging from 80 percent to greater than 90 percent (Cecala et al., 2003, 2005; ERG-C, 2008). Cab and booth design features are discussed in ERG-C (2008).

 $^{170 \}mu g/m^3$ for drivers/loader operators (11 samples), $190 \mu g/m^3$ for process workers (12 samples), and $400 \mu g/m^3$ for hopper workers (8 samples) (Bahrami et al., 2008). The LEV system was not described.

²⁵⁴ Personal silica samples were not obtained before LEV systems were installed.

Other Control Options

Mobile rock crushing machines (e.g., track mounted) are available with remote controls as standard equipment (Komatsu America, 2010). The remote operations permits the operator to stand back from the crusher or move upwind of dust emissions and the commercial availability of remote controls indicates that operators find it useful to move away from the equipment at times. Though no exposure data are available for this type of equipment, OSHA estimates that remote operation can reduce operator exposure to the extent that this method permits the operator to control the machine from a more protected location (e.g., the cab of another vehicle or a portable control booth). For example, even if the operator only spends 25 percent of the shift away from intense dust exposure, the average exposure level could be reduced by $200 \,\mu\text{g/m}^3$ (25 percent of the exposure profile mean of $798 \,\mu\text{g/m}^3$ is approximately $200 \,\mu\text{g/m}^3$). A rock crusher operator observed by ERG spent most of the shift operating the crusher from a (poorly) enclosed booth and only occasionally exited to perform a manual action (ERG-concr-crush-A, 2001). This operator spent approximately 85 percent of the period of crusher operation inside the booth and 15 percent outside the booth, which the operator reported was typical.

Combination of Controls

Underground coal crushing operations (NIOSH-longwall, no date) demonstrate the extent to which engineering controls can control respirable dust. On longwalls in coal mines, respirable dust levels in air leaving the crusher area have been reduced to between 260 $\mu g/m^3$ and 990 $\mu g/m^3$ by using a combination of water spray and exhaust ventilation (OSHA estimates that if this dust contained a typical 12 percent quartz, the corresponding airborne silica concentration would be 31 $\mu g/m^3$ and 119 $\mu g/m^3$). On the underground crusher described by NIOSH, the water spray is applied by three or four full-cone spray nozzles at each location, delivering 8 to 10 gallons of water per minute to the crusher entrance, the area above the crusher hammer, the crusher discharge area, and conveyer belt transfer points, where it is important that the spray bars span the width of the conveyer or process. In addition, a ventilation fan paired with a wet air scrubber system removes dust from 6,500 to 8,500 cfm of air drawn from the crusher discharge and conveyer belt transfer areas. These areas must be fully enclosed for the ventilation system to perform optimally. This example described by NIOSH used a water-powered ventilation system to minimize electrical hazards. Finally, to address another source of dust, spring-loaded scrapers clean the top and bottom of the conveyer belt, after which the conveying side of the belt is cleaned with water sprays and a rotating brush.

An underground coal mine is a worst-case scenario (at construction sites, rock crushers are typically located outdoors). Nevertheless, this example outlines the types of respirable dust controls that NIOSH has demonstrated to work best on different parts of a crushing system (NIOSH-longwall, no date). As noted previously, for the construction industry, challenges associated with this combination of controls include maintaining a tight enclosure around a mobile crushing machine (this equipment vibrates violently) and the space required on a mobile machine for both the water and LEV systems. An industry representative suggested that using a combination of foam (at the crusher jaw) and water sprays (at conveyers and discharges) might be a more effective option for mobile equipment (Midwest-Edwards, 2009).

Feasibility Finding for Workers Using Rock Crushers

Based on the information in this section, OSHA preliminarily concludes that all workers using rock crushers (100 percent, from Table IV.C-69) are currently exposed to silica at levels exceeding 50 $\mu g/m^3$, and to achieve the proposed level of 50 $\mu g/m^3$ all will require additional controls. Silica exposure controls for mobile crushers include operators' booths, remote control devices, and water spray (optimally with foam application systems).

The silica exposure level of most workers who operate rock crushing machines primarily from a control panel can be reduced to a level of $50~\mu g/m^3$ or less with the use of enclosed, air-conditioned, and properly ventilated operator's booths, in combination with water spray dust suppression. This conclusion is based in part on ERG's assumption that the activities of this portion of rock crushing operators in the United States are similar to those performed by the Australian fixed plant operators who experienced a median silica level of $60~\mu g/m^3$ when they were able to spend much of the shift at the control panel and only occasionally cleared blockages. OSHA agrees with ERG's estimate that rock crushing operators in the U.S. construction industry can achieve similar exposure levels by controlling crushing equipment from protective booths/cabs.

Furthermore, OSHA estimates that still lower results can be achieved by using a combination of controls: results of 50 μ g/m³ or less can be achieved for workers in booths/cabs operating rock crushers fitted with water sprays, which improve dust control around the crushers on the infrequent occasions when the operators do need to exit their booths to clear impacted material. Information presented by Gottsfeld et al. (2008) showed that median exposure levels were reduced from 290 μ g/m³ to less than 25 μ g/m³ (more than 90 percent reduction) when water spray systems were installed on rock crushing equipment in India. While the full impact of water sprays on mobile rock crushers in the United States is not well defined, OSHA notes that if well maintained water spray systems offer even just a 50 percent reduction in exposure, this will be sufficient to reduce the silica exposure of operators using control booths/cabs from the median of 60 μ g/m³, reported by Ellis Drewitt (1997), to a median of 30 μ g/m³ for workers using the combination of controls (protective operator's booth and water spray). Thus, most crusher operators who work under these conditions can achieve results of 50 μ g/m³ or less most of the time.

If the crusher cannot be fitted with a control booth, an alternative involves a remote control device that permits the operator to run the crusher from the cab of another vehicle or a temporary control tower fitted with a booth. Heavy equipment operators who are able to spend most of their shift in an enclosed cab usually experience silica exposure levels of $50~\mu\text{g/m}^3$ or less (see Section IV.C.24 – Heavy Equipment Operators). The greater the distance between the operator and the crusher, the fewer environmental controls the cab or booth will need to manage exposure. OSHA notes that this control method does not protect workers other than the operator.

Wet spray methods can greatly reduce the exposure levels of operators who must clear impacted material from hoppers, pick debris from belts, and work around active crushing equipment. Although the information from Gottesfeld et al. (2008), mentioned above, suggests water spray can markedly reduce exposure levels for otherwise unprotected workers, the available information is insufficient to show that exposure levels for workers who spend significant time (e.g., more than an hour, or approximately 15 percent of the shift) tending the crusher from outside the booth can consistently be maintained at levels of $50~\mu\text{g/m}^3$ or less. However, an extensively maintained water spray system, which an operator can adjust remotely to suppress dust, will maintain worker exposures at levels for which a half-facepiece respirator will provide sufficient protection. A foam system, in combination with extensive water spray and remote control, would reduce some operator exposure levels further (i.e., below $100~\mu\text{g/m}^3$ or even possibly $50~\mu\text{g/m}^3$). While the available information is insufficient to confirm that this level could be achieved for most operators most of the time, this method shows promise, and OSHA seeks additional information (see below).

Although cabs are currently unusual on construction rock crushing machines, the protective enclosures can be located in a separate portable booth or in the cab of another vehicle (remote control operation). Remote control systems and water mist systems are either standard or optional equipment on some mobile rock crushers, and all crushers and associated machinery (conveyers, sizing screens, discharge points) can be retrofit with water spray and foam systems (Midwest-Edwards, 2009; Komatsu America, 2007; Komatsu America, 2010; NESCO-dust-control, 2007).

In summary, OSHA estimates that the combination of a climate-controlled protective enclosure (i.e., an operator's booth/cab) and an effectively designed (and maintained) water spray system will control the exposure levels of operators to the level of the proposed PEL of $50 \,\mu\text{g/m}^3$ or less, providing the operator is able to spend at least 85 percent (approximately 7 of 8 hours) of the shift in the protective enclosure (a typical ratio, according to the operator evaluated by ERG [ERG-concr-crush-A, 2001]).

Employers who cannot provide protective enclosures for their workers over at least 85 percent of the shift also have the option of ensuring consistent and effective water mist (and foam) application to control worker exposures. While available data is inadequate to indicate whether using water mist is alone sufficient to reduce these workers' silica exposures to below 50 $\mu g/m^3$, this control method still offers a notable benefit. OSHA preliminarily concludes that by consistently using properly directed water mist spray (or foam) at the points indicated above, even the most highly exposed rock crushers can achieve silica results in a range that is compatible with use of a respirator with an assigned protection factor of 10 (i.e., a half-facepiece respirator). Under the proposed PEL of 50 $\mu g/m^3$, the maximum use concentration of a half-facepiece respirator would be 500 $\mu g/m^3$.

Based on the information presented here OSHA preliminarily concludes that the proposed PEL of $50 \, \mu \text{g/m}^3$ is feasible to the extent that workers operate the crushing machinery from a protective enclosure, use water spray systems to suppress dust, and only occasionally leave the cab. In situations where a worker must tend a crushing machine from outside of the protective enclosure for more than an hour per shift, the proposed PEL may not be feasible; however, a well-maintained water spray system and a half-mask respirator will provide sufficient protection.

OSHA acknowledges that information is sparse regarding how commonly remote control operations are used from within protective enclosures during rock crushing on construction sites in the United States. The agency is seeking additional information to determine how common and effective these methods are, and whether there are barriers to placing cabs on crushing equipment or using separate portable or vehicle-based enclosures. Additionally, OSHA is interested in knowing more about the use, limitations, and effectiveness of foam dust suppression systems for rock crushers on construction sites..

REFERENCES

- Bahrami, A.R., F. Golbabai, H. Mahjub, F. Qorbani, M. Aliabadi, and M. Barqi, 2008.

 Determination of exposure to respirable quartz in the stone crushing units at Azendarian-West of Iran. Industrial Health 46:404-408. **OSHA-2010-0034-1325**
- Bartell, W., and B. Jett, 2005. The technology of spraying for dust suppression. Cement America. May 1. **OSHA-2010-0034-0548**
- Cecala, A.B., J.A. Organiscak, W.A. Heitbrink, J.A. Zimmer, T. Fisher, R.E. Gresh, and J.D. Ashley, 2003. Reducing enclosed cab drill operator's respirable dust exposure at surface coal operation with a retrofitted filtration and pressurization system. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 314:31–36. **OSHA-2010-0034-0589**
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-0590**

- [Ellis Drewitt] Ellis Drewitt & Associates, 1997. Assessing dust exposures in the South Australian extractive industry: A pilot program, parts A and B. CAN 057960433. Glenelg, South Australia. **OSHA-2010-0034-0644**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- [ERG-concr-crush-A] Eastern Research Group, Inc., 2001. Site visit report—Concrete Crusher A. 27 September. **OSHA-2010-0034-0203**
- Gottesfeld, P., M. Nicas, J.W. Kephart, K. Balakrishnan, and R. Rinehart, 2008. Reduction of respirable silica following the introduction of water spray applications in Indian stone crusher mills. International Journal of Occupational and Environmental Health 14(2):94-103. **OSHA-2010-0034-1330**
- Komatsu America, 2007. Product literature for BR380JG-1 mobile crusher [with standard water spray]. Available at:

 http://www.equipmentcentral.com/north_america/data/new_equipment/BR380JG_1_AES_5721_02.pdf OSHA-2010-0034-0769
- Komatsu America, 2010. Internet web site for Komatsu model BR380JG-1 mobile crusher [features, including remote control]. Available at:

 http://www.komatsuamerica.com/?p=equipment&f1=view&prdt_id=919

 OSHA-2010-0034-0770
- [Midwest-Edwards] Midwest Industrial Supply, Inc., 2009. Personal communication between Lynn Edwards, mining dust control specialist at Midwest Industrial Supply, Inc., and Eastern Research Group, Inc. November 30. **OSHA-2010-0034-1360**
- [NESCO-dust-control] National Environmental Service Company, 2007. Internet web page: Dust control products for the mining industry. Available at: http://www.drdust.com/index.html. **OSHA-2010-0034-0830**
- [NESCO-products] National Environmental Service Company, 2007. Internet web page: Products. Available at: http://www.drdust.com/products.htm. **OSHA-2010-0034-0831**
- [NESCO-spray] National Environmental Service Company, 2007. Internet web page: Spray systems. Available at: http://www.drdust.com/systems.htm. **OSHA-2010-0034-0832**
- [NIOSH-longwall] National Institute for Occupational Safety and Health, no date. Controlling respirable dust on longwall mining operations. Available at:

 http://www.msha.gov/S&HINFO/BlackLung/ControlDust2009/3%20Longwall%20-%20Beckley%20workshop.pdf OSHA-2010-0034-0906
- [OSHA SEP Inspection Report 11345975] OSHA Special Emphasis Program Inspection Report 11345975. **OSHA-2010-0034-0101**

- [OSHA SEP Inspection Report 2116507] OSHA Special Emphasis Program Inspection Report 2116507. **OSHA-2010-0034-0186**
- [OSHA SEP Inspection Report 300441862] OSHA Special Emphasis Program Inspection Report 300441862. **OSHA-2010-0034-0030**
- [Spray Systems] Spray Systems Company, no date. Guidelines for spray nozzle selection. OSHA-2010-0034-1152

Tuckpointers and Grinders Description

Tuckpointers and other grinders work with masonry or concrete using hand-held tools fitted with rotating abrasive grinding blades, discs, or small drums. Tuckpointers are a subset of grinders who specialize in removing deteriorating mortar from between bricks and replacing it with fresh mortar. Other grinders use various grinding tools to smooth, roughen, or reshape concrete surfaces (including forming recesses or slots). This second group also includes workers who use hand-held power tools to remove thin layers of concrete and surface coatings, if present (e.g., performing small-scale spot milling, scarifying, scabbling and needle-gunning). Although tuckpointing is most necessary for exterior wall maintenance and so generally occurs outdoors, construction workers who perform concrete surface grinding work both indoors and outdoors (ERG-C, 2008).

Tuckpointing work proceeds in two alternating phases: first, the dusty job of grinding old mortar from between bricks on a section of wall, and second, replacing it with fresh mortar, an activity that does not typically generate dust. At larger job sites, tuckpointing is performed by multiple workers standing a few feet apart, often working from platforms and scaffolding. In addition to grinding, the initial phase includes a cleaning step, during which the worker brushes dust and debris from the joints, although water or compressed air are sometimes also used for this purpose. The second phase involves at least one tuckpointer preparing batches of new mortar (sand, cement, and water), which is distributed to all the site's tuckpointers who use it to refill the joints between bricks (ERG-C, 2008).

Workers who grind on concrete also do other work with concrete when they are not grinding. They might mix fresh concrete to repair damaged surfaces that they previously removed. At some sites, they also perform "sacking"—rubbing a porous sack of cement and silica flour over a damp concrete surface to seal small holes in the concrete surface (ERG-C, 2008).

The varying levels of exposure of workers who grind mortar or concrete are determined by different work practices and environments. When workers reach above shoulder height, debris can fall into their breathing zone, entraining fine particles in the same direction. Additionally, the speed with which dust disperses from the breathing zone of workers is limited at indoor sites or where tarp-style shrouding is erected around the workers to minimize the spread of dust from the construction site during tuckpointing or grinding. Table IV.C-72 presents a summary of the primary activities associated with silica exposure of workers in each job category.

IV-499

²⁵⁵ This section covers workers who use hand-held tools. Workers performing large-scale milling, scarifying, and scabbling activities with driving or walk-behind equipment are covered in Section IV.C.29 – Millers Using Portable or Mobile Machines in this technological feasibility analysis.

Job Category*	Major Activities and Sources of Exposure						
Tuckpointer	Using hand-held angle grinders to remove deteriorating mortar from joints between bricks.						
	 Dust from high speed abrasive grinding of mortar. 						
	 Dust disturbed when debris removed from newly ground joints (brushing or using compressed air). 						
Other Grinder	Using various hand-held power grinding tools on concrete and other building materials to smooth or modify the surface (including cutting recesses).						
	 Dust from abrasive action on concrete surfaces (e.g., grinding, milling). Dust from sweeping and brushing (housekeeping). 						
	 Dust from "sacking" to seal imperfections in concrete surfaces (occasional) 						

ERG-C (2008) reviewed documents showing that the portion of a shift during which grinders work varies widely, from 1 hour up to a full 8-hours or longer. Tuckpointers, however, frequently divide their shifts between grinding and replacing mortar, completing work on one wall segment before beginning the next one, thus the grinding portion of the task is often completed in half the shift (approximately 4 hours) (NIOSH EPHB 247-20, 2001).

Baseline Conditions and Exposure Profile

OSHA reviewed 153 exposure results associated with tuckpointers and 48 results obtained for workers performing various other types of grinding on concrete. These 201 results, summarized in Table IV.C-72, represent the best data available to OSHA for tuckpointers and grinders. Of these results, 148 (from NIOSH evaluations, OSHA Special Emphasis Program [SEP] inspection reports, and other published and unpublished sources) were previously considered in the ERG exposure profile (ERG-C, 2008).

For the present exposure profile, OSHA has also included a number of silica results that were either identified too late to include in the ERG-C (2008) report or were excluded from that work,

IV-500

 $^{^{256}}$ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A – Methodology.

pending clarification of their status or other missing information. Overall, the 201 results for tuckpointers and grinders range from less than the limit of detection (LOD) (in this case, reported as 5 micrograms per cubic meter [$\mu g/m^3$] for an 8-hour time weighted average [TWA]) to 75,152 $\mu g/m^3$. The exposure profile in Table IV.C-72 indicates that nearly 70 percent of the results (140 out of 201) exceed 100 $\mu g/m^3$.

Although much of the information available to OSHA primarily relates to tuckpointing and workers using power hand tools for surface grinding, OSHA has identified several international reports that include information on worker silica exposures from hand-held milling equipment (recess millers and related small tools using rotating drum or router-style blades). Lumens and Spee (2001; also included in Lumens, 2004) collected 53 samples for concrete recess millers in the Netherlands. The investigators obtained silica results ranging from below the LOD (not provided) to 6,900 µg/m³, with a mean level of 700 µg/m³ and an average sample period of 6.5 hours. The authors note that in addition to using conventional milling equipment, some of these workers operated saws and milling tools fitted with local exhaust ventilation (LEV). There was no mention of water-fed milling equipment. In a separate international study, Nij et al. (2003; also presented in Lumens, 2004) surveyed 13 Dutch recess millers and found that two (15 percent) used tools fitted with LEV. Therefore, OSHA presumes that most of the 53 Dutch recess millers evaluated by Lumens and Spee (2001) used no controls. Taken together, this information suggests that the international hand-milling experience is similar (in scope and use of controls) to that of grinders in the United States. One European study suggests, however, that peak exposure to millers might sometimes be substantially higher (NIOSH ECTB 247-15a). Data obtained under experimental conditions by Hallin (1983) imply that respirable quartz exposures of hand-held mill operators using no controls continuously throughout an 8-hour shift can be as high as 32,000 µg/m³.

²⁵⁷These results, newly incorporated into the current exposure profile, come from a variety of sources. They include several results obtained by OSHA and NIOSH for tuckpointers and grinders working with or without controls that ERG had described but had not included in the exposure profile pending clarification of status (OSHA SEP Inspection Report 108772393; NIOSH ECTB 233-123c; NIOSH EPHB 247-20, 2001; NIOSH ECTB 247-15a, 2001; NIOSH ECTB 247-12, 2000). OSHA also added new values provided by Woskie (2009) and Heitbrink and Collingwood (2005); one other result (below the LOD) from that latter source was excluded because the sampling period was excessively short (14 minutes), leading to an LOD of greater than 800 µg/m3. Furthermore, OSHA notes that four results, originally provided by NIOSH in draft form, are now publicly available in NIOSH ECTB 247-14 (2000). Finally, OSHA clarified that workers using hand-held milling equipment have more similarities to tuckpointing and grinding than to the workers operating larger milling equipment addressed in another section of this analysis, Therefore, OSHA has consolidated like equipment in these respective groups, For example OSHA removed previously included results for gas-powered walk-behind router operators on the basis that the equipment is more similar to walk-behind milling equipment than to hand-operated grinders (OSHA SEP Inspection Report 300442977). These walk-behind router results and follow-up readings contained in the same source are now part of the exposure profile in Section IV.C.29 – Millers Using Portable or Mobile Machines in this technological feasibility analysis.

 $^{^{258}}$ The minimum result of 5 μ g/m3 was obtained using a BGI (manufacturer) cyclone operated at 4.2 liters per minute (Woskie, 2009).

²⁵⁹ Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

IV.C-72
Respirable Crystalline Silica Exposure Range and Profile for Tuckpointers and Grinders

	Expo	sure Sumn	nary	Exposu	re Range			Exposure Pr	ofile	
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Tuckpointers								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,, <u> </u>	
Outdoors, uncontrolled	83	1,601	631	12	12,616	3 3.6%	2 2.4%	7 8.4%	12 14.5%	59 71.1%
Outdoors, some form of local exhaust ventilation (LEV) dust control	56	368	70	10	6,196	10 17.9%	12 21.4%	11 19.6%	8 14.3%	15 26.8%
Under other working conditions	12	7,198	793	146	75,153	0 0.0%	0 0.0%	0 0.0%	1 8.3%	11 91.7%
Mixing mortar for tuckpointers	2	15	15	12	18	2 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%
Tuckpointing Subtotals	153	1,568	330	10	75,153	15 9.8%	14 9.2%	18 11.8%	21 13.7%	85 55.6%
Grinders										
Outdoors, no controls	14	260	211	56	737	0	0	3	4	7
0.44		40	47	40	50	0.0%	0.0%	21.4%	28.6%	50.0%
Outdoors, with LEV	2	46	47	40	53	0.0%	1 50.0%	50.0%	0 0.0%	0 0.0%
Indoors, no or general ventilation only	9	450	221	117	1,730	0	0	0	5	4
•						0.0%	0.0%	0.0%	55.6%	44.4%
Indoor with LEV	11	96	107	12	208	2 18.2%	2 18.2%	1 9.1%	6 54.5%	0 0.0%
Indoor, overhead grinding	6	2,053	2,442	81	3,831	0	0	1	0	5
						0.0%	0.0%	16.7%	0.0%	83.3%
Tunnel, natural draft	3	597	628	178	985	0 0.0%	0 0.0%	0 0.0%	1 33.3%	2 66.7%
Tunnel, overhead with LEV/remote	3	7	5	5	10	3 100.0%	0 0.0%	0 0.0%	0 0.0%	0 0.0%
Grinding Subtotals	48	479	142	5	3,831	5 10.4%	3 6.3%	6 12.5%	16 33.3%	18 37.5%
Totals	201	1,308	260	5	75,153	20	17	24	37	103
						10.0%	8.5%	11.9%	18.4%	51.2%

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

	Respirab	le Crystalli	ne Silica E	_	V.C-72 ange and Pro	file for Tuckpo	ointers and G	rinders		
	Expo	sure Sumn	nary	Exposu	re Range			Exposure Pi	rofile	
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (μg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: ERG-C, 2008; OSHA SEP Inspection Report 108772393; NIOSH ECTB 233-123c (1999); NIOSH EPHB 247-14 (2000); NIOSH EPHB 247-20 (2001); NIOSH EPHB 247-15a (2001); NIOSH ECTB 247-12 (2000); Collingwood and Heitbrink (2007), Blute et al. (1999), Woskie (2009).

Baseline Conditions and Exposure Profile for Tuckpointers

ERG-C (2008) reviewed working conditions for tuckpointers and determined that they typically work outdoors, with no special controls. They frequently work on scaffolding platforms or swing stages, and several tuckpointers often work in close proximity to each other. Tuckpointers also routinely brush dust and debris away from newly ground joints.

Table IV.C-72 summarizes the 83 8-hour TWA personal breathing zone silica results available to OSHA for tuckpointers working outdoors with no particular exposure controls. Overall, 71 percent of the results for baseline conditions (59 of the 83 results) exceed 250 μ g/m³, demonstrating why workers performing this construction task are noted as having among the highest silica exposures in the construction industry (ERG-C, 2008). Tuckpointing is also considered one of the tasks for which silica exposure is the most difficult to control. In the Table IV.C-72 exposure profile, results for uncontrolled outdoor conditions are represented by a median of 631 μ g/m³. The mean, 1,601 μ g/m³, shows the influence of a few exceptionally high results, including the highest exposure level of 12,616 μ g/m³ for a tuckpointer working outdoors—in this case, on the wall of a church where three other workers were also exposed to levels that, while lower, were still extremely elevated (741 μ g/m³ to 1,604 μ g/m³). These levels are in the same overall range as those that have been reported or reviewed by Flanagan et al. (2003), Yasui et al. (2003), Flynn and Susi (2003), and Meeker et al. (2009), and in additional reports from NIOSH and others as summarized in ERG-C (2008).

Table IV.C-72 also shows that even higher results are reported for tuckpointers working under other conditions, including in areas with limited air circulation (e.g., a courtyard, or between a wall and a plastic tarp) or where dust controls are attempted in a manner offering little or no benefit (e.g., wetting the wall before grinding, or using damaged LEV equipment). In contrast, some of the lowest exposure levels reported for tuckpointers, represented by two results of less than the LOD ($12 \mu g/m^3$) and $18 \mu g/m^3$, are associated with workers who primarily mixed fresh mortar and delivered it to other tuckpointers, who used the mortar to fill joints between bricks. These low results for workers who spent time moving between tuckpointers replacing mortar indicate that silica concentrations are low during periods of the shift when workers are not grinding mortar.

Tuckpointers experience some benefit from LEV, even when conditions of use are not optimal. The median (70 $\mu g/m^3$) of 56 results for outdoor tuckpointers using some form of LEV (excluding those reported as using damaged equipment) is approximately one-tenth the median for outdoor uncontrolled tuckpointing (631 $\mu g/m^3$).

Baseline Conditions and Exposure Profile for Other Grinders

Working either outdoors or indoors, grinders use various hand-held grinding and milling equipment to smooth or abrade concrete. Based on evidence from NIOSH and OSHA SEP inspection reports, ERG-C (2008) determined that when working outdoors, grinders use dust controls infrequently. When working indoors, control measures are typically limited to leaving a window open or adding a fan to circulate air within the work area, although some workers attempt LEV. OSHA has preliminarily determined that baseline conditions for grinders are best represented by the range of working conditions associated with results summarized in Table IV.C-72. Thus, the median exposure level presented in Table IV.C-72 for grinders also represents the median baseline exposure.

As presented in Table IV.C-72, the 48 results for grinders range from 5 $\mu g/m^3$ to 3,831 $\mu g/m^3$, with a median of 142 $\mu g/m^3$. Values summarized by Croteau et al. (2002), Lynch (2002), Flynn and Susi (2003), Flanagan et al. (2003), and numerous NIOSH and other reports noted in ERG-C (2008) also indicate similarly elevated exposure among workers performing grinding.

Grinder exposure levels tend to be elevated regardless of the work environment, but the amount of air movement appears to help keep some exposures from reaching levels that might otherwise have occurred. Table IV.C-72 shows only a minimal difference between median uncontrolled outdoor silica exposures (14 results with a median of 211 μ g/m³) and uncontrolled exposures that occurred indoors (9 results with a median of 221 μ g/m³); however, outdoors where air can circulate more freely, a greater proportion of the values fall below 100 μ g/m³ (21 percent). Furthermore, the exposure levels for three workers grinding in tunnels (178 μ g/m³ to 985 μ g/m³) suggest that some of the same factors influence exposure levels of tunnel workers as affect indoor workers (117 μ g/m³ to 1,730 μ g/m³). All results for both indoor- and tunnel-based grinders were above 100 μ g/m³. While grinding performed in a tunnel with only natural ventilation had a somewhat higher median value (628 μ g/m³) than the grinders working in indoor environments without exposure controls, peak values for indoor workers were more than half again as high (176 percent) as the peak values for the tunnel workers. Indoor workers often lack even the natural ventilation that can help keep silica concentrations from building up to extremely high levels.

Shrouds for grinding equipment are increasingly available; however, at sites that attempt LEV dust control, the NIOSH reports available to OSHA suggests that these methods are generally not implemented in the most effective manner. For example, one worker sampled on multiple dates experienced dust leaks at the hose connection to the vacuum, which eventually fell off (NIOSH-construction-site-16, 1998). A worker at another site evaluated by NIOSH cleaned the vacuum by shaking it and banging it on the wall, which likely created a second source of dust exposure (NIOSH EPHB 247-15a, 2001). Nevertheless, compared with workers who use no controls, the median values provided in Table IV.C-72 for workers using LEV are notably lower, both outdoors (47 μ g/m³) and indoors (107 μ g/m³).

Table IV.C-72 also presents summary information indicating that workers grinding overhead can experience very high silica exposure levels (median value of 2,442 μ g/m³ for 6 results from two sites, both evaluated by OSHA (OSHA SEP Inspection Report 300555026). (OSHA notes that, although substantially elevated, this median value of 2,442 μ g/m³ is well within the range of tuckpointing results, which can exceed 75,000 μ g/m³.) In this case, four workers at one job site spent part of the 4-hour sampling period smoothing surfaces and the remainder of the period grinding overhead grooves into precast concrete in a grinding maneuver with some similarities to tuckpointing and that likely removed more material than if they were strictly smoothing surfaces (OSHA SEP Inspection Report 300555026). The supervisor indicated that the grooves were usually installed at the factory or outdoors before the precast section was installed. This situation demonstrates how lack of planning can cause grinders to work in less favorable environments (and positions) than they might if requirements for installing the groove had been better planned.

Some concrete grinders perform "sacking" as part of their normal activities. Flanagan et al. (2003) compiled 13 silica results for workers performing sacking and although the median geometric mean was 30 $\mu g/m^3$, 40 percent (5 of the 13) results exceeded the American Conference of Governmental Industrial Hygienists' (ACGIH's) crystalline silica threshold limit value (TLV) of 50 $\mu g/m^3$. The respirable dust samples contained a mean quartz content of 11 percent. These results were provided in summary form and lacked sufficient detail to include them in the exposure profile (Table IV.C-72). NIOSH ECTB 233-104c (1999) obtained an 8-hour silica sample associated with an exposure of 64 $\mu g/m^3$ (18 percent silica on the filter) for a worker performing only sacking during the shift. The same report indicated that three other workers performed sacking in addition to concrete grinding during their shifts. Based on this information, OSHA concludes that sacking contributes only modestly to the overall silica exposure for concrete grinders who perform this task during a portion of their shift; however, controlling exposure levels during sacking would be necessary in order to reduce grinders' silica exposures to below 50 $\mu g/m^3$. Workers performing sacking are not presented separately in OSHA's exposure profile.

Additional Controls

Additional Controls for Tuckpointers

As indicated in Table IV.C-72, 81 percent of tuckpointers are currently exposed to silica at levels above 50 µg/m³, so additional controls are required to reduce their exposure. Control options include LEV—requiring both enhanced equipment and worker training—and wet grinding methods. These control options are discussed in more detail in the paragraphs that follow.

Local Exhaust Ventilation

Recent dust control efforts for tuckpointing have focused on using a dust collection hood (also called a shroud) that encloses most of the grinding blade and a vacuum cleaner system that is used to suction (exhaust) air from these hoods to collect dust and debris. These shroud and vacuum combinations (standard for tuckpointing LEV dust control) generally capture substantial amounts of debris, but air monitoring results summarized in Table IV.C-72 show that even with these controls, silica exposures often continue to exceed $100~\mu g/m^3$, usually by many times (e.g., 27 percent of results exceed $250~\mu g/m^3$ when workers use LEV for outdoor tuckpointing). A series of studies has shown that LEV control methods for tuckpointers can be improved dramatically by improving air flow rates through shrouds, ensuring that the air flow rates are maintained over the course of the work, and taking steps to train workers to use tools correctly. These studies are described in the following paragraphs.

Computational and laboratory studies found that an air flow rate of 80 to 85 cubic feet per minute (cfm) is needed to efficiently capture dust generated by angle grinders used for tuckpointing (Heitbrink and Bennett, 2006; Collingwood and Heitbrink, 2007). This air flow rate captures most dust, as long as the shroud fully encloses the grinding blade. For tuckpointing, this means that dust is efficiently captured only if the airflow rate remains steady at the recommended flow rate and if the shroud fits snuggly against the wall, with minimal gaps due to work practices or variations in the wall surface.

Even a small decrease in flow rate has a negative impact on shroud effectiveness. Laboratory tests conducted by Heitbrink and Bennett (2006) indicate that a vacuum and shroud used by tuckpointers during grinding can reduce exposure levels by a factor of more than 400 under ideal circumstances, ²⁶¹ but this factor would drop to 10 if vacuum airflow was slowed from 80 cfm to 30 cfm. Furthermore, computational modeling showed that even a modest decrease in the airflow rate, from 85 cfm to 70 cfm, cuts the shroud's ability to capture dust by more than half. As a result, the estimated worker exposure level would be twice as high as it would have been if the air flow rate had remained constant at 85 cfm. ²⁶²

²⁶⁰ ACGIH (2010), in Figures VS-40-01 to VS-40-03, recommends 25 cfm to 60 cfm per inch of blade diameter. For a 4-inch tuckpointing blade, 25 cfm/inch of diameter is equivalent to 100 cfm, slightly higher than the 80 to 85 cfm used by Heitbrink and Bennett (2006) and Collingwood and Heitbrink (2007).

²⁶¹ In this case "ideal circumstances" were defined as a gap between shroud and wall of no greater than 0.5 inch at any time. This means that the wall structure must be even and intact, and the mortar must be in good condition—not chipped, cracked, or recessed more than 0.5 inch at any point during the tuckpointing. This is considered the ideal circumstance for studying the effects of air flow rate on dust capture. Investigators recognize, however, that most walls requiring tuckpointing are not in good condition, and this factor cannot be controlled at construction sites. This limitation increases the importance of managing the vacuum air flow rate, which can be controlled by selecting appropriate equipment and encouraging workers to use it correctly.

 $^{^{262}}$ The highest result for outdoors uncontrolled tuckpointing is greater than 12,000 μ g/m 3 (see Table IV.C-72). As a practical frame of reference, decreasing a hypothetical initial worker exposure of 12,000 μ g/m 3 by a factor

During typical use of these grinders, however, many factors can cause the air flow rate to diminish, such as grinding debris clogging the vacuum, vacuum hoses—or vacuums—that are too small, incorrect direction of the grinding wheel, and too large of a gap between the lowest surface (mortar) and the shroud. Controlling these factors can improve the performance of tuckpointing grinder shrouds. Other factors, such as work technique and wall condition, interfere with the way the shroud fits against the wall, but only some of these factors can be controlled.

The following paragraphs describe several features that can enhance the efficacy of vacuum cleaners to maintain proper air-flow rate and thus reduce worker silica exposure.

Cyclonic Pre-separators

Collingwood and Heitbrink (2007) experimentally observed that air flows decreased substantially as grinding debris accumulated in the vacuum cleaner. They found that as the vacuum filled with debris, an initial flow rate of 80 cfm fell to levels as low as 30 cfm.

One option for reducing exposure during grinding is using vacuum cleaners that include cyclones to collect debris before the air reaches the filters. Cyclonic pre-separators minimize the accumulation of debris on filters in the vacuum, enhancing the ability of the vacuum cleaner to maintain the initial air flow rate. When testing a vacuum cleaner model equipped with a cyclonic pre-separator, Collingwood and Heitbrink (2007) showed that the collected debris caused the average air flow rate to decrease only from 90 cfm to 77 cfm.

In addition, using actual grinding debris obtained from tuckpointing worksites, Heitbrink and Santalla-Elías (2009) experimentally confirmed that vacuum airflow is quickly affected by dust load on vacuum cleaner bags and filters. In vacuum cleaners designed with filters, laboratory tests showed large pressure losses across filter material as the filters became clogged with dust. Pressure losses from clogged filters translate into reduced air flow, which in turn limits how well a shroud attached to the vacuum captures dust. As the vacuum collects debris, vacuum airflow diminishes rapidly until the filter is properly cleaned according to the vacuum manufacturer's instructions. ²⁶⁴ During particularly dusty activities (such as mortar removal), the vacuum is required to capture more than 20 pounds of debris, including fine dust that cakes onto filters.

Heitbrink and Santalla-Elías (2009) also evaluated two different brands of commercially available vacuum cleaners incorporating cyclonic pre-separation (Tiger-Vac, 2007; Dustcontrol-DC2800, 2009). Air flow rates for both of these vacuums was "largely unaffected" by debris accumulation up to 35 pounds. Debris accumulation also had very little effect on the flow rate measured before and after the filter was cleaned. Furthermore, during the Collingwood and Heitbrink (2007) field trials, these vacuum

of 400 (equal to 99.75-percent reduction) would result in a level of 30 $\mu g/m^3$. When decreased by a factor of 10, the same initial 12,000 $\mu g/m^3$ exposure would be reduced to 1,200 $\mu g/m^3$.

²⁶³ Combinations of hoods and vacuums have been evaluated in the past and were typically found to offer some level of silica exposure reduction, but exposure levels remained high (Nash and Williams, 2000; Echt and Sieber, 2002; Croteau et al., 2002; Yasui et al., 2003, Meeker et al, 2009). These studies focused on other aspects of grinder-shroud use and were usually less prepared to provide the higher air flow rates used in the studies described in this section, or to confirm that air flow rates remained constant throughout the test periods.

²⁶⁴ Industrial vacuum cleaners use filters that can be cleaned and reused many times. These vacuum cleaners often include a feature that allows the vacuum to clean its own filter using a beater or puffs of air blown in the reverse direction to dislodge dust.

cleaners did not lose as much air flow as the vacuum cleaners designed with vacuum cleaner bags (bags are a more common pre-separation method but are also subject to clogging).

As an alternative to integrated cyclone vacuums, portable cyclones and cyclones intended to retrofit shopstyle vacuums are becoming commercially available (Oneida, 2009). OSHA is not aware, however, of any tests showing whether the retrofit equipment offers the same benefit or whether the available models are sufficiently rugged for construction site use.

Larger Vacuum Hoses

To achieve the air flow rates needed for capturing debris during the grinding phase of tuckpointing, vacuums equipped with a cyclonic pre-separator require a 2-inch inside-diameter hose (to reduce resistance in the hose, which slows airflow), rather than a 1.5-inch hose. Some vacuums might require a minor modification to adapt them for use with a 2-inch suction hose; in that case, the existing connection for a 1.5-inch hose can be replaced with a few inches of schedule 40 PVC (polyvinyl chloride) pipe and reducers available from a hardware store. ²⁶⁵

A 2-inch hose minimizes losses that otherwise would limit vacuum air flow; however, air flow rates must remain above 76 cfm to maintain sufficient air velocity in the hose to prevent debris from accumulating and plugging the hose (Collingwood and Heitbrink, 2007). ACGIH (2010) recommends an air velocity of 3,500 feet per minute to prevent debris such as mortar from accumulating in the hose. An air flow rate of 76 cfm provides this air velocity. OSHA notes that accumulated material in the hose would further decrease the air flow rate.

Larger Vacuums

Another method for reducing exposure is using larger, more capable vacuum cleaners. NIOSH EPHB 247-20 (2001) reported on a field trial of ventilated grinders (i.e., grinders fitted with shrouds) attached to an oversized vacuum cleaner, which used two vacuum cleaner motors in parallel and also includes a cyclonic pre-separator. These two features, combined with a large, 1.7 square meter (m²) filter area, means that the powerful vacuum could generate a greater air flow rate (111 cfm) than smaller vacuums, including an identical vacuum (same model) with just one motor (76 cfm). The second motor also provides more power so the vacuum could be expected to maintain that flow rate for longer under the dust loads created by tuckpointing than is typical of smaller vacuums.

During the field trial of this large and powerful vacuum, NIOSH measured the amount of debris collected, the percent of silica in the collected debris, and the concentration of respirable dust in the surrounding air when two otherwise identical vacuums were run at two different flow rates (76 cfm and 111 cfm) (NIOSH EPHB 247-20, 2001). NIOSH made these measurements over two days while two construction workers performed grinding for tuckpointing, each using the vacuum at a different air flow rate. Data show that at the higher 111 cfm air flow rate, the shroud captured more debris while maintaining breathing zone respirable dust exposure levels that were lower (by one-half) than the levels achieved at the 76 cfm air flow rate. On both days, estimated silica levels were also lower (19 µg/m³ and 26 µg/m³)

²⁶⁵ To maximize the inside diameter of the hose connection, the PVC pipe and reducer assembly can be sized to fit snugly around the outside of the existing hose connection.

²⁶⁶ The vacuums were Dustcontrol DC3700 model vacuums (one with a second motor factory installed). This model has been replaced with the DC3800 in the company catalog (Dustcontrol-Catalog-Chap3, 2009; Dustcontrol-DC3800, 2009)

for the worker using the 111-cfm flow rate compared with estimated silica levels for the worker using the lower flow rate (49 μ g/m³ and 60 μ g/m³).

Special accommodations must be made for large vacuum cleaners. For example, hanging the 84-pound vacuum at the side of a scaffold or swing stage is necessary. Additionally, construction sites might require heavier duty circuits to use this type of vacuum.

The following discussion summarizes how worker training can also help to maintain proper air-flow rate and thus reduce worker silica exposure

Work Practices

In addition to using vacuums equipped with features to optimize flow rates and minimize filter loading, workers must be trained to ensure they are operating grinders correctly. Computational modeling showed that to efficiently capture particles, the direction of the grinding wheel must rotate from the uncut mortar into the exhaust takeoff section of the shroud. Workers also need to use care in adjusting the grinding depth to the minimum depth necessary and in holding the shroud close against the wall. Minimizing the space between the shroud and wall to the extent practical is critical for optimal capture of the pulverized dust emitted from the grinding point (Heitbrink and Bennett, 2006; Collingwood and Heitbrink, 2007). However, when mortar or bricks are in poor condition, it is not always feasible to maintain the ideal minimum gap between the lowest surface (e.g., cut mortar) and the shroud to less than 0.5 inches. In that case, dust capture will be less effective than it would have been under optimal conditions.

Workers also need training to know when to clean vacuum filters. Filter caking causes pressure losses that eventually limit air flows in even the most powerful vacuums. These air flow limitations fluctuate in a predictable cycle: First, as debris accumulates, the pre-filter becomes caked with collected dust and air flow decreases; then, periodically, the worker shifts to a new position on the surface being worked and moves the vacuum cleaner or at least turns it off and then on. These activities cause a modest portion of the caked debris to fall off the pre-filter, increasing flow rates temporarily. Heitbrink and Collingwood (2005) showed that unless the filter is properly cleaned following manufacturers' recommendations, these cyclic increases are short-lived, and airflows decline again rapidly.

To assist workers in determining when it is time to run a filter cleaning cycle, vacuums should be fitted with a gauge indicating filter pressure (Heitbrink and Santalla-Elias, 2009). Construction site policies must also ensure that vacuum equipment is routinely maintained and kept in good working order.

Studies have shown that worker training improves dust capture even for vacuum designs that do not maximize air flow rate. Even when workers used standard vacuums designed with bags, filters, and 1.5-inch hoses (all features that ultimately decrease air flow rates as debris accumulate), Collingwood and Heitbrink (2007) found that if those workers were trained to periodically dislodge debris on filters, 64 percent of tuckpointer results (14 out of 22) were reduced to levels less than 100 μ g/m³. Furthermore, 32 percent of results (7 out of 22) were 50 μ g/m³ or less (Collingwood and Heitbrink, 2007). The authors report a geometric mean result of 60 μ g/m³, which represents a 95-percent reduction compared with the geometric mean of 1,140 μ g/m³ for a group of tuckpointing exposure levels obtained from numerous other construction worksites and used for comparison.

²⁶⁷ For this comparison, Collingwood and Heitbrink (2007) report that they used a database of silica exposure values collected by OSHA and compiled during numerous construction site inspections. Qualifying data from this Shields (2000) database were included in ERG's exposure profile (ERG-C, 2008) and in OSHA's present exposure profile.

Ultimately, worker training alone is not enough; using enhanced vacuum features is also necessary to maintain optimal air flow rates. Field trials at construction sites conducted by Collingwood and Heitbrink (2007) demonstrated the effects these factors had on air flow rates. In that study, although the trained workers took steps to remove debris from filters, most vacuums still did not maintain flow rates of 80 cfm or more.

Wet Methods

Tests of wet grinding methods on concrete show large reductions in airborne respirable dusts when workers use equipment that supplies sufficient and appropriately directed water as a stream or mist (ERG-C, 2008). Akbar-Khanzadeh et al. (2007) found that wet grinding reduced geometric mean silica concentrations by 98 percent, compared with dry grinding. Even with wet methods, however, airborne silica concentrations were still high (959 μ g/m³) during periods of intensive grinding on concrete. Although beneficial for dust management, aesthetic concerns (stained bricks, water marks) make this control method less desirable where appearance is important—for example, on the face of a brick building. Furthermore, when using wet concrete grinding methods, workers must use compressed airdriven grinders or grinders with sealed electrical motors to avoid the electrical hazard of working around water. Pneumatically powered heavy-duty angle grinders are commercially available (Ingersall-Rand-3445, 2009).

Additional Controls for Grinders

As indicated in Table IV.C-72, 83 percent of grinders are currently exposed to silica at levels above 50 $\mu g/m^3$, so additional controls will be required to reduce their exposure. Control options include LEV, wet grinding methods, remote operations, sustainable design, and—for grinders who perform sacking—substitution. These control options are discussed in more detail in the paragraphs that follow.

Local Exhaust Ventilation

The LEV-based exposure controls for surface grinding function similarly to the LEV-based controls for tuckpointing described in the previous paragraphs, as tuckpointing is simply a specialized form of grinding. Tuckpointing is normally done on mortar between bricks, whereas grinding is performed on concrete (similar materials composed of cement, sand, and additives). In both cases a shroud encloses an abrasive disc- or wheel-style blade in order to capture the high-speed particles released from material pulverized by the blade. Concrete and the mortar removed during tuckpointing are both mixtures of cement, sand, and water.²⁶⁹

Surface grinding differs from tuckpointing, however, in the shape and location of the surfaces that are worked. For one, tuckpointing is generally limited to exterior masonry. Additionally, the aggressive cutting action of the tuckpointing blade tends to remove a greater volume of material at a faster rate than the smoothing action of the surface grinding blade, and so tuckpointing generates higher concentrations of dust (tuckpointing and grinding are compared in Table IV.C-72).

²⁶⁸ Motors for most right-angle grinders are air cooled. A small fan draws air into the body of the grinder and blows air through the electrical windings for the electric motor. This inlet is near the grinder head; thus, water could easily be drawn into the grinder, creating the risk of electrocution.

²⁶⁹ The primary difference between concrete and mortar is the ratio of cement, sand, and other ingredients. Concrete is intended to stand alone and is fortified with stone aggregate, while mortar is intended to hold bricks together and so is created thin enough to be forced between bricks and is formulated to adhere well to masonry.

The air flow through surface grinding shrouds has not been as rigorously assessed as has air flow during tuckpointing; however, based on the similarities between grinding and tuckpointing, OSHA has preliminarily determined that the factors that influence vacuum flow rate for tuckpointing are equally important to LEV dust controls for all types of surface grinding, and for other hand-operated power tools as well. Collingwood and Heitbrink (2007) note that "vacuum cleaners will probably continue to be an important control option for respirable dust exposures in construction for dust exposure sources such as mortar removal, concrete grinding, hole drilling, and brick cutting where water application is impractical."

Because the same factors that cause air flow to decline during tuckpointing have the same effect on air flow during other tasks such as surface grinding, the same measures are as effective in controlling air flow rate decline. Additionally, surface grinders are challenged to an equal extent as tuckpointers by the need to maintain the grinder shroud as close as possible to the surface being worked, in order to better capture the maximum quantity of particles.

Akbar-Khanzadeh and Brillhart (2002), Akbar-Khanzadeh et al. (2007), and Echt and Sieber (2002) reported silica exposure reductions when workers used LEV shrouds with vacuum attachments during surface grinding; however, silica exposure results have been inconsistent and range from modest to extremely high. For example Akbar-Khanzadeh and Brillhart (2002) measured short-term personal silica concentrations of 30 μ g/m³ to 1,000 μ g/m³ during periods of intensive grinding when workers used LEV, but when a breeze increased air circulation in the area concentrations ranged from 40 μ g/m³ to 750 μ g/m³.

These investigators usually considered the vacuum capacity ratings provided by the vacuum manufacturer when matching suction equipment to grinding shrouds, but actual air flow rates were either not evaluated or not checked using effective methods over the entire course of the vacuum cleaning cycles.

Although not always a focus of these grinder LEV studies, similarities in vacuums, hoses, and shrouds mean that actual vacuum cleaner air flows associated with grinder LEV were affected by the same normal pressure losses inherent in the system as have been reported for tuckpointing LEV systems. Similarly, air flows declined further as grinding debris accumulated, and so in most cases the air flow rate (usually measured once per shift or less) published in grinder studies was not maintained as debris accumulated on filters.

Echt and Sieber (2002), for example, reported respirable quartz concentrations ranging from $44 \mu g/m^3$ to $260 \mu g/m^3$ during 2- to 3-hour surface grinding tasks with LEV at a construction site. Each day, one or two 18-pound bags of debris were collected in a vacuum cleaner. Focused on other details, the investigators measured actual air flow rates three times over the course of five sampling days, reporting an air flow range from 86 to 106 cfm. As noted in the discussion of additional LEV controls for tuckpointers, Heitbrink and Santalla-Elías (2009) found that portable shop vacuum air flow is affected by filter loading (regardless of the tool attached to the vacuum), but the effect is only detected if multiple measurements are collected frequently (e.g., before and after dust is knocked from the filter and before and after the vacuum is turned off and on). Using more extensive measurements (continuous data logging every 8 seconds), Collingwood and Heitbrink (2007) evaluated the same vacuum model used by Echt and Sieber (2002) and found that average initial air flow was 71 cfm, which declined to 48 cfm over the task-

-

²⁷⁰ In this configuration, the vacuum did not use a cyclonic pre-filter (Echt and Sieber, 2002).

based work sessions during which trained workers performed normal tuckpointing, knocking the dust from filters using the manufacturer's recommended method as deemed necessary.²⁷¹

These changes in air flow can have a dramatic effect on dust capture. As discussed in the previous section on the review of additional controls for tuckpointers, experimental testing conducted by Heitbrink and Bennett (2006) indicates that a vacuum and shroud used for tuckpointing might reduce exposure levels by a factor of more than 400 under ideal circumstances, but this factor would drop to 10 if vacuum air flow was slowed from 80 cfm to 30 cfm. ²⁷² In addition to indicating the importance of providing sufficient air flow through grinding shrouds and ensuring that the air flow remains relatively constant, these findings suggest shroud and vacuum LEV for grinders likely can perform better than previous studies have indicated.

In some cases underpowered vacuums were used to test grinder shroud effectiveness. Evaluating the effect of a standard shop vacuum and shroud on worker exposure during periods of intensive surface grinding, Akbar-Khanzedah et al. (2007) determined that this LEV system reduced silica exposure levels by 99.7 percent, to a level of 155 μ g/m³. The grinder in this study was fitted with a 6-inch diameter blade. Based on the ACGIH (2010) criteria air flow rate of at least 25 cfm per inch of blade diameter, an air flow of 150 cfm is recommended. The shop vacuum manufacturer's published "free air flow" rate was 106 cfm, ²⁷³ meaning that actual air flow was substantially lower. At best, the air flow was between one-half and two-thirds the level recommended by ACGIH (2010). In fact, during a tuckpointing field evaluation, Heitbrink and Floit (2003) observed that the actual air flows for this vacuum were between 74 cfm and 26 cfm (and filter pleats were filled with debris). Again, a vacuum with different characteristics would have improved dust capture by the grinder shroud and further reduced worker exposure levels. The study is useful, however, in demonstrating that a typical construction site vacuum has limitations. Surface-grinder LEV requires more capable vacuums. The effect is increasingly important when workers use larger grinding wheels.

Based on the information presented here, OSHA has preliminarily determined that as typically used, LEV can reduce the silica exposure levels of workers using surface grinders, but even the reduced levels will routinely exceed $100~\mu g/m^3$, particularly indoors or in enclosed work areas. Worker exposures will likely decrease further if grinding shrouds are fitted to vacuum cleaners with the characteristics recommended previously in the discussion of additional controls for tuckpointing. The extent of this improvement has not been fully evaluated, but similarities between tuckpointing and surface grinding suggest that under ideal circumstances the improvement could be as great as that described for tuckpointing. As with tuckpointing, however, other conditions at the worksite also influence worker exposure. For example, keeping the grinding shroud in close contact with the work surface in corners and at the outer edges of flat surfaces is not always possible. To grind in these areas, workers will need to switch tools (e.g., small grinding implements intended for detailed work, also fitted with LEV). Furthermore, curved surfaces

²⁷¹OSHA notes that this comparison does not account for possible differences in hood entry loss for surface grinding shrouds compared to tuckpointing grinding shrouds (judged to be minor), or for other factors not reported in the reports by Echt and Sieber (2002) and by Collingwood and Heitbrink (2007).

²⁷² Heitbrink and Santalla-Elías (2009) found that vacuum air flow rates declined from 80 to 30 cfm when vacuums captured 35 pounds of grinding debris in a laboratory test. Collingwood and Heitbrink (2007) showed that at construction sites, debris collected by vacuum shrouds during tuckpointing caused the average air flow rate to decrease from 80 cfm to 30 cfm. Furthermore, computational modeling showed that even a modest decrease in the airflow rate, from 85 cfm to 70 cfm, cuts the shroud's ability to capture dust by more than half.

²⁷³ "Free air flow" is air flow without accounting for various pressure losses including debris accumulation on the filters, resistance in the vacuum hose, and various static pressure losses throughout the vacuum.

(such as cylindrical columns or tanks with curvature greater than can be accommodated by the available shrouds) and blemished concrete do not offer a flat surface.

Wet Methods

Wet methods are an option when workers can use pneumatic grinders on concrete surfaces where emphasis is on structural integrity rather than aesthetics (e.g., parking garages, support columns, surfaces that will be covered during build-out). Wet methods are effective with other high-energy tools that use an abrasive wheel (see Section IV.C.28 – Masonry Cutters Using Stationary Saws); however, results for wet concrete grinding are less conclusive. For example, Akbar-Khanzadeh et al. (2007) measured a silica exposure level of 959 μ g/m³ during periods of intensive concrete grinding using wet methods (compared with a level of 155 μ g/m³ for LEV dust controls). ERG-C (2008) described the benefits and drawbacks of wet methods. Based on that report, OSHA notes that there are still substantial challenges to using wet dust control methods for surface grinding.

Remote Operations and Combined Controls

Grinders who are able to distance themselves from the grinding point in addition to using LEV have substantially lower silica results than those whose breathing zone is within arm's length of the grinding blade. Wooskie (2009) provided information on three grinders who smoothed an overhead surface using a grinding tool fitted with LEV (shroud and HEPA-filtered vacuum, not described further) and attached to a pole during tunnel construction. The workers rested the pole on a movable support that acted as a cantilever and allowed the workers to press the grinder against the overhead surface (at some distance ahead) by pressing down on the opposite end of the pole. A remote switch allowed the workers to activate the grinder and vacuum from the grinder control position. The three 1- to 2-hour personal breathing zone (PBZ) samples obtained for these workers were all below the LOD (29 μ g/m³ to 41 μ g/m³ in this case, based on an assumed 10 μ g per sample LOD) for the period monitored, or 5 μ g/m³ to 10 μ g/m³ as 8-hour TWAs. Respirable dust results were between 9 μ g/m³ and 94 μ g/m³ during the period monitored, indicating that the workers experienced very little dust in their breathing zones during this task.

Sustainable Design

When precast concrete is formed, sustainable design practices should indicate necessary grooves, cutouts, and contours so they can be cast into the concrete, nearly eliminating the need for high-silica-exposure activities such as grinding and cutting to produce these features. Careful form placement can also reduce the need for grinding to remove bulges and blemishes often caused by shifting or flawed forms. A factory evaluated by OSHA usually placed grooves in the precast concrete delivered to the construction site. On one occasion when the factory neglected to perform this task, workers experienced extremely elevated silica exposures while grinding overhead grooves at the construction site (OSHA SEP Inspection Report 300555026). These exposures (four results all between 2,420 μ g/m³ and 3,830 μ g/m³), the highest for workers grinding on concrete, would have been eliminated if the factory had been more reliable. When grinding is necessary to finish a precast concrete piece, the task should be performed as much as possible at the casting factory, where dust control equipment should already be at hand.

Grooves and other simple design features can also be included in the forms used for concrete cast in place, although this practice might increase the time required to assemble and remove the forms.

²⁷⁴ Shop-made equipment should always be evaluated by the site safety representative to confirm it does not create an additional hazard.

Substitution

Grinder operators who also perform "sacking" to seal imperfections in concrete surfaces can use alternate materials and methods to eliminate silica dust. Construction contractors can switch to concrete patching compounds that create the desired surface without labor-intensive finishing that involves rubbing dry concrete powder over the surface. Over the past decade, newer types of commercially available patching materials have begun replacing traditional sacking and patching methods previously used to repair concrete surface defects, thus eliminating that potential source of silica exposure (Sambol and Chusid, 2006). These patching compounds are suitable for patching both cast-in-place and precast concrete surfaces.

Where traditional methods are still in use, worker silica exposures can be reduced by using low-silica sacking powder (e.g., Portland cement) or by using mortar or concrete sacking powders made with silica sand that is larger than respirable size. For example, as part of the dry mix, some construction contractors performing sacking use 30-mesh sand instead of 60-mesh or smaller sand particles (Sambol and Chusid, 2006). A 30-mesh sand contains a maximum particle size of approximately 230 micrometers (µm), compared with 100 µm for a 60-mesh sand or even smaller particles for sands with larger mesh numbers. Washing can remove the very fine respirable size particles (1 to 10 µm).

Mean quartz levels for sacking results reported by Flanagan et al. (2003) indicate that quartz was below the limit of detection in more than half (54 percent) of the samples for this activity, suggesting that many workers already use these alternate materials and methods.

Feasibility Finding

Feasibility Finding for Tuckpointers

Based on data summarized in Table IV.C-72, OSHA preliminarily concludes that few tuckpointers (19 percent) currently experience results of $50~\mu g/m^3$ or less and that those with low exposure levels are generally associated with mortar replacement and related tasks, rather than the grinding phase of this job. To reduce exposure levels, the vast majority of tuckpointers require additional controls.

Even with additional controls, OSHA preliminarily concludes that silica exposure levels of $50 \mu g/m^3$ or less cannot reliably be achieved for tuckpointers. OSHA also preliminarily concludes, however, that with shrouds and vacuums that are selected and used in a manner consistent with the practices observed during the field trials reported by Collingwood and Heitbrink (2007), tuckpointing worker exposures can usually remain within the maximum use concentration (MUC) for a half-facepiece respirator with an assigned protection factor (APF) of 10, as published in 29 Code of Federal Regulations (CFR) 1910.134. After evaluating 22 results for trained tuckpointers who used vacuums selected for filtration efficiency and ability to provide the required initial air flow rate through the shroud, Collingwood and Heitbrink (2007) determined that "a worker using a tuckpoint grinder with LEV will generally have adequate exposure reduction from a respirator with an assigned protection factor of 10." 276,277

²⁷⁵ The construction industry respiratory protection standard (29 CFR 1926.103) is identical to 29 CFR 1910.134, in which the requirements are published.

²⁷⁶ Further exposure assessment will always be needed at the site to determine the correct level of respiratory protection, "as exposures will probably vary with worksite conditions such as wind and the extent to which the job is enclosed" (Collingwood and Heitbrink, 2007).

Based on the work of Collingwood and Heitbrink (2007), OSHA has preliminarily determined that for tuckpointer silica exposures to remain within the MUC for a respirator with an APF of 10, vacuum cleaners used for debris collection during tuckpointing must meet the minimum characteristics of the vacuums tested by Collingwood and Heitbrink (2007). Specifically, vacuums must have the ability to provide at least 80 cfm to 85 cfm air flow through the shroud and include filters at least 99 percent efficient. Additionally, the authors recommend that in order to maintain the minimum air flow rate, the vacuum should 1) incorporate a pressure gauge that indicates when the air flow rate is too low, 2) include a relatively large final filter with efficiencies greater than 99.5 percent for particles of 0.3 µm, and 3) include a hose of 2-inch inside diameter. Additionally, workers will require training on operating grinders and shrouds correctly for better dust control and knowing when to clean vacuum filters and hoses (which might be necessary frequently).

For practical convenience and efficiency, additional vacuum features that will extend the filter cleaning cycle (e.g., from 5 minutes to 30 minutes) include a filter area greater than 1.5 square meters and a cyclonic pre-separator that separates most debris from the air stream before it reaches the filter. When challenged in the laboratory and on construction sites with debris from mortar grinding, vacuum cleaners with these characteristics performed better than vacuums without pre-separators (i.e., with vacuum bags or with filters alone) (Collingwood and Heitbrink, 2007; Heitbrink and Santalla-Elias, 2009).

A vacuum and shroud system with all the characteristics presented here, used by trained workers under ideal conditions, where a gap of 0.5 inch or less can be maintained, would reduce the exposure level of most tuckpointers to levels approaching $50~\mu g/m^3$. Workplace conditions are not ideal, however, and OSHA preliminarily concludes that this level cannot reliably be achieved for tuckpointers most of the time, and that respiratory protection will be required. Using the controls described previously, as well as a half-facepiece respirator, should provide sufficient protection.

Feasibility Finding for Grinders

Based on information presented previously, OSHA preliminarily concludes that the exposure level of most grinders can be reduced to levels below $100~\mu g/m^3$ through the use of improved vacuum suction devices. OSHA notes that properly sized vacuums used in a manner that provides greater and more consistent air flow, as described in the discussion of tuckpointers, will also benefit workers using handheld power grinding tools.

Among the 13 grinders who used functioning LEV systems (see Table IV.C-72, combined indoors and outdoors), 53 percent already experience exposure levels less than 100 μ g/m³. Based on the review provided, OSHA estimates that the silica results of all grinders who are currently exposed at levels above

²⁷⁷ Under the proposed permissible exposure limit (PEL) of 50 μ g/m3, a half-facepiece respirator with an APF of 10 would have an MUC of 500 μ g/m³.

²⁷⁸ A 2-inch hose will minimize losses that otherwise would limit vacuum air flow; however, air flow rates must remain above 76 cfm to maintain sufficient air velocity in the hose to prevent debris from accumulating and plugging the hose (Collingwood and Heitbrink, 2007). Accumulated material in the hose would further decrease the air flow rate.

Meeker et al. (2009) came to a similar conclusion after evaluating tuckpointers using different equipment. During brief periods of intensive mortar grinding, short-term results ranged from 190 μ g/m3 to 850 μ g/m3 when workers used shop vacuums connected to grinder shrouds purchased with the grinding tool as a set. The investigators reported a 90 to 93 percent exposure reduction during this task compared to uncontrolled mortar grinding (up to 25,800 μ g/m3). Vacuum bags and filter maintenance, shroud design, and vacuum hose diameter were cited as areas for possible future improvements.

 $100~\mu g/m^3$ can be reduced to $100~\mu g/m^3$ or less by using vacuums that provide the ACGHI (2010) recommended airflow rate of 25 cfm per inch of blade. This conclusion is supported by information indicating that vacuums used in LEV studies of concrete-surface grinders did not meet this recommended air-flow rate, and that less-than-optimal air flow can have a severe effect on dust capture (as outlined in the discussion of additional controls for tuckpointers). In this case, information for tuckpointing operations applies equally to surface-grinding activities because both tasks involve high-energy abrasive grinding on similar materials (mortar and concrete), shrouds used on both types of grinding equipment need to enclose most of the blade and fit closely to the work surface, and the (often identical) vacuum cleaners used to provide suction for the LEV shrouds are subject to the same factors that reduce air flow rates as debris accumulate. These factors are described by Heitbrink and Bennett (2006), Collingwood and Heitbrink (2007), and Heitbrink and Santalla-Elias (2009).

OSHA also estimates that under ideal grinding conditions (i.e., flat surface, no edges or corners), the same vacuum system described under the feasibility finding for tuckpointers will reduce the exposure level of all grinders to $50~\mu g/m^3$ or less; however, construction sites vary and generally include less-than-ideal conditions (e.g., overhead, curved surfaces, inner corners, substantial high or low spots, and outer edges where the shroud cannot be kept in full contact with the surface). Grinder operators will need to switch tools (to small grinding implements intended for detail work, also fitted with LEV) to work these areas.

Even if they use specialized tools to work difficult areas, information is insufficient to confirm that levels of $50 \,\mu\text{g/m}^3$ or less can be achieved reliably for grinders working indoors on surfaces with curves, corners, or edges (i.e., on most surfaces). Thus OSHA has preliminarily determined that workers using LEV to grind in indoor or enclosed worksites will need to wear respirators while grinding overhead, curved surfaces, inner corners, substantial high or low spots, and outer edges of concrete surfaces. Based on the extent that LEV is able to reduce exposures (including all indoor and overhead work, as shown in Table IV.C-72), OSHA preliminarily concludes that for these workers, a half-facepiece respirator with an APF of 10 will likely provide sufficient protection under the proposed PEL of $50 \,\mu\text{g/m}^3$.

REFERENCES

- [29 CFR 1910.134 and 1926.103] Title 29 Code of Federal Regulations, Occupational Safety and Health Administration. Part 1910.134 Respiratory Protection (general industry) and Part 1926.103 Respiratory Protection (Construction).
- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- Akbar-Khanzadeh, F., and R. L. Brillhart, 2002. Respirable crystalline silica dust exposure during concrete finishing (grinding) using hand-held grinders in the construction industry. Annals of Occupational Hygiene 46(3):341–346. **OSHA-2010-0034-0521**
- Akbar-Khanzadeh, F., S. Milz, A. Ames, P. Susi, M. Bisesi, S.A. Khuder, and M. Akbar-Khanzadeh, 2007. Crystalline silica dust and respirable particulate matter during indoor concrete grinding—wet grinding and ventilated grinding compared with uncontrolled conventional grinding. Journal of Occupational and Environmental Hygiene 4(10):770-779. **OSHA-2010-0034-0522**

- Blute, N.A., S.R. Woskie, and C.A. Greenspan, 1999. Exposure characterization for highway construction Part I: cut and cover and tunnel finish stages. Applied Occupational and Environmental Hygiene 14(9):632-641. **OSHA-2010-0034-0562**
- Collingwood, S. and W.A. Heitbrink, 2007. Field evaluation of an engineering control of respirable crystalline silica exposures during mortar removal. Journal of Occupational and Environmental Hygiene 4(11):875-887. **OSHA-2010-0034-0600**
- Croteau, G.A., S.E. Guffey, M.E. Flanagan, and N. S. Seixas, 2002. The effect of local exhaust ventilation controls on dust exposures during concrete cutting and grinding activities. American Industrial Hygiene Association Journal 63(4):458–467. **OSHA-2010-0034-0611**
- [Dustcontrol-Catalog-Chap3] Dustcontrol, Inc., 2009. Dustcontrol product catalog, Chapter 3 Choosing the right dust extractor. **OSHA-2010-0034-0628**
- [Dustcontrol-DC2800] Dustcontrol, Inc., 2009. Internet Web site for dust extractor vacuum model DC2800. Available at:

 http://products.dustcontrolusa.com/ProductDetails.asp?ProductCode=DC2800c

 OSHA-2010-0034-0629
- [Dustcontrol-DC3800] Dustcontrol, Inc., 2009. E-mail communication between representatives of Dustcontrol Inc. and W. Heitbrink. October 26 and 27. **OSHA-2010-0034-0630**
- Echt, A., and Sieber, W., 2002. Control of silica from hand tools in construction: grinding concrete (D. Tharr, ed.). Applied Occupational and Environmental Hygiene 17(7):457-461. **OSHA-2010-0034-0632**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1433**
- Flanagan M.E., N. Seixas, M. Majar, J. Camp, and M. Morgan, 2003. Silica dust exposures during selected construction activities. American Industrial Hygiene Association Journal 64(3):319-328. **OSHA-2010-0034-0676**
- Flynn, M.R., and P. Susi, 2003. Engineering controls for selected silica and dust exposures in the construction industry a review. Applied Occupational and Environmental Hygiene 18(4):268-277. **OSHA-2010-0034-1328**
- Hallin, N., 1983. Occurrence of quartz in the construction sector. Bygghalsan, the Construction Industry's Organization for Working Environment, Safety, and Health. Bygghalsan, Sweden, Report 1983-04-01. OSHA-2010-0034-1418
- Heitbrink, W.A., and J. Bennett, 2006. A numerical and experimental investigation of crystalline silica exposure control during tuck pointing. Journal of Occupational and Environmental Hygiene 3(7):366-378. **OSHA-2010-0034-0728**

- Heitbrink, W.A., and S. Collingwood, 2005. Control Measures for Silica Exposures
 Tuckpointing. University of Iowa, College of Public Health, Department of Occupational
 and Environmental Health, Grant-Number-5-R21-OH-007761-02. **OSHA-2010-0034- 0729**
- Heitbrink, W.A., and R. Floit, 2003. Field evaluation of vacuum cleaners used to control dust generated by mortar removal prior to tuckpointing. Heartland Center, Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa. **OSHA-2010-0034-0730**
- Heitbrink, W.A., and J. Santalla-Elías, 2009. The effect of debris accumulation on and filter resistance to airflow for four commercially available vacuum cleaners. Journal of Occupational and Environmental Hygiene 6(6):374-84. **OSHA-2010-0034-0731**
- [Ingersall-Rand-3445] Ingersall-Rand Industrial Technologies, 2009. Internet web page for Model 3445 Super Duty Air Angle Grinder. Available at:

 <a href="http://search.irco.com/search?q=cache:2gjOXLZX9jkJ:www.ingersollrandproducts.com/IS/Product.aspx?am_en=29&print=1+air+grinder&access=p&output=xml_no_dtd&ie=utf_8&lr=lang_zh-CN%7Clang_zh_TW&client=irproducts_am_en&site=irproducts_am_en&oe=UTF_8&proxystylesheet=irproducts_OSHA-2010-0034-0748
- Lumens, M., 2004. Personal communications between M. Lumens and Eastern Research Group, Inc. August 24. **OSHA-2010-0034-0788**
- Lumens, M., and T. Spee, 2001. Determinants of exposure to respirable quartz dust in the construction industry. Annals of Occupational Hygiene 45(7):585-595. **OSHA-2010-0034-0787**
- Lynch, K.D., 2002. Respirable concrete dust silicosis hazard in the construction industry. Applied Occupational and Environmental Hygiene. 17(3):209-221. **OSHA-2010-0034-0784**
- Meeker, J.D., M.R. Cooper, D.L. Lefkowitz, and P.Susi, 2009. Engineering control technologies to reduce occupational silica exposures in masonry cutting and tuckpointing. Public Health Reports, 124 (Supplement 1):101–111. **OSHA-2010-0034-0803**
- Nash, N.T., and D.R. Williams, 2000. OSHA compliance issues: Occupational exposure to crystalline silica during tuckpointing and the use of engineering controls. Applied Occupational and Environmental Hygiene 15(1):8-10. **OSHA-2010-0034-0829**
- Nij, E.T., S. Hilhorst, T. Spee, J. Spierings, F. Seffens, M. Lumens, and D. Heederick, 2003. Dust control measures in the construction industry. Annals of Occupational Hygiene 47(3):211-218. **OSHA-2010-0034-0835**
- [NIOSH-construction-site-16] National Institute for Occupational Safety and Health, 1998. Environmental surveillance report: Construction site #16, Covington, Kentucky. **OSHA-2010-0034-1385**

- [NIOSH ECTB 233-104c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 04 A concrete finishing operation. **OSHA-2010-0034-0217**
- [NIOSH ECTB 233-123c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 23 Masonry tuck-pointing. **OSHA-2010-0034-0229**
- [NIOSH ECTB 247-12] National Institute for Occupational Safety and Health, 2000. In-depth report: Control technology for crystalline silica exposures in construction: Exposures and preliminary control evaluation at various sites for bricklayers Local No. 9, Pittsburgh, Pennsylvania. **OSHA-2010-0034-0854**
- [NIOSH EPHB 247-14] National Institute for Occupational Safety and Health, 2000. In-depth study report: Control technology for crystalline silica exposures in construction: Exposures and preliminary control evaluation at a restoration preservation masonry construction site. **OSHA-2010-0034-0241**
- [NIOSH EPHB 247-15a] National Institute for Occupational Safety and Health, 2001. In-depth survey report of four sites: exposure to silica from hand tools in construction chipping, grinding, and hand demolition. **OSHA-2010-0034-0857**
- [NIOSH EPHB 247-20] National Institute for Occupational Safety and Health, 2001. In-depth study report: Control technology for crystalline silica exposures in construction: field evaluation of control measures for tuck-pointing The Farell Building Huntington West Virginia. **OSHA-2010-0034-0863**
- [Oneida] Internet web page: product information for Oneida Air Systems dust cobra and dust deputy, 2009 Available at: http://www.oneida-air.com/cobra.php and http://store.oneida-air.com/dustdeputy.aspx. OSHA-2010-0034-1275
- [OSHA SEP Inspection Report 108772393] OSHA Special Emphasis Program Inspection Report 108772393. **OSHA-2010-0034-0015**
- [OSHA SEP Inspection Report 300442977] OSHA Special Emphasis Program Inspection Report 300442977. **OSHA-2010-0034-0036**
- [OSHA SEP Inspection Report 300555026] OSHA Special Emphasis Program Inspection Report 300555026. **OSHA-2010-0034-0031**
- Sambol, M. and M. Chusid, 2006. Giving the sack to concrete sacking and patching. The Construction Specifier, pp.2-6. December.

 http://www.ctscement.com/Specs2005/PDFdocs/Wunderfixx_SackPatch2007.pdf
 OSHA-2010-0034-1138/OSHA-2010-0034-1169
- Shields, C.J., 2000. Database sent by OSHA North Aurora Area Office, Illinois, to Eastern Research Group, Inc. via e-mail. September 14. **OSHA-2010-0034-1143**

- Tiger-Vac, 2007. Letter from Tiger-Vac International, Inc. to University of Iowa, indicating vacuum cleaner model D4-14 (B) 4W HEPA provided for testing. Dated April 19. **OSHA-2010-0034-1182**
- Woskie, S., 2009. Personal communication; mail string with subject "Silica in Construction," originating with Dr. Woskie and transmitted to Eastern Research Group, Inc., via OSHA. November 23. **OSHA-2010-0034-1235**
- Yasui, S., P. Susi, M. McLean, and M. Flynn, 2003. Assessment of silica exposure and engineering controls during tuckpointing. Applied Occupational and Environmental Hygiene 18(12):977-84. **OSHA-2010-0034-1237**

Underground Construction Workers Description

Tunneling accounts for most of the construction work performed underground and includes the construction and renovation of underground tunnels, shafts, chambers, and passageways. ²⁸⁰ Tunnel construction techniques include tunnel boring, drilling and blasting, excavation, pipe jacking, and microtunneling. ²⁸¹ Additional underground construction work that can occur in tunnels includes activities such as chipping, sawing, milling, and grinding that also routinely occur at aboveground construction sites. Based on information contained in ERG-C (2008), OSHA has preliminarily concluded that for the purposes of this analysis underground construction activities can be considered as three major groups: 1) activities related to explosive blasting (not addressed in this analysis), 2) activities related to tunneling with rapid excavation machines (addressed here), and 3) construction activities that are also typically conducted aboveground (addressed elsewhere in this technological feasibility analysis).

During activities related to explosive blasting, excavation of the ground within a tunnel is cyclic, alternating between drilling, blasting, ventilating, and excavating. For safety reasons, explosive blasting is performed when the tunnel is vacant, and reentry is allowed only after exhaust systems clear the air. Therefore, these explosive blasting workers (the first group) are not addressed in this analysis. (Excavating and drilling workers are included in the second and third groups, respectively, as discussed below.)

For rapid, large-scale tunneling operations, construction workers in the second group might use rapid excavation machines (such as roadheaders, continuous miners, and tunnel-boring machines [TBMs]), which use aggressive grating action to cut into the rock face (ERG-C, 2008). Workers working on or supporting tunneling operations (tunnel borers) might be exposed to silica when they operate excavation or in-tunnel transportation equipment, tend the equipment (e.g., conveying belts, excavating machinery), lay track, extend utility lines as excavation machinery advances, and remove excavated material from the tunnel. There is no above-ground equivalent for this group, and this technological feasibility section on underground construction specifically

²⁸⁰ It should be noted that tunneling for the purpose of extraction (e.g., for coal or minerals) is considered a mining operation and falls under the jurisdiction of the Mine Safety and Health Administration. Tunneling for other purposes is regulated by OSHA.

²⁸¹ Pipe jacking is a tunneling technique in which powerful hydraulic jacks push (advance) specially designed pipe through the ground. Excavation of soil takes place at the front of the pipe string manually or mechanically. The process requires workers to occasionally enter into the pipeline being jacked to clear obstructions or make connections at junctions (Pipe Jacking Association, no date and 2006). Pipe jacking is typically done with pipes 42 to 120 inches in diameter (Caron Pipe Jacking, Inc., 2008). Microtunneling is used to construct smaller diameter pipelines, which are typically too small for humans to enter. Microtunneling uses a remotely controlled microtunnel boring machine (MTBM) with the pipe jacking technique to install pipelines (ASCE 36-01, 2001).

addresses the silica exposure levels and exposure control options for these workers involved in tunnel boring. ²⁸²

The third group of workers includes the heavy equipment operators, hole drillers, saw operators, grinders, and millers who are involved in underground construction and demolition activities during various phases of tunnel construction. For this group, OSHA preliminarily concludes that silica exposure resulting from the specific activity of the worker (e.g., grinding) in tunnels is comparable or even reduced compared with exposure encountered doing similar work in an enclosed, aboveground environment, as addressed in specific sections dedicated to these activities elsewhere in this report (e.g., Section IV.C.32 – Tuckpointers and Grinders). Therefore, the technological feasibility analysis applicable to these workers appears in those other sections. The OSHA underground construction standard requires that "the linear velocity of air flow in the tunnel bore, in shafts, and in all other underground work areas shall be at least 30 feet (9.15 m) per minute where blasting or rock drilling is conducted, or where other conditions likely to produce dust, fumes, mists, vapors, or gases in harmful or explosive quantities are present" (29 CFR 1926.800(k)(3)). OSHA concludes that general ventilation at tunnel construction sites can be superior to that found at many indoor work sites.

As a result, silica concentrations are less likely to become elevated in tunnels observing OSHA ventilation requirements than in indoor spaces, for which no such specific ventilation requirement exists. At some tunnel construction sites, workers' mean silica exposure level is similar to the mean exposure for all workers performing the same task in a variety of settings. For example, Blute et al. (1999) report respirable quartz levels between 10 micrograms per cubic meter (μ g/m³) and 1,640 μ g/m³ (mean 280 μ g/m³) associated with 10 workers using chipping equipment on concrete during the cut and cover phase of tunnel construction. In contrast, Section IV.C.26 – Jackhammer and Impact Drillers indicates that the 109 available results for all such workers, operating indoors and out, range from 12 to 3,059 μ g/m³ (mean 297 μ g/m³). However, underground workers in one category—drill operators, in particular roof bolters—are shown at times to experience higher exposures in tunnels than at other construction sites, perhaps because of increased drilling frequency and a greater proportion of work conducted above chest height (please refer to Section IV.C.25 – Hole Drillers Using Hand-Held Drills).

Most dust control techniques available to the general construction industry (wet methods, local exhaust ventilation [LEV]-equipped tools, enclosed operator cabs, and increased general ventilation) are also available below ground (29 CFR 1926.800; Bakke et al., 2002; Blute et al., 1999; Tunnel Construction Consultant A, 2003). Please refer to the appropriate sections of this report for a further discussion of processes, exposure levels, conditions, and silica dust control options available for workers performing typical construction activities (Sections IV.C.24 – Heavy Equipment Operators, IV.C.25 – Hole Drillers Using Hand-Held Drills, IV.C.26 – Jackhammer and Impact Drillers, IV.C.27 – Masonry Cutters Using Portable Saws, IV.C.29 – Millers Using Portable or Mobile Machines, IV.C.30 – Rock and Concrete Drillers, and IV.C.32 – Tuckpointers and Grinders). Note that for workers performing any construction

²⁸² Typical job titles for workers in the tunnel borer job category include rapid excavation machine operator, locomotive operator (carries workers and equipment between tunnel entrances and excavation machines), mechanic (maintains the rapid excavation machinery and conveyer belt systems), miner (lays track and extends water, air, and electrical lines as excavation machines advance), and bottom shaft worker (removes excavated material from the tunnel).

 $^{^{283}}$ In Europe, BGIA (2008) indicated that median respirable dust and quartz exposure levels measured for workers involved in tunnel driving and shaft construction (specifically shotcreting to stabilize new tunnel walls) dropped by approximately 50 percent (from $100 \, \mu g/m^3$ to $50 \, \mu g/m^3$ of respirable quartz) in the five years after 2000 compared with the previous five years. The authors attribute this change to the increased use of wet-spraying, low-silica additives, improved ventilation, and more intensive measures to capture and suppress dust (wetting excavated material, using air filtration, and maintaining driving surfaces) (BGIA, 2008).

activity, additional exposure due to proximity specifically with tunneling operations (e.g., rapid excavation machines) is analogous to that received by tunnel borers.

Job categories, major activities, and sources of exposure of underground construction workers involved in rapid excavation are summarized in Table IV.C-73.

Job Category*	Major Activities and Sources of Exposure						
Underground Construction Worker (Tunnel Borer)	Excavating, removing debris, operating rapid excavation machines, transporting workers and equipment, laying track and installing/extending utility lines (air, water, electrical), performing maintenance and repair, and others.						
	 Dust from rapid excavation and related support activities. Dust from open transfer of silica-containing materials. Dust from working in close proximity to ventilation system exhaust air. 						

Baseline Conditions and Exposure Profile for Tunnel Borers

The majority of exposure information for tunneling workers is associated with TBMs. These exposure data, previously described by ERG-C (2008), were obtained at two tunnel construction sites, one evaluated by NIOSH and one by OSHA. ²⁸⁴ Although limited, these data represent the best data available to OSHA for underground construction workers involved in tunneling. No monitoring data were available to OSHA to represent the exposures of tunneling workers using other types of rapid excavation equipment.

The exposure profile for tunnel borers is shown in Table IV.C-74. This table summarizes 27 full-shift 8-hour time-weighted average (TWA) personal breathing zone (PBZ) silica samples obtained for workers associated with tunnel excavating machines at two construction sites, one evaluated by NIOSH and another by OSHA (NIOSH ECTB 233-119c, 1999; OSHA SEP Inspection Report 1027696576). Sample results range from $7 \mu g/m^3$ to $257 \mu g/m^3$, with a median of $12 \mu g/m^3$ and a mean of $41 \mu g/m^3$. More

²⁸⁴ As noted in Section IV.A – Methodology, all results included in the exposure profile are 8-hour time-weighted averages (8-hour TWAs) calculated assuming no additional exposure during any unsampled portion of the shift. Unless explicitly stated otherwise, all results discussed in the additional controls section are also 8-hour TWAs calculated the same way. Assumptions made in calculating 8-hour TWAs are discussed in Section IV.A - Methodology.

 $^{^{285}}$ Low value of $7\mu g/m^3$ (the limit of detection [LOD]) is as reported by the investigator (NIOSH ECTB 233-119c, 1999). Note that OSHA's crystalline silica analytical method for determining the LOD (ID-142) has a reported LOD of 10 $\mu g/m^3$. Results reported as "none detected" are assigned a value equal to the LOD. The LOD is determined individually for each sample based on the volume of air sampled and the method used to analyze the sample, therefore, the limit of detection varies between samples. See Section IV.A – Methodology for additional information on LODs.

than half (56 percent) of the sample results are less than or equal to the LOD, and 78 percent of the results are less than or equal to $50 \,\mu\text{g/m}^3$. When silica was detected in the sample, it was present as between 5 and 17 percent of the dust on the filter. Job titles of sampled workers include TBM operator, drill operator, mechanic, locomotive or brake operator, miner, welder, electrician, bottom shaft worker, and inspector. At both construction sites, TBMs were equipped with engineering controls that included water sprayers, LEV systems, and shields designed to reduce the release of rock fragments and dust as the TBM cut (ERG-C, 2008).

Two respirable quartz results ($46 \mu g/m^3$ and $38 \mu g/m^3$) were obtained for workers inside the TBM's enclosed, ventilated operator booth (NIOSH ECTB 233-119c, 1999; OSHA SEP Inspection Report 102769676). These data suggest that workers in enclosed booths already experience levels below 50 $\mu g/m^3$.

Two additional results, $136 \,\mu\text{g/m}^3$ and $87 \,\mu\text{g/m}^3$, were obtained for workers who spent part of their time in the enclosed booth and part of their time outside the TBM (OSHA SEP Inspection Report 102769676). The OSHA report noted that the tunnel's ventilation system had not been extended the full length of the tunnel (providing less fresh air into the TBM than required) and recommended an increase in the air flow through the TBM's LEV system and an increase in the amount of water sprayed on the machine's rotating cutting wheels. A combination of these factors likely contributed to the elevated exposures.

In the tunneling operation evaluated in NIOSH ECTB 233-119c (1999), additional exposure control was provided by the tunnel's dilution ventilation system, two water spray bars positioned at the tunnel conveyor belt transfer points, and four water spray hoses at the cutter head. ERG identified 22 full-shift respirable quartz results obtained by NIOSH for workers performing activities inside the TBM trailing gear or outside of the TBM where these controls were operating. These 22 results range from 7 μ g/m³ to 257 μ g/m³, with a median of 12 μ g/m³ and a mean of 35 μ g/m³. Only four samples (18 percent) exceed the proposed permissible exposure limit (PEL) of 50 μ g/m³.

The highest two results, 124 µg/m³ and 257 µg/m³, were obtained at the same site for two workers who loaded and unloaded the locomotive flat cars and assisted with crane operations at the bottom of the tunnel's shaft. NIOSH (NIOSH ECTB 233-119c, 1999) attributed these elevated results to the workers' position near the tunnel shaft (which acted as the exhaust air duct for the tunnel's ventilation system) and, possibly more significantly, proximity to the last transfer point for rock moving from the horizontal belt conveyor to the vertical bucket conveyor. Although a water spray bar was reportedly located at each of two other transfer points in the tunnel, engineering controls were absent from this last transfer point. NIOSH (NIOSH ECTB 233-119c, 1999) recommended the use of a spray bar or LEV at the transfer point or enclosure of the transfer point. The other two elevated results, 55 µg/m³ and 75 µg/m³, were obtained for two miners operating equipment in the TBM trailing gear, laying track, and extending water and air lines. NIOSH (NIOSH ECTB 233-119c, 1999) suggests that these two exposures might be associated with the booster fan malfunction on the third sampling day, which reduced the tunnel's exhaust volume by 10 to 20 percent. The other 21 workers (78 percent) in and around the tunnel and boring equipment experienced exposure levels less than 50 µg/m³. These samples were obtained during the first and second sampling days. The elevated results described here demonstrate the potential for worker exposures to occur at tunneling sites, but in this case the results may be examples of upset conditions, when systems normally in place to protect workers were not properly implemented or had malfunctioned.

Based on the findings of a Norwegian study (Bakke et al., 2002), these results might underestimate the extent and high end of exposure for electricians and operators associated with TBMs (ERG-C, 2008). The study authors reported a median PBZ silica result of 490 μ g/m³ for 43 Norwegian TBM workers. The results represent randomly selected 5- to 8-hour periods during 10-hour workshifts. Although the TBM had an enclosed operator cab, the study authors noted that the operator usually left the door open in order

to monitor the conveyor belt (Bakke et al., 2002). The study authors did not indicate other controls associated with the TBM or whether ventilation problems might have been a factor in these elevated silica results. The report noted, however, that the TBM was not operated every day because of repair work on the TBM and on the ventilation ducts, suggesting less than optimal operation. Therefore, these higher exposures might be associated with poor controls and work practices.

Two additional investigations also report elevated silica exposure results for underground construction workers engaged in tunneling operations (Oliver and Miracle-McMahill, 2006; Woskie et al., 2002). The results from these studies were not included in the exposure profile because they did not provide sufficient information as outlined in Section IV.A – Methodology. Oliver and Miracle-McMahill (2006) collected 70 samples (PBZ and area) over an 18-month period for tunnel construction workers using a tunnel jacking technique on the Central Artery/Tunnel (CAT) project in Boston, Massachusetts. Approximately 63 percent of the samples exceeded the current OSHA PEL; two other results approached the PEL (actual silica levels not provided). Investigators calculated the PEL using OSHA's general industry silica PEL equation based on the percent of quartz in a respirable dust sample ²⁸⁶. The study did not evaluate the effectiveness of in-place engineering controls, aside from noting that environmental controls were "inadequate."

Investigators also focused on pipe jacking operations on the CAT project. CAT underground construction workers involved in pipe jacking entered into the pipeline to manually excavate soil, chip away obstructions, and clear debris. Woskie et al. (2002) reported a maximum silica result of 333 μ g/m³ for eight full-shift PBZ samples obtained on workers during CAT pipe jacking operations. Approximately 38 percent of the samples exceeded the OSHA PEL (actual silica levels not provided), suggesting the possibility for overexposure for workers engaged in pipe jacking. The authors calculated the PEL using OSHA's general industry silica PEL equation based on the percent of quartz in a respirable dust sample. The exposure controls associated with the pipe jacking operations were not addressed.

Based on descriptions of tunneling workers' activities and rapid excavation operations discussed in ERG-C (2008) and the best available literature, OSHA finds that baseline conditions for this group of workers include wet methods (water sprayers), LEV systems (for tools, excavating equipment, and conveyor transfer points), general dilution ventilation (ventilation requirements in OSHA's underground construction standard), and enclosed operator cabs (which may or may not be properly used). The results summarized in Table IV.C-74 were obtained under some or all of these conditions. The supplemental information presented above suggests that at certain construction sites the values in Table IV.C-74 might underestimate the exposure of some workers.

 $^{^{286}}$ In this case, although evaluating a construction industry activity, the investigator elected to compare silica exposure results with OSHA's gravimetric general industry PEL for silica. This might be due to the fact that the construction industry PEL for silica is based on the units millions of particles per cubic foot (mppcf), requiring an obsolete analytical method not available through most analytical laboratories. Instead, laboratories typically report silica air sampling results as mass-based gravimetric values (e.g., mg/m^3) for respirable dust, along with the percent silica, which are also used in the gravimetric general industry PEL for silica. Investigators compare these results with the gravimetric general industry PEL because the units are compatible. An alternative has been available since 2008, when OSHA published a compliance directive, National Emphasis Program (NEP)–Crystalline Silica CPL 03-00-007 (Appendix E), providing a conversion factor to convert air sampling results between mppcf and mg/m^3 or $\mu g/m^3$. However, some investigators have continued in their studies to use the more familiar gravimetric units and compare construction industry air monitoring results with the gravimetric general industry PEL for silica.

Additional Controls

Additional Controls for Underground Construction Workers

The majority of tunnel borers work inside the TBM trailing gear or outside the TBM. The primary exposure controls for these workers include water sprays positioned at cutting heads and conveyor transfer points, and LEV at cutting heads. For the limited number of workers who ride inside the machine's enclosed, ventilated cab (including drill operators and cutter-head mechanics), this represents another control. Wet methods and LEV are preferable, however, because they suppress dust at the source, thereby benefiting workers both inside *and* outside the cab.

As previously noted, the two respirable quartz results obtained for workers inside the TBM's enclosed booth are $46 \mu g/m^3$ and $38 \mu g/m^3$ (NIOSH ECTB 233-119c, 1999; OSHA SEP Inspection Report 102769676). The results in the Bakke et al. study for cabs equipped with enclosed cabs do not provide an accurate representation of an enclosure's ability to reduce exposure because, in this case, the operators usually left the door open. As such, the operators were not isolated from the respirable dust and high exposures resulted. OSHA estimates that improved filtration systems should further lower exposures.

Table IV.C-74 Respirable Crystalline Silica Exposure Range and Profile for Underground Construction Workers

	Expo	sure Summ	nary	Exposu	ire Range	Exposure Profile				
Job Category	Number of Samples	Mean (µg/m³)	Median (µg/m³)	Min (µg/m³)	Max (µg/m³)	<25 (μg/m³)	≥25 and ≤50 (µg/m³)	>50 and ≤100 (µg/m³)	>100 and ≤250 (µg/m³)	>250 (µg/m³)
Underground Construction Worker (tunnel borer)	27	41.4	12.0	7.0	257.0	16 59.3%	5 18.5%	3 11.1%	2 7.4%	1 3.7%

Notes: All samples are personal breathing zone (PBZ) results and represent 8-hour time-weighted average exposures with the assumption that no additional exposure occurred during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Source: ERG-C, 2008.

The water sprays and LEV provided by the TBM, as well as the tunnel's dilution ventilation system, are associated with a baseline median of less than or equal to $12~\mu g/m^3$ (Table IV.C-74). The potential for higher exposures is possible as indicated by two full-shift PBZ respirable quartz results of $124~\mu g/m^3$ and $257~\mu g/m^3$ for a bottom shaft worker. These results were attributed to the worker's position near the tunnel shaft and an uncontrolled material transfer point (ERG-C, 2008). OSHA estimates that these exposures would be substantially reduced with effective controls at the material transfer point.

Additional controls for workers outside TBMs, in addition to ensuring the full operation of the TBM engineering controls, include ensuring optimum operation of ventilation systems installed inside tunnels, improving application of water sprays wherever dust is generated, enclosing conveyer transfer points, and taking other steps to reduce dust from conveyers. NIOSH IC-9465 (2003) provides step-by-step instructions for checking whether dust controls in hard rock tunnels (bored by TBMs) are performing well and identifying problem areas, noting that hidden leaks in existing ventilation are common and can result in elevated dust levels because the ventilation system simply fails to deliver enough air.

NIOSH currently recommends 100-feet-per-minute air flow across the full diameter of the tunnel if the rock contains more than 10 percent silica (this airflow is more than three times the minimum required under 29 CFR 1926.800). Air velocities two to four times higher have been used for operations where increased amounts of air contaminants were anticipated.

Bakke et al. (2001) obtained 63 personal exposure samples for Norwegian construction workers at four tunneling sites where one of two different explosives had been used for blasting. Arithmetic mean concentrations (with data partitioned by explosive type) were $11 \,\mu\text{g/m}^3$ and $34 \,\mu\text{g/m}^3$ for workers performing tasks in the tunnels after the blasting phase was complete. Airflow in the tunnels was 1,400 cubic meters per minute (m³/min) to 2,500 m³/min, which, given the tunnel diameter, corresponds to a minimum of 40 to 70 feet per minute (in some cases more)—or at least 130 percent to 200 percent of the rate required by OSHA's 29 CFR 1926.800. This study demonstrates that, using higher ventilation rates, the average exposure to construction workers underground was maintained at levels that were less than the average of 41 $\mu\text{g/m}^3$ presented in Table IV.C-74 for workers in the United States.

If tests reveal that water sprays along the length of the tunnel and controls on conveyer belts are not working effectively, water sprays and controls should be upgraded (NIOSH IC-9465, 2003). Reports noted in ERG-C (2008) indicate that improving water spray quality (droplet size, direction of spray) and quantity, and ensuring adequate water pressure (100 pounds per square inch) and filtration can increase the effectiveness of water as an exposure control. Routine nozzle inspection, maintenance, and replacement are required (ERG-C, 2008). Achieving optimal wetting at the cutting head offers the best opportunity for controlling dust at its source, and the wetted material is less likely to contribute dust as conveyers carry it away. Research on coal mines, reported in the NIOSH IC-9465 (2003) discussion of hard rock tunnels, indicates that increasing the number of spray nozzles on the shearer drum (e.g., from 17 to 46) can reduce respirable dust by 60 percent. Although more costly, using foam spray can reduce dust levels another 20 to 60 percent compared with plain water (NIOSH IC-9465, 2003).

Conveyer belts and their transfer points, including those that are located in hard rock tunnels produced by TBMs, are a notorious source of dust. NIOSH (NIOSH IC-9465, 2003) recommends enclosing conveyer transfer points and adding water sprays. If dust is still released, NIOSH suggests adding exhaust ventilation to the enclosures. An effective cleaning mechanism (e.g., belt scraper) can help minimize the conveyer belt as a source of silica exposure. When additional controls are needed, both the top and the bottom of the belt should be wet to suppress dust (NIOSH IC-9465, 2003).

ACGIH (2010) offers recommendations for enclosing and adding exhaust ventilation to conveyers. These designs are used in many settings where materials are conveyed. For example, in the structural clay

industry (addressed in Section IV.C.21 – Structural Clay), NIOSH evaluated a facility that, along with other controls, used enclosures at conveyer transfers and drop points (e.g., into bins) associated with mineral grinding machinery (NIOSH ECTB 233-108c, 2000). Full-shift silica exposure levels were 13 $\mu g/m^3$ and 67 $\mu g/m^3$ in this area, compared with the typical median of approximately 100 $\mu g/m^3$ for workers associated with structural clay grinding areas in other facilities. Wetting agents, which increase particle agglomeration when added to water spray, also reduce airborne dust levels at material transfer and discharge points.

Another control option involves increasing the effectiveness of the tunnel's general dilution ventilation system by ensuring that the duct extends to the face of the tunnel and is free of leaks, and that routine maintenance is performed.

Feasibility Finding

Based on the information presented in this section, OSHA preliminarily concludes that exposure levels are already within the range of the proposed PEL of $50~\mu g/m^3$ for most workers inside TBMs that have enclosed cabs and fully functioning water spray and ventilation systems. This conclusion is based on the 8-hour TWA result of $46~\mu g/m^3$ from a 560-minute sample for a TBM operator whose control equipment appeared to function well (ERG-C, 2008). Another result of $38~\mu g/m^3$ was obtained over 440 minutes for a worker in the forward portion of the TBM cab at another site and indicates that even when conditions outside the TBM are dusty, the cab filtration system can maintain levels of $50~\mu g/m^3$ or less. Where exposures do exceed $50~\mu g/m^3$ in the cab, the construction site will need to improve maintenance of the TBM cab, cab filtration, and ventilation and water spray systems in the tunnel.

OSHA also preliminarily concludes that tunnel construction sites can achieve silica results of 50 μ g/m³ or less for most tunnel workers outside TBMs most of the time by making sure current controls are operating optimally (e.g., TBM water sprays and LEV, as well as the tunnel's dilution ventilation system). The median result for workers operating under these conditions is less than or equal to 12 μ g/m³ (ERG-C, 2008). For bottom shaft workers (removing excavated material from the tunnel), who might at times have exposures greater than 100 μ g/m³, other controls to reduce exposures to the proposed PEL include additional water sprays or more consistent use of existing sprays. Additional sources of respirable dust, such as conveyer transfer points, should be either treated with water spray, covered and exhausted, or both. Using some or all of these methods, the construction sites represented in Table IV.C-74 achieved silica exposure levels of 50 μ g/m³ or less for 78 percent of tunneling workers. By applying the same controls to areas where excessive exposure occurs, this level can likely be achieved for the vast majority of workers associated with tunnel boring.

Exposure data on which to base a conclusion for workers associated with other types of tunneling equipment (e.g., pipe jacking) are not available (ERG-C, 2008).

As previously noted, workers performing activities not specific to tunneling, such as grinding, hole drilling, or chipping, receive similar exposures from their equipment as workers performing those same activities aboveground in enclosed environments (e.g., indoors). Refer to the relevant sections of this report for further information on exposure and controls for those activities.

REFERENCES

[29 CFR 1926.800] Title 29 Code of Federal Regulations, Occupational Safety and Health Administration, construction. Part 1926.800(k). **OSHA-2010-0034-1352**

- [ACGIH] American Conference of Governmental Industrial Hygienists, 2010. Chapter 13 Specific operations; in Industrial Ventilation a manual of recommended practice for design, 27th edition. Cincinnati, Ohio. **OSHA-2010-0034-0515**
- [ASCE 36-01] American Society of Civil Engineering Standard No. 36-01, 2001. Standard construction guidelines for microtunneling. ASCE Publications. Available at: http://cedb.asce.org/cgi/WWWdisplay.cgi?0108252. Last accessed 26 October 2009. OSHA-2010-0034-0535
- Bakke, B., B. Ulvestad, P. Stewart, M.B. Lund, and W. Eduard, 2001. Effects of blasting fumes on exposure and short-term lung function changes in tunnel construction workers. Scandinavian Journal of Work, Environment & Health 27(4):250-257. **OSHA-2010-0034-0545**
- Bakke, B., P. Stewart, and W. Eduard, 2002. Determinants of dust exposure in tunnel construction work. Applied Occupational and Environmental Hygiene 17(11):783-796. **OSHA-2010-0034-0546**
- [BGIA] Institute fur Arbeitsschultz der Deutschen Gesetzlichen Unfallversicherung, 2008. Exposure to quartz at the workplace (BGIA-Report 8/2006e). Editorial Office: Central Division of BGIA Institute for Occupational Safety and Health. Available online at: http://www.dguv.de/ifa/en/pub/rep/rep05/bgia0806/index.jsp OSHA-2010-0034-0553
- Blute, N.A., S.R. Woskie, and C.A. Greenspan, 1999. Exposure characterization for highway construction Part I: cut and cover and tunnel finish stages. Applied Occupational and Environmental Hygiene 14(9):632-641. **OSHA-2010-0034-0562**
- Caron Pipe Jacking, Inc., 2008. Pipe jacking procedure. Available at:
 http://www.pipejackingne.com/index.htm. Last accessed 29 September 2009. **OSHA-2010-0034-0582**
- [ERG-C] Eastern Research Group, Inc., 2008. Technological Feasibility Study of Regulatory Alternatives for a Proposed Crystalline Silica Standard for Construction. **OSHA-2010-0034-1431**
- [NIOSH ECTB 233-108c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 08 Brick Manufacturing. **OSHA-2010-0034-0232**
- [NIOSH ECTB 233-119c] National Institute for Occupational Safety and Health, 1999. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 19 Tunnel boring. **OSHA-2010-0034-0225**
- [NIOSH IC-9465] National Institute for Occupational Safety and Health, 2003. Handbook for Dust Control in Mining. **OSHA-2010-0034-0887**

- Oliver, L.C., and H. Miracle-McMahill, 2006. Airway disease in highway and tunnel construction workers Exposed to silica. American Journal of Industrial Medicine 49:983-996. **OSHA-2010-0034-0929**
- [OSHA SEP Inspection Report 102769676] OSHA Special Emphasis Program Inspection Report 102769676. **OSHA-2010-0034-0070**
- Pipe Jacking Association, no date. An introduction to pipe jacking and microtunnelling design. London, UK: Pipe Jacking Association. Available at http://www.pipejacking.org/. Last accessed 29 September 2009. **OSHA-2010-0034-0956**
- Pipe Jacking Association, 2006. Guidance on the design of hand excavated pipejacks. London, UK: Pipe Jacking Association. Available at: http://www.pipejacking.org/. Last accessed 29 September 2009. **OSHA-2010-0034-0955**
- Tunnel Construction Consultant A, 2003. Personal communication between Tunnel Construction Consultant A and Eastern Research Group, Inc. June 13. **OSHA-2010-0034-1289**
- Woskie, S.R., A. Kalil, D. Bello, and M.A. Virji, 2002. Exposures to quartz, diesel, dust, and welding fumes during heavy and highway construction. American Industrial Hygiene Association Journal 63:477-457. **OSHA-2010-0034-1234**

SUMMARY OF THE TECHNOLOGICAL FEASIBILITY ANALYSIS

The Agency has preliminarily concluded, on the basis of its technological feasibility analysis, that the proposed permissible exposure limit (PEL) of 50 micrograms per cubic meter ($\mu g/m^3$) is the lowest achievable exposure limit in most operations most of the time through the use of engineering and work practice controls.

To demonstrate the limits of feasibility, OSHA's analysis examines the technological feasibility of the proposed PEL of $50~\mu g/m^3$ and an alternative PEL of $25~\mu g/m^3$. In total, OSHA analyzed technological feasibility in 108 operations in general industry, maritime, and construction industries. This analysis addresses two different aspects of technological feasibility: (1) the extent to which engineering controls can reduce and maintain exposures; and (2) the capability of existing sampling and analytical methods to measure silica exposures.

Feasibility Determination of Sampling and Analytical Methods

As part of its technological feasibility analysis, OSHA examined the capability of currently available sampling methods and sensitivity and precision of currently available analytical methods to measure respirable crystalline silica (please refer to the "Feasibility of Measuring Respirable Crystalline Silica Exposures at The Proposed PEL" section in Chapter IV of the PEA). The Agency understands that several commercially available personal sampling cyclones exist that can be operated at flow rates that conform to the ISO/CEN particle size selection criteria with an acceptable level of bias. Some of these sampling devices are the Dorr-Oliver, Higgens-Dowel, BGI GK 2.69, and the SKC G-3 cyclones. Bias against the ISO/CEN criteria will fall within ± 20 percent, and often is within ± 10 percent.

Additionally, the Agency preliminarily concludes that all of the mentioned cyclones are capable of allowing a sufficient quantity of quartz to be collected from atmospheric concentrations as low as $25 \,\mu \text{g/m}^3$ to exceed the limit of quantification for the OSHA ID-142 analytical method, provided that a sample duration is at least 4 hours. Furthermore, OSHA believes that these devices are also capable of collecting more than the minimum amount of cristobalite at the proposed PEL and action level necessary for quantification with OSHA's method ID-142 for a full shift. One of these cyclones (GK 2.69) can also collect an amount of cristobalite exceeding OSHA's limit of quantification (LOD) with a 4-hour sample at the proposed PEL and action level.

Regarding analytical methods to measure silica, OSHA investigated the sensitivity and precision of available methods. The Agency preliminarily concludes that the X-Ray Diffraction (XRD) and Infrared Spectroscopy (IR) methods of analysis are both sufficiently sensitive to quantify levels of quartz and cristobalite that would be collected on air samples taken from concentrations at the proposed PEL and action level. Available information shows that poor inter-laboratory agreement and lack of specificity render colorimetric spectrophotometry (another analytical method) inferior to XRD or IR techniques. As such, OSHA is proposing not to permit employers to rely on exposure monitoring results based on analytical methods that use colorimetric methods.

For the OSHA XRD Method ID-142 (revised December 1996), precision is ± 23 percent at a working range of 50 to 160 μ g crystalline silica, and the SAE is ± 19 percent. The NIOSH and MSHA XRD and IR methods report a similar degree of precision. OSHA's Salt Lake Technical Center (SLTC) evaluated the precision of ID-142 at lower filter loadings and has shown an acceptable level of precision is achieved at filter loadings of approximately 40 and 20 μ g corresponding to the amounts collected from full-shift sampling at the proposed PEL and action level, respectively. This analysis showed the precision of the

²⁸⁷ Note that sensitivity refers to the smallest quantity that can be measured with a specified level of accuracy, expressed either as the limit of detection or limit of quantification.

OSHA method for quartz at filter loadings of 40 μ g was 17 percent and at filter loadings of 20 μ g was 19 percent. For cristobalite, the precision was 19 percent at filter loadings of both 40 and 20 μ g. These results indicate that employers can have confidence in sampling results for the purpose of assessing compliance with the PEL and identifying when additional engineering and work practice controls and/or respiratory protection are needed.

For example, given the SAE for quartz at a filter load of 40 μ g, employers can be virtually certain that the PEL is not exceeded where exposures are less than 38 μ g/m³, which represents the lower 95-percent confidence limit (i.e., 50 μ g/m³ minus 50*0.23). At 38 μ g/m³, a full-shift sample that collects 816 L of air will result in a filter load of 31 μ g of quartz, or more than twice the LOQ for Method ID-142. Thus, OSHA believes that the method is sufficiently sensitive and precise to allow employers to distinguish between operations that have sufficient dust control to comply with the PEL from those that do not. Finally, OSHA's analysis of PAT data indicates that most laboratories achieve good agreement in results for samples having filter loads just above 40 μ g quartz (49-70 μ g).

At the proposed action level, the study by SLTC found the precision and SAE of the method for quartz at 20 μ g to be ± 19 and ± 17 percent, respectively. For cristobalite, the precision and SAE at both 20 μ g and 40 μ g filter loadings were ± 19 percent, respectively. OSHA believes that these results show that Method ID-142 can achieve a sufficient degree of precision for the purpose of identifying those operations where routine exposure monitoring should be conducted.

However, OSHA also believes that limitations in the characterization of the precision of the analytical method in this range of filter load preclude the Agency from proposing a PEL of 25 μ g/m³ at this time. First, the measurement error increases by about 4 to 5 percent for a full-shift sample taken at 25 μ g/m³ compared to one taken at 50 μ g/m³, and the error would be expected to increase further as filter loads approach the limit of detection. Second, for an employer to be virtually certain that an exposure to quartz did not exceed 25 μ g/m³ as an exposure limit, the exposure would have to be below 20 μ g/m³ given the SAE of \pm 19 percent calculated from the SLTC study. For a full-shift sample of 0.816 L of air, only about 16 μ g of quartz would be collected at 120 μ g/m³, which is near the LOQ for Method ID-142 and at the maximum acceptable LOD that would be required by the proposed rule. Thus, given a sample result that is below a laboratory's reported LOD, employers might not be able to rule out whether a PEL of 25 μ g/m³ was exceeded.

Finally, there are no available data that describes the total variability seen between laboratories at filter loadings in the range of 20 μ g crystalline silica since the lowest filter loading used in PAT samples is about 50 μ g. Given these considerations, OSHA believes that a PEL of 50 μ g/m³ is more appropriate in that employers will have more confidence that sampling results are properly informing them where additional dust controls and respiratory protection is needed.

Based on the available information, OSHA preliminarily concludes that it is technologically feasible to reliably measure exposures of workers at the proposed PEL of $50~\mu g/m^3$ and action level of $25~\mu g/m^3$. OSHA notes that as concentrations lower than $50~\mu g/m^3$ are analyzed, the sampling and analytical error increases, and the variability in measurements of exposures is higher (i.e. variability at the proposed action level of $25~\mu g/m^3$ is higher than that for the proposed PEL of $50~\mu g/m^3$). However, OSHA believes that measurement of exposures at the proposed action level and PEL are sufficiently precise to permit employers to adequately determine when additional exposure monitoring is necessary under the standard, when to provide workers with the required medical surveillance, and comply with all other requirements of the proposed standard.

Feasibility Determination of Control Technologies

OSHA has relied on a variety of sources of information to develop its technological feasibility analysis for controlling worker exposures, including NIOSH reports, OSHA Special Emphasis Program (SEP) Inspection Reports, site visits, contractor reports, case studies, and personal communications. Based on this information, the Agency has identified 23 industries in the general industry²⁸⁸ and maritime sectors and 12 construction activities, together having a total of 108 operations, that are potentially affected by the proposed silica standard.

The Agency developed an exposure profile for all sectors except the engineered stone and landscape contracting industries. For these two industries, data satisfying OSHA's criteria for inclusion in the exposure profile were unavailable (refer to Methodology section for criteria). However, the Agency obtained sufficient information in both of these industries to make feasibility determinations. Each feasibility analysis contains a description of the operations in an industry, the baseline conditions for that industry (including the silica samples collected), additional controls necessary to achieve exposure levels at $50~\mu\text{g/m}^3$, and feasibility findings for each operation. Although the Agency's technological feasibility analysis includes information about materials that some employers use as alternatives to silica or silicacontaining materials, none of OSHA's conclusions about feasibility depends on the use of substitute materials as a control measure. The Agency recognizes that substitute materials might also present health risks, and that some substitutes might not produce optimal results.

²⁸⁸ Note that OSHA's technological feasibility analysis contains 21 general industry sections. The number is expanded to 23 in this summary because Table IV.D-1 describes the foundry industry as three different sectors (ferrous, nonferrous, and non-sand casting foundries) to provide a more detailed analysis of exposures.

Feasibility Findings for the Proposed Permissible Exposure Limit of 50 ug/m³

Table IV.D-1 summarizes all the industry sectors and construction activities studied in the technological feasibility analysis and shows how many operations within each can achieve levels of $50 \,\mu\text{g/m}^3$ through the implementation of engineering and work practice controls. The table also summarizes the overall feasibility finding for each industry sector or construction activity based on the number of feasible versus not feasible operations. For the general industry sector, OSHA has preliminarily concluded that the proposed PEL of $50 \,\mu\text{g/m}^3$ is technologically feasible for all affected industries. For the construction activities, OSHA has determined that the proposed PEL of $50 \,\mu\text{g/m}^3$ is feasible in 10 out of 12 of the affected activities. Thus, OSHA preliminarily concludes that engineering and work practices will be sufficient to reduce and maintain silica exposures to the proposed PEL of $50 \,\mu\text{g/m}^3$ or below in most operations most of the time in the affected industries. For those few operations within an industry or activity where the proposed PEL is not technologically feasible even when workers use recommended engineering and work practice controls (seven out of 108 operations, see Table IV.D-1), employers can supplement controls with respirators to achieve exposure levels at or below the proposed PEL.

Feasibility Findings for an Alternative Permissible Exposure Limit of 25 ug/m³

Based on the information presented in the technological feasibility analysis, OSHA believes that engineering and work practice controls identified to date will not be sufficient to consistently reduce exposures to PELs lower than 50 $\mu g/m^3$. The Agency believes that a proposed PEL of 25 $\mu g/m^3$, for example, would not be feasible for many industries, and the use respiratory protection would have to be required in most operations and most of the time to achieve compliance.

However, OSHA has data indicating that an alternative PEL of $25~\mu g/m^3$ has already been achieved in several industries (e.g. asphalt paving products, dental laboratories, mineral processing, and paint and coatings manufacturing in general industry, and drywall finishers and heavy equipment operators in construction). In these industries, airborne respirable silica concentrations are inherently low because either small amounts of silica containing materials are handled or these materials are not subjected to high energy processes that general large amounts of respirable dust.

For many of the other industries, OSHA believes that engineering and work practice controls will not be able to reduce and maintain exposures to an alternative PEL of $25~\mu g/m^3$ in most operations and most of the time. This is especially the case in industries that use silica containing material in substantial quantities and industries with high energy operations. For example, in general industry, the ferrous foundry industry would not be able to comply with an alternative PEL of $25~\mu g/m^3$ without widespread respirator use. In this industry, silica containing sand is transported, used, and recycled in significant quantities to create castings, and as a result, workers can be exposed to high levels of silica in all steps of the production line. Additionally, some high energy operations in foundries create airborne dust that causes high worker exposures to silica. One of these operations is the shakeout process, where operators monitor equipment that separates castings from mold materials by mechanically vibrating or tumbling the casting. The dust generated from this process causes elevated silica exposures for shakeout operators and

Table IV.D.1—Summary of Technological Feasibility of Control Technologies in General and Maritime Industries and Construction Activities Affected by Silica Exposures

Industry Sector	Total No. of Affected Operations	No. of Operations for Which the Proposed PEL Is Achievable With Engineering Controls and Work Practice Controls	No. of Operations for Which the Proposed PEL Is <u>NOT</u> Achievable With Engineering Controls and Work Practice Controls	Overall Feasibility Finding for Industry Sector	
Asphalt Paving Products	3	3	0	Feasible	
Asphalt Roofing Materials	2	2	0	Feasible	
Concrete Products	6	5	1	Feasible	
Cut Stone	5	5	0	Feasible	
Dental Equipment and Suppliers	1	1	0	Feasible	
Dental Laboratories	1	1	0	Feasible	
Engineered Stone Products	1	1	0	Feasible	
Foundries: Ferrous*	12	12	0	Feasible	
Foundries: Nonferrous*	12	12	0	Feasible	
Foundries: Non-Sand Casting*	11	11	0	Feasible	
Glass	2	2	0	Feasible	
Jewelry	1	1	0	Feasible	
Landscape Contracting	1	1	0	Feasible	
Mineral Processing	1	1	0	Feasible	

^{*} Section 8 of the Technological Feasibility Analysis includes four subsectors of the foundry industry. Each subsector includes its own exposure profile and feasibility analysis in that section. This table lists three of those four subsectors individually based on the difference in casting processes used and subsequent potential for silica exposure. The table does not include captive foundries because the captive foundry operations are incorporated into the larger manufacturing process of the parent foundry.

Table IV.D-1—Summary of Technological Feasibility of Control Technologies in General and Maritime Industries and Construction Activities Affected by Silica Exposures

Industry Sector	Total No. of Affected Operations	No. of Operations for Which the Proposed PEL Is Achievable With Engineering Controls and Work Practice Controls	No. of Operations for Which the Proposed PEL Is <u>NOT</u> Achievable With Engineering Controls and Work Practice Controls	Overall Feasibility Finding for Industry Sector
Paint and Coatings	2	2	0	Feasible
Porcelain Enameling	2	2	0	Feasible
Pottery	5	5	0	Feasible
Railroads	5	5	0	Feasible
Ready-Mix Concrete	5	4	1	Feasible
Refractories	5	5	0	Feasible
Refractory Repair	1	1	0	Feasible
Shipyards (Maritime Industry)	2	1	1	Feasible
Structural Clay	3	3	0	Feasible
Totals	89	95.5%	4.5%	

Table IV.D-1—Summary of Technological Feasibility of Control Technologies in General and Maritime Industries and Construction Activities Affected by Silica Exposures

Construction Activity	Total No. of Affected Operations	No. of Operations for Which the Proposed PEL Is Achievable With Engineering Controls and Work Practice Controls	No. of Operations for Which the Proposed PEL Is <u>NOT</u> Achievable With Engineering Controls and Work Practice Controls	Overall Feasibility Finding for Activity
Abrasive Blasters	2	0	2	Not Feasible
Drywall Finishers	1	1	0	Feasible
Heavy Equipment Operators	1	1	0	Feasible
Hole Drillers Using Hand-Held Drills	1	1	0	Feasible
Jackhammer and Impact Drillers	1	1	0	Feasible
Masonry Cutters Using Portable Saws	3	3	0	Feasible
Masonry Cutters Using Stationary Saws	1	1	0	Feasible
Millers Using Portable and Mobile Machines	3	3	0	Feasible
Rock and Concrete Drillers	1	1	0	Feasible
Rock-Crushing Machine Operators and Tenders	1	1	0	Feasible
Tuckpointers and Grinders	3	1	2	Not Feasible
Underground Construction Workers	1	1	0	Feasible
Totals	19	78.9%	21.1%	

often contributes to exposures for other workers in a foundry. For small, medium, and large castings, exposure information with engineering controls in place show that exposures below 50 μ g/m³ can be consistently achieved, but exposures above an alternative PEL of 25 μ g/m³ still occur frequently. With engineering controls in place, exposure data for these operations range from 13 μ g/m³ to 53 μ g/m³, with many of the reported exposures above 25 μ g/m³.

In the construction industry, OSHA estimates that an alternative PEL of 25 μ g/m³ would be infeasible in most operations because most of them are high energy operations that produce significant levels of dust, causing workers to have elevated exposures, and available engineering controls would not be able to maintain exposures at or below the alternative PEL most of the time. For example, jackhammering is a high energy operation that creates a large volume of silica containing dust, which disburses rapidly in highly disturbed air. OSHA estimates that the exposure levels of most workers operating jackhammers outdoors will be reduced to less than $100 \ \mu g/m^3$ as an 8-hour TWA, by using either wet methods or LEV paired with a suitable vacuum.

OSHA believes that typically, the majority of jackhammering is performed for less than four hours of a worker's shift, and in these circumstances the Agency estimates that most workers will experience levels below $50~\mu g/m^3$. Jackhammer operators who work indoors or with multiple jackhammers will achieve similar results granted that the same engineering controls are used and that fresh air circulation is provided to prevent accumulation of respirable dust in a worker's vicinity. OSHA does not have any data indicating that these control strategies would reduce exposures of most workers to levels of $25~\mu g/m^3$ or less.

Overall Feasibility Determination

Based on the information presented in the technological feasibility analysis, the Agency believes that 50 $\mu g/m^3$ is the lowest feasible PEL. An alternative PEL of 25 $\mu g/m^3$ would not be feasible because the engineering and work practice controls identified to date will not be sufficient to consistently reduce exposures to levels below 25 $\mu g/m^3$ in most operations most of the time. In those circumstances respiratory protection would be necessary to comply with the alternative PEL. Additionally, the current methods of sampling analysis create higher errors and lower precision in measurement as concentrations of silica lower than the proposed PEL are analyzed. However, the Agency preliminarily concludes that these sampling and analytical methods are adequate to permit employers to comply with all applicable requirements triggered by the proposed action level and PEL.

CHAPTER V: COSTS OF COMPLIANCE

INTRODUCTION

This chapter assesses the costs to establishments in all affected industry sectors of reducing worker exposures to silica to an eight-hour time-weighted average (TWA) permissible exposure limit (PEL) of $50 \,\mu\text{g/m}^3$ and of complying with the proposed standard's ancillary requirements. This preliminary cost assessment is based on OSHA's technological feasibility analysis presented in Chapter IV of this PEA; analyses of the costs of the proposed standard conducted by OSHA's contractor, Eastern Research Group (ERG, 2007a, 2007b, and 2011); and the comments submitted to the docket as part of the SBREFA panel process.

OSHA estimates that the proposed standard will cost \$657.9 million per year in 2009 dollars. Of that total, \$146.7 million will be borne by the general industry and maritime sectors, and \$511.2 million will be borne by the construction sector. Costs originally estimated for earlier years were adjusted to 2009 dollars using the appropriate price indices. All costs were annualized using a discount rate of 7 percent, which—along with 3 percent—is one of the discount rates recommended by OMB; annualization periods for expenditures on equipment based on equipment life, and a 10-year annualization period for one-time costs. Note that the benefits of the proposed standard, discussed in Chapter VII of this PEA, were annualized over a 60-year period to reflect the time needed for benefits to reach steady-state values. Therefore, the time horizon of OSHA's analysis for this proposed rule is 60 years. Note that, over this time horizon, employment and production in affected industries are being held constant for purposes of the analysis. All non-annual costs are estimated to repeat over the 60-year time horizon, including one-time costs that recur because of changes in operations over time or because of new entrants that must comply with the proposed standard.² OSHA welcomes comment on the best assumptions for the purpose of this analysis, recognizing the uncertainties of long-term forecasts and the need for long-term forecasts to capture the full effects of the standard on benefits.

Table V-1 shows, by affected industry in general industry and maritime, annualized compliance costs for all establishments, annualized compliance costs for all small entities (as defined by the Small Business Act and the Small Business Administration's (SBA's) implementing regulations; see 15 U.S.C. 632 and 13 CFR 121.201), and annualized compliance costs for all very small entities (those with fewer than 20 employees). Tables V-2 shows, by affected industry in construction, annualized compliance costs for all entities, annualized compliance costs for all small entities, and annualized compliance costs for all very small entities.

OSHA's exposure profile, presented in Chapter III of this PEA, represents the Agency's best

¹ Appendix V-D of this PEA presents costs by NAICS industry and establishment size categories using, as alternatives, a 3 percent discount rate and a 0 percent discount rate. In the sensitivity analysis presented in Chapter VII of this PEA, OSHA compares the estimated cost of the proposed rule using the 7 percent discount rate to the estimated cost using these alternative discount rates.

² To the extent one-time costs do not recur, OSHA's cost estimates, when expressed as annualizations over a 10-year period, will overstate the cost of the proposed standard.

estimate of current exposures (i.e., baseline exposures). OSHA did not attempt to determine the extent to which current exposures in compliance with the current silica PELs are the result of baseline engineering controls or the result of circumstances leading to low exposures. This information is not needed to estimate the costs of (additional) engineering controls needed to comply with the proposed standard.

The estimated costs for the proposed silica rule represent the additional costs necessary for employers to achieve full compliance. They do not include costs associated with current compliance that has already been achieved with regard to the new requirements or costs necessary to achieve compliance with existing silica requirements, to the extent that some employers may currently not be fully complying with applicable regulatory requirements.

Because of the severe health hazards involved, the Agency expects that the estimated 15,446 abrasive blasters in the construction sector and the estimated 4,550 abrasive blasters in the maritime sector are currently wearing respirators as required by OSHA's abrasive blasting provisions (29 CFR 1915.154 (referencing 29 CFR 1910.134)). Furthermore, for the construction baseline, an estimated 241,269 workers, including abrasive blasters, will need to use respirators to achieve compliance with the proposed rule, and, based on the NIOSH/BLS respirator use survey (NIOSH/BLS, 2003), an estimated 56 percent of construction employees whose exposures are high enough that they would need respirators under the proposed rule currently use such respirators. OSHA estimates that 56 percent of affected construction employers already have respirator programs that meet OSHA's respirator standard. These employers are also assumed to be in compliance with the respiratory protection program requirements. OSHA has not estimated any respirator costs for employers and their workers currently in compliance with the respiratory provisions in the proposed rule.

In addition, under both the general industry and construction baselines, an estimated 50 percent of employers have pre-existing training programs that address silica-related risks (as required under OSHA's hazard communication standard) and partially satisfy the proposed rule's training requirements (for costing purposes, estimated to satisfy 50 percent of the training requirements in the proposed rule). These employers will need fewer resources to achieve full compliance with the proposed rule than those employers without pre-existing training programs that address silica-related risks.

Other than respiratory protection and worker training concerning silica-related risks, OSHA did not assume baseline compliance with any ancillary provisions, even though some employers have reported that they do currently monitor silica exposure and some employers have reported conducting medical surveillance.

The remainder of this chapter is organized as follows. First, unit and total costs by proposed provision are presented for general industry and maritime. Then, unit and total costs by proposed provision are presented for construction. The chapter concludes with a summary of the estimated costs of the proposed rule for all affected industries.

COSTS FOR GENERAL INDUSTRY AND MARITIME

Estimation of the costs of the proposed rule for general industry and maritime is broken out below for three categories of costs: (1) control costs to comply with the proposed PEL of 50 $\mu g/m^3$; (2) respirator costs, in those cases where engineering controls are not sufficient to guarantee compliance with the proposed PEL; and (3) "program" costs to comply with the ancillary provisions of the rule.

Table V-1: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Proposed Silica Standard

NAICS	Industry	All Establish- ments	Small Firms (SBA-defined)	Very Small Entities (<20 Employees)
324121	Asphalt paving mixture and block manufacturing	\$242,070	\$140,305	\$27,770
324122	Asphalt shingle and roofing materials	\$3,157,257	\$872,614	\$85,253
325510	Paint and coating manufacturing	\$144,281	\$71,718	\$18,910
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,659,194	\$231,845	\$26,606
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,601,471	\$1,854,472	\$747,902
327113	Porcelain electrical supply mfg	\$1,748,297	\$1,004,480	\$79,824
327121	Brick and structural clay mfg	\$7,838,050	\$3,062,272	\$76,696
327122	Ceramic wall and floor tile mfg	\$4,132,107	\$2,189,278	\$382,871
327123	Other structural clay product mfg	\$936,699	\$510,811	\$67,176
327124	Clay refractory manufacturing	\$482,438	\$212,965	\$29,861
327125	Nonclay refractory manufacturing	\$608,017	\$211,512	\$34,061
327211	Flat glass manufacturing	\$275,155	\$275,155	\$4,450
327212	Other pressed and blown glass and glassware manufacturing	\$1,084,706	\$243,132	\$87,895
327213	Glass container manufacturing	\$756,888	\$57,797	\$4,798
327320	Ready-mixed concrete manufacturing	\$16,511,080	\$10,490,561	\$1,897,131
327331	Concrete block and brick mfg	\$4,437,939	\$2,862,910	\$544,975
327332	Concrete pipe mfg	\$2,747,484	\$1,441,766	\$116,670
327390	Other concrete product mfg	\$12,900,251	\$8,826,516	\$1,885,496
327991	Cut stone and stone product manufacturing	\$8,600,298	\$8,028,431	\$2,753,051
327992	Ground or treated mineral and earth manufacturing	\$4,595,006	\$2,108,649	\$389,745
327993	Mineral wool manufacturing	\$1,094,552	\$291,145	\$48,575
327999	All other misc. nonmetallic mineral product mfg	\$1,966,052	\$1,130,230	\$311,859
331111	Iron and steel mills	\$424,557	\$424,557	\$9,342
331112	Electrometallurgical ferroalloy product manufacturing	\$8,577	\$4,987	\$0
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$84,537	\$84,537	\$1,706
331221	Rolled steel shape manufacturing	\$42,672	\$42,672	\$1,612
331222	Steel wire drawing	\$57,557	\$57,557	\$2,939
331314	Secondary smelting and alloying of aluminum	\$28,757	\$15,277	\$1,254
331423	Secondary smelting, refining, and alloying of copper	\$4,940	\$4,206	\$0

Table V-1: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Proposed Silica Standard (continued)

NAICS	Industry	All Establish- ments	Small Firms (SBA- defined)	Very Small Entities (<20 Employees)	
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$36,946	\$18,357	\$2,897	
331511	Iron foundries	\$15,310,815	\$5,312,382	\$330,543	
331512	Steel investment foundries	\$4,283,138	\$1,705,373	\$47,902	
331513	Steel foundries (except investment)	\$4,596,837	\$2,521,998	\$162,670	
331524	Aluminum foundries (except die-casting)	\$6,975,150	\$4,316,135	\$503,027	
331525	Copper foundries (except die-casting)	\$1,636,463	\$1,596,288	\$370,110	
331528	Other nonferrous foundries (except die-casting)	\$1,232,708	\$620,344	\$162,043	
332111	Iron and steel forging	\$105,955	\$47,376	\$4,089	
332112	Nonferrous forging	\$34,982	\$13,056	\$784	
332115	Crown and closure manufacturing	\$12,720	\$5,080	\$992	
332116	Metal stamping	\$255,832	\$212,110	\$27,154	
332117	Powder metallurgy part manufacturing	\$32,828	\$17,537	\$2,072	
332211	Cutlery and flatware (except precious) manufacturing	\$22,970	\$10,419	\$2,217	
332212	Hand and edge tool manufacturing	\$145,223	\$87,599	\$19,535	
332213	Saw blade and handsaw manufacturing	\$28,851	\$9,221	\$2,296	
332214	Kitchen utensil, pot, and pan manufacturing	\$15,678	\$10,475	\$0	
332323	Ornamental and architectural metal work	\$35,267	\$28,608	\$9,527	
332439	Other metal container manufacturing	\$60,330	\$43,857	\$5,279	
332510	Hardware manufacturing	\$180,292	\$78,538	\$11,863	
332611	Spring (heavy gauge) manufacturing	\$16,158	\$14,071	\$1,927	
332612	Spring (light gauge) manufacturing	\$60,992	\$36,826	\$4,960	
332618	Other fabricated wire product manufacturing	\$144,819	\$113,603	\$19,946	
332710	Machine shops	\$1,077,759	\$1,032,483	\$416,115	
332812	Metal coating and allied services	\$3,038,935	\$2,492,357	\$613,903	
332911	Industrial valve manufacturing	\$150,261	\$53,520	\$5,886	
332912	Fluid power valve and hose fitting manufacturing	\$140,213	\$41,712	\$4,491	
332913	Plumbing fixture fitting and trim manufacturing	\$45,472	\$19,037	\$1,505	
332919	Other metal valve and pipe fitting manufacturing	\$71,354	\$30,618	\$2,710	
332991	Ball and roller bearing manufacturing	\$107,338	\$13,624	\$1,132	
332996	Fabricated pipe and pipe fitting manufacturing	\$107,219	\$74,633	\$12,453	
332997	Industrial pattern manufacturing	\$20,891	\$20,767	\$8,917	
332998	Enameled iron and metal sanitary ware manufacturing	\$60,684	\$13,779	\$3,287	

Table V-1: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Proposed Silica Standard (continued)

NAICS	Industry	All Establish- ments	Small Firms (SBA- defined)	Very Small Entities (<20 Employees)
332999	All other miscellaneous fabricated metal product manufacturing	\$288,093	\$230,825	\$55,981
333319	Other commercial and service industry machinery manufacturing	\$209,273	\$123,816	\$19,776
333411	Air purification equipment manufacturing	\$58,265	\$27,021	\$4,745
333412	Industrial and commercial fan and blower manufacturing	\$41,212	\$27,149	\$1,675
333414	Heating equipment (except warm air furnaces) manufacturing	\$80,754	\$45,308	\$6,087
333511	Industrial mold manufacturing	\$160,131	\$143,216	\$43,738
333512	Machine tool (metal cutting types) manufacturing	\$68,151	\$44,845	\$8,756
333513	Machine tool (metal forming types) manufacturing	\$33,940	\$30,365	\$4,666
333514	Special die and tool, die set, jig, and fixture manufacturing	\$231,988	\$203,742	\$65,867
333515	Cutting tool and machine tool accessory manufacturing	\$139,916	\$104,313	\$31,406
333516	Rolling mill machinery and equipment manufacturing	\$12,279	\$9,604	\$1,361
333518	Other metalworking machinery manufacturing	\$50,002	\$38,359	\$6,766
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$48,452	\$25,087	\$3,318
333613	Mechanical power transmission equipment manufacturing	\$61,197	\$26,182	\$3,114
333911	Pump and pumping equipment manufacturing	\$121,086	\$41,360	\$7,209
333912	Air and gas compressor manufacturing	\$84,518	\$23,948	\$4,228
333991	Power-driven handtool manufacturing	\$34,459	\$9,867	\$2,212
333992	Welding and soldering equipment manufacturing	\$62,401	\$23,144	\$3,835
333993	Packaging machinery manufacturing	\$83,714	\$54,872	\$9,742
333994	Industrial process furnace and oven manufacturing	\$42,523	\$34,418	\$5,631
333995	Fluid power cylinder and actuator manufacturing	\$78,057	\$32,249	\$3,955
333996	Fluid power pump and motor manufacturing	\$53,535	\$15,258	\$2,670
333997	Scale and balance (except laboratory) manufacturing	\$14,822	\$12,129	\$1,947
333999	All other miscellaneous general purpose machinery manufacturing	\$207,006	\$123,384	\$32,637
334518	Watch, clock, and part manufacturing	\$8,740	\$6,646	\$1,322

Table V-1: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Proposed Silica Standard (continued)

NAICS	Industry	All Establish- ments	Small Firms (SBA- defined)	Very Small Entities (<20 Employees)
335211	Electric housewares and household fans	\$13,928	\$3,326	\$0
335221	Household cooking appliance manufacturing	\$30,077	\$6,521	\$722
335222	Household refrigerator and home freezer manufacturing	\$32,118	\$32,118	\$0
335224	Household laundry equipment manufacturing	\$30,521	\$30,521	\$0
335228	Other major household appliance manufacturing	\$24,023	\$1,917	\$0
336111	Automobile manufacturing	\$293,357	\$293,357	\$2,147
336112	Light truck and utility vehicle manufacturing	\$404,778	\$404,778	\$795
336120	Heavy duty truck manufacturing	\$125,181	\$125,181	\$943
336211	Motor vehicle body manufacturing	\$187,131	\$187,131	\$12,371
336212	Truck trailer manufacturing	\$126,512	\$54,137	\$5,147
336213	Motor home manufacturing	\$84,073	\$84,073	\$1,193
336311	Carburetor, piston, piston ring, and valve manufacturing	\$41,219	\$10,269	\$1,329
336312	Gasoline engine and engine parts manufacturing	\$258,625	\$65,767	\$11,683
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$242,586	\$71,423	\$8,618
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$153,960	\$25,492	\$2,876
336340	Motor vehicle brake system manufacturing	\$132,114	\$32,886	\$2,386
336350	Motor vehicle transmission and power train parts manufacturing	\$327,377	\$46,869	\$6,390
336370	Motor vehicle metal stamping	\$431,985	\$159,156	\$5,759
336399	All other motor vehicle parts manufacturing	\$583,803	\$169,401	\$16,021
336611	Ship building and repair	\$8,749,619	\$8,749,619	\$212,021
336612	Boat building	\$5,479,624	\$2,612,088	\$391,950
336992	Military armored vehicle, tank, and tank component manufacturing	\$27,227	\$27,227	\$0
337215	Showcase, partition, shelving, and locker manufacturing	\$233,720	\$176,800	\$28,216
339114	Dental equipment and supplies manufacturing	\$351,955	\$261,393	\$79,876
339116	Dental laboratories	\$1,439,004	\$1,397,271	\$1,040,112
339911	Jewelry (except costume) manufacturing	\$1,560,353	\$1,392,054	\$533,353
339913	Jewelers' materials and lapidary work manufacturing	\$320,878	\$257,285	\$86,465
339914	Costume jewelry and novelty manufacturing	\$236,821	\$242,158	\$100,556
339950	Sign manufacturing	\$294,919	\$264,810	\$89,586

Table V-1: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Proposed Silica Standard (continued)

NAICS	Industry	All Establish- ments	Small Firms (SBA- defined)	Very Small Entities (<20 Employees)
423840	Industrial supplies, wholesalers	\$177,299	\$143,614	\$50,612
482110	Rail transportation	\$2,452,073	N/A	N/A
621210	Dental offices	\$389,256	\$370,174	\$320,986
	Total	\$146,726,595	\$86,520,059	\$15,745,425

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

Table V-2: Annualized Costs, by Industry for Construction Establishments Affected by the Proposed Silica Standard

NAICS	Industry	All Establish- ments	Small Firms (SBA- defined)	Very Small Entities
236100	Residential Building Construction	\$23,288,881	\$18,527,934	\$13,837,293
236200	Nonresidential Building Construction	\$39,664,913	\$24,443,185	\$10,777,269
237100	Utility System Construction	\$46,718,413	\$30,733,201	\$8,578,771
237200	Land Subdivision	\$1,110,789	\$546,331	\$546,331
237300	Highway, Street, and Bridge Construction	\$30,807,861	\$13,756,992	\$4,518,038
237900	Other Heavy and Civil Engineering Construction	\$7,164,210	\$5,427,484	\$1,650,007
238100	Foundation, Structure, and Building Exterior Contractors	\$215,907,211	\$152,160,159	\$81,822,550
238200	Building Equipment Contractors	\$4,902,138	\$3,399,252	\$1,839,588
238300	Building Finishing Contractors	\$50,259,239	\$36,777,673	\$21,884,973
238900	Other Specialty Trade Contractors	\$68,003,978	\$53,432,213	\$30,936,078
999000	State and local governments [a]	\$23,338,234	\$2,995,955	N/A
	Totals	\$511,165,867	\$342,200,381	\$176,390,899

[[]a] Applies to state and local governments in State-Plan States.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

Control Costs

Unit Control Costs

Methodology

ERG generated cost estimates for specific respirable crystalline silica control measures from product and technical literature, equipment vendors, industrial engineers, industrial hygienists, and other sources, as relevant to each item. Specific sources for each estimate are presented with the cost estimates. Wherever possible, objective cost estimates from recognized technical sources were used. Table V-3 provides details on control specifications and data sources underlying OSHA's unit cost estimates. OSHA invites comment on the accuracy of these unit costs.

Table V-3:
Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry and Maritime

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment
Saw enclosure	8'x8'x8' wood/plastic	N/A	\$487.70	\$48.77	\$118.95	Fabrication costs associated with inplant work. Five-year life.
Cab enclosures	Enclosed cabs	N/A	\$15,164.82	\$5,307.69	\$3,698.56	
LEV for hand held grinders	Shrouds + vacuum	N/A	\$1,671.63	\$585.07	\$407.70	Vacuum plus shroud adapter (http://www.proventilation.com/produc ts/productDetail.asp?id=15); 35% for maintenance and operating costs.
Upgraded abrasive blast cabinet	Improved maintenance and purchases for some	N/A	\$4,666.10	\$1,000.00	\$664.35	Additional maintenance (of up to \$2,000) or new cabinets (\$8,000) (Norton, 2003)
Improved spray booth for pottery	Maintenance time & materials	N/A	\$116.65	\$114.68	\$231.33	Annual: \$100 materials plus 4 hours maintenance time
Improved LEV for ceramics spray booth	Increased air flow; per cfm	N/A	\$3.21	\$0.88	\$3.21	25% of installed CFM price
Exhaust for saw, cut stone industry	Based on saw LEV (e.g., pg. 10-158, 159, 160, ACGIH, 2001)	450	\$5,774.30	\$1,577.35	\$822.13	Typical saw cfm requirements.
LEV for hand chipping in cut stone	Granite cutting and finishing; (pg. 10-94, ACGIH, 2001)	600	\$7,699.06	\$2,103.14	\$1,096.17	
Exhaust trimming machine	Based on abrasive cut-off saw; (pg. 10- 134) (ACGIH, 2001)	500	\$6,415.89	\$1,752.61	\$913.48	Opening of 2 sq ft assumed, with 250 cfm per ft ²
Bag opening	Bag opening station; (pg. 10-19, ACGIH, 2001)	1,513	\$19,414.48	\$5,303.41	\$2,764.18	3.5'x1.5' opening; with ventilated bag crusher (200 cfm)
Conveyor ventilation	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001)	700	\$8,982.24	\$2,453.66	\$1,278.87	Per take-off point, 2' wide belt.
Bucket elevator ventilation	Bucket elevator ventilation (pg. 10- 68; ACGIH, 2001)	1,600	\$20,530.84	\$5,608.36	\$2,923.13	2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq ft of cross section

Table V-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry and Maritime (continued)

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment
Bin and hopper ventilation	Bin and hopper ventilation (pg. 10- 69; ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	350 cfm per ft ² ; 3' belt width
Screen ventilation	Ventilated screen (pg. 10-173, ACGIH, 2001)	1,200	\$15,398.13	\$4,206.27	\$2,192.35	4'x6' screen; 50 cfm per ft ²
Batch operator workstation	Bin & hopper ventilation for unvented mixers (pg. 10-69, ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	
LEV for hand grinding operator (pottery)	Hand grinding bench (pg. 10-135, ACGIH, 2001)	3,750	\$48,119.16	\$13,144.60	\$6,851.09	
LEV, mixer and muller hood	Mixer & muller hood (pg. 10-87, ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	
LEV for bag filling stations	Bag filling station (pg. 10-15, ACGIH, 2001)	1,500	\$19,247.66	\$5,257.84	\$2,740.43	Includes costs for air shower
Installed manual spray mister	Manual controls, system covers 100 ft of conveyor	N/A	\$10,207.09	\$1,020.71	\$1,453.26	National Environmental Services Company (Kestner, 2003).
Install cleaning hoses, reslope floor, drainage	Plumbing for hose installations, floor resloping and troughs	N/A	\$36,412.40	\$3,258.87	\$5,184.31	Includes cost of water and labor time.
Shakeout conveyor enclosure	Ventilated shakeout conveyor enclosure	10,000	\$128,317.75	\$35,052.26	\$18,269.56	
Shakeout side- draft ventilation	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001)	28,800	\$369,555.11	\$100,950.52	\$52,616.33	
Shakeout enclosing hood	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings	7,040	\$90,335.69	\$24,676.79	\$12,861.77	

Table V-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry and Maritime (continued)

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment	
Small knockout table	Portable grinding table (pg. 10-136, ACGIH, 2001), 3'x3' opening	1,350	\$17,322.90	\$4,732.06	\$2,466.39		
Large knockout table	Hand grinding table (pg. 10-135, ACGIH, 2001), 4'x6' surface	4,800	\$61,592.52	\$16,825.09	\$8,769.39		
Ventilated abrasive cutoff saw	Ventilated cut-off saw (pg. 10-134, ACGIH, 2001), 2'x3' opening	1,500	\$19,247.66	\$5,257.84	\$2,740.43		
Hand grinding bench (foundry)	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'	3,750	\$48,119.16	\$13,144.60	\$6,851.09	250 cfm per ft ²	
Forming operator bench (pottery)	Bench with LEV (pg. 10-149, ACGIH, 2001), 3'x4'	1,400	\$17,964.48	\$4,907.32	\$2,557.74	125 cfm per linear foot	
Hand grinding bench (pottery)	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x4'	2,400	\$30,796.26	\$8,412.54	\$4,384.69	200 cfm per ft ² .	
Hand tool hardware	Retrofit suction attachment	200	\$464.21	\$701.05	\$66.09		
Clean air island	Clean air supplied directly to worker	2,500	\$32,079.44	\$8,763.07	\$4,567.39	125 cfm per ft ² for 20 square feet	
Water fed chipping equipment drum cleaning	Shop-built water feed equipment	N/A	\$116.65	\$0.00	\$116.65	\$100 in annual costs	
Ventilation for drum cleaning	Ventilation blower and ducting	N/A	\$792.74	\$198.18	\$193.34	Electric blower (1,277 cfm) and 25 ft. of duct. Northern Safety Co. (p. 193)	
Control room	10'x10' ventilated control room with HEPA filter	200	\$19,556.79	\$701.05	\$2,784.45	RSMeans (2003), ACGIH (2001)	
Control room improvement	Repair and improve control room enclosure	N/A	\$2,240.00	N/A	\$318.93	Repairs are 20% of new control room cost.	
Improved bag valves	Bags with extended polyethylene valve, incremental cost per bag	N/A	\$0.01	N/A	N/A	Cecala et. al., (1986)	

Table V-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry and Maritime (continued)

	una martimo (continuca)								
Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment			
Dust suppressants	Kleen Products 50 lb poly bag green sweeping compound	N/A	N/A	\$634.54	\$0.00	\$0.28/lb, 2 lbs/day; 5 minutes/day Fastenal (2007).			
HEPA vacuum for housekeeping	NILFISK VT60 wet/dry hepa vac, 15 gal	N/A	\$3,494.85	\$511.20	\$852.36	Nilfisk, HEPA vacuum (http://www.sylvane.com/nilfisk.html)			
HEPA vacuum for housekeeping	NILFISK, large capacity	N/A	\$7,699.06	\$988.90	\$1,877.73	Nilfisk, HEPA vacuum (McCarthy, 2003)			
Yard dust suppression	100 ft, 1" contractor hose and nozzle	N/A	\$204.14	\$0.00	\$112.91	Contactor hose and nozzle; 2 year life; (www.pwmall.com)			
Wet methods to clean concrete mixing equip.	10 mins per day per operator	N/A	\$0.00	\$916.82	\$0.00	10 mins per day per mixer operator			
HEPA vacuum substitute for compressed air	Incremental time to remove dust by vacuum	N/A	N/A	\$494.54	\$0.00	5 min per day per affected worker			
Spray system for wet concrete finishing	Shop-built sprayer system	N/A	\$204.67	\$20.47	\$113.20	\$100 in materials and 4 hours to fabricate. Also 10% for maintenance			
Substitute alt., non-silica, blasting media	Alternative media estimated to cost 22 percent more	N/A	\$0.00	\$33,646.00	\$0.00	212,000 square feet of coverage per year per crew			

[[]a] For local exhaust ventilation (LEV), maintenance, and conveyor covers, OSHA applied the following estimates:

LEV: capital cost = \$12.83 per cfm; operating cost = \$3.51 per cfm; annualized capital cost = \$1.83 per cfm; based on current energy prices and the estimates of consultants to ERG (2011)

Maintenance: estimated as 10% of capital cost

Conveyor Covers: estimated as \$17. $\dot{1}$ 0 per linear foot for 100 ft. (Landola, 2003); capital cost = \$19.95 per linear ft., including all hardware; annualized capital cost = \$2.84 per linear ft.

[b] Adjusted from 2003 price levels using an inflation factor of 1.166, calculated as the ratio of average annual GDP Implicit Price Deflator for 2009 and 2003. Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

In developing cost estimates, ERG made a variety of estimates about the size or scope of the engineering or work practice changes necessary to reduce silica exposures. These estimates reflect the representative conditions for the affected workers based on technical literature, judgments of knowledgeable consultants and industry observers, and other sources. The estimates are specified in the cost analysis tables with other cost source information. A detailed list of the specific costing assumptions and information sources for each control, grouped by job category or industry sector, is shown in Appendix V-A, Table V-A-1 (whereas the data in Table V-3 apply across job and sector categories).

In order to estimate costs in a consistent manner and in a way that allowed them to be combined with the exposure profile, OSHA defined all costs on an annual basis. For capital costs, OSHA calculated the annualized capital cost, using a 7 percent discount rate over the expected lifetime of the capital item. The capital costs for long-lasting capital items (such as ventilation system improvements) were annualized over 10 years. OSHA estimated that, in the general industry and maritime sectors, any capital expenditure would also entail maintenance costs equal to 10 percent of the value of the capital investment annually. Some controls required only improved maintenance for existing equipment, such as abrasive blasting booths. In these cases, the costs were based on judgments of the amount of incremental maintenance work required per year.

Per-Worker Basis for Cost Calculations

Following ERG's methodology. OSHA estimated control costs on a per-worker basis. allowing the costs to be related directly to the estimates of overexposed workers. OSHA then multiplied the estimated control cost per worker by the numbers of overexposed workers for both the proposed PEL of 50 µg/m³ and the alternative PEL of 100 µg/m³, introduced for economic analysis purposes. The numbers of workers needing controls (i.e., workers overexposed) are based on the exposure profiles for at-risk occupations developed in the technological feasibility analysis in Chapter IV of this PEA and estimates of the number of workers employed in these occupations developed in the industry profile in Chapter III of this PEA. This worker-based method is necessary because, even though the Agency has data on the number of firms in each affected industry, on the occupations and industrial activities with worker exposure to silica, on exposure profiles of at-risk occupations, and on the costs of controlling silica exposure for specific industrial activities, OSHA does not have a way to match up these data at the firm level. Nor does OSHA have facility-specific data on worker exposure to silica or even facility-specific data on the level of activity involving worker exposure to silica. Thus, OSHA could not directly estimate per-affected-facility costs, but instead, first had to estimate aggregate compliance costs and then calculate the average per-affected-facility costs by dividing aggregate costs by the number of affected facilities.

In general, OSHA viewed the extent to which exposure controls are already in place to be reflected in the distribution of overexposures among the affected workers. Thus, for example, if 50 percent of workers in a given occupation are found to be overexposed relative to the proposed silica PEL, OSHA judged this equivalent to 50 percent of facilities lacking the relevant exposure controls. The remaining 50 percent of facilities are expected either to have installed the relevant controls or to engage in activities that do not

require that the exposure controls be in place. To estimate the need for incremental controls on a per-worker basis, OSHA used the exposure profile information as the best available data.

There are two situations in which the proportionality assumption may oversimplify the estimation of the costs of the needed controls. First, some facilities may have the relevant controls in place but are still unable, for whatever reason, to achieve the PEL under consideration for all employees. ERG's review of the industrial hygiene literature and other source materials (as noted in ERG, 2007b, pg. 3-4), however, suggest that the large majority of overexposed workers lack relevant controls. Thus, OSHA has generally assumed that overexposures occur due to the absence of suitable controls. This assumption could, in some cases, result in an overestimate of costs where employers merely need to upgrade or better maintain existing controls or to improve work practices rather than to install and maintain new controls. Second, there may be situations where facilities do not have the relevant controls in place but nevertheless have only a fraction of all affected employees above the PEL. If, in such situations, an employer would have to install all the controls necessary to meet the PEL, OSHA would have underestimated the control costs. However, OSHA believes that, in general, employers could come into compliance by such methods as checking the work practices of the employee who is above the PEL or installing smaller amounts of LEV at costs that would be more or less proportional to the costs estimated using the assumption that all employees are exposed above the PEL. Nevertheless, there may be situations in which a complete set of controls would be necessary if even one employee in a work area is above the PEL. OSHA welcomes comment on the extent to which the estimation approach may yield underestimates or overestimates of costs.

Number of Workers Covered by a Control

The cost calculations include estimates of the number of workers whose exposures are addressed by each engineering control. Because working arrangements vary within occupations and across facilities of different sizes, there are no definitive data on how many workers are likely to be covered by a given set of controls. In many small facilities, especially those that might operate only one shift per day, some controls will limit exposures for only a single worker. Also, small facilities might have only one worker in certain affected occupational categories. More commonly, however, and especially in the principal production operations, several workers are likely to derive health benefits from each enhanced engineering control.

ERG made case-specific judgments of the number of workers affected by each engineering control (see Table 3-3 in ERG, 2007b). Many controls were estimated to benefit four workers, based on the judgment that there is often multi-shift work and that many work stations are shared by at least one other worker per shift. The costs of engineering controls involving equipment that is usable by multiple employees, such as High-Efficiency Particulate Air (HEPA) vacuums, were spread over larger groups of employees (e.g., six to eight workers).

Ventilation Costs

At many workstations, employers must improve ventilation to reduce silica exposures. Ventilation improvements will take a variety of forms at different workstations and in different facilities and industries. The cost of ventilation enhancements generally reflects the expense of ductwork and other equipment for the immediate workstation or individual location and, potentially, the cost of incremental capacity system-wide enhancements and increased operating costs for the heating, ventilation, and air conditioning (HVAC) system for the facility.

In considering the specific ventilation enhancements for given occupations, ERG (2007b) forecasted the type of local exhaust ventilation (LEV) and the approximate quantity in cubic feet per minute (cfm) of air flow required to reduce worker exposures. Facility-specific information on the extent and characteristics of the existing facility workplace ventilation systems was generally lacking. Nevertheless, OSHA judges that most ventilation enhancements will be incremental to existing workplace ventilation systems. Where workplaces have ventilation systems currently in place, compliant ventilation enhancements will often require that the existing systems be entirely replaced, the reason being that supplementing existing ventilation systems in an incremental fashion is not always cost-effective. Thus, to the extent that there exist ventilation systems where minor enhancement to air flow capacity could help achieve compliance cost-effectively, OSHA's preliminary cost analysis may not give full credit (in terms of cost reductions) for such inplace ventilation systems. In any case, as discussed in Chapter IV of this PEA on technological feasibility, the baseline conditions for most affected workers do not include significant baseline ventilation controls.

To develop generally applicable ventilation cost estimates, ERG worked with industrial hygienists and plant ventilation engineering specialists to derive workstation and facility-wide costs of LEV enhancements. ERG defined a set of workstation-specific and facility-wide ventilation estimates using suggested ventilation approaches described in the Industrial Ventilation Manual, 24th edition (ACGIH, 2001). ERG determined that over a wide range of circumstances, ventilation enhancement costs, which include a cost factor for HEPA filters and baghouses where needed, varied from roughly \$9 per cfm to perhaps \$18 per cfm. Because ERG lacked detailed data to estimate the specific ventilation installation costs for a given facility, ERG used an estimate of the likely average capital cost per cfm and applied it to all ventilation enhancements. Based on discussion with ventilation specialists, ERG judged that \$12.83 per cfm is a reasonable overall representation of the likely capital costs of ventilation enhancements. OSHA recognizes that some installations, including some small facilities, might incur higher capital costs per cfm. Nevertheless, OSHA believes that this unit capital cost (\$12.83 per cfm) is suitably representative of the wide range of facilities requiring ventilation enhancements.

OSHA applied the per-cfm capital cost estimate to estimated cfm requirements for each workstation. In using the unit value (\$12.83 per cfm), the cost estimates for each ventilation enhancement include both the cost of the LEV enhancement at the workstation

³ This unit value (\$12.83 per cfm) was derived by inflating ERG's 2003 estimate of \$11 to 2009 dollars using the implicit price deflator of 1.167.

and the contribution of the enhancement to the overall facility ventilation system requirements. That is, each ventilation enhancement at a workstation will generate costs because of the immediate LEV installation and because of its use of general facility ventilation system capacity.

For operating costs, ERG's engineering consultants analyzed the costs of heating and cooling system operation for 12 widely distributed U.S. cities. The analysis, presented in Table 3-2 in the ERG report (ERG, 2007b), shows the heating and cooling British Thermal Unit (BTU) requirements for 60-hours-a-week operation (12 hours a day, Monday through Friday) or for a continuous 24-hour-a-day, year-round operation, with and without recirculation of plant air. Facilities that recirculate air have much lower ventilation system operating costs because they incur sharply lower costs to condition the air and eliminate the operating costs for the air makeup system.

Ventilation operating costs are based on a weighted average of the costs of four operating scenarios: 1) no recirculated air, continuous operation; 2) no recirculated air, operating 60 hours per week; 3) recirculated HEPA filtered air, continuous operation; and 4) recirculated HEPA filtered air, operating 60 hours per week. These scenarios were chosen to reflect the various types of operating system characteristics likely to be found among affected facilities. The weights and operating costs for each of these scenarios are shown below:

Ventilation Cost Averaging Assumptions						
Type of system	Average Cost per CFM	Share of Total				
No recirculated air, continuous operation	\$15.55	5.0%				
No recirculated air, operating 60 hours per week	\$5.78	15.0%				
Recirculated HEPA filtered air, continuous operation	\$1.40	20.0%				
Recirculated HEPA filtered air, operating 60 hours per week (cost proportional to the number of hours operated)	\$0.50	60.0%				
Weighted average cost per CFM	\$2.22					

ERG estimated the national average annual operating cost per cfm at \$2.22. This estimate is a weighted average of the operating costs for facilities that recirculate air and those that require make-up air. The operating costs for HEPA-filter recirculated air were estimated at \$0.50 cents per cfm for facilities operating 12 hours per day (60 hours per week), and \$1.40 per cfm for those continuously operating 24 hours per day. The operating costs for facilities that do not recirculate air are \$5.78 per cfm and \$15.55 per cfm, respectively. In generating these estimates, ERG judged, on the basis of consultations with industry experts, that 80 percent of facilities would recirculate airflow, and that 75 percent within each group operate for 12 hours per day on weekdays, with the remainder operating continuously year-round for 24 hours a day. The assumptions about air recirculation have a substantial effect on the operating costs for the ventilation system.

ERG also added a maintenance factor to the operating cost estimates, which is equivalent to 10% of the capital cost investments of \$12.83 per cfm for ventilation systems.

Underlying the cost results is the assumption that, over the course of the proposed oneyear compliance period for engineering controls, employers would schedule installation of ventilation to minimize disruption of production, just as they would with any modification to their plant. OSHA welcomes comment and data on disruptions facilities might experience as a result of engineering control installation.

Other Control Cost Categories

Housekeeping and Dust Suppression Costs

For a number of occupations, the technological feasibility analysis indicates that improved housekeeping practices are needed to reduce silica exposures. The degree of incremental housekeeping depends upon how dusty the operations are and the applicability of HEPA vacuums or other equipment to the dust problem. The incremental costs for most such occupations reflect labor associated with additional housekeeping efforts. Because the incremental housekeeping labor will be required on virtually every work shift by most of the affected occupations, the costs of housekeeping are substantial. Employers also need to purchase HEPA vacuums and to incur the ongoing costs of HEPA vacuum filters. Tables V-A-1, V-A-2, and V-A-3 in Appendix V-A provide detailed specifications on the application of housekeeping and other dust-suppression controls in each occupational category and the sources of OSHA's unit cost data for such controls.

Some workplaces also must eliminate the use of compressed air in housekeeping tasks because it increases potential silica dust exposures. Employers in these workplaces would need to substitute wet cleaning or vacuum methods in place of compressed air. OSHA projects that these changes to controls will generate incremental housekeeping labor costs.

For some indoor dust suppression tasks, ERG assumed that dust suppression mixes are spread over the areas to be swept. These mixes are often sawdust-based with oil or other material that adheres to dust and allows it to be swept up without becoming airborne. For these products, ERG estimated usage rates and the incremental times necessary to employ them in housekeeping tasks.

For outdoor dust suppression, workers must often spray water over storage piles and raw material receiving areas. The methods by which water is provided can vary widely, from water trucks to available hoses. ERG judged that most facilities would make hoses available for spraying and that spraying requires a materials-handling worker to devote part of the workday to lightly spray the area for dust control.

Conveyor Covers and Other Enclosures

The technological feasibility analysis recommends reduction of silica exposures by enclosure of process equipment, such as conveyors, particularly where silica-containing materials are transferred (and notable quantities of dust become airborne), or where dust is generated, such as in sawing or grinding operations. ERG estimated the capital costs of conveyor covers as \$19.95 per linear foot for 100 feet, based on Landola (2003), updated to 2009 dollars, and estimated the quantity of conveyors (measured in linear feet) to be

covered (as summarized in footnote a in Table V-3).

Substitution of Low- or Non-Silica Inputs

For several industries, employers might lower silica exposures by substituting low- or non-silica inputs for existing inputs. While this option can be an extremely effective method for controlling silica in many industries, ERG did not cost this option. ERG determined that there were often complicating factors that restricted the potential for broad substitution of non-silica inputs throughout industry. For example, some products made with substitute ingredients were judged to be inferior in quality and potentially not viable in the market. In addition, the substitute silica ingredient might introduce adverse health risks of its own. Further, in several instances, the availability for use of reasonably inexpensive alternative non-silica ingredients was well known but the alternative was not selected as a control option by most firms. In light of these concerns, ERG opted not to include the option of non-silica substitutes in estimating the cost of the proposed rule.⁴

Selected Options That Are Not Costed

Consistent with ERG's cost model, OSHA chose not to estimate costs for some control options mentioned in the accompanying technological feasibility analysis in Chapter IV of this PEA. In these cases, ERG judged that other control options for a specific at-risk occupation were sufficient to meet the PEL.

Aggregate Control Costs

Table V-A-2 in Appendix V-A shows, by job category within affected sectors, the capital cost and annualized cost of individual engineering controls, the LEV requirements in cfm (where applicable), the number of workers whose exposure is reduced for each control, and the associated cost per worker. As the table indicates, a large variety of controls must be applied in the affected industrial sectors. Some sectors rely primarily on dust reduction and dust management techniques, with only a few ventilation enhancements. Other sectors, such as the dustiest operations (foundries, structural clay), are expected to require a variety of ventilation enhancements to achieve compliance with the proposed PEL.

⁴ OSHA recognized that some silica substitutes are already being used for some industrial activities. To the extent that the proposed rule induces some firms to switch to less costly silica substitutes, OSHA will have overestimated the costs of the proposed rule. Offsetting OSHA's potential overestimate of costs would be any negative adverse health effects associated with silica substitutes. Thus, the response of affected firms to switch to substitutes could lower both the costs and the benefits of the proposed rule.

Table V-A-1 in Appendix V-A details the sources and bases for each of the specific control cost estimates. Some additional detail about the specific control technologies is provided in Chapter IV of this PEA.

Costs for Abrasive Blasting in Maritime Industries

Based on ERG (2011), OSHA estimated the control costs for abrasive blasters in maritime industries. Table V-4 presents the unit costs and analytical assumptions underlying OSHA's cost analysis of controlling silica exposures during abrasive blasting operations. As shown in the table, after accounting for the number of affected workers, crew size, daily output, blasting cost per square foot, number of blasting days per year, and the percentage of crews using sand, OSHA estimates that baseline annual costs for sand blasting in maritime industries total \$85.3 million. According to ERG (2011), the incremental cost for wet blasting is equal to 30 percent of baseline costs; ERG further estimates that 50 percent of crews currently use wet methods. Therefore, the costs to comply with the proposed standard by using wet methods during abrasive sand blasting are expected to total \$12.8 million annually, or \$2,813 per worker for the approximately 4,550 workers exposed to silica dust.

Table V-4: Unit and Total Compliance Costs and Cost Parameters for Abrasive Blasting Operations - Maritime Industries

Cost or Parameter	Comment
2,798	
1,752	
4,550	
4	ERG estimate based on RSMeans (2008)
1,500	ERG estimate based on RSMeans (2008)
\$2.00	ERG estimate based on RSMeans (2008)
125	ERG estimate
20.0%	ERG estimate
\$85,313,512	
30.0%	ERG estimate based on RSMeans (2008)
50.0%	ERG estimate
\$12,797,027	
\$2,813	
\$7,868,944	
	2,798 1,752 4,550 4 1,500 \$2.00 125 20.0% \$85,313,512 30.0% \$12,797,027 \$2,813

[[]a] Based on 2006 County Business Patterns employment data and the employment shares for construction and maintenance painters and for transportation equipment painters for NAICS 336600 Ship and Boatbuilding derived from BLS, OES data.

Sources: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

Summary of Control Costs

Table V-5 summarizes the estimated number of at-risk workers and the annualized silica control costs for each industry sector. Control costs in general industry and maritime are expected to total \$101.2 million annually at the $50 \mu g/m^3$ level. As shown, sector-level costs exceed \$5.0 million annually for captive foundries, concrete products, cut stone, iron foundries, non-sand casting foundries, ready-mix concrete, shipyards, and structural clay. Costs shown for shipyards reflect the costs of complying with abrasive blasting requirements shown in Table V-4.

Table V-6 shows aggregate annual control costs in general industry and maritime by NAICS code industry. These costs reflect the disaggregation of sector costs among the industries that comprise each sector. (See Table III-1 in Chapter III of this PEA on the profile of affected industries.) As one would expect, those industries with the highest number of workers exposed above the proposed PEL tend to show the highest levels of control costs.

Table V-5: Control Costs in General Industry and Maritime Associated with the Proposed Silica Standard, by Sector (PEL = 50)

Sector	Total		Exposed Above L = 50	Control Costs
	Employees	Number	Percent	
Asphalt Paving Products	14,471	48	0.3%	\$179,111
Asphalt Roofing Materials	12,631	1,963	15.5%	\$2,194,150
Captive Foundries	2,407,045	6,850	0.3%	\$6,993,368
Concrete Products	112,938	19,204	17.0%	\$14,798,966
Costume Jewelry	6,775	459	6.8%	\$34,979
Cut Stone	30,633	7,441	24.3%	\$5,894,506
Dental Equipment	15,550	274	1.8%	\$272,308
Dental Laboratories	864,484	1,329	0.2%	\$128,834
Fine Jewelry	30,479	4,121	13.5%	\$313,923
Flat Glass	11,003	154	1.4%	\$227,805
Iron Foundries	59,209	11,140	18.8%	\$11,372,127
Mineral Processing	6,629	891	13.4%	\$3,585,439
Mineral Wool	19,241	632	3.3%	\$897,980
Nonferrous Sand Casting Foundries	20,150	3,817	18.9%	\$3,910,170
Non-Sand Casting Foundries	33,674	6,367	18.9%	\$6,522,470
Other Ferrous Sand Casting Foundries	17,722	3,334	18.8%	\$3,403,790
Other Glass Products	35,017	1,007	2.9%	\$1,532,788
Paint and Coatings	46,209	404	0.9%	\$0
Porcelain Enameling	261,594	1,916	0.7%	\$2,824,360
Pottery	21,200	4,777	22.5%	\$4,088,295
Railroads	NA	5,629	NA	\$0
Ready-Mix Concrete	107,190	32,110	30.0%	\$7,029,710
Refractories	10,115	823	8.1%	\$688,544
Refractory Repair	111,198	153	0.1%	\$97,304
Shipyards [a]	142,057	3,250	2.3%	\$12,797,027
Structural Clay	22,206	4,377	19.7%	\$11,451,554
All sectors [b]	4,406,990	122,472	2.8%	\$101,239,507
[a] Includes abrasive blas	sting compliance	costs for shipya	ds (NAICS 336611;	336612)

 $\label{eq:counting} \mbox{[b] Adjusted for double counting of industries that are included in more than one sector.}$

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b) and ERG (2011).

Table V-6: Silica Control Costs by Industry (PEL=50)

NAICC	lo di atm. Titla	Total	Employees Exposed A	Above PEL = 50	Control Contr
NAICS	Industry Title	Employees	Number	Percent	Control Costs
324121	Asphalt paving mixture and	14,471	48	0.3%	\$179,111
024121	block manufacturing	14,471	40	0.576	Ψ179,111
324122	Asphalt shingle and roofing materials	12,631	1,963	15.5%	\$2,194,150
325510	Paint and coating manufacturing	46,209	404	0.9%	\$0
	Vitreous china plumbing				
327111	fixtures & bathroom	5,854	1,319	22.5%	\$1,128,859
	accessories manufacturing				
	Vitreous china, fine				
327112	earthenware, & other	9,178	2,068	22.5%	\$1,769,953
021112	pottery product	3,170	2,000	22.570	ψ1,709,955
	manufacturing				
327113	Porcelain electrical supply mfg	6,168	1,390	22.5%	\$1,189,482
327121	Brick and structural clay mfg	13,509	2,663	19.7%	\$6,966,654
	Ceramic wall and floor tile				
327122	mfg	7,094	1,398	19.7%	\$3,658,389
327123	Other structural clay product mfg	1,603	316	19.7%	\$826,511
327124	Clay refractory manufacturing	4,475	364	8.1%	\$304,625
327125	Nonclay refractory manufacturing	5,640	459	8.1%	\$383,919
327211	Flat glass manufacturing	11,003	154	1.4%	\$227,805
327211		11,003	154	1.4 /0	\$227,005
327212	Other pressed and blown glass and glassware manufacturing	20,625	593	2.9%	\$902,802
327213	Glass container manufacturing	14,392	414	2.9%	\$629,986
327320	Ready-mixed concrete manufacturing	107,190	32,110	30.0%	\$7,029,710
327331	Concrete block and brick	22,738	3,866	17.0%	\$2,979,495
327332	Concrete pipe mfg	14,077	2,394	17.0%	\$1,844,576
327390	Other concrete product mfg	66,095	11,239	17.0%	\$8,660,830
327991	Cut stone and stone product manufacturing	30,633	7,441	24.3%	\$5,894,506

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

Control Costs	Above $PEL = 50$	Total Employees Exposed Abov		Industry Title	NAICS
Control Costs	Percent	Number	Employees	muustry ritie	IVAICS
\$3,585,43	13.4%	891	6,629	Ground or treated mineral and earth manufacturing	327992
\$897,98	3.3%	632	19,241	Mineral wool manufacturing	327993
\$1,314,06	17.0%	1,705	10,028	All other misc. nonmetallic mineral product mfg	327999
\$315,55	0.3%	309	108,592	Iron and steel mills	331111
\$6,37	0.3%	6	2,198	Electrometallurgical ferroalloy product manufacturing	331112
\$62,63	0.3%	61	21,543	Iron and steel pipe and tube manufacturing from purchased steel	331210
\$31,61	0.3%	31	10,857	Rolled steel shape manufacturing	331221
\$42,64	0.3%	42	14,669	Steel wire drawing	331222
\$21,35	0.3%	21	7,381	Secondary smelting and alloying of aluminum	331314
\$3,65	0.3%	4	1,278	Secondary smelting, refining, and alloying of copper	331423
\$27,33	0.3%	27	9,383	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	331492
\$11,372,12	18.8%	11,140	59,209	Iron foundries	331511
\$3,175,86	18.9%	3,100	16,429	Steel investment foundries	331512
\$3,403,79	18.8%	3,334	17,722	Steel foundries (except investment)	331513
\$5,155,17	18.9%	5,032	26,565	Aluminum foundries (except die-casting)	331524
\$1,187,57	18.9%	1,159	6,120	Copper foundries (except die-casting)	331525
\$914,02	18.9%	892	4,710	Other nonferrous foundries (except die-casting)	331528
\$77,32	0.3%	76	26,596	Iron and steel forging	332111
\$25,52	0.3%	25	8,814	Nonferrous forging	332112
\$9,38	0.3%	9	3,243	Crown and closure manufacturing	332115

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

NAICS	Industry Title	Total	Employees Exposed	Above $\overline{PEL} = 50$	Control Costs
IVAICS	industry ritie	Employees	Number	Percent	Control Costs
332116	Metal stamping	64,724	184	0.3%	\$188,102
332117	Powder metallurgy part manufacturing	8,362	24	0.3%	\$24,250
332211	Cutlery and flatware (except precious) manufacturing	5,779	16	0.3%	\$16,763
332212	Hand and edge tool manufacturing	36,622	104	0.3%	\$106,344
332213	Saw blade and handsaw manufacturing	7,304	21	0.3%	\$21,272
332214	Kitchen utensil, pot, and pan manufacturing	3,928	11	0.3%	\$11,442
332323	Ornamental and architectural metal work	39,947	19	0.0%	\$28,010
332439	Other metal container manufacturing	15,195	43	0.3%	\$44,028
332510	Hardware manufacturing	45,282	129	0.3%	\$131,574
332611	Spring (heavy gauge) manufacturing	4,059	12	0.3%	\$11,792
332612	Spring (light gauge) manufacturing	15,336	44	0.3%	\$44,511
332618	Other fabricated wire product manufacturing	36,364	104	0.3%	\$105,686
332710	Machine shops	266,597	759	0.3%	\$774,529
332812	Metal coating and allied services	56,978	1,632	2.9%	\$2,431,996
332911	Industrial valve manufacturing	38,330	109	0.3%	\$111,334
332912	Fluid power valve and hose fitting manufacturing	35,519	101	0.3%	\$103,246
332913	Plumbing fixture fitting and trim manufacturing	11,513	33	0.3%	\$33,484
332919	Other metal valve and pipe fitting manufacturing	18,112	51	0.3%	\$52,542
332991	Ball and roller bearing manufacturing	27,197	77	0.3%	\$79,038
332996	Fabricated pipe and pipe fitting manufacturing	27,201	77	0.3%	\$78,951

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

NAICS	Industry Title	Total	Employees Exposed	l Above PEL = 50	Control Costs	
NAICS	Industry Title	Employees	Number	Percent	Control Costs	
222007	Industrial pattern	E 204	15	0.39/	\$15,383	
332997	manufacturing	5,281	15	0.3%	φ 10,300	
	Enameled iron and metal					
332998	sanitary ware	5,655	38	0.7%	\$46,58°	
	manufacturing					
	All other miscellaneous					
332999	fabricated metal product	72,201	205	0.3%	\$209,692	
	manufacturing					
	Other commercial and					
333319	service industry machinery	53,012	151	0.3%	\$154,000	
	manufacturing					
333411	Air purification equipment	14,883	42	0.3%	\$43,19	
333411	manufacturing	14,003	42	0.5 /6	Ф43, 19	
	Industrial and commercial					
333412	fan and blower	10,506	30	0.3%	\$30,54	
	manufacturing					
	Heating equipment (except					
333414	warm air furnaces)	20,577	59	0.3%	\$59,86	
	manufacturing					
333511	Industrial mold	39,917	114	0.3%	\$116,03	
333311	manufacturing	39,917	114	0.5 %	φ110,03	
333512	Machine tool (metal cutting	17 220	49	0.3%	\$49,96	
333312	types) manufacturing	17,220	49	0.3%	Ф4 9,90	
	Machine tool (metal					
333513	forming types)	8,556	24	0.3%	\$24,85	
	manufacturing					
	Special die and tool, die					
333514	set, jig, and fixture	57,576	164	0.3%	\$167,20	
	manufacturing					
	Cutting tool and machine					
333515	tool accessory	34,922	99	0.3%	\$101,38	
	manufacturing					
333516	Rolling mill machinery and	3,020	9	0.3%	\$8,89	
333310	equipment manufacturing	3,020	9	0.5%	Ф0,09	
222E40	Other metalworking	40.470	25	0.39/	#36.00	
333518	machinery manufacturing	12,470	35	0.3%	\$36,23	
	Speed changer, industrial					
333612	high-speed drive, and gear	12,374	35	0.3%	\$35,962	
	manufacturing					

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

NAICS	Industry Title	Total	Employees Exposed A	bove $PEL = 50$	- Control Costs	
NAICS	Industry Title	Employees	Number	Percent	Control Costs	
	Mechanical power					
333613	transmission equipment	15,645	44	0.3%	\$45,422	
	manufacturing					
333911	Pump and pumping	30,764	88	0.3%	\$89,460	
	equipment manufacturing	00,704		0.070	Ψου, του	
333912	Air and gas compressor	21,417	61	0.3%	\$62,241	
	manufacturing			0.070	402,211	
333991	Power-driven handtool	8,714	25	0.3%	\$25,377	
	manufacturing			0.070	420,077	
333992	Welding and soldering	15,853	45	0.3%	\$46,136	
	equipment manufacturing			0.070	410,100	
333993	Packaging machinery	21,179	60	0.3%	\$61,479	
	manufacturing	21,170		0.070	ΨΟΊ,ΨΙΟ	
333994	Industrial process furnace	10,720	31	0.3%	\$31,154	
000004	and oven manufacturing	10,720		0.070	ΨΟ1,10-τ	
333995	Fluid power cylinder and	19,887	57	0.3%	\$57,771	
000000	actuator manufacturing	19,007		0.570	ΨΟΓ,ΓΓΙ	
333006	Fluid power pump and	13,631	39	0.3%	\$39,598	
333996	motor manufacturing	10,001		0.570		
333997	Scale and balance (except	3,748	11	0.3%	\$10,853	
000007	laboratory) manufacturing	0,7 40	11	0.070	Ψ10,000	
	All other miscellaneous					
333999	general purpose machinery	52,454	149	0.3%	\$152,444	
	manufacturing					
334518	Watch, clock, and part	2,188	6	0.3%	\$6,389	
334310	manufacturing	2,100	0	0.5 /6	Ψ0,309	
335211	Electric housewares and	7,425	8	0.1%	\$11,336	
333211	household fans	7,423	0	0.176	ψ11,330	
335221	Household cooking	16,033	16	0.1%	\$24,478	
333221	appliance manufacturing	10,033	10	0.176	Ψ24,470	
	Household refrigerator and					
335222	home freezer	17,121	17	0.1%	\$26,139	
	manufacturing					
225224	Household laundry	16 260	47	0.49/	\$24.920	
335224	equipment manufacturing	16,269	17	0.1%	\$24,839	
	Other major household	12,806	40	0.40/	640 FE4	
225222		17 XUK	13	0.1%	\$19,551	
335228	appliance manufacturing	12,000	.0		ψ10,001	

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

NAICS	Industry Title	Total	Employees Exposed A	bove $PEL = 50$	$\frac{L=50}{L}$ Control Costs		
NAICS	industry fille	Employees	Number	Percent	Control Costs		
336112	Light truck and utility vehicle manufacturing	103,815	296	0.3%	\$301,676		
336120	Heavy duty truck manufacturing	32,122	91	0.3%	\$93,229		
336211	Motor vehicle body manufacturing	47,566	135	0.3%	\$138,218		
336212	Truck trailer manufacturing	32,260	92	0.3%	\$93,781		
336213	Motor home manufacturing	21,533	61	0.3%	\$62,548		
336311	Carburetor, piston, piston ring, and valve manufacturing	10,537	30	0.3%	\$30,612		
336312	Gasoline engine and engine parts manufacturing	66,112	188	0.3%	\$192,076		
336322	Other motor vehicle electrical and electronic equipment manufacturing	62,016	176	0.3%	\$180,164		
336330	Motor vehicle steering and suspension components (except spring) manufacturing	39,390	112	0.3%	\$114,457		
336340	Motor vehicle brake system manufacturing	33,782	96	0.3%	\$98,118		
336350	Motor vehicle transmission and power train parts manufacturing	83,756	238	0.3%	\$243,34		
336370	Motor vehicle metal stamping	110,578	315	0.3%	\$321,190		
336399	All other motor vehicle parts manufacturing	149,251	425	0.3%	\$433,579		
336611	Ship building and repair	87,352	1,998	2.3%	\$7,868,944		
336612	Boat building	54,705	1,252	2.3%	\$4,928,083		
336992	Military armored vehicle, tank, and tank component manufacturing	6,899	20	0.3%	\$20,09		
337215	Showcase, partition, shelving, and locker manufacturing	59,080	168	0.3%	\$171,56		
339114	Dental equipment and supplies manufacturing	15,550	274	1.8%	\$272,308		

Table V-6: Silica Control Costs by Industry (PEL=50) (continued)

NAICS	Industry Title	Total	Employees Exposed	Above PEL = 50	Control Costs
NAICS	Industry Title	Employees	Number	Percent	Control Costs
339116	Dental laboratories	47,088	1,071	2.3%	\$103,876
339911	Jewelry (except costume) manufacturing	25,280	3,418	13.5%	\$260,378
339913	Jewelers' materials and lapidary work manufacturing	5,199	703	13.5%	\$53,545
339914	Costume jewelry and novelty manufacturing	6,775	479	7.1%	\$54,734
339950	Sign manufacturing	89,360	172	0.2%	\$227,905
423840	Industrial supplies, wholesalers	111,198	153	0.1%	\$97,304
482110	Rail transportation	N/A	5,629	N/A	\$0
621210	Dental offices	817,396	257	0.0%	\$24,957
	Total	4,406,990	122,472		\$101,239,507

Note: Includes abrasive blasting compliance costs for shipyards (NAICS 336611)

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b) and ERG (2011).

Respirator Costs

OSHA's cost estimates assume that implementation of the recommended controls prevents workers in general industry and maritime from being exposed over the PEL in most cases. Specifically, based on its technological feasibility analysis, OSHA expects that the technical controls are adequate to keep exposures at or below the PEL for an alternative PEL of 100 µg/m³ (examined for analytical purposes).⁵ For the proposed 50 µg/m³ PEL, OSHA's feasibility analysis suggests that the controls that employers use, either because of technical limitations or imperfect implementation, might not be adequate in all cases to ensure that worker exposures in all affected job categories are at or below $50 \,\mu\text{g/m}^3$. For this preliminary cost analysis, OSHA estimated that ten percent of the workers in general industry with current silica exposures above $50 \,\mu\text{g/m}^3$ would require respirators, at least occasionally, after the implementation of engineering controls to achieve the proposed PEL. After considering the choice of disposable vs. nondisposable respirators as control options for costing purposes, OSHA determined that, with the exception of workers authorized to enter regulated areas, non-disposable respirators would be more cost-effective. For workers in maritime, the only activity with silica exposures above the proposed PEL of 50 μ g/m³ is abrasive blasting, and maritime workers engaged in abrasive blasting are already required to use respirators under existing OSHA standards. Therefore, OSHA has estimated no additional costs for maritime workers to use respirators as a result of the proposed silica rule.

ERG (2011) used respirator cost information from a 2003 OSHA respirator study to estimate the annual cost of \$570.13 (in 2009 dollars) for a non-disposable half-mask, non-powered, air-purifying respirator (ERG, 2003). This unit cost includes expenses for accessories, training, fit testing, and cleaning. (Further discussion of respirator cost estimates and their source is provided in the construction industry section on respirator costs.) As shown in Table V-7, applying this cost to the workers exposed above the 50 μ/m^3 PEL results in total costs for respirator use of \$6.8 million annually.⁶

In addition to bearing the costs associated with the provision of respirators, employers will incur a cost burden to establish respirator programs. OSHA projects that this expense will involve an initial 8 hours for establishments with 500 or more employees and 4 hours for all other firms. After the first year, OSHA estimates that 20 percent would revise the program every year, with the largest establishments (500 or more employees) expending 4 hours for program revision, and all other employers expend two hours for program revision. OSHA expects that half of the establishments in general industry and all of the establishments in maritime that require respirator use to achieve compliance already have a respirator program. Table V-7 presents respirator program costs and combines those program costs with the costs for respirator use to produce total annual costs of \$6.9 million for respiratory protection in general industry and maritime.

 $^{^5}$ As a result, OSHA expects that establishments in general industry do not currently use respirators to comply with the current OSHA PEL for quartz of approximately 100 $\mu g/m^3$.

⁶ Note that these respirator costs do not include the costs of disposable respirators used in regulated areas. The costs for these disposable respirators are separately estimated in Table V-16 in this chapter as part of regulated area costs.

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
324121	Asphalt paving mixture and block manufacturing	48	5	\$2,735	\$49	\$2,784
324122	Asphalt shingle and roofing materials	1,963	196	\$111,925	\$1,999	\$113,924
325510	Paint and coating manufacturing	404	40	\$23,051	\$395	\$23,445
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	1,319	132	\$75,206	\$1,296	\$76,502
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	2,068	207	\$117,917	\$2,032	\$119,948
327113	Porcelain electrical supply mfg	1,390	139	\$79,245	\$1,365	\$80,610
327121	Brick and structural clay mfg	2,663	266	\$151,804	\$2,236	\$154,040
327122	Ceramic wall and floor tile mfg	1,398	140	\$79,716	\$1,265	\$80,982
327123	Other structural clay product mfg	316	32	\$18,010	\$310	\$18,320
327124	Clay refractory manufacturing	364	36	\$20,750	\$358	\$21,108
327125	Nonclay refractory manufacturing	459	46	\$26,152	\$451	\$26,602
327211	Flat glass manufacturing	154	15	\$8,808	\$152	\$8,960
327212	Other pressed and blown glass and glassware manufacturing	593	59	\$33,815	\$583	\$34,398
327213	Glass container manufacturing	414	41	\$23,597	\$407	\$24,003
327320	Ready-mixed concrete manufacturing	32,110	3,211	\$1,830,680	\$31,541	\$1,862,221
327331	Concrete block and brick mfg	3,866	387	\$220,429	\$3,798	\$224,227
327332	Concrete pipe mfg	2,394	239	\$136,465	\$2,351	\$138,817
327390	Other concrete product mfg	11,239	1,124	\$640,746	\$11,039	\$651,785
327991	Cut stone and stone product manufacturing	7,441	744	\$424,256	\$7,502	\$431,758
327992	Ground or treated mineral and earth manufacturing	891	89	\$50,819	\$899	\$51,718

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
327993	Mineral wool manufacturing	632	63	\$36,017	\$637	\$36,654
327999	All other misc. nonmetallic mineral product mfg	1,705	171	\$97,217	\$1,719	\$98,936
331111	Iron and steel mills	309	31	\$17,623	\$316	\$17,939
331112	Electrometallurgical ferroalloy product manufacturing	6	1	\$356	\$6	\$362
331210	Iron and steel pipe and tube manufacturing from purchased steel	61	6	\$3,498	\$54	\$3,552
331221	Rolled steel shape manufacturing	31	3	\$1,766	\$27	\$1,793
331222	Steel wire drawing	42	4	\$2,382	\$37	\$2,419
331314	Secondary smelting and alloying of aluminum	21	2	\$1,193	\$20	\$1,213
331423	Secondary smelting, refining, and alloying of copper	4	0	\$204	\$3	\$207
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	27	3	\$1,527	\$25	\$1,551
331511	Iron foundries	11,140	1,114	\$635,102	\$10,444	\$645,546
331512	Steel investment foundries	3,100	310	\$176,755	\$2,884	\$179,639
331513	Steel foundries (except investment)	3,334	333	\$190,092	\$3,102	\$193,194
331524	Aluminum foundries (except die-casting)	5,032	503	\$286,915	\$4,657	\$291,571
331525	Copper foundries (except die-casting)	1,159	116	\$66,095	\$1,177	\$67,272
331528	Other nonferrous foundries (except die-casting)	892	89	\$50,871	\$830	\$51,701
332111	Iron and steel forging	76	8	\$4,318	\$75	\$4,393
332112	Nonferrous forging	25	3	\$1,426	\$25	\$1,451
332115	Crown and closure manufacturing	9	1	\$524	\$8	\$532
332116	Metal stamping	184	18	\$10,505	\$171	\$10,676
332117	Powder metallurgy part manufacturing	24	2	\$1,354	\$21	\$1,375
332211	Cutlery and flatware (except precious) manufacturing	16	2	\$936	\$16	\$952

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
332212	Hand and edge tool manufacturing	104	10	\$5,939	\$102	\$6,041
332213	Saw blade and handsaw manufacturing	21	2	\$1,188	\$21	\$1,209
332214	Kitchen utensil, pot, and pan manufacturing	11	1	\$639	\$11	\$650
332323	Ornamental and architectural metal work	19	2	\$1,069	\$20	\$1,089
332439	Other metal container manufacturing	43	4	\$2,459	\$43	\$2,502
332510	Hardware manufacturing	129	13	\$7,348	\$128	\$7,476
332611	Spring (heavy gauge) manufacturing	12	1	\$659	\$11	\$670
332612	Spring (light gauge) manufacturing	44	4	\$2,486	\$43	\$2,529
332618	Other fabricated wire product manufacturing	104	10	\$5,902	\$103	\$6,005
332710	Machine shops	759	76	\$43,255	\$819	\$44,074
332812	Metal coating and allied services	1,632	163	\$93,070	\$1,619	\$94,689
332911	Industrial valve manufacturing	109	11	\$6,218	\$98	\$6,316
332912	Fluid power valve and hose fitting manufacturing	101	10	\$5,766	\$97	\$5,863
332913	Plumbing fixture fitting and trim manufacturing	33	3	\$1,870	\$31	\$1,901
332919	Other metal valve and pipe fitting manufacturing	51	5	\$2,934	\$49	\$2,984
332991	Ball and roller bearing manufacturing	77	8	\$4,414	\$74	\$4,488
332996	Fabricated pipe and pipe fitting manufacturing	77	8	\$4,409	\$74	\$4,483
332997	Industrial pattern manufacturing	15	2	\$859	\$14	\$874
332998	Enameled iron and metal sanitary ware manufacturing	38	4	\$2,188	\$37	\$2,225
332999	All other miscellaneous fabricated metal product manufacturing	205	21	\$11,711	\$205	\$11,915
333319	Other commercial and service industry machinery manufacturing	151	15	\$8,601	\$140	\$8,741
333411	Air purification equipment manufacturing	42	4	\$2,412	\$40	\$2,453

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
333412	Industrial and commercial fan and blower manufacturing	30	3	\$1,706	\$29	\$1,735
333414	Heating equipment (except warm air furnaces) manufacturing	59	6	\$3,343	\$56	\$3,399
333511	Industrial mold manufacturing	114	11	\$6,480	\$117	\$6,597
333512	Machine tool (metal cutting types) manufacturing	49	5	\$2,790	\$49	\$2,839
333513	Machine tool (metal forming types) manufacturing	24	2	\$1,388	\$23	\$1,411
333514	Special die and tool, die set, jig, and fixture manufacturing	164	16	\$9,338	\$175	\$9,513
333515	Cutting tool and machine tool accessory manufacturing	99	10	\$5,662	\$102	\$5,764
333516	Rolling mill machinery and equipment manufacturing	9	1	\$497	\$9	\$506
333518	Other metalworking machinery manufacturing	35	4	\$2,023	\$37	\$2,060
333612	Speed changer, industrial high-speed drive, and gear manufacturing	35	4	\$2,008	\$35	\$2,043
333613	Mechanical power transmission equipment manufacturing	44	4	\$2,537	\$44	\$2,581
333911	Pump and pumping equipment manufacturing	88	9	\$4,996	\$81	\$5,077
333912	Air and gas compressor manufacturing	61	6	\$3,476	\$58	\$3,534
333991	Power-driven handtool manufacturing	25	2	\$1,417	\$24	\$1,441
333992	Welding and soldering equipment manufacturing	45	5	\$2,577	\$45	\$2,622
333993	Packaging machinery manufacturing	60	6	\$3,433	\$58	\$3,491
333994	Industrial process furnace and oven manufacturing	31	3	\$1,740	\$29	\$1,768
333995	Fluid power cylinder and actuator manufacturing	57	6	\$3,226	\$53	\$3,280
333996	Fluid power pump and motor manufacturing	39	4	\$2,211	\$35	\$2,247
333997	Scale and balance (except laboratory) manufacturing	11	1	\$606	\$10	\$616
333999	All other miscellaneous general purpose machinery manufacturing	149	15	\$8,514	\$143	\$8,657

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
334518	Watch, clock, and part manufacturing	6	1	\$357	\$6	\$363
335211	Electric housewares and household fans	8	1	\$429	\$8	\$437
335221	Household cooking appliance manufacturing	16	2	\$927	\$17	\$944
335222	Household refrigerator and home freezer manufacturing	17	2	\$990	\$18	\$1,009
335224	Household laundry equipment manufacturing	17	2	\$941	\$17	\$958
335228	Other major household appliance manufacturing	13	1	\$741	\$14	\$754
336111	Automobile manufacturing	214	21	\$12,210	\$234	\$12,444
336112	Light truck and utility vehicle manufacturing	296	30	\$16,848	\$322	\$17,170
336120	Heavy duty truck manufacturing	91	9	\$5,207	\$96	\$5,303
336211	Motor vehicle body manufacturing	135	14	\$7,719	\$130	\$7,849
336212	Truck trailer manufacturing	92	9	\$5,237	\$87	\$5,325
336213	Motor home manufacturing	61	6	\$3,493	\$64	\$3,557
336311	Carburetor, piston, piston ring, and valve manufacturing	30	3	\$1,710	\$29	\$1,739
336312	Gasoline engine and engine parts manufacturing	188	19	\$10,727	\$183	\$10,910
336322	Other motor vehicle electrical and electronic equipment manufacturing	176	18	\$10,062	\$172	\$10,233
336330	Motor vehicle steering and suspension components (except spring) manufacturing	112	11	\$6,392	\$112	\$6,504
336340	Motor vehicle brake system manufacturing	96	10	\$5,480	\$94	\$5,573
336350	Motor vehicle transmission and power train parts manufacturing	238	24	\$13,590	\$242	\$13,832
336370	Motor vehicle metal stamping	315	31	\$17,938	\$299	\$18,237
336399	All other motor vehicle parts manufacturing	425	42	\$24,214	\$413	\$24,628
336611	Ship building and repair	1,998	N/A	N/A	N/A	N/A

Table V-7: Respirator Costs for Employers in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Workers Using Respirators [a]	Costs for Respirator Use [b]	Costs for Respirator Programs	Total Costs for Respiratory Protection
336612	Boat building	1,252	N/A	N/A	N/A	N/A
336992	Military armored vehicle, tank, and tank component manufacturing	20	2	\$1,122	\$20	\$1,142
337215	Showcase, partition, shelving, and locker manufacturing	168	17	\$9,581	\$159	\$9,741
339114	Dental equipment and supplies manufacturing	274	27	\$15,620	\$281	\$15,901
339116	Dental laboratories	1,071	107	\$61,085	\$1,098	\$62,183
339911	Jewelry (except costume) manufacturing	3,418	342	\$194,881	\$3,540	\$198,421
339913	Jewelers' materials and lapidary work manufacturing	703	70	\$40,076	\$728	\$40,804
339914	Costume jewelry and novelty manufacturing	479	48	\$27,283	\$496	\$27,779
339950	Sign manufacturing	172	17	\$9,794	\$178	\$9,972
423840	Industrial supplies, wholesalers	153	15	\$8,732	\$179	\$8,910
482110	Rail transportation	5,629	563	\$320,953	\$6,223	\$327,176
621210	Dental offices	257	26	\$14,676	\$309	\$14,985
	Totals	122,472	11,922	\$6,797,184	\$117,041	\$6,914,225

[[]a] Assumes 10 percent of at-risk employees initially exposed above the PEL will use respirators. The integers in this column are rounded from figures that included decimal places. For example, the "0" referral for NAICS 331423 was rounded from a calculated value of 0.36.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2003, 2007b, 2011).

[[]b] Based on \$488.74 annualized cost for a half-mask, including accessories, training, fit testing, and cleaning. See ERG (2003). Costs inflated to \$570.13 based on the 2003-2009 GDP implicit price deflator reported by the Bureau of Economic Analysis.

Program Costs

This section presents OSHA's estimated costs for ancillary silica control programs for general industry and maritime as required under the proposed rule. Based on the program requirements contained in the proposed standard, OSHA considered four potential cost elements: exposure assessments (air monitoring), medical surveillance, provision of information and training, and regulated areas.

The worker population affected by each program element varies with the nature of the activity undertaken. The training requirements would apply to all at-risk workers—those with any potential workplace exposure to respirable crystalline silica. Some elements would apply to all workers exposed to silica at or above the action level, as defined by OSHA.⁷ This level is below the PEL and therefore affects a larger share of workers. Other elements would apply to a smaller set of workers who are exposed above the PEL. The regulated area program elements triggered by the proposed PEL of $50 \,\mu\text{g/m}^3$ (and all other program elements triggered by an action level of $50 \,\mu\text{g/m}^3$ under an alternative PEL of $100 \,\mu\text{g/m}^3$) would apply to those workers for whom feasible controls are not adequate. For the purposes of this cost analysis, OSHA estimated that, under the proposed rule, 10 percent of all affected workers in general industry and maritime with current exposures above the proposed PEL would fall in this category.

Exposure Assessment Costs

Most establishments wishing to perform exposure monitoring will require the assistance of an outside consulting industrial hygienist (IH) to obtain accurate results. While some firms might already employ or train qualified staff, ERG (2007b) judged that the testing protocols are fairly challenging and that few firms have sufficiently skilled staff to eliminate the need for outside consultants.

Table V-8 shows the unit costs and associated assumptions used to estimate exposure assessment costs. For costing purposes, based on ERG (2007b), OSHA estimated that, on average, there are four workers per work area. OSHA interpreted the initial exposure assessment as requiring first-year testing of at least one worker in each distinct job classification and work area who is, or may reasonably be expected to be, exposed to airborne concentrations of respirable crystalline silica at or above the action level.

For periodic monitoring, the proposed standard provides employers an option of assessing employee exposures either under a fixed schedule (paragraph (d)(3)(i)) or a performance—based schedule (paragraph (d)(3)(ii)). Under the fixed schedule, the proposed standard requires semi-annual periodic sampling for exposures at or above the action level and quarterly sampling for exposures above the $50 \,\mu\text{g/m}^3$ PEL. Monitoring must be continued until the employer can demonstrate that exposures are no longer at or above the action level. OSHA used the fixed schedule option under the frequency of monitoring requirements to estimate, for costing

⁷ In general industry and maritime, approximately 60 percent of at-risk workers are at or above the action level; in construction, approximately 46 percent of at-risk workers are at or above the action level. See Table III-6 in Chapter III of this PEA.

Table V-8: Unit Costs and Analytical Assumptions Associated with Exposure Assessment under the Proposed Silica Standard

(Coverage: All employees exposed at or above action level)

Costs and Parameters				Comments/Assumptions
Direct Costs by Establishment Size				
	Small (<20)	Medium (20-499)	Large (500+)	
IH fees/PBZ sample	\$250.00	\$83.33	\$62.50	Consulting IH technician - rate per sample. Assumes IH rate of \$500 per day and samples per day of 2, 6, and 8 for small, medium, and large establishments, respectively.
Lab fees and shipping cost	\$133.38	\$133.38	\$133.38	Lab fees (EMSL Laboratory, 2000) and OSHA estimates. Inflated to 2009 values.
Total - per PBZ sample	\$383.38	\$216.71	\$195.88	
Requirements				
Number of workers per work area	4			ERG assumption
Initial Monitoring Frequency (per year) Periodic Monitoring Frequency (per	1			Based on requirements in proposed standard
<u>year)</u> Exposed < Action Level Exposed ≤ PEL and ≥AL	0			Based on requirements in proposed standard Based on requirements in proposed standard
Exposed > PEL	4			Based on requirements in proposed standard
Percentage of workers requiring reassessment	15 %			ERG assumption
Time Requirements (minutes)				
Lost worker time while attaching and unattaching pump	30			ERG assumption
Recordkeeping by a manager per sample	15			Includes employee notification of monitoring results
Unit Costs by Establishment Size				
	Small (<20)	Medium (20-499)	Large (500+)	
Cost per sample (PBZ) - General Industry				
Direct Costs	\$383.38	\$216.71	\$195.88	
Productivity Loss	\$11.96	\$11.96	\$11.96	
Recordkeeping	\$17.10	\$17.10	\$17.10	
Total	\$412.44	\$245.78	\$224.94	
Cost per sample (PBZ) - Construction				
Direct Costs	\$383.38	\$216.71	\$195.88	
Productivity Loss	\$14.82	\$14.82	\$14.82	
Recordkeeping	\$17.28	\$17.28	\$17.28	
Total	\$415.48	\$248.81	\$227.98	

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

purposes, that exposure monitoring will be conducted (a) twice a year where initial or subsequent exposure monitoring reveals that employee exposures are at or above the action level but at or below the PEL, and (b) four times a year where initial or subsequent exposure monitoring reveals that employee exposures are above the PEL.⁸

As required under paragraph (d)(4) of the proposed rule, whenever there is a change in the production, process, control equipment, personnel, or work practices that may result in new or additional exposures at or above the action level or when the employer has any reason to suspect that a change may result in new or additional exposures at or above the action level, the employer must conduct additional monitoring. Based on ERG (2007b), OSHA estimated that approximately 15 percent of workers whose initial exposure or subsequent monitoring was at or above the action level would undertake additional monitoring.

ERG (2011) estimated that an IH will spend one day, at a cost of \$500, to obtain the following number of personal breathing zone (PBZ) samples: 2 for establishments with fewer than 20 employees; 6 for establishments with 20-499 employees; and 8 for establishments with 500 or more employees. These estimates imply that there are some economies of scale in obtaining exposure samples. Based on the 2000 EMSL Laboratory Testing Catalog, ERG (2007b) estimated that analysis of each sample will cost \$133.38 (adjusted to 2009 dollars) in lab fees and shipping costs. When combined with the IH fee, the cost per PBZ sample is projected to range from \$195.88 to \$383.38 (depending on establishment size).

Other costs per exposure monitoring sample stem from the estimated 30-minute loss in employee time while attaching the pump and the 15 minutes required for recordkeeping (recording the sampling results and notifying the employee of the sampling results). The loss in employee time was multiplied by the employee's hourly wage rate (to include fringe benefits) to estimate the associated cost. The recordkeeping time was multiplied by a manager's hourly wage rate (to include fringe benefits) to estimate the associated costs. Overall, OSHA estimates that unit costs will range from approximately \$224.94 to \$412.44 per sample.

Although OSHA believes that some establishments in general industry and maritime currently conduct exposure monitoring, the Agency has no evidence to support this belief. Therefore for costing purposes for the proposed silica rule, OSHA has assumed no current compliance with the proposed exposure monitoring requirements. OSHA requests information from interested parties on current levels of exposure monitoring in general industry and maritime.

Table V-9 presents the exposure monitoring cost estimates for general industry and maritime, by NAICS industry, for the proposed rule. As shown, the combined cost of the exposure monitoring requirements for general industry and maritime are an estimated \$29.9 million annually.

⁸ OSHA anticipates that the performance-based schedule option would generally be less expensive than the fixed schedule option for employers that choose the performance-based option; otherwise they wouldn't have chosen it.

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments)

establishinents)								
Total Annualized Assessment Costs	Periodic Assessment	Initial Assessment	Number of Workers At or Above Action Level (25 µg/m³)	Industry	NAICS			
\$8,195	\$7,762	\$433	48	Asphalt paving mixture and block manufacturing	324121			
\$723,761	\$684,049	\$39,712	4,395	Asphalt shingle and roofing materials	324122			
\$70,423	\$66,628	\$3,795	404	Paint and coating manufacturing	325510			
\$369,478	\$348,934	\$20,543	2,128	Vitreous china plumbing fixtures & bathroom accessories manufacturing	327111			
\$579,309	\$547,098	\$32,210	3,336	Vitreous china, fine earthenware, & other pottery product manufacturing	327112			
\$389,320	\$367,673	\$21,647	2,242	Porcelain electrical supply mfg	327113			
\$554,322	\$523,643	\$30,679	3,476	Brick and structural clay mfg	327121			
\$306,500	\$289,537	\$16,963	1,826	Ceramic wall and floor tile mfg	327122			
\$72,312	\$68,330	\$3,982	412	Other structural clay product mfg	327123			
\$124,390	\$117,420	\$6,970	722	Clay refractory manufacturing	327124			
\$156,769	\$147,985	\$8,784	910	Nonclay refractory manufacturing	327125			
\$29,108	\$27,523	\$1,584	164	Flat glass manufacturing	327211			
\$111,912	\$105,819	\$6,092	631	Other pressed and blown glass and glassware manufacturing	327212			
\$78,093	\$73,842	\$4,251	440	Glass container manufacturing	327213			
\$5,817,205	\$5,501,384	\$315,821	32,713	Ready-mixed concrete manufacturing	327320			

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all

NAICS	Industry	Number of Workers At or Above Action Level (25 µg/m³)	Initial Assessment	Periodic Assessment	Total Annualized Assessment Costs
327331	Concrete block and brick mfg	5,489	\$52,996	\$905,520	\$958,517
327332	Concrete pipe mfg	3,398	\$32,809	\$560,599	\$593,408
327390	Other concrete product mfg	15,957	\$154,050	\$2,632,177	\$2,786,227
327991	Cut stone and stone product manufacturing	10,298	\$101,389	\$1,734,108	\$1,835,498
327992	Ground or treated mineral and earth manufacturing	5,051	\$49,732	\$817,996	\$867,728
327993	Mineral wool manufacturing	675	\$6,646	\$115,369	\$122,015
327999	All other misc. nonmetallic mineral product mfg	2,421	\$23,837	\$407,175	\$431,012
331111	Iron and steel mills	456	\$3,828	\$68,575	\$72,403
331112	Electrometallurgical ferroalloy product manufacturing	9	\$77	\$1,385	\$1,463
331210	Iron and steel pipe and tube manufacturing from purchased steel	90	\$805	\$13,751	\$14,556
331221	Rolled steel shape manufacturing	46	\$406	\$6,941	\$7,348
331222	Steel wire drawing	62	\$548	\$9,363	\$9,911
331314	Secondary smelting and alloying of aluminum	31	\$266	\$4,642	\$4,908
331423	Secondary smelting, refining, and alloying of copper	5	\$47	\$810	\$857
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	39	\$352	\$6,056	\$6,407
331511	Iron foundries	16,417	\$141,652	\$2,471,123	\$2,612,775
331512	Steel investment foundries	4,570	\$40,414	\$698,898	\$739,312
331513	Steel foundries (except investment)	4,914	\$43,456	\$751,517	\$794,973
331524	Aluminum foundries (except die-casting)	7,418	\$67,254	\$1,153,625	\$1,220,879
331525	Copper foundries (except diecasting)	1,709	\$17,223	\$292,180	\$309,403
331528	Other nonferrous foundries (except die-casting)	1,315	\$11,631	\$201,146	\$212,778

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all

NAICS	Industry	Number of Workers At or Above Action Level (25 µg/m³)	Initial Assessment	Periodic Assessment	Total Annualized Assessment Costs
332111	Iron and steel forging	112	\$1,079	\$18,426	\$19,505
332112	Nonferrous forging	37	\$356	\$6,084	\$6,440
332115	Crown and closure manufacturing	14	\$124	\$2,111	\$2,236
332116	Metal stamping	272	\$2,527	\$43,068	\$45,595
332117	Powder metallurgy part manufacturing	35	\$319	\$5,409	\$5,727
332211	Cutlery and flatware (except precious) manufacturing	24	\$234	\$3,995	\$4,229
332212	Hand and edge tool manufacturing	154	\$1,454	\$24,902	\$26,356
332213	Saw blade and handsaw manufacturing	31	\$276	\$4,813	\$5,090
332214	Kitchen utensil, pot, and pan manufacturing	17	\$160	\$2,727	\$2,886
332323	Ornamental and architectural metal work	26	\$266	\$4,542	\$4,808
332439	Other metal container manufacturing	64	\$614	\$10,492	\$11,106
332510	Hardware manufacturing	190	\$1,835	\$31,354	\$33,190
332611	Spring (heavy gauge) manufacturing	17	\$164	\$2,810	\$2,974
332612	Spring (light gauge) manufacturing	64	\$621	\$10,607	\$11,228
332618	Other fabricated wire product manufacturing	153	\$1,474	\$25,185	\$26,659
332710	Machine shops	1,118	\$11,734	\$199,308	\$211,043
332812	Metal coating and allied services	2,255	\$21,789	\$373,417	\$395,206
332911	Industrial valve manufacturing	161	\$1,424	\$24,470	\$25,894
332912	Fluid power valve and hose fitting manufacturing	149	\$1,363	\$23,491	\$24,854
332913	Plumbing fixture fitting and trim manufacturing	48	\$442	\$7,618	\$8,060
332919	Other metal valve and pipe fitting manufacturing	76	\$694	\$11,955	\$12,648

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all

establishments) (continued)					
NAICS	Industry	Number of Workers At or Above Action Level (25 µg/m³)	Initial Assessment	Periodic Assessment	Total Annualized Assessment Costs
332991	Ball and roller bearing manufacturing	114	\$1,043	\$17,984	\$19,027
332996	Fabricated pipe and pipe fitting manufacturing	114	\$1,042	\$17,964	\$19,006
332997	Industrial pattern manufacturing	22	\$203	\$3,500	\$3,703
332998	Enameled iron and metal sanitary ware manufacturing	56	\$510	\$8,795	\$9,304
332999	All other miscellaneous fabricated metal product manufacturing	303	\$2,975	\$50,628	\$53,603
333319	Other commercial and service industry machinery manufacturing	222	\$2,055	\$35,106	\$37,161
333411	Air purification equipment manufacturing	62	\$544	\$9,493	\$10,037
333412	Industrial and commercial fan and blower manufacturing	44	\$384	\$6,715	\$7,099
333414	Heating equipment (except warm air furnaces) manufacturing	86	\$753	\$13,157	\$13,911
333511	Industrial mold manufacturing	168	\$1,684	\$28,665	\$30,348
333512	Machine tool (metal cutting types) manufacturing	72	\$675	\$11,639	\$12,313
333513	Machine tool (metal forming types) manufacturing	36	\$343	\$5,814	\$6,157
333514	Special die and tool, die set, jig, and fixture manufacturing	241	\$2,492	\$42,430	\$44,922
333515	Cutting tool and machine tool accessory manufacturing	146	\$1,471	\$25,046	\$26,517
333516	Rolling mill machinery and equipment manufacturing	13	\$129	\$2,198	\$2,327
333518	Other metalworking machinery manufacturing	52	\$526	\$8,951	\$9,476
333612	Speed changer, industrial high-speed drive, and gear manufacturing	52	\$444	\$7,864	\$8,308

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

Mechanical power transmission equipment manufacturing 129 \$1,163 \$19,976 \$21,131 \$33911 Pump and pumping equipment manufacturing 90 \$821 \$14,153 \$14,971 \$33991 Power-driven handtool manufacturing 97 \$335 \$5,771 \$6,101 \$33992 Power-driven handtool manufacturing 98 \$828 \$14,175 \$10,296 \$10,881 \$33993 Power-driven handtool manufacturing 97 \$586 \$10,296 \$10,881 \$33993 Power-driven handtool manufacturing 89 \$828 \$14,176 \$15,000 \$10,881 \$10,3993 Power-driven manufacturing 45 \$428 \$7,266 \$7,690 \$10,3993 \$10,4991 \$	NAICS	Industry	Number of Workers At or Above Action Level	Initial Assessment	Periodic Assessment	Total Annualized Assessment
333613 transmission equipment manufacturing 129 \$1,163 \$19,976 \$21,131			_			Costs
manufacturing 129 \$1,163 \$19,976 \$21,13		Mechanical power				
Pump and pumping equipment manufacturing 129 \$1,163 \$19,976 \$21,131	333613	transmission equipment	66	\$561	\$9,932	\$10,493
129 \$1,163 \$19,976 \$21,131		manufacturing				
Manufacturing State Stat	333911	Pump and pumping equipment	129	\$1 163	\$19 9 76	\$21 139
339912 manufacturing 90 \$821 \$14,153 \$14,97 333991	000011	manufacturing	120	ψ1,100	Ψ10,070	Ψ21,100
manufacturing	333912	Air and gas compressor	90	\$821	\$14 153	\$14 975
33991 manufacturing 37 \$335 \$5,771 \$6,100		manufacturing	00	402 1	Ψ.1,100	ψ11,070
Melding and soldering equipment manufacturing Sample of the process of the pr	333991	Power-driven handtool	37	\$335	\$5.771	\$6.105
333992 equipment manufacturing 67 \$586 \$10,296 \$10,888 333993 Packaging machinery manufacturing 89 \$828 \$14,176 \$15,00 333994 Industrial process furnace and oven manufacturing 45 \$428 \$7,266 \$7,69 333995 Fluid power cylinder and actuator manufacturing 83 \$738 \$12,795 \$13,53 333996 Fluid power pump and motor manufacturing 57 \$512 \$8,784 \$9,29 333997 Scale and balance (except laboratory) manufacturing 16 \$150 \$2,538 \$2,68 333999 General purpose machinery manufacturing 220 \$2,012 \$34,665 \$36,67 334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,59 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335224 Household refrigerator and home freezer manufacturing 23 \$187 \$3,408 \$3,59 335228 Other major household 18 \$147 \$2,683 \$2,83 \$2,83 \$3,59 \$3,54 \$3,528 \$3,528 \$3,54 \$3,59 \$3,528 \$3,528 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,528 \$3,59 \$3,54 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,528 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59 \$3,59		manufacturing	.	4000	Ψο,	ψο,100
Sequipment manufacturing Sequipment manufact	333992	Welding and soldering	67	\$586	\$10.296	\$10.882
333993 manufacturing 89 \$828 \$14,176 \$15,00 333994 Industrial process furnace and oven manufacturing 45 \$428 \$7,266 \$7,69 333995 Fluid power cylinder and actuator manufacturing 83 \$738 \$12,795 \$13,53 333996 Fluid power pump and motor manufacturing 57 \$512 \$8,784 \$9,29 333997 Scale and balance (except laboratory) manufacturing 16 \$150 \$2,538 \$2,68 333999 General purpose machinery manufacturing 220 \$2,012 \$34,665 \$36,67 334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,59 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335224 Household refrigerator and home freezer manufacturing 23 \$187 \$3,408 \$3,59 335228 Other major household 18 \$147 \$2,663 \$2,83		equipment manufacturing	0.	4000	Ψ.0,200	\$10,002
Industrial process furnace and oven manufacturing 45 \$428 \$7,266 \$7,694	333993	Packaging machinery	89	\$828	\$14.176	\$15,004
333994 oven manufacturing 45		manufacturing	00	7020	4 , 6	4.0,00 1
333995 Fluid power cylinder and actuator manufacturing 83 \$738 \$12,795 \$13,53;	333994	•	45	\$428	\$7.266	\$7.694
333995 actuator manufacturing 333996 Fluid power pump and motor manufacturing 333997 Scale and balance (except laboratory) manufacturing 333999 General purpose machinery manufacturing 334518 Watch, clock, and part manufacturing 335211 Electric housewares and household fans 335221 Household cooking appliance manufacturing 335222 Household refrigerator and home freezer manufacturing 335224 Household laundry equipment manufacturing 335228 Other major household 335228 Other major household 335228 Scale and motor manufacturing 367 \$512 \$8,784 \$9,296 \$9,296 \$1,507 \$2,538 \$2,686 \$2,686 \$2,686 \$2,012 \$34,665 \$36,67 \$34,66		oven manufacturing		4.2 6	41,200	4.,00 .
333996 Fluid power pump and motor manufacturing 57 \$512 \$8,784 \$9,296	333995		83	\$738	\$12.795	\$13.532
333996 manufacturing 57 \$512 \$8,784 \$9,296 333997 Scale and balance (except laboratory) manufacturing 16 \$150 \$2,538 \$2,686 333999 All other miscellaneous general purpose machinery manufacturing 220 \$2,012 \$34,665 \$36,67 334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,596 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,546 335222 Household refrigerator and home freezer manufacturing 24 \$197 \$3,587 \$3,786 335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,596 335228 Other major household 18 \$147 \$2,683 \$2,836 335228 S2,836 \$2,836 \$3,596 335228 Other major household 18 \$147 \$2,683 \$2,836 \$3,596 \$3,596 \$3,596 \$3,596 335228 Other major household 18 \$147 \$2,683 \$2,836 \$3,596 \$3,596 \$3,596 \$3,596 335228 Other major household 18 \$147 \$2,683 \$2,836 \$3,596 \$		actuator manufacturing		*****	, , _, , , ,	4 10,000
Scale and balance (except laboratory) manufacturing	333996		57	\$512	\$8,784	\$9,296
Same state Sam						
All other miscellaneous 333999 general purpose machinery 220 \$2,012 \$34,665 \$36,67	333997	` '	16	\$150	\$2,538	\$2,688
333999 general purpose machinery manufacturing 220 \$2,012 \$34,665 \$36,67 334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,596 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335222 Household refrigerator and home freezer manufacturing 24 \$197 \$3,587 \$3,78 335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,59 335228 Other major household 18 \$147 \$2,683 \$2,83				·		
manufacturing 334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,596 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335222 Household refrigerator and home freezer manufacturing 24 \$197 \$3,587 \$3,78 335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,590 335228 Other major household 18 \$147 \$2,683 \$2,830				***	***	400.0
334518 Watch, clock, and part manufacturing 9 \$89 \$1,507 \$1,596 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335222 Household refrigerator and home freezer manufacturing 24 \$197 \$3,587 \$3,78 335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,59 335228 Other major household 18 \$147 \$2,683 \$2,83	333999		220	\$2,012	\$34,665	\$36,677
334518 manufacturing 9 \$89 \$1,507 \$1,596 335211 Electric housewares and household fans 10 \$85 \$1,555 \$1,64 335221 Household cooking appliance manufacturing 22 \$184 \$3,359 \$3,54 335222 Household refrigerator and home freezer manufacturing 24 \$197 \$3,587 \$3,784 335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,590 335228 Other major household 18 \$147 \$2,683 \$2,683						
Electric housewares and household fans 10	334518		9	\$89	\$1,507	\$1,596
Household fans 10						
Household cooking appliance manufacturing 22	335211		10	\$85	\$1,555	\$1,641
335221						
Household refrigerator and home freezer manufacturing	335221	0 11	22	\$184	\$3,359	\$3,543
335222 home freezer manufacturing Household laundry equipment manufacturing Other major household 18 \$197 \$3,587 \$3,784 \$3,590 \$3,590 \$3,590 \$3,590 \$3,590						
335224 Household laundry equipment manufacturing 23 \$187 \$3,408 \$3,596 Other major household 18 \$147 \$2,683 \$2,836	335222	•	24	\$197	\$3,587	\$3,784
335224 23 \$187 \$3,408 \$3,59 6 Other major household 18 \$147 \$2 683 \$2,83						
335228 Other major household 18 \$147 \$2 683 \$2.83	335224	, , ,	23	\$187	\$3,408	\$3,596
335228 I						
l appliance manufacturing	335228	appliance manufacturing	18	\$147	\$2,683	\$2,830
	336111		316	\$2.550	\$16 Q75	\$49,525

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all

NAICS	Industry	Number of Workers At or Above Action Level (25 µg/m³)	Initial Assessment	Periodic Assessment	Total Annualized Assessment Costs
336112	Light truck and utility vehicle manufacturing	436	\$3,519	\$64,816	\$68,335
336120	Heavy duty truck manufacturing	135	\$1,104	\$20,075	\$21,179
336211	Motor vehicle body manufacturing	200	\$1,785	\$30,952	\$32,738
336212	Truck trailer manufacturing	135	\$1,182	\$20,604	\$21,786
336213	Motor home manufacturing	90	\$750	\$13,533	\$14,284
336311	Carburetor, piston, piston ring, and valve manufacturing	44	\$378	\$6,666	\$7,044
336312	Gasoline engine and engine parts manufacturing	277	\$2,373	\$41,825	\$44,198
336322	Other motor vehicle electrical and electronic equipment manufacturing	260	\$2,226	\$39,231	\$41,457
336330	Motor vehicle steering and suspension components (except spring) manufacturing	165	\$1,394	\$24,823	\$26,216
336340	Motor vehicle brake system manufacturing	142	\$1,212	\$21,365	\$22,578
336350	Motor vehicle transmission and power train parts manufacturing	351	\$2,956	\$52,840	\$55,796
336370	Motor vehicle metal stamping	464	\$3,956	\$69,452	\$73,408
336399	All other motor vehicle parts manufacturing	626	\$5,357	\$94,412	\$99,769
336611	Ship building and repair	2,798	\$24,059	\$388,650	\$412,708
336612	Boat building	1,752	\$15,067	\$243,400	\$258,467
336992	Military armored vehicle, tank, and tank component manufacturing	29	\$257	\$4,529	\$4,786
337215	Showcase, partition, shelving, and locker manufacturing	248	\$2,321	\$39,641	\$41,962
339114	Dental equipment and supplies manufacturing	274	\$2,569	\$45,566	\$48,135
339116	Dental laboratories	5,357	\$50,237	\$841,930	\$892,167

Table V-9: Estimated Annualized Costs for Exposure Assessment in General Industry and Maritime for OSHA's Proposed Silica Standard (all

NAICS	Industry	Number of Workers At or Above Action Level (25 µg/m³)	Initial Assessment	Periodic Assessment	Total Annualized Assessment Costs
339911	Jewelry (except costume) manufacturing	4,883	\$48,313	\$828,363	\$876,676
339913	Jewelers' materials and lapidary work manufacturing	1,004	\$9,935	\$170,349	\$180,284
339914	Costume jewelry and novelty manufacturing	685	\$6,773	\$116,113	\$122,885
339950	Sign manufacturing	249	\$2,463	\$42,197	\$44,660
423840	Industrial supplies, wholesalers	306	\$3,397	\$57,025	\$60,422
482110	Rail transportation	11,248	\$90,057	\$1,648,341	\$1,738,398
621210	Dental offices	1,287	\$14,348	\$236,698	\$251,046
	Totals	175,801	\$1,638,671	\$28,230,137	\$29,868,808

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

Medical Surveillance Costs

Paragraph (h) of the proposed standard requires an initial health screening and then triennial periodic screenings for workers exposed above the proposed PEL of $50 \,\mu\text{g/m}^3$ for 30 days or more per year. ERG (2011) assembled information on representative unit costs of initial and periodic medical surveillance. Separate costs were estimated for current employees and for new hires as a function of the employment size (i.e., 1-19, 20-499, or 500+) of affected establishments. Table V-10 presents ERG's unit cost data and modeling assumptions used by OSHA to estimate medical surveillance costs.

In accordance with paragraph (h)(2) of the proposed rule, the initial (baseline) medical examination would consist of (1) a medical and work history, (2) a physical examination with special emphasis on the respiratory system, (3) a chest x-ray that meets certain standards of the International Labour Organization, (4) a pulmonary function test that meets certain criteria and is administered by a National Institute for Occupational Safety and Health (NIOSH)-certified spirometry technician, (5) testing for latent tuberculosis (TB) infection, and (6) any other tests deemed appropriate by the physician or licensed health care professional (PLHCP).

As shown in Table V-10, the estimated unit cost of the initial health screening for current employees in general industry and maritime ranges from \$377.77 to \$396.90 and includes direct medical costs, the opportunity cost of worker time (i.e., lost work time, evaluated at the worker's 2009 hourly wage, including fringe benefits) for offsite travel and for the initial health screening itself, and recordkeeping costs. The variation in the unit cost of the initial health screening is due entirely to differences in the percentage of workers expected to travel offsite for the health screening. In OSHA's experience, the larger the establishment the more likely it is that the selected physician or PLHCP would provide the health screening services at the establishment's worksite. OSHA estimates that, on average, 20 percent of establishments with fewer than 20 employees, 75 percent of establishments with 20-499 employees, and 100 percent of establishments with 500 or more employees would have the initial health screening for current employees conducted onsite.

The unit cost components of the initial health screening for new hires in general industry and maritime are identical to those for existing employees with the exception that the percentage of workers expected to travel offsite for the health screening would be somewhat larger (due to fewer workers being screened annually, in the case of new hires, and therefore yielding fewer economies of onsite screening). OSHA estimates, on average, that 10 percent of establishments with fewer than 20 employees, 50 percent of establishments with 20-499 employees, and 90 percent of establishments with 500 or more employees would have the initial health screening for new hires conducted onsite. As shown in Table V-10, the estimated unit cost of the initial health screening for new hires in general industry and maritime ranges from \$380.16 to \$399.30.

Table V-10: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Health Screening as Part of Medical Surveillance - General Industry and Maritime (Coverage: All employees exposed above PEL)

Screening Tool	Cost Parameter	Initial Screening	Periodic Screening	Comments/Assumptions
Direct Costs				
Complete occupational and health history survey	\$33.33	Yes	Yes	Assumed one third of physical exam cost
Triennial review and updating of health history	\$33.33	N/A	Yes	Assumed one third of physical exam cost
Physical examination by knowledgeable HCP [a]	\$100.00	Yes	Yes	Evaluation and office consultation including detailed examination.
Chest X-ray	\$79.61	Yes	Yes	Radiologic examination, chest; stereo, frontal. Costs include consultation and written report.
Chest X-ray classified by a NIOSH-certified B Reader	\$39.19	Yes	Yes	Average of three estimates made by B Readers to ERC
Pulmonary function test	\$54.69	Yes	Yes	Spirometry, including graph record, total and timed vita capacity, expiratory flow rat measurements(s), and/or maximal voluntary ventilation.
Examination by a pulmonary specialist [b]	\$190.28	Yes	N/A	Office consultation and evaluation by a pulmonary specialist
Other necessary tests	\$60.00	Yes	Yes	Assumed required by 10 percent of workers
Dermal TB Test	\$15.00	Yes	Yes	Assumed required by 15 percent of workers

Table V-10: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Health Screening as Part of Medical Surveillance - General Industry and Maritime (Coverage: All employees exposed above PEL) (continued)

Medical Exam or Other Cost Variable	Cost Parameter			Comments/Assumption		
Time Requirements for Medical Examinations	<u>Minutes</u>					
Complete occupational and health history survey and exam, including x-ray	120				Per survey and exam	
Health history review and update	30				Per review	
Physical exam and tests (without x-ray)	60				Per exam	
Chest x-ray	30				Per x-ray	
Reading of Dermal TB Test (return exam)	5					
Examination by a pulmonary specialist	60					
Recordkeeping (initial and periodic screenings)	15				Average per screening	
Recordkeeping (referrals)	60				Includes time for referrals and notification of NIOSH o new silica-related disease cases	
Percentage of employees seeing off-site phys	ician by esta	blishment size				
		Small (<20)	Medium (20- 499)	Large (500+)		
-Initial examination -New hires		80.0% 90.0%	25.0% 50.0%	0.0% 10.0%		
Travel Times (minutes) – off-site location					_	
Initial Test	60					
Return for Reading	60					
Separations rate (layoffs, quits, and retirements)		27.2%			2008 separations rate for manufacturing industries. BLS, Job Openings and Labor Turnover Survey (JOLTS)	
Share of new hires requiring initial health screening		75.0%				

Table V-10: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Health Screening as Part of Medical Surveillance - General Industry and Maritime (Coverage: All employees exposed above PEL) (continued)

Medical Exam or Other Cost Variable	Cost Parameter	Comments/Assumptions			
	Establ				
		Medium	Large		
	Small (<20)	(20-	(500+)		
Initial screening:		499)			
miliai screening.				Including components	
Medical costs	\$312.83	\$312.83	\$312.83	specified above in "Direct Costs": occupational and health history, physical exam, chest x-ray (classified by B Reader), pulmonary function test, and other tests (for 10% of workers)	
Lost work time - exam	\$47.84	\$47.84	\$47.84	Based on average production worker wage, adjusted for benefits	
Lost work time - travel	\$19.13	\$5.98	\$0.00	Based on average production worker wage, adjusted for benefits	
Record keeping	\$17.10	\$17.10	\$17.10	Based on manager's wage rate, adjusted for benefits	
Total	\$396.90	\$383.75	\$377.77		
Initial screening: New hires					
Medical costs	\$312.83	\$312.83	\$312.83	Including components specified above in "Direct Costs"	
Lost work time - exam	\$47.84	\$47.84	\$47.84	Based on average production worker wage, adjusted for benefits	
Lost work time - travel	\$21.53	\$11.96	\$2.39	Based on average production worker wage, adjusted for benefits	
Record keeping	\$17.10	\$17.10	\$17.10	Based on manager's wage rate, adjusted for benefits	
Total	\$399.30	\$389.73	\$380.16		
Triennial screening					
Medical costs	\$312.83	\$312.83	\$312.83	Including components specified above in "Direct Costs"	
Lost work time - exam	\$47.84	\$47.84	\$47.84	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflated to 2009 value.	
Lost work time - travel	\$19.13	\$5.98	\$0.00	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflated to 2009 value.	
Record keeping	\$17.10	\$17.10	\$17.10	Based on manager's wage rate, adjusted for benefits (BLS, 2008). Inflated to 2009 value.	
Total	\$396.90	\$383.75	\$377.77		

Table V-10: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Health Screening as Part of Medical Surveillance - General Industry and Maritime (Coverage: All employees exposed above PEL) (continued)

Medical Exam or Other Cost Variable	Cost Parameter	•		Comments/Assumptions
Examination by pulmonary specialist				
Medical costs	\$190.28	\$190.28	\$190.28	Including components specified above in "Direct Costs"
Lost work time - exam	\$23.92	\$23.92	\$23.92	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflated to 2009 value.
Lost work time - travel	\$23.92	\$23.92	\$23.92	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflated to 2009 value. Assumes all exams are off-site.
Record keeping	\$68.41	\$68.41	\$68.41	Based on manager's wage rate, adjusted for benefits (BLS, 2008). Inflated to 2009 value.
Total	\$306.53	\$306.53	\$306.53	-
Initial TB Testing				
Test cost	\$15.00	\$15.00	\$15.00	
Lost work time - exam	\$1.99	\$1.99	\$1.99	
Lost work time - travel	\$19.13	\$5.98	\$0.00	
Total	\$36.13	\$22.97	\$16.99	
New Hire and subsequent TB testing				
Test cost	\$15.00	\$15.00	\$15.00	
Lost work time - exam	\$1.99	\$1.99	\$1.99	
Lost work time - travel	\$21.53	\$11.96	\$2.39	
Total	\$38.52	\$28.95	\$19.38	
Annualized costs – initial testing	\$5.14	\$3.27	\$2.42	
Annualized costs – new hire and subsequent testing	\$38.52	\$28.95	\$19.38	
Percentage of employees tested in initial year				
Current Employees		100.0%		
New Hires		75.0%		
Percentage of employees recommended for periodic TB testing		15.0%		

[[]a] Typical charge, based on ERG contacts with occupational health providers.

Other costs for physical exams and tests, chest X-ray, and pulmonary tests are direct medical costs used in bundling services under Medicare (Intellimed, 2003). Costs are inflated by 30% to eliminate the effect of Medicare discounts that are unlikely to apply to occupational medicine environments.

[[]b] Mean expense per office-based physician visit to a pulmonary specialist for diagnosis and treatment, based on data from the 2004 Medical Expenditure Panel Survey. Inflated to 2009 dollars using the consumer price inflator for medical services.

In accordance with paragraph (h)(3) of the proposed rule, the periodic medical examination (every third year after the initial health screening) would consist of (1) a medical and work history review and update, (2) a physical examination with special emphasis on the respiratory system, (3) a chest x-ray that meets certain standards of the International Labour Organization, (4) a pulmonary function test that meets certain criteria and is administered by a NIOSH-certified spirometry technician, (5) testing for latent TB infection, if recommended by the physician or PLHCP, and (6) any other tests deemed appropriate by the physician or PLHCP.

The estimated unit cost of periodic health screening also includes direct medical costs, the opportunity cost of worker time, and recordkeeping costs. As shown in Table V-10, these triennial unit costs vary from \$377.77 to \$396.90. The variation in the unit cost is due entirely to differences in the percentage of workers expected to travel offsite for the periodic health screening. OSHA estimated that the share of workers traveling offsite, as a function of establishment size, would be the same for the periodic health screening as for the initial health screening for existing employees.

Although OSHA believes that some affected establishments in general industry and maritime currently provide some medical testing to their silica-exposed employees, the Agency doubts that many provide the comprehensive health screening required under the proposed rule. Therefore for costing purposes for the proposed rule, OSHA has assumed no current compliance with the proposed health screening requirements. OSHA requests information from interested parties on the current levels and the comprehensiveness of health screening in general industry and maritime.

In order to estimate turnover rates in general industry and maritime, ERG (2011) used the separations rate (layoffs, quits, retirements) of 27.2 percent as estimated by the Bureau of Labor Statistics (BLS, 2007). However, not all new hires would require initial medical testing. As specified in paragraph (h)(2) of the proposed rule, employees who had received a qualifying medical examination within the previous twelve months would be exempt from the initial medical examination. OSHA estimates that 25 percent of new hires in general industry and maritime would be exempt from the initial medical examination.

Based on a ten-year time horizon, OSHA estimated the total annualized costs in general industry and maritime for health screenings (to include initial health screenings for existing employees and new hires and periodic health screenings) as required by the proposed rule. These estimates, disaggregated by affected NAICS industry, are presented in Table V-11.

Finally, OSHA estimated the unit cost of a medical examination by a pulmonary specialist for those employees found to have signs or symptoms of silica-related disease (1/0 or higher on the ILO scale) or are otherwise referred by the PLHCP. As shown in Table V-10, the estimated unit cost of a medical examination by a pulmonary specialist is \$306.53. This cost includes direct medical costs, the opportunity cost of worker time, and recordkeeping costs (to include the cost of the employer's time to make a referral to a pulmonary specialist). In all cases, OSHA anticipates that the worker will travel offsite to receive the medical examination by a pulmonary specialist.

Based on its calculation of residual risk after the silica rule takes effect, OSHA estimates that there would be 18 new cases a year of silicosis of 2/1 or higher identified as a result of the proposed medical surveillance requirements for general industry and maritime workers. OSHA used the Buchannan et al. (2003) silicosis risk model to estimate that there would be 61 new cases a year of silicosis of 1/0 or higher identified as a result of the proposed medical surveillance requirements for general industry and maritime workers. ERG distributed these disease cases among industries in proportion to the number of at-risk workers. Table V-12, which multiplies the unit cost by the number of referred workers, shows the total annualized cost in general industry and maritime of medical examinations by a pulmonary specialist.

Tables V-13, which combines total health screening costs and the total costs of medical examinations by a pulmonary specialist, shows aggregate annual costs in general industry and maritime, by NAICS industry, for the medical surveillance requirements in the proposed rule. For general industry and maritime, combined over all affected NAICS industries, the estimated cost of these medical surveillance requirements is \$3.1 million annually. OSHA requests comment on the direct effects of the proposed medical surveillance requirements as represented by OSHA's estimated costs. OSHA also invites comment on any indirect effects of the medical surveillance requirements in relation to the benefits or costs of additional workplace physical examinations, heightened awareness of silica hazards among the personal physicians of affected workers, avoidance of unnecessary follow-up treatments, or any other indirect impacts.

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments)

OSHA'S Proposed Silica Standard (all establishments)										
NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost			
	Asphalt paving mixture									
324121	and block manufacturing	5	\$261	\$379	\$282	\$34	\$956			
324122	Asphalt shingle and roofing materials	196	\$10,696	\$15,495	\$11,534	\$1,397	\$39,122			
325510	Paint and coating manufacturing	40	\$2,213	\$3,212	\$2,389	\$314	\$8,129			
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	132	\$7,239	\$10,511	\$7,817	\$1,065	\$26,632			
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	207	\$11,351	\$16,480	\$12,256	\$1,671	\$41,757			
327113	Porcelain electrical supply mfg	139	\$7,628	\$11,076	\$8,236	\$1,123	\$28,063			
327121	Brick and structural clay mfg	266	\$14,554	\$21,176	\$15,711	\$2,062	\$53,503			
327122	Ceramic wall and floor tile mfg	140	\$7,663	\$11,141	\$8,275	\$1,119	\$28,199			
327123	Other structural clay product mfg	32	\$1,734	\$2,517	\$1,872	\$255	\$6,378			
327124	Clay refractory manufacturing	36	\$1,997	\$2,900	\$2,157	\$294	\$7,348			
327125	Nonclay refractory manufacturing	46	\$2,517	\$3,655	\$2,718	\$371	\$9,261			
327211	Flat glass manufacturing	15	\$848	\$1,231	\$915	\$125	\$3,119			
327212	Other pressed and blown glass and glassware manufacturing	59	\$3,255	\$4,726	\$3,515	\$479	\$11,975			
327213	Glass container manufacturing	41	\$2,271	\$3,298	\$2,453	\$301	\$8,323			
327320	Ready-mixed concrete manufacturing	3,211	\$176,220	\$255,863	\$190,273	\$25,936	\$648,292			

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
327331	Concrete block and brick mfg	387	\$21,218	\$30,808	\$22,910	\$3,123	\$78,060
327332	Concrete pipe mfg	239	\$13,136	\$19,073	\$14,184	\$1,933	\$48,326
327390	Other concrete product mfg	1,124	\$61,678	\$89,553	\$66,596	\$9,078	\$226,905
327991	Cut stone and stone product manufacturing	744	\$40,885	\$59,346	\$44,150	\$6,094	\$150,475
327992	Ground or treated mineral and earth manufacturing	89	\$4,897	\$7,109	\$5,288	\$730	\$18,024
327993	Mineral wool manufacturing	63	\$3,471	\$5,038	\$3,748	\$517	\$12,775
327999	All other misc. nonmetallic mineral product mfg	171	\$9,369	\$13,599	\$10,117	\$1,397	\$34,481
331111	Iron and steel mills	31	\$1,673	\$2,421	\$1,802	\$195	\$6,091
331112	Electrometallurgical ferroalloy product manufacturing	1	\$34	\$49	\$36	\$4	\$123
331210	Iron and steel pipe and tube manufacturing from purchased steel	6	\$335	\$487	\$362	\$47	\$1,231
331221	Rolled steel shape manufacturing	3	\$169	\$246	\$183	\$24	\$621
331222	Steel wire drawing	4	\$228	\$332	\$246	\$32	\$838
331314	Secondary smelting and alloying of aluminum	2	\$114	\$165	\$123	\$15	\$416
331423	Secondary smelting, refining, and alloying of copper	0	\$20	\$28	\$21	\$3	\$72
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	3	\$146	\$212	\$158	\$20	\$536
331511	Iron foundries	1,114	\$60,595	\$87,894	\$65,337	\$7,806	\$221,632
					· · · · · · · · · · · · · · · · · · ·		

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

		_					
NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
331512	Steel investment foundries	310	\$16,904	\$24,536	\$18,235	\$2,268	\$61,942
331513	Steel foundries (except investment)	333	\$18,180	\$26,387	\$19,611	\$2,439	\$66,616
331524	Aluminum foundries (except die-casting)	503	\$27,504	\$39,946	\$29,682	\$3,835	\$100,967
331525	Copper foundries (except die-casting)	116	\$6,383	\$9,268	\$6,895	\$980	\$23,525
331528	Other nonferrous foundries (except die- casting)	89	\$4,865	\$7,061	\$5,248	\$653	\$17,827
332111	Iron and steel forging	8	\$416	\$603	\$449	\$61	\$1,529
332112	Nonferrous forging	3	\$137	\$199	\$148	\$20	\$505
332115	Crown and closure manufacturing	1	\$50	\$73	\$54	\$7	\$185
332116	Metal stamping	18	\$1,009	\$1,466	\$1,090	\$146	\$3,711
332117	Powder metallurgy part manufacturing	2	\$130	\$189	\$140	\$19	\$478
332211	Cutlery and flatware (except precious) manufacturing	2	\$90	\$131	\$97	\$13	\$331
332212	Hand and edge tool manufacturing	10	\$571	\$828	\$616	\$82	\$2,097
332213	Saw blade and handsaw manufacturing	2	\$114	\$165	\$123	\$15	\$416
332214	Kitchen utensil, pot, and pan manufacturing	1	\$61	\$89	\$66	\$9	\$226
332323	Ornamental and architectural metal work	2	\$103	\$150	\$112	\$16	\$380
332439	Other metal container manufacturing	4	\$237	\$344	\$255	\$35	\$870
332510	Hardware manufacturing	13	\$707	\$1,027	\$764	\$104	\$2,601
332611	Spring (heavy gauge) manufacturing	1	\$63	\$92	\$68	\$9	\$233

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
332612	Spring (light gauge) manufacturing	4	\$239	\$347	\$258	\$35	\$880
332618	Other fabricated wire product manufacturing	10	\$568	\$825	\$613	\$83	\$2,089
332710	Machine shops	76	\$4,186	\$6,073	\$4,523	\$656	\$15,439
332812	Metal coating and allied services	163	\$8,957	\$13,002	\$9,671	\$1,313	\$32,943
332911	Industrial valve manufacturing	11	\$595	\$865	\$642	\$81	\$2,184
332912	Fluid power valve and hose fitting manufacturing	10	\$553	\$802	\$596	\$76	\$2,027
332913	Plumbing fixture fitting and trim manufacturing	3	\$179	\$260	\$193	\$25	\$657
332919	Other metal valve and pipe fitting manufacturing	5	\$281	\$408	\$303	\$39	\$1,032
332991	Ball and roller bearing manufacturing	8	\$423	\$614	\$456	\$58	\$1,552
332996	Fabricated pipe and pipe fitting manufacturing	8	\$423	\$613	\$456	\$58	\$1,550
332997	Industrial pattern manufacturing	2	\$82	\$119	\$89	\$11	\$302
332998	Enameled iron and metal sanitary ware manufacturing	4	\$210	\$304	\$226	\$29	\$769
332999	All other miscellaneous fabricated metal product manufacturing	21	\$1,129	\$1,639	\$1,219	\$169	\$4,155
333319	Other commercial and service industry machinery manufacturing	15	\$826	\$1,200	\$891	\$118	\$3,035
333411	Air purification equipment manufacturing	4	\$230	\$334	\$248	\$30	\$842

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

	Π	1			T		
NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
	Industrial and						
333412	commercial fan and blower manufacturing	3	\$163	\$236	\$176	\$21	\$596
333414	Heating equipment (except warm air furnaces) manufacturing	6	\$319	\$463	\$344	\$41	\$1,167
333511	Industrial mold manufacturing	11	\$625	\$908	\$675	\$95	\$2,303
333512	Machine tool (metal cutting types) manufacturing	5	\$268	\$388	\$289	\$37	\$982
333513	Machine tool (metal forming types) manufacturing	2	\$134	\$194	\$144	\$20	\$492
333514	Special die and tool, die set, jig, and fixture manufacturing	16	\$902	\$1,309	\$975	\$139	\$3,325
333515	Cutting tool and machine tool accessory manufacturing	10	\$546	\$793	\$590	\$83	\$2,012
333516	Rolling mill machinery and equipment manufacturing	1	\$48	\$70	\$52	\$7	\$177
333518	Other metalworking machinery manufacturing	4	\$195	\$283	\$211	\$30	\$719
333612	Speed changer, industrial high-speed drive, and gear manufacturing	4	\$191	\$277	\$206	\$23	\$697
333613	Mechanical power transmission equipment manufacturing	4	\$241	\$350	\$260	\$29	\$881
333911	Pump and pumping equipment manufacturing	9	\$479	\$695	\$517	\$66	\$1,757

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

					· · ·		
NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
333912	Air and gas compressor manufacturing	6	\$333	\$484	\$359	\$46	\$1,222
333991	Power-driven handtool manufacturing	2	\$136	\$197	\$147	\$19	\$498
333992	Welding and soldering equipment manufacturing	5	\$246	\$356	\$265	\$31	\$898
333993	Packaging machinery manufacturing	6	\$330	\$479	\$356	\$47	\$1,211
333994	Industrial process furnace and oven manufacturing	3	\$167	\$243	\$181	\$25	\$617
333995	Fluid power cylinder and actuator manufacturing	6	\$308	\$448	\$333	\$41	\$1,130
333996	Fluid power pump and motor manufacturing	4	\$212	\$308	\$229	\$29	\$777
333997	Scale and balance (except laboratory) manufacturing	1	\$58	\$85	\$63	\$9	\$215
333999	All other miscellaneous general purpose machinery manufacturing	15	\$816	\$1,184	\$880	\$113	\$2,993
334518	Watch, clock, and part manufacturing	1	\$34	\$50	\$37	\$5	\$127
335211	Electric housewares and household fans	1	\$41	\$59	\$44	\$4	\$148
335221	Household cooking appliance manufacturing	2	\$88	\$127	\$95	\$10	\$319
335222	Household refrigerator and home freezer manufacturing	2	\$94	\$135	\$101	\$10	\$341
335224	Household laundry equipment manufacturing	2	\$89	\$129	\$96	\$10	\$324
335228	Other major household appliance manufacturing	1	\$70	\$101	\$76	\$8	\$255

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
336111	Automobile manufacturing	21	\$1,153	\$1,664	\$1,241	\$119	\$4,177
336112	Light truck and utility vehicle manufacturing	30	\$1,591	\$2,296	\$1,712	\$164	\$5,763
336120	Heavy duty truck manufacturing	9	\$493	\$712	\$531	\$54	\$1,789
336211	Motor vehicle body manufacturing	14	\$738	\$1,071	\$796	\$99	\$2,705
336212	Truck trailer manufacturing	9	\$500	\$725	\$539	\$65	\$1,829
336213	Motor home manufacturing	6	\$331	\$479	\$357	\$37	\$1,204
336311	Carburetor, piston, piston ring, and valve manufacturing	3	\$163	\$236	\$175	\$20	\$594
336312	Gasoline engine and engine parts manufacturing	19	\$1,022	\$1,480	\$1,101	\$127	\$3,730
336322	Other motor vehicle electrical and electronic equipment manufacturing	18	\$958	\$1,388	\$1,033	\$119	\$3,499
336330	Motor vehicle steering and suspension components (except spring) manufacturing	11	\$608	\$879	\$655	\$72	\$2,214
336340	Motor vehicle brake system manufacturing	10	\$522	\$756	\$562	\$65	\$1,905
336350	Motor vehicle transmission and power train parts manufacturing	24	\$1,291	\$1,868	\$1,391	\$152	\$4,701
336370	Motor vehicle metal stamping	31	\$1,709	\$2,478	\$1,842	\$215	\$6,244
336399	All other motor vehicle parts manufacturing	42	\$2,306	\$3,341	\$2,486	\$286	\$8,420
336611	Ship building and repair	1,998	\$108,416	\$156,908	\$116,817	\$13,131	\$395,272

Table V-11: Estimated Health Screening Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Industry	Number of Respirator Users at or Above PEL (50 µg/m³)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total Cost
336612	Boat building	1,252	\$67,898	\$98,267	\$73,159	\$8,224	\$247,547
336992	Military armored vehicle, tank, and tank component manufacturing	2	\$107	\$155	\$115	\$14	\$391
337215	Showcase, partition, shelving, and locker manufacturing	17	\$921	\$1,337	\$994	\$133	\$3,384
339114	Dental equipment and supplies manufacturing	27	\$1,498	\$2,171	\$1,616	\$206	\$5,490
339116	Dental laboratories	107	\$5,857	\$8,489	\$6,319	\$806	\$21,470
339911	Jewelry (except costume) manufacturing	342	\$18,774	\$27,234	\$20,270	\$2,773	\$69,051
339913	Jewelers' materials and lapidary work manufacturing	70	\$3,861	\$5,600	\$4,169	\$570	\$14,200
339914	Costume jewelry and novelty manufacturing	48	\$2,628	\$3,813	\$2,838	\$388	\$9,667
339950	Sign manufacturing	17	\$943	\$1,369	\$1,019	\$139	\$3,470
423840	Industrial supplies, wholesalers	15	\$848	\$1,229	\$916	\$137	\$3,130
482110	Rail transportation	563	\$30,279	\$43,658	\$32,567	\$3,032	\$109,536
621210	Dental offices	26	\$1,424	\$2,063	\$1,539	\$228	\$5,255
	Totals	15,172	\$828,797	\$1,201,995	\$894,159	\$113,428	\$3,038,378

Table V-12: Estimated Costs in General Industry and Maritime for Medical Examinations by a Pulmonary Specialist, as Provided under the Proposed Silica Standard

NAICS	Industry	No. of Workers at Risk	No. of Annual Referrals (a)	Cost
324121	Asphalt paving mixture and block manufacturing	5	0	\$6
324122	Asphalt shingle and roofing materials	196	1	\$242
325510	Paint and coating manufacturing	40	0	\$50
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	132	1	\$163
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	207	1	\$255
327113	Porcelain electrical supply mfg	139	1	\$171
327121	Brick and structural clay mfg	266	1	\$328
327122	Ceramic wall and floor tile mfg	140	1	\$172
327123	Other structural clay product mfg	32	0	\$39
327124	Clay refractory manufacturing	36	0	\$45
327125	Nonclay refractory manufacturing	46	0	\$57
327211	Flat glass manufacturing	15	0	\$19
327212	Other pressed and blown glass and glassware manufacturing	59	0	\$73
327213	Glass container manufacturing	41	0	\$51
327320	Ready-mixed concrete manufacturing	3,211	13	\$3,957
327331	Concrete block and brick mfg	387	2	\$476
327332	Concrete pipe mfg	239	1	\$295
327390	Other concrete product mfg	1,124	5	\$1,385
327991	Cut stone and stone product manufacturing	744	3	\$917
327992	Ground or treated mineral and earth manufacturing	89	0	\$110
327993	Mineral wool manufacturing	63	0	\$78
327999	All other misc. nonmetallic mineral product mfg	171	1	\$210
331111	Iron and steel mills	31	0	\$38
331112	Electrometallurgical ferroalloy product manufacturing	1	0	\$1
331210	Iron and steel pipe and tube manufacturing from purchased steel	6	0	\$8
331221	Rolled steel shape manufacturing	3	0	\$4
331222	Steel wire drawing	4	0	\$5
331314	Secondary smelting and alloying of aluminum	2	0	\$3
331423	Secondary smelting, refining, and alloying of copper	0	0	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	3	0	\$3
331511	Iron foundries	1,114	4	\$1,373

Table V-12: Estimated Costs in General Industry and Maritime for Medical Examinations by a Pulmonary Specialist, as Provided under the Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Annual Referrals (a)	Cost
331512	Steel investment foundries	310	1	\$382
331513	Steel foundries (except investment)	333	1	\$411
331524	Aluminum foundries (except die-casting)	503	2	\$620
331525	Copper foundries (except die-casting)	116	0	\$143
331528	Other nonferrous foundries (except die-casting)	89	0	\$110
332111	Iron and steel forging	8	0	\$9
332112	Nonferrous forging	3	0	\$3
332115	Crown and closure manufacturing	1	0	\$1
332116	Metal stamping	18	0	\$23
332117	Powder metallurgy part manufacturing	2	0	\$3
332211	Cutlery and flatware (except precious) manufacturing	2	0	\$2
332212	Hand and edge tool manufacturing	10	0	\$13
332213	Saw blade and handsaw manufacturing	2	0	\$3
332214	Kitchen utensil, pot, and pan manufacturing	1	0	\$1
332323	Ornamental and architectural metal work	2	0	\$2
332439	Other metal container manufacturing	4	0	\$5
332510	Hardware manufacturing	13	0	\$16
332611	Spring (heavy gauge) manufacturing	1	0	\$1
332612	Spring (light gauge) manufacturing	4	0	\$5
332618	Other fabricated wire product manufacturing	10	0	\$13
332710	Machine shops	76	0	\$94
332812	Metal coating and allied services	163	1	\$201
332911	Industrial valve manufacturing	11	0	\$13
332912	Fluid power valve and hose fitting manufacturing	10	0	\$12
332913	Plumbing fixture fitting and trim manufacturing	3	0	\$4
332919	Other metal valve and pipe fitting manufacturing	5	0	\$6
332991	Ball and roller bearing manufacturing	8	0	\$10
332996	Fabricated pipe and pipe fitting manufacturing	8	0	\$10
332997	Industrial pattern manufacturing	2	0	\$2
332998	Enameled iron and metal sanitary ware manufacturing	4	0	\$5
332999	All other miscellaneous fabricated metal product manufacturing	21	0	\$25
333319	Other commercial and service industry machinery manufacturing	15	0	\$19
333411	Air purification equipment manufacturing	4	0	\$5

Table V-12: Estimated Costs in General Industry and Maritime for Medical Examinations by a Pulmonary Specialist, as Provided under the Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Annual Referrals (a)	Cost
333412	Industrial and commercial fan and blower manufacturing	3	0	\$4
333414	Heating equipment (except warm air furnaces) manufacturing	6	0	\$7
333511	Industrial mold manufacturing	11	0	\$14
333512	Machine tool (metal cutting types) manufacturing	5	0	\$6
333513	Machine tool (metal forming types) manufacturing	2	0	\$3
333514	Special die and tool, die set, jig, and fixture manufacturing	16	0	\$20
333515	Cutting tool and machine tool accessory manufacturing	10	0	\$12
333516	Rolling mill machinery and equipment manufacturing	1	0	\$1
333518	Other metalworking machinery manufacturing	4	0	\$4
333612	Speed changer, industrial high-speed drive, and gear manufacturing	4	0	\$4
333613	Mechanical power transmission equipment manufacturing	4	0	\$5
333911	Pump and pumping equipment manufacturing	9	0	\$11
333912	Air and gas compressor manufacturing	6	0	\$8
333991	Power-driven handtool manufacturing	2	0	\$3
333992	Welding and soldering equipment manufacturing	5	0	\$6
333993	Packaging machinery manufacturing	6	0	\$7
333994	Industrial process furnace and oven manufacturing	3	0	\$4
333995	Fluid power cylinder and actuator manufacturing	6	0	\$7
333996	Fluid power pump and motor manufacturing	4	0	\$5
333997	Scale and balance (except laboratory) manufacturing	1	0	\$1
333999	All other miscellaneous general purpose machinery manufacturing	15	0	\$18
334518	Watch, clock, and part manufacturing	1	0	\$1
335211	Electric housewares and household fans	1	0	\$1
335221	Household cooking appliance manufacturing	2	0	\$2
335222	Household refrigerator and home freezer manufacturing	2	0	\$2
335224	Household laundry equipment manufacturing	2	0	\$2
335228	Other major household appliance manufacturing	1	0	\$2
336111	Automobile manufacturing	21	0	\$26
336112	Light truck and utility vehicle manufacturing	30	0	\$36
336120	Heavy duty truck manufacturing	9	0	\$11
336211	Motor vehicle body manufacturing	14	0	\$17
336212	Truck trailer manufacturing	9	0	\$11
336213	Motor home manufacturing	6	0	\$8

Table V-12: Estimated Costs in General Industry and Maritime for Medical Examinations by a Pulmonary Specialist, as Provided under the Proposed Silica Standard (continued)

NAICS	Industry	No. of Workers at Risk	No. of Annual Referrals (a)	Cost
336311	Carburetor, piston, piston ring, and valve manufacturing	3	0	\$4
336312	Gasoline engine and engine parts manufacturing	19	0	\$23
336322	Other motor vehicle electrical and electronic equipment manufacturing	18	0	\$22
336330	Motor vehicle steering and suspension components (except spring) manufacturing	11	0	\$14
336340	Motor vehicle brake system manufacturing	10	0	\$12
336350	Motor vehicle transmission and power train parts manufacturing	24	0	\$29
336370	Motor vehicle metal stamping	31	0	\$39
336399	All other motor vehicle parts manufacturing	42	0	\$52
336611	Ship building and repair	1,998	8	\$2,463
336612	Boat building	1,252	5	\$1,542
336992	Military armored vehicle, tank, and tank component manufacturing	2	0	\$2
337215	Showcase, partition, shelving, and locker manufacturing	17	0	\$21
339114	Dental equipment and supplies manufacturing	27	0	\$34
339116	Dental laboratories	107	0	\$132
339911	Jewelry (except costume) manufacturing	342	1	\$421
339913	Jewelers' materials and lapidary work manufacturing	70	0	\$87
339914	Costume jewelry and novelty manufacturing	48	0	\$59
339950	Sign manufacturing	17	0	\$21
423840	Industrial supplies, wholesalers	15	0	\$19
482110	Rail transportation	563	2	\$694
621210	Dental offices	26	0	\$32
	Totals	15,172	61	\$18,698

⁽a) The integers in this column are rounded from figures that included decimal places. For example, the "0" referral for NAICS 324121 was rounded from a calculated value of 0.018. See the text immediately preceding Tables V-11 and V-12 for an explanation of the methodology for calculating the number of referrals.

Table V-13: Aggregate Costs in General Industry and Maritime, by NAICS Industry, for the Medical Surveillance Requirements in the Proposed Silica Rule

NAICS	Industry	Total Cost of Examinations	Cost of Pulmonary Specialist Examinations	Total Cost
324121	Asphalt paving mixture and block manufacturing	\$956	\$6	\$962
324122	Asphalt shingle and roofing materials	\$39,122	\$242	\$39,364
325510	Paint and coating manufacturing	\$8,129	\$50	\$8,179
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$26,632	\$163	\$26,795
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$41,757	\$255	\$42,012
327113	Porcelain electrical supply mfg	\$28,063	\$171	\$28,234
327121	Brick and structural clay mfg	\$53,503	\$328	\$53,831
327122	Ceramic wall and floor tile mfg	\$28,199	\$172	\$28,371
327123	Other structural clay product mfg	\$6,378	\$39	\$6,417
327124	Clay refractory manufacturing	\$7,348	\$45	\$7,393
327125	Nonclay refractory manufacturing	\$9,261	\$57	\$9,318
327211	Flat glass manufacturing	\$3,119	\$19	\$3,138
327212	Other pressed and blown glass and glassware manufacturing	\$11,975	\$73	\$12,048
327213	Glass container manufacturing	\$8,323	\$51	\$8,374
327320	Ready-mixed concrete manufacturing	\$648,292	\$3,957	\$652,249
327331	Concrete block and brick mfg	\$78,060	\$476	\$78,536
327332	Concrete pipe mfg	\$48,326	\$295	\$48,621
327390	Other concrete product mfg	\$226,905	\$1,385	\$228,290
327991	Cut stone and stone product manufacturing	\$150,475	\$917	\$151,392
327992	Ground or treated mineral and earth manufacturing	\$18,024	\$110	\$18,134
327993	Mineral wool manufacturing	\$12,775	\$78	\$12,852
327999	All other misc. nonmetallic mineral product mfg	\$34,481	\$210	\$34,691
331111	Iron and steel mills	\$6,091	\$38	\$6,129
331112	Electrometallurgical ferroalloy product manufacturing	\$123	\$1	\$124
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$1,231	\$8	\$1,239
331221	Rolled steel shape manufacturing	\$621	\$4	\$625
331222	Steel wire drawing	\$838	\$5	\$843
331314	Secondary smelting and alloying of aluminum	\$416	\$3	\$419
331423	Secondary smelting, refining, and alloying of copper	\$72	\$0	\$72
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$536	\$3	\$539

Table V-13: Aggregate Costs in General Industry and Maritime, by NAICS Industry, for the Medical Surveillance Requirements in the Proposed Silica Rule (continued)

Tatal Oan	Cost of Pulmonary	Total Cost of	In least we have the least of t	NAIGO
Total Cos	Specialist Examinations	Examinations	Industry	NAICS
\$62,324	\$382	\$61,942	Steel investment foundries	331512
\$67,027	\$411	\$66,616	Steel foundries (except investment)	331513
\$101,588	\$620	\$100,967	Aluminum foundries (except die-casting)	331524
\$23,668	\$143	\$23,525	Copper foundries (except die-casting)	331525
\$17,937	\$110	\$17,827	Other nonferrous foundries (except die-casting)	331528
\$1,538	\$9	\$1,529	Iron and steel forging	332111
\$508	\$3	\$505	Nonferrous forging	332112
\$186	\$1	\$185	Crown and closure manufacturing	332115
\$3,734	\$23	\$3,711	Metal stamping	332116
\$48 ²	\$3	\$478	Powder metallurgy part manufacturing	332117
\$333	\$2	\$331	Cutlery and flatware (except precious) manufacturing	332211
\$2,110	\$13	\$2,097	Hand and edge tool manufacturing	332212
\$418	\$3	\$416	Saw blade and handsaw manufacturing	332213
\$228	\$1	\$226	Kitchen utensil, pot, and pan manufacturing	332214
\$383	\$2	\$380	Ornamental and architectural metal work	332323
\$876	\$5	\$870	Other metal container manufacturing	332439
\$2,617	\$16	\$2,601	Hardware manufacturing	332510
\$235	\$1	\$233	Spring (heavy gauge) manufacturing	332611
\$885	\$5	\$880	Spring (light gauge) manufacturing	332612
\$2,102	\$13	\$2,089	Other fabricated wire product manufacturing	332618
\$15,533	\$94	\$15,439	Machine shops	332710
\$33,145	\$201	\$32,943	Metal coating and allied services	332812
\$2,197	\$13	\$2,184	Industrial valve manufacturing	332911
\$2,040	\$12	\$2,027	Fluid power valve and hose fitting manufacturing	332912
\$66	\$4	\$657	Plumbing fixture fitting and trim manufacturing	332913
\$1,038	\$6	\$1,032	Other metal valve and pipe fitting manufacturing	332919
\$1,56 ²	\$10	\$1,552	Ball and roller bearing manufacturing	332991
\$1,560	\$10	\$1,550	Fabricated pipe and pipe fitting manufacturing	332996
\$304	\$2	\$302	Industrial pattern manufacturing	332997
\$774	\$5	\$769	Enameled iron and metal sanitary ware manufacturing	332998
\$4,18 ²	\$25	\$4,155	All other miscellaneous fabricated metal product manufacturing	332999
\$3,053	\$19	\$3,035	Other commercial and service industry machinery manufacturing	333319
\$847	\$5	\$842	Air purification equipment manufacturing	333411

Table V-13: Aggregate Costs in General Industry and Maritime, by NAICS Industry, for the Medical Surveillance Requirements in the Proposed Silica Rule (continued)

NAICS	Industry	Total Cost of Examinations	Cost of Pulmonary Specialist Examinations	Total Cost
333412	Industrial and commercial fan and blower manufacturing	\$596	\$4	\$599
333414	Heating equipment (except warm air furnaces) manufacturing	\$1,167	\$7	\$1,174
333511	Industrial mold manufacturing	\$2,303	\$14	\$2,317
333512	Machine tool (metal cutting types) manufacturing	\$982	\$6	\$988
333513	Machine tool (metal forming types) manufacturing	\$492	\$3	\$495
333514	Special die and tool, die set, jig, and fixture manufacturing	\$3,325	\$20	\$3,346
333515	Cutting tool and machine tool accessory manufacturing	\$2,012	\$12	\$2,025
333516	Rolling mill machinery and equipment manufacturing	\$177	\$1	\$178
333518	Other metalworking machinery manufacturing	\$719	\$4	\$724
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$697	\$4	\$702
333613	Mechanical power transmission equipment manufacturing	\$881	\$5	\$886
333911	Pump and pumping equipment manufacturing	\$1,757	\$11	\$1,767
333912	Air and gas compressor manufacturing	\$1,222	\$8	\$1,230
333991	Power-driven handtool manufacturing	\$498	\$3	\$501
333992	Welding and soldering equipment manufacturing	\$898	\$6	\$904
333993	Packaging machinery manufacturing	\$1,211	\$7	\$1,219
333994	Industrial process furnace and oven manufacturing	\$617	\$4	\$620
333995	Fluid power cylinder and actuator manufacturing	\$1,130	\$7	\$1,137
333996	Fluid power pump and motor manufacturing	\$777	\$5	\$782
333997	Scale and balance (except laboratory) manufacturing	\$215	\$1	\$216
333999	All other miscellaneous general purpose machinery manufacturing	\$2,993	\$18	\$3,012
334518	Watch, clock, and part manufacturing	\$127	\$1	\$127
335211	Electric housewares and household fans	\$148	\$1	\$149
335221	Household cooking appliance manufacturing	\$319	\$2	\$321
335222	Household refrigerator and home freezer manufacturing	\$341	\$2	\$343
335224	Household laundry equipment manufacturing	\$324	\$2	\$326
335228	Other major household appliance manufacturing	\$255	\$2	\$256
336111	Automobile manufacturing	\$4,177	\$26	\$4,203
336112	Light truck and utility vehicle manufacturing	\$5,763	\$36	\$5,799
336120	Heavy duty truck manufacturing	\$1,789	\$11	\$1,800
336211	Motor vehicle body manufacturing	\$2,705	\$17	\$2,722
336212	Truck trailer manufacturing	\$1,829	\$11	\$1,841

Table V-13: Aggregate Costs in General Industry and Maritime, by NAICS Industry, for the Medical Surveillance Requirements in the Proposed Silica Rule (continued)

NAICS	Industry	Total Cost of Examinations	Cost of Pulmonary Specialist Examinations	Total Cost
336213	Motor home manufacturing	\$1,204	\$8	\$1,212
336311	Carburetor, piston, piston ring, and valve manufacturing	\$594	\$4	\$598
336312	Gasoline engine and engine parts manufacturing	\$3,730	\$23	\$3,753
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$3,499	\$22	\$3,520
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$2,214	\$14	\$2,228
336340	Motor vehicle brake system manufacturing	\$1,905	\$12	\$1,917
336350	Motor vehicle transmission and power train parts manufacturing	\$4,701	\$29	\$4,730
336370	Motor vehicle metal stamping	\$6,244	\$39	\$6,282
336399	All other motor vehicle parts manufacturing	\$8,420	\$52	\$8,472
336611	Ship building and repair	\$395,272	\$2,463	\$397,735
336612	Boat building	\$247,547	\$1,542	\$249,089
336992	Military armored vehicle, tank, and tank component manufacturing	\$391	\$2	\$394
337215	Showcase, partition, shelving, and locker manufacturing	\$3,384	\$21	\$3,405
339114	Dental equipment and supplies manufacturing	\$5,490	\$34	\$5,524
339116	Dental laboratories	\$21,470	\$132	\$21,602
339911	Jewelry (except costume) manufacturing	\$69,051	\$421	\$69,472
339913	Jewelers' materials and lapidary work manufacturing	\$14,200	\$87	\$14,287
339914	Costume jewelry and novelty manufacturing	\$9,667	\$59	\$9,726
339950	Sign manufacturing	\$3,470	\$21	\$3,491
423840	Industrial supplies, wholesalers	\$3,130	\$19	\$3,149
482110	Rail transportation	\$109,536	\$694	\$110,229
621210	Dental offices	\$5,255	\$32	\$5,286
	Totals	\$3,038,378	\$18,698	\$3,057,076

Information and Training Costs

As specified in paragraph (i) of the proposed rule and 29 CFR 1910.1200, training is required for all employees in general industry and maritime in jobs where there is potential exposure to respirable crystalline silica. In addition, new hires would require training before starting work. ERG (2011) provided an estimate of the new-hire rate in general industry and maritime, based on the BLS-estimated separations rate of 27.2 percent in manufacturing (BLS, 2008). OSHA estimated separate costs for training current employees and for training new hires. Given that new-hire training might need to be performed frequently during the year, OSHA estimated a smaller class size for new hires.

OSHA anticipates that training, in accordance with the requirements of the proposed rule (to include hazard communication under proposed paragraph (i)(1) and employee information and training under proposed paragraph (i)(2)), will be conducted by in-house safety or supervisory staff with the use of training modules or videos and will last, on average, one hour. ERG (2007b) judged that establishments could purchase sufficient training materials at an average cost of \$2 per worker, encompassing the cost of handouts, video presentations, and training manuals and exercises. ERG (2011) included in the cost estimates for training the value of worker and trainer time as measured by 2009 hourly wage rates (to include fringe benefits) for employees and supervisors, respectively. ERG also developed estimates of average class sizes as a function of establishment size.

For initial training, ERG estimated an average class size of 5 workers for establishments with fewer than 20 employees; 10 workers for establishments with 20 to 499 employees; and 20 workers for establishments with 500 or more employees. For new-hire training, ERG estimated an average class size of 2 workers for establishments with fewer than 20 employees; 5 workers for establishments with 20 to 499 employees; and 10 workers for establishments with 500 or more employees. Based on ERG's work, OSHA estimated the annualized cost (annualized over 10 years) of initial training at between \$3.02 and \$3.57 per employee and the annual cost of new-hire training at between \$22.50 and \$32.72 per employee, depending on establishment size. These parameters are averages, and establishment training costs per employee may be higher or lower depending on the total number of employees requiring training. In some industries within the captive foundry sector, the estimated number of at-risk employees in the smallest establishment group was less than the specified average size class (5). However, this result is not based on published data but is only an artifact of the methodology ERG (2007b) used to identify those industries with captive foundries and to impute the number of affected foundry workers in each such industry. The unit costs of training are presented below in Table V-14.

OSHA notes that the training requirements—and the Agency's estimate of training costs—do not include planning and research by management to determine how to come into compliance with the rule. However, costs have been included for management to provide the training, which would presumably allow management to become familiar with the rule and anticipate what changes might be needed to come into compliance. Also, since this is a modification of an existing rule, OSHA anticipates that management would have some familiarization with available compliance technology and practices. Finally, the cost of control equipment is an installed cost, which would include normal design and installation costs. OSHA invites comment

on this issue and, if additional management planning and research costs are recommended, any evidence on what the magnitude of these additional costs would be.

OSHA recognizes that many affected establishments in general industry and maritime currently provide training on the hazards of respirable crystalline silica in the workplace. Consistent with some estimates developed by ERG (2007b), OSHA estimates that 50 percent of affected establishments already provide such training. However, some of the training specified in the proposed rule requires that workers be familiar with the training and medical surveillance provisions in the rule. OSHA expects that this training is not currently being provided. Therefore, for costing purposes for the proposed rule, OSHA has estimated that 50 percent of affected establishments currently provide their workers, and would provide new hires, with training that would comply with approximately 50 percent of the training requirements. In other words, OSHA estimates that those (50 percent of) establishments currently providing training on workplace silica hazards would provide an additional 30 minutes of training to comply with the proposed rule; the remaining (50 percent of) establishments would provide 60 minutes of training to comply with the proposed rule. OSHA also recognizes that many new hires in general industry and maritime may have been previously employed in the same industry, and in some cases by the same establishment, so that they might have already received (partial) silica training. However, for costing purposes, OSHA estimates that all new hires will receive the full silica training from the new employer. OSHA requests comments from interested parties on the reasonableness of these estimates.

Table V-15 summarizes the annual costs in general industry and maritime, by NAICS industry, of the training requirements in the proposed rule. For general industry and maritime, combined over all NAICS industries, the cost of the training requirements is \$3.0 million annually.

Table V-14: Unit Costs and Analytical Assumptions in General Industry and Maritime for Training Requirements in OSHA's Proposed Silica Standard (Coverage: Applies to all employees potentially at risk)

Cost **Comments/Assumptions** Cost Category **Direct Costs** Based on supervisor wage, adjusted for fringe Instructor cost per hour \$34.09 benefits (BLS, 2008, updated to 2009 dollars) Estimated cost of \$2 per worker for the Materials for class per \$2.00 attendee training/reading materials. **Labor Costs** Time spent in class ERG estimates. Minutes Establishments without 60 existing silica training Establishments with 30 existing silica training **Establishment Size** Small Medium Large (20-499)(500+)(<20)Initial training class size 5 10 20 New hire training class 2 5 10 size Value of worker time Based on worker wage, adjusted for fringe benefits \$17.94 \$17.94 \$17.94 spent in class (BLS, 2008, updated to 2009 dollars) Annualized Training Cost per Employee by Establishment Size Medium Small Large (20-499)(500+)(<20)Initial training Value of instructor's time \$1.28 \$5.11 \$2.56 Value of employee's time \$17.94 \$17.94 \$17.94 Cost of materials \$2.00 \$2.00 \$2.00 Total \$25.05 \$22.50 \$21.22 Annualized total \$3.57 \$3.20 \$3.02 New hire training Value of instructor's time \$12.78 \$5.11 \$2.56 Value of employee's time \$17.94 \$17.94 \$17.94 Cost of materials \$2.00 \$2.00 \$2.00 Total \$32.72 \$25.05 \$22.50 2008 annual hire rate for the manufacturing Separations rate (layoffs, 27.2% industry (BLS Job Openings and Labor Turnover quits, and retirements)

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b and 2011).

Survey)

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments)

NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
324121	Asphalt paving mixture and block manufacturing	5,043	\$15,969	\$34,010	\$49,979
324122	Asphalt shingle and roofing materials	4,395	\$13,919	\$29,644	\$43,563
325510	Paint and coating manufacturing	3,285	\$10,580	\$22,902	\$33,482
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	2,802	\$9,104	\$19,902	\$29,006
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	4,394	\$14,274	\$31,205	\$45,479
327113	Porcelain electrical supply mfg	2,953	\$9,593	\$20,971	\$30,564
327121	Brick and structural clay mfg	5,132	\$16,460	\$35,106	\$51,566
327122	Ceramic wall and floor tile mfg	2,695	\$8,721	\$18,878	\$27,599
327123	Other structural clay product mfg	609	\$1,978	\$4,324	\$6,302
327124	Clay refractory manufacturing	1,646	\$5,349	\$11,694	\$17,043
327125	Nonclay refractory manufacturing	2,075	\$6,741	\$14,738	\$21,479
327211	Flat glass manufacturing	271	\$879	\$1,921	\$2,800
327212	Other pressed and blown glass and glassware manufacturing	1,034	\$3,361	\$7,347	\$10,708
327213	Glass container manufacturing	722	\$2,345	\$5,127	\$7,472
327320	Ready-mixed concrete manufacturing	43,920	\$142,691	\$311,939	\$454,630
327331	Concrete block and brick mfg	10,962	\$35,615	\$77,858	\$113,473
327332	Concrete pipe mfg	6,787	\$22,049	\$48,201	\$70,250

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

		(COIIIIII	<u>, </u>		
NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
327390	Other concrete product mfg	31,865	\$103,525	\$226,318	\$329,844
327991	Cut stone and stone product manufacturing	12,085	\$39,407	\$86,657	\$126,064
327992	Ground or treated mineral and earth manufacturing	5,051	\$16,471	\$36,220	\$52,692
327993	Mineral wool manufacturing	1,090	\$3,556	\$7,820	\$11,376
327999	All other misc. nonmetallic mineral product mfg	4,835	\$15,766	\$34,669	\$ 50,435
331111	Iron and steel mills	614	\$1,899	\$3,937	\$5,836
331112	Electrometallurgical ferroalloy product manufacturing	12	\$38	\$80	\$118
331210	Iron and steel pipe and tube manufacturing from purchased steel	122	\$390	\$832	\$1,222
331221	Rolled steel shape manufacturing	61	\$197	\$420	\$617
331222	Steel wire drawing	83	\$265	\$567	\$832
331314	Secondary smelting and alloying of aluminum	42	\$131	\$275	\$406
331423	Secondary smelting, refining, and alloying of copper	7	\$23	\$48	\$71
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	53	\$169	\$361	\$ 531
331511	Iron foundries	22,111	\$69,660	\$146,568	\$216,228
331512	Steel investment foundries	5,934	\$18,853	\$40,038	\$58,892
331513	Steel foundries (except investment)	6,618	\$21,026	\$44,653	\$65,679
331524	Aluminum foundries (except die-casting)	9,633	\$30,860	\$66,146	\$97,006

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

	(continued)							
NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost			
331525	Copper foundries (except die-casting)	2,219	\$7,288	\$16,159	\$23,448			
331528	Other nonferrous foundries (except diecasting)	1,708	\$5,426	\$11,523	\$16,949			
332111	Iron and steel forging	150	\$488	\$1,067	\$1,555			
332112	Nonferrous forging	50	\$161	\$352	\$513			
332115	Crown and closure manufacturing	18	\$59	\$127	\$186			
332116	Metal stamping	366	\$1,181	\$2,555	\$3,736			
332117	Powder metallurgy part manufacturing	47	\$152	\$327	\$479			
332211	Cutlery and flatware (except precious) manufacturing	33	\$106	\$231	\$337			
332212	Hand and edge tool manufacturing	207	\$668	\$1,450	\$2,118			
332213	Saw blade and handsaw manufacturing	41	\$131	\$280	\$411			
332214	Kitchen utensil, pot, and pan manufacturing	22	\$72	\$158	\$230			
332323	Ornamental and architectural metal work	54	\$177	\$395	\$572			
332439	Other metal container manufacturing	86	\$278	\$607	\$885			
332510	Hardware manufacturing	256	\$831	\$1,815	\$2,646			
332611	Spring (heavy gauge) manufacturing	23	\$74	\$163	\$237			
332612	Spring (light gauge) manufacturing	87	\$281	\$614	\$895			
332618	Other fabricated wire product manufacturing	205	\$667	\$1,458	\$2,125			
332710	Machine shops	1,506	\$4,981	\$11,175	\$16,157			
332812	Metal coating and allied services	4,695	\$15,243	\$33,319	\$48,563			
332911	Industrial valve manufacturing	216	\$690	\$1,469	\$2,159			

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

	1	(contin	ucu,		
NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
332912	Fluid power valve and hose fitting manufacturing	201	\$642	\$1,378	\$2,021
332913	Plumbing fixture fitting and trim manufacturing	65	\$208	\$447	\$655
332919	Other metal valve and pipe fitting manufacturing	102	\$327	\$701	\$1,028
332991	Ball and roller bearing manufacturing	154	\$492	\$1,055	\$1,547
332996	Fabricated pipe and pipe fitting manufacturing	154	\$491	\$1,054	\$1,545
332997	Industrial pattern manufacturing	30	\$96	\$205	\$301
332998	Enameled iron and metal sanitary ware manufacturing	96	\$308	\$661	\$969
332999	All other miscellaneous fabricated metal product manufacturing	408	\$1,330	\$2,925	\$4,256
333319	Other commercial and service industry machinery manufacturing	299	\$965	\$2,081	\$3,046
333411	Air purification equipment manufacturing	84	\$265	\$559	\$823
333412	Industrial and commercial fan and blower manufacturing	59	\$187	\$395	\$582
333414	Heating equipment (except warm air furnaces) manufacturing	116	\$367	\$774	\$1,141
333511	Industrial mold manufacturing	226	\$739	\$1,636	\$2,375
333512	Machine tool (metal cutting types) manufacturing	97	\$312	\$673	\$985

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
333513	Machine tool (metal forming types) manufacturing	48	\$157	\$343	\$500
333514	Special die and tool, die set, jig, and fixture manufacturing	325	\$1,070	\$2,388	\$3,458
333515	Cutting tool and machine tool accessory manufacturing	197	\$646	\$1,429	\$2,075
333516	Rolling mill machinery and equipment manufacturing	17	\$57	\$125	\$182
333518	Other metalworking machinery manufacturing	70	\$231	\$511	\$742
333612	Speed changer, industrial high-speed drive, and gear manufacturing	70	\$218	\$456	\$674
333613	Mechanical power transmission equipment manufacturing	88	\$276	\$576	\$852
333911	Pump and pumping equipment manufacturing	174	\$556	\$1,190	\$1,746
333912	Air and gas compressor manufacturing	121	\$387	\$831	\$1,219
333991	Power-driven handtool manufacturing	49	\$158	\$339	\$497
333992	Welding and soldering equipment manufacturing	90	\$282	\$597	\$879
333993	Packaging machinery manufacturing	120	\$385	\$833	\$1,218
333994	Industrial process furnace and oven manufacturing	61	\$197	\$429	\$626
333995	Fluid power cylinder and actuator manufacturing	112	\$356	\$756	\$1,113

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

i e	1	(contin	ucu)		
NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
333996	Fluid power pump and motor manufacturing	77	\$246	\$526	\$772
333997	Scale and balance (except laboratory) manufacturing	21	\$69	\$150	\$218
333999	All other miscellaneous general purpose machinery manufacturing	296	\$949	\$2,036	\$2,985
334518	Watch, clock, and part manufacturing	12	\$40	\$89	\$129
335211	Electric housewares and household fans	22	\$66	\$136	\$203
335221	Household cooking appliance manufacturing	47	\$143	\$295	\$438
335222	Household refrigerator and home freezer manufacturing	50	\$153	\$315	\$468
335224	Household laundry equipment manufacturing	47	\$145	\$299	\$444
335228	Other major household appliance manufacturing	37	\$115	\$235	\$350
336111	Automobile manufacturing	425	\$1,290	\$2,624	\$3,914
336112	Light truck and utility vehicle manufacturing	587	\$1,780	\$3,620	\$5,400
336120	Heavy duty truck manufacturing	181	\$555	\$1,138	\$1,692
336211	Motor vehicle body manufacturing	269	\$854	\$1,819	\$2,674
336212	Truck trailer manufacturing	182	\$576	\$1,215	\$1,791
336213	Motor home manufacturing	122	\$375	\$773	\$1,147
336311	Carburetor, piston, piston ring, and valve manufacturing	60	\$186	\$390	\$576

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

NAICS	Number Initi			New Hire	Total Cost
	•	Workers	Training	Training	
	Gasoline engine and				
336312	engine parts	373	\$1,169	\$2,447	\$3,616
	manufacturing				
	Other motor vehicle				
336322	electrical and electronic	350	\$1,096	\$2,295	\$3,392
	equipment		. ,	. ,	
	manufacturing				
	Motor vehicle steering				
336330	and suspension	223	\$691	\$1,437	\$2,128
	components (except				
	spring) manufacturing				
336340	Motor vehicle brake	191	\$597	\$1,250	\$1,847
	system manufacturing				•
	Motor vehicle	473			
336350	transmission and power		473	\$1,467	\$3,044
	train parts				
	manufacturing				
336370	Motor vehicle metal	624	\$1,958	\$4,099	\$6,057
	stamping All other motor vehicle				
336399	parts manufacturing	843	\$2,638	\$5,523	\$8,162
336611	,	2 700	¢0 705	\$18,248	\$26.072
	Ship building and repair	2,798	\$8,725		\$26,973
336612	Boat building	1,752	\$5,464	\$11,428	\$16,892
	Military armored vehicle,				
336992	tank, and tank component	39	\$123	\$260	\$383
	manufacturing				
	Showcase, partition,				
337215	shelving, and locker	334	\$1,077	\$2,334	\$3,412
	manufacturing		\$ 1,511	4 2,00 :	ψο,
	Dental equipment and				
339114	supplies manufacturing	411	\$1,316	\$2,841	\$4,157
339116	Dental laboratories	33,214	\$106,382	\$229,602	\$335,984
	Jewelry (except	7010	005.440	0 55 070	AC1 11
339911	costume) manufacturing	7,813	\$25,442	\$55,972	\$81,414
	Jewelers' materials and				
339913	lapidary work	1,607	\$5,232	\$11,510	\$16,742
	manufacturing				

Table V-15: Estimated Training Costs in General Industry and Maritime for OSHA's Proposed Silica Standard (all establishments) (continued)

Number Initial **New Hire NAICS** Industry of At-Risk **Total Cost Training Training** Workers Costume jewelry and 339914 1,088 \$3,543 \$7,794 \$11,337 novelty manufacturing 339950 Sign manufacturing 496 \$1,617 \$3,556 \$5,173 Industrial supplies, 423840 383 \$1,280 \$2,919 \$4,199 wholesalers \$51,036 \$103,375 \$154,412 482110 Rail transportation 16,895 621210 Dental offices 7,980 \$26,629 \$60,779 \$87,408 **Totals** 294,886 \$947,554 \$2,048,346 \$2,995,900

Regulated Area Costs

Paragraph (e)(1) of the proposed standard requires that wherever an employee's exposure to airborne concentrations of respirable crystalline silica is, or can reasonably be expected to be, in excess of the PEL, each employer shall establish and implement either a regulated area in accordance with paragraph (e)(2) or an access control plan in accordance with paragraph (e)(3).

For costing purposes, OSHA estimated that employers in general industry and maritime would typically prefer and choose option (e)(2) and would therefore establish regulated areas when an employee's exposure to airborne concentrations of silica exceeds, or can reasonably be expected to exceed, the PEL. OSHA believes that general industry and maritime employers will prefer this option as it is expected to be the most practical alternative in fixed worksites. Requirements in the proposed rule for a regulated area include demarcating the boundaries of the regulated area (as separate from the rest of the workplace) (paragraph (e)(2)), limiting access to the regulated area (paragraph (e)(3)), providing an appropriate respirator to each employee entering the regulated area (paragraph (e)(4)), and providing protective clothing as needed in the regulated area (paragraph (e)(5)). OSHA estimated costs for establishing and maintaining regulated areas to comply with these requirements.

Based on ERG (2007b), OSHA estimated that one area would be necessary for every eight workers in general industry and maritime exposed above the PEL. Unit costs were also derived from ERG (2007b). They included planning time (estimated at an initial seven hours of supervisor time and one hour for changes annually); material costs for signs and boundary markers (annualized at \$63.64 in 2009 dollars); and costs of \$500 annually for two disposable respirators per day to be used by authorized persons (other than those who regularly work in the regulated area) who might need to enter the area in the course of their job duties. In addition, for costing purposes, OSHA estimated that, in response to the protective work clothing requirements in regulated areas, ten percent of employees in regulated areas would wear disposable protective clothing daily, estimated at \$5.50 per suit, for an annual clothing cost of \$1,100 per regulated area. Table V-16 shows the cost assumptions and unit costs applied in OSHA's cost model for regulated areas in general industry and maritime. Overall, OSHA estimates that each regulated area in general industry and maritime would, on average, cost employers \$1,732 annually. Table V-17 shows total estimated costs for regulated areas in general industry and maritime of \$2.7 million annually for the proposed rule and also provides a breakdown of costs by NAICS industry.

Table V-16: Unit Costs and Analytical Assumptions in General Industry and Maritime for Regulated Area Requirements in OSHA's Proposed Silica Standard

Cost Variable	Parameter	Unit cost	Comment
Regulated area setup			
Time to set up regulated area (hours) – First year only	7	\$238.63	Estimated by ERG. Valued at supervisor's wage (BLS, 2008, updated to 2009 dollars)
Annual time for changes to regulated areas	1	\$34.09	Estimated by ERG. Valued at supervisor's wage (BLS, 2008, updated to 2009 dollars)
Annualized regulated area set up costs		\$68.07	
Respirators			
Respirators for authorized persons	2		Assumes 2 disposable respirators used per day
Cost - disposable particulate respirator (N95)		\$1.00	\$1.00 per respirator per day, typical cost for N95 disposable respirator (Lab Safety Supply, 2010).
Respirator cost - annual		\$500	Per crew
Disposable clothing		\$5.50	Per suit (Lab Supply, 2010)
Disposable clothing – annual cost		\$1,100	Assumes daily clothing for 10% of workers
<u>Materials</u>			
Hazard tape per regulated area for annual set-up (300 ft)		\$5.80	(Lab Safety Supply, 2010)
Warning signs (6)		\$151.80	\$25.30 per sign (Lab Safety Supply, 2010)
Warning signs - annualized cost		\$57.84	Assumes 3 year life
Annualized materials cost per regulated area		\$63.64	Sum of hazard tape and annualized warning sign costs
Total annualized cost per regulated area		\$1,732	Sum of respirator, materials, and labor cost
<u>Assumptions</u>			
Average number of workers above the PEL per regulated area	8		
Number of working days per year	250		
Share of workers exposed above the PEL needing regulated areas (percentage of at-risk workers initially exposed above the PEL)	10.0%		ysis, Office of Regulatory Analysis, based on

Table V-17: Estimated Costs for Regulated Area Requirements in OSHA's Proposed Silica Standard -- General Industry and Maritime

NAICS	Industry	Affected Workers [a]	Annual Costs
324121	Asphalt paving mixture and block manufacturing	5	\$1,038
324122	Asphalt shingle and roofing materials	196	\$42,495
325510	Paint and coating manufacturing	40	\$8,752
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	132	\$28,554
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	207	\$44,770
327113	Porcelain electrical supply mfg	139	\$30,087
327121	Brick and structural clay mfg	266	\$57,636
327122	Ceramic wall and floor tile mfg	140	\$30,266
327123	Other structural clay product mfg	32	\$6,838
327124	Clay refractory manufacturing	36	\$7,878
327125	Nonclay refractory manufacturing	46	\$9,929
327211	Flat glass manufacturing	15	\$3,344
327212	Other pressed and blown glass and glassware manufacturing	59	\$12,839
327213	Glass container manufacturing	41	\$8,959
327320	Ready-mixed concrete manufacturing	3,211	\$695,065
327331	Concrete block and brick mfg	387	\$83,692
327332	Concrete pipe mfg	239	\$51,813
327390	Other concrete product mfg	1,124	\$243,276
327991	Cut stone and stone product manufacturing	744	\$161,080
327992	Ground or treated mineral and earth manufacturing	89	\$19,295
327993	Mineral wool manufacturing	63	\$13,675
327999	All other misc. nonmetallic mineral product mfg	171	\$36,911
331111	Iron and steel mills	31	\$6,691
331112	Electrometallurgical ferroalloy product manufacturing	1	\$135
331210	Iron and steel pipe and tube manufacturing from purchased steel	6	\$1,328
331221	Rolled steel shape manufacturing	3	\$670
331222	Steel wire drawing	4	\$904
331314	Secondary smelting and alloying of aluminum	2	\$453
331423	Secondary smelting, refining, and alloying of copper	0	\$78
331492	Secondary smelting, refining, and alloying of nonferrous metal (except copper & aluminum)	3	\$580
331511	Iron foundries	1,114	\$241,133
331512	Steel investment foundries	310	\$67,110
331513	Steel foundries (except investment)	333	\$72,174

Table V-17: Estimated Costs for Regulated Area Requirements in OSHA's Proposed Silica Standard -- General Industry and Maritime (continued)

NAICS	Industry	Affected Workers [a]	Annual Costs \$108,935	
331524	Aluminum foundries (except die-casting)	503		
331525	Copper foundries (except die-casting)	116	\$25,095	
331528	Other nonferrous foundries (except die-casting)	89	\$19,314	
332111	Iron and steel forging	8	\$1,640	
332112	Nonferrous forging	3	\$541	
332115	Crown and closure manufacturing	1	\$199	
332116	Metal stamping	18	\$3,988	
332117	Powder metallurgy part manufacturing	2	\$514	
332211	Cutlery and flatware (except precious) manufacturing	2	\$355	
332212	Hand and edge tool manufacturing	10	\$2,255	
332213	Saw blade and handsaw manufacturing	2	\$451	
332214	Kitchen utensil, pot, and pan manufacturing	1	\$243	
332323	Ornamental and architectural metal work	2	\$406	
332439	Other metal container manufacturing	4	\$934	
332510	Hardware manufacturing	13	\$2,790	
332611	Spring (heavy gauge) manufacturing	1	\$250	
332612	Spring (light gauge) manufacturing	4	\$944	
332618	Other fabricated wire product manufacturing	10	\$2,241	
332710	Machine shops	76	\$16,423	
332812	Metal coating and allied services	163	\$35,337	
332911	Industrial valve manufacturing	11	\$2,361	
332912	Fluid power valve and hose fitting manufacturing	10	\$2,189	
332913	Plumbing fixture fitting and trim manufacturing	3	\$710	
332919	Other metal valve and pipe fitting manufacturing	5	\$1,114	
332991	Ball and roller bearing manufacturing	8	\$1,676	
332996	Fabricated pipe and pipe fitting manufacturing	8	\$1,674	
332997	Industrial pattern manufacturing	2	\$326	
332998	Enameled iron and metal sanitary ware manufacturing	4	\$831	
332999	All other miscellaneous fabricated metal product manufacturing	21	\$4,446	
333319	Other commercial and service industry machinery manufacturing	15	\$3,266	
333411	Air purification equipment manufacturing	4	\$916	
333412	Industrial and commercial fan and blower manufacturing	3	\$648	
333414	Heating equipment (except warm air furnaces) manufacturing	6	\$1,269	
333511	Industrial mold manufacturing	11	\$2,460	
333512	Machine tool (metal cutting types) manufacturing	5	\$1,059	
333513	Machine tool (metal forming types) manufacturing	2	\$527	

Table V-17: Estimated Costs for Regulated Area Requirements in OSHA's Proposed Silica Standard -- General Industry and Maritime (continued)

Annual Costs	Affected Workers [a]	Industry	NAICS			
\$3,54	16	Special die and tool, die set, jig, and fixture manufacturing				
\$2,150	10	Cutting tool and machine tool accessory manufacturing				
\$189	1	Rolling mill machinery and equipment manufacturing				
\$768	4	Other metalworking machinery manufacturing	333518			
\$763	4	Speed changer, industrial high-speed drive, and gear manufacturing	333612			
\$963	4	Mechanical power transmission equipment manufacturing	333613			
\$1,897	9	Pump and pumping equipment manufacturing	333911			
\$1,320	6	Air and gas compressor manufacturing	333912			
\$538	2	Power-driven handtool manufacturing	333991			
\$978	5	Welding and soldering equipment manufacturing	333992			
\$1,304	6	Packaging machinery manufacturing	333993			
\$66	3	Industrial process furnace and oven manufacturing	333994			
\$1,22	6	Fluid power cylinder and actuator manufacturing	333995			
\$840	4	Fluid power pump and motor manufacturing				
\$230	1	Scale and balance (except laboratory) manufacturing	333997			
\$3,232	15	All other miscellaneous general purpose machinery manufacturing	333999			
\$13	1	Watch, clock, and part manufacturing	334518			
\$163	1	Electric housewares and household fans	335211			
\$352	2	Household cooking appliance manufacturing	335221			
\$370	2	Household refrigerator and home freezer manufacturing	335222			
\$357	2	Household laundry equipment manufacturing	335224			
\$28	1	Other major household appliance manufacturing	335228			
\$4,636	21	Automobile manufacturing	336111			
\$6,397	30	Light truck and utility vehicle manufacturing	336112			
\$1,977	9	Heavy duty truck manufacturing	336120			
\$2,93°	14	Motor vehicle body manufacturing	336211			
\$1,989	9	Truck trailer manufacturing	336212			
\$1,326	6	Motor home manufacturing	336213			
\$649	3	Carburetor, piston, piston ring, and valve manufacturing	336311			
\$4,07	19	Gasoline engine and engine parts manufacturing	336312			
\$3,820	18	Other motor vehicle electrical and electronic equipment manufacturing				
\$2,427	11	Motor vehicle steering and suspension components (except spring) manufacturing	336330			
\$2,080	10	Motor vehicle brake system manufacturing	336340			
\$5,160	24	Motor vehicle transmission and power train parts manufacturing	336350			
•	31	Motor vehicle metal stamping	336370			

Table V-17: Estimated Costs for Regulated Area Requirements in OSHA's Proposed Silica Standard -- General Industry and Maritime (continued)

NAICS	Industry	Affected Workers [a]	Annual Costs \$9,194	
336399	All other motor vehicle parts manufacturing	42		
336611	Ship building and repair	200	\$43,259	
336612	Boat building	125	\$27,092	
336992	Military armored vehicle, tank, and tank component manufacturing 2			
337215	Showcase, partition, shelving, and locker manufacturing	\$3,638		
339114	Dental equipment and supplies manufacturing	\$5,930		
339116	Dental laboratories	107	\$23,193	
339911	Jewelry (except costume) manufacturing	342		
339913	Jewelers' materials and lapidary work manufacturing	70	\$15,216	
339914	Costume jewelry and novelty manufacturing	48	\$10,359	
339950	Sign manufacturing	17	\$3,718	
423840	Industrial supplies, wholesalers	15	\$3,315	
482110	Rail transportation	563	\$121,858	
621210	Dental offices	26	\$5,572	
	Total - General Industry and Maritime	12,247	\$2,651,079	

[[]a] Estimated as ten percent of workers originally exposed over 50 $\mu g/m^3$.

SBREFA Comments on Compliance Costs in General Industry and Maritime

The Small Entity Representatives (SERs) who participated in the 2003 SBREFA Panel process on OSHA's draft standards for silica provided many comments on OSHA's estimated compliance costs in the Preliminary Initial Regulatory Flexibility Analysis (PIRFA) for general industry and maritime (OSHA, 2003b). The SER comments may be summarized as focusing on several specific concerns: (1) OSHA's choice of data and methodology (often accompanied by a SER's estimates of its own control costs); (2) OSHA's failure to estimate costs specific to small entities; and (3) OSHA's underestimate of certain programmatic costs, particularly for exposure monitoring and medical surveillance.^{9, 10}

In response, OSHA carefully reviewed its cost estimates and evaluated the alternative estimates and methodologies suggested by the SERs. OSHA updated all unit costs to reflect the most recent cost data available and inflated all costs to 2009 dollars, but generally determined that its control cost estimates were based on sound methods and reliable data sources.

SERs from several industries provided comments on the costs of complying with the current and proposed silica PEL. Some SERs in the foundry industry and in brick manufacturing (i.e., in the structural clay industry) also provided estimates of the costs they had incurred to meet the current PEL or would incur to meet the proposed PEL.

One SER, whose foundry meets the PEL of 100 except in two operations, provided an estimate of \$280,000 for ventilation equipment to meet a lower PEL. Another foundry SER reported that after building a new facility, the company had to invest more than \$200,000 in additional ventilation systems to make the current PEL. The SER said that achieving a lower PEL would require an additional \$50,000 investment.

One SER in the structural clay industry reported investment costs of \$200,000 in controls for silica dust in high exposure jobs in brick manufacturing, but still needed respiratory protection to meet the current PEL. Another SER reported an investment of \$600,000 - \$700,000 to install several dust control systems, including the use of water, baffles, and other measures, to meet the current PEL. Another reported spending \$200,000 in a new facility for three ventilation systems. SERs in the structural clay industry also reported that it would require significantly more investment to meet a lower PEL, if in fact it could be achieved.

OSHA reviewed these cost estimates for small entities in the foundry and structural clay industries and, given that the SERs with cost estimates did not report their own size, the Agency concludes that the compliance costs reported by SERs in general industry are not incompatible with OSHA's own estimates of the costs of engineering controls to comply with the PEL. For

⁹ The SERs also provided numerous comments on the hygiene provisions contained in the 2003 draft silica standards. Those provisions would have required, among other things, change rooms, shower facilities, and lunch rooms. These specific hygiene provisions have been removed from the proposed rule.

¹⁰ These SERs' concerns, and OSHA's response to them, apply equally well to OSHA's estimated compliance costs in the PIRFA on construction. However, in the following section of this chapter devoted to the costs of the proposed rule on the construction sector, OSHA focuses on more detailed and technical comments provided during the SBREFA Panel process specific to the Agency's estimate of costs in construction.

example, OSHA estimates for first year costs for ventilation in the foundry industry would range from \$171,000 to \$530,000 for small entities with between 50 and 500 employees, with total first-year engineering control costs ranging from \$197,000 to \$966,000. OSHA estimates for first year costs for ventilation in the structural clay industry would range from \$275,000 to \$2,500,000 for small entities with between 50 and 500 employees, with total first-year engineering control costs ranging from \$414,000 to \$3,845,000. In fact, while the SERs indicated that the meeting the proposed PEL would be expensive, they did not assert that OSHA's cost estimates were too low.

OSHA also developed cost estimates in this PEA as a function of the size of the establishment for exposure monitoring, medical surveillance, and training. In each case, OSHA's cost estimates now reflect the fact that smaller entities will tend to experience larger unit costs. As described earlier, OSHA estimated higher exposure monitoring costs for small entities because an industrial hygienist could not take as many samples a day in a small establishment as in a large one; higher medical surveillance costs for small entities because smaller establishments would be more likely to send the workers off-site for medical testing; and higher training costs for small entities because of smaller-sized training classes.

In addition, OSHA significantly increased the total costs of exposure sampling and x-rays in medical surveillance by assuming no existing compliance with the those provisions in the proposed rule (as compared to an average of 32.6 percent and 34.8 percent existing compliance, respectively, in the PIRFA) and significantly increased training costs by assuming only half compliance for half of the affected establishments (compared to an average of 56 percent existing compliance for all establishments in the PIRFA).

OSHA solicits comment on all issues associated with OSHA's estimates of compliance costs in general industry and maritime.

Combined Control, Respirator, and Program Costs

Table V-18 shows that the combined compliance costs for general industry and maritime to comply with the proposed silica rule are approximately \$146.7 million annually. These costs include \$101.2 million annually for controls and \$6.9 million annually for respirators to meet the proposed PEL of $50 \,\mu\text{g/m}^3$. The remaining \$38.6 million annually are to meet the ancillary provisions of the proposed rule. These ancillary annual costs consist of \$29.9 million for exposure monitoring; \$3.1 million for medical surveillance; \$3.0 million for training; and \$2.7 million for restricted areas.

Table V-B-1 in Appendix B presents estimated compliance costs by NAICS industry code and program element for small business entities (as defined by the Small Business Act and the Small Business Administration's implementing regulations; see 15 U.S.C. 632 and 13 CFR 121.201) in general industry and maritime, while Table V-B-2 presents estimated compliance costs, by NAICS code and program element, for very small entities (fewer than twenty employees) in general industry and maritime.

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard

	- Carragia									
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total		
	Asphalt paving mixture									
324121	and block	\$179,111	\$2,784	\$8,195	\$962	\$49,979	\$1,038	\$242,070		
	manufacturing									
324122	Asphalt shingle and	\$2,194,150	\$113,924	\$723,761	\$39,364	\$43,563	\$42,495	\$3,157,257		
	roofing materials		Ψ113,324	Ψ120,101	Ψ09,004	Ψ+3,303	Ψ+2,+33	ψ5, 157,257		
325510	Paint and coating	\$0	\$23,445	\$70,423	\$8,179	\$33,482	\$8,752	\$144,281		
323310	manufacturing	φυ	φ23,443	φ10,423	φ0,179	φ33, 4 62	φ0,7 32	ψ144,201		
	Vitreous china	\$1,128,859 \$76,								
327111	plumbing fixtures &		\$76 500	¢260.470	¢26.705	\$20.00e	¢20 EE4	¢1 650 104		
32/111	bathroom accessories		\$76,502	\$369,478	\$26,795	\$29,006	\$28,554	\$1,659,194		
	manufacturing									
	Vitreous china, fine	\$1,769,953	enware, & other \$1 769 953							
327112	earthenware, & other			# 440.040	# F70 000	# 40.040	¢45.470	¢44.770	#0.004.474	
	pottery product			\$119,948	\$579,309	\$42,012	\$45,479	\$44,770	\$2,601,471	
	manufacturing									
327113	Porcelain electrical	\$1,189,482	#00.040	#200 200	#00.004	#20.504	¢20.007	£4.740.007		
	supply mfg		\$80,610	\$389,320	\$28,234	\$30,564	\$30,087	\$1,748,297		
327121	Brick and structural	\$0.000.054	#454.040	#554.000	ΦΕΟ ΟΟ 4	ΦE4 500	#57.000	#7 000 050		
	clay mfg	\$6,966,654	\$154,040	\$554,322	\$53,831	\$51,566	\$57,636	\$7,838,050		
327122	Ceramic wall and floor	\$3,658,389	#00.000	#000 500	#00.074	#07.500	#20.000	#4.400.40 7		
	tile mfg		\$3,658,389 tile mfg	\$80,982	\$306,500	\$28,371	\$27,599	\$30,266	\$4,132,107	
327123	Other structural clay	#006 E44	£40,000	¢70.040	ФС 44 7	#C 200	<u></u>	# 006 600		
	product mfg	\$826,511	\$18,320	\$72,312	\$6,417	\$6,302	\$6,838	\$936,699		

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

				Standard (cor	tillaca)			
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
327124	Clay refractory manufacturing	\$304,625	\$21,108	\$124,390	\$7,393	\$17,043	\$7,878	\$482,438
327125	Nonclay refractory manufacturing	\$383,919	\$26,602	\$156,769	\$9,318	\$21,479	\$9,929	\$608,017
327211	Flat glass manufacturing	\$227,805	\$8,960	\$29,108	\$3,138	\$2,800	\$3,344	\$275,155
327212	Other pressed and		\$34,398	\$111,912	\$12,048	\$10,708	\$12,839	\$1,084,706
327213	Glass container manufacturing	\$629,986	\$24,003	\$78,093	\$8,374	\$7,472	\$8,959	\$756,888
327320	Ready-mixed concrete manufacturing	\$7,029,710	\$1,862,221	\$5,817,205	\$652,249	\$454,630	\$695,065	\$16,511,080
327331	Concrete block and brick mfg	\$2,979,495	\$224,227	\$958,517	\$78,536	\$113,473	\$83,692	\$4,437,939
327332	Concrete pipe mfg	\$1,844,576	\$138,817	\$593,408	\$48,621	\$70,250	\$51,813	\$2,747,484
327390	Other concrete product mfg	\$8,660,830	\$651,785	\$2,786,227	\$228,290	\$329,844	\$243,276	\$12,900,251
327991	Cut stone and stone product manufacturing	\$5,894,506	\$431,758	\$1,835,498	\$151,392	\$126,064	\$161,080	\$8,600,298
327992	Ground or treated mineral and earth manufacturing	neral and earth \$3,585,439 \$51,7		\$867,728	\$18,134	\$52,692	\$19,295	\$4,595,006
327993	Mineral wool		\$36,654	\$122,015	\$12,852	\$11,376	\$13,675	\$1,094,552

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

				Standard (con	itiliacaj			
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
	All other misc.							
327999	99 nonmetallic mineral \$1,314,066 \$98,93 product mfg		\$98,936	\$431,012	\$34,691	\$50,435	\$36,911	\$1,966,052
331111			\$17,939	\$72,403	\$6,129	\$5,836	\$6,691	\$424,557
	Electrometallurgical	<u></u>		<u> </u>				· · · ·
331112	ferroalloy product manufacturing	\$6,375	\$362	\$1,463	\$124	\$118	\$135	\$8,577
	Iron and steel pipe and							
331210	tube manufacturing from purchased steel	\$62,639	\$3,552	\$14,556	\$1,239	\$1,222	\$1,328	\$84,537
331221	Rolled steel shape manufacturing	\$31,618	\$1,793	\$7,348	\$625	\$617	\$670	\$42,672
331222	Steel wire drawing	\$42,648	\$2,419	\$9,911	\$843	\$832	\$904	\$57,557
331314	Secondary smelting and alloying of aluminum	lary smelting salloying of \$21,359		\$4,908	\$419	\$406	\$453	\$28,757
331423	Secondary smelting,		\$207	\$857	\$72	\$71	\$78	\$4,940
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	dary smelting, , and alloying of errous metal \$27,338		\$6,407	\$539	\$531	\$580	\$36,946
331511	Iron foundries	\$11,372,127	\$645,546	\$2,612,775	\$223,005	\$216,228	\$241,133	\$15,310,815
			•	· · ·	•	•	•	

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

				Otandara (con				
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
331512	Steel investment foundries	\$3,175,862	\$179,639	\$739,312	\$62,324	\$58,892	\$67,110	\$4,283,138
331513	Steel foundries (except investment)	\$3,403,790	\$193,194	\$794,973	\$67,027	\$65,679	\$72,174	\$4,596,837
331524	Aluminum foundries (except die-casting)	\$5,155,172	\$291,571	\$1,220,879	\$101,588	\$97,006	\$108,935	\$6,975,150
331525	Copper foundries \$1,187,578 (except die-casting)		\$67,272	\$309,403	\$23,668	\$23,448	\$25,095	\$1,636,463
331528	Other nonferrous foundries (except diecasting)	\$914,028	\$51,701	\$212,778	\$17,937	\$16,949	\$19,314	\$1,232,708
332111	Iron and steel forging	\$77,324	\$4,393	\$19,505	\$1,538	\$1,555	\$1,640	\$105,955
332112	Nonferrous forging	\$25,529	\$1,451	\$6,440	\$508	\$513	\$541	\$34,982
332115	Crown and closure manufacturing	\$9,381	\$532	\$2,236	\$186	\$186	\$199	\$12,720
332116	Metal stamping	\$188,102	\$10,676	\$45,595	\$3,734	\$3,736	\$3,988	\$255,832
332117	Powder metallurgy part \$24,250 manufacturing		\$1,375	\$5,727	\$481	\$479	\$514	\$32,828
332211	Cutlery and flatware (except precious) manufacturing	ot precious) \$16,763		\$4,229	\$333	\$337	\$355	\$22,970
332212	Hand and edge tool \$106,344 manufacturing		\$6,041	\$26,356	\$2,110	\$2,118	\$2,255	\$145,223

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
332213	Saw blade and handsaw manufacturing	\$21,272	\$1,209	\$5,090	\$418	\$411	\$451	\$28,851
332214	Kitchen utensil, pot, and pan manufacturing	\$11,442	\$650	\$2,886	\$228	\$230	\$243	\$15,678
332323	Ornamental and 332323 architectural metal \$28,010 work		\$1,089	\$4,808	\$383	\$572	\$406	\$35,267
332439	Other metal container manufacturing	\$44.028		\$11,106	\$876	\$885	\$934	\$60,330
332510	Hardware manufacturing	\$131,574	\$7,476	\$33,190	\$2,617	\$2,646	\$2,790	\$180,292
332611	Spring (heavy gauge) manufacturing	\$11,792	\$670	\$2,974	\$235	\$237	\$250	\$16,158
332612	Spring (light gauge) manufacturing	\$44,511	\$2,529	\$11,228	\$885	\$895	\$944	\$60,992
332618	Other fabricated wire product manufacturing	\$105,686	\$6,005	\$26,659	\$2,102	\$2,125	\$2,241	\$144,819
332710	Machine shops	\$774,529	\$44,074	\$211,043	\$15,533	\$16,157	\$16,423	\$1,077,759
332812	Metal coating and		\$94,689	\$395,206	\$33,145	\$48,563	\$35,337	\$3,038,935
332911	Industrial valve manufacturing	\$111 334 \$6.3		\$25,894	\$2,197	\$2,159	\$2,361	\$150,261
332912	Fluid power valve and 2 hose fitting \$103,246 \$ manufacturing		\$5,863	\$24,854	\$2,040	\$2,021	\$2,189	\$140,213

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
332913	Plumbing fixture fitting and trim manufacturing	\$33,484	\$1,901	\$8,060	\$661	\$655	\$710	\$45,472
332919	Other metal valve and pipe fitting manufacturing	\$52,542	\$2,984	\$12,648	\$1,038	\$1,028	\$1,114	\$71,354
332991	Ball and roller bearing \$79,038 manufacturing		\$4,488	\$19,027	\$1,561	\$1,547	\$1,676	\$107,338
332996	Fabricated pipe and pipe fitting manufacturing	\$78,951	\$4,483	\$19,006	\$1,560	\$1,545	\$1,674	\$107,219
332997	Industrial pattern manufacturing	\$15,383	\$874	\$3,703	\$304	\$301	\$326	\$20,891
332998	Enameled iron and metal sanitary ware manufacturing	\$46,581	\$2,225	\$9,304	\$774	\$969	\$831	\$60,684
332999	All other miscellaneous fabricated metal product manufacturing	other miscellaneous fabricated metal \$209,692		\$53,603	\$4,181	\$4,256	\$4,446	\$288,093
333319	Other commercial and service industry machinery manufacturing	\$154,006	\$8,741	\$37,161	\$3,053	\$3,046	\$3,266	\$209,273
333411	Air purification equipment manufacturing	\$43,190	\$2,453	\$10,037	\$847	\$823	\$916	\$58,265

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
000440	Industrial and	#20.540	#4.70 5	Ф7.000	\$ 500	\$ 500	# 040	#44.040
333412	commercial fan and blower manufacturing	\$30,549	\$1,735	\$7,099	\$599	\$582	\$648	\$41,212
	Heating equipment							
	(except warm air							
333414	furnaces)	\$59,860	\$3,399	\$13,911	\$1,174	\$1,141	\$1,269	\$80,754
	manufacturing							
	Industrial mold							
333511	manufacturing	\$116,034	\$6,597	\$30,348	\$2,317	\$2,375	\$2,460	\$160,131
	Machine tool (metal							
333512	cutting types)	\$49,965	\$2,839	\$12,313	\$988	\$985	\$1,059	\$68,151
	manufacturing							
	Machine tool (metal							
333513	forming types)	\$24,850	\$1,411	\$6,157	\$495	\$500	\$527	\$33,940
	manufacturing							
	Special die and tool,							
333514	die set, jig, and fixture	\$167,204	\$9,513	\$44,922	\$3,346	\$3,458	\$3,545	\$231,988
	manufacturing							
	Cutting tool and							
333515	machine tool	\$101,385	\$5,764	\$26,517	\$2,025	\$2,075	\$2,150	\$139,916
	accessory							•
	manufacturing							
222542	Rolling mill machinery	Φ0.007	Ф. Г. С. С.	₽0.00 ₹	#470	# 400	#400	640.07 0
333516	and equipment	\$8,897	\$506	\$2,327	\$178	\$182	\$189	\$12,279
	manufacturing							

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

			Otanuana (coi				
Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
Other metalworking							
machinery	\$36,232	\$2,060	\$9,476	\$724	\$742	\$768	\$50,002
manufacturing							
Speed changer,							
industrial high-speed	#05.000	CO 040	#0.200	Ф700	# 07.4	#700	#40.450
drive, and gear	\$35,962	\$2,043	\$8,308	\$702	\$674	\$763	\$48,452
manufacturing							
Mechanical power			al power				
transmission	#45.400	#0.504	640.400	#000	#050	#000	# 04.407
equipment	\$45,422	\$2,581	\$10,493	\$886	\$852	\$903	\$61,197
manufacturing							
Pump and pumping							
equipment	\$89,460	\$5,077	\$21,139	\$1,767	\$1,746	\$1,897	\$121,086
manufacturing							
Air and gas							
compressor	\$62,241	\$3,534	\$14,975	\$1,230	\$1,219	\$1,320	\$84,518
manufacturing							
Power-driven handtool	# 05.077	¢4.444	¢c 405	Ф ЕО4	£407	Ф.Г.О.О.	#24.450
manufacturing	\$25,377	\$1,441	\$6,105	\$501	\$497	\$538	\$34,459
Welding and soldering							
equipment	\$46,136	\$2,622	\$10,882	\$904	\$879	\$978	\$62,401
manufacturing			,. ,,	, , , , , , , , , , , , , , , , , , ,			
Packaging machinery	\$61.470	\$2.404	\$15.00 <i>4</i>	¢1 240	¢4 240	\$1.204	\$83,714
manufacturing	ф01, 4 79	Ф 3,491	φ15,00 4	⊅1,∠19	Φ1,∠10	Φ1,3U 4	φου,/ 14
	Other metalworking machinery manufacturing Speed changer, industrial high-speed drive, and gear manufacturing Mechanical power transmission equipment manufacturing Pump and pumping equipment manufacturing Air and gas compressor manufacturing Power-driven handtool manufacturing Welding and soldering equipment manufacturing Packaging machinery	Industry Industry Controls (includes Abrasive Blasting) Other metalworking machinery machinery sa6,232 manufacturing Speed changer, industrial high-speed drive, and gear manufacturing Mechanical power transmission equipment manufacturing Pump and pumping equipment manufacturing Air and gas compressor manufacturing Power-driven handtool manufacturing Welding and soldering equipment manufacturing Packaging machinery \$61,479	Industry Controls (includes Abrasive Blasting) Other metalworking machinery \$36,232 \$2,060 manufacturing Speed changer, industrial high-speed drive, and gear manufacturing Mechanical power transmission equipment manufacturing Pump and pumping equipment say,460 \$5,077 manufacturing Air and gas compressor \$62,241 \$3,534 manufacturing Power-driven handtool manufacturing Welding and soldering equipment \$46,136 \$2,622 manufacturing Packaging machinery \$61,479 \$3,491	Industry Controls (includes Abrasive Blasting) Other metalworking machinery \$36,232 \$2,060 \$9,476 manufacturing Speed changer, industrial high-speed drive, and gear manufacturing Mechanical power transmission equipment manufacturing Pump and pumping equipment manufacturing Air and gas compressor sequipment manufacturing Power-driven handtool manufacturing Power-driven handtool manufacturing Welding and soldering equipment subject of the sequipment	Industry Controls (includes Abrasive Blasting) Respirators Abrasive Blasting) Exposure Assessment Medical Surveillance Other metalworking machinery manufacturing \$36,232 \$2,060 \$9,476 \$724 Speed changer, industrial high-speed drive, and gear manufacturing \$35,962 \$2,043 \$8,308 \$702 Mechanical power transmission equipment manufacturing \$45,422 \$2,581 \$10,493 \$886 Pump and pumping equipment manufacturing \$89,460 \$5,077 \$21,139 \$1,767 Air and gas compressor manufacturing \$62,241 \$3,534 \$14,975 \$1,230 Power-driven handtool manufacturing \$25,377 \$1,441 \$6,105 \$501 Welding and soldering equipment equipment manufacturing \$46,136 \$2,622 \$10,882 \$904 Packaging machinery \$61,479 \$3,491 \$15,004 \$1,219	Industry	Industry

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	, Medical Surveillance	Training	Regulated Areas	Total
333994	Industrial process furnace and oven manufacturing	\$31,154	\$1,768	\$7,694	\$620	\$626	\$661	\$42,523
333995	Fluid power cylinder and actuator manufacturing	\$57,771	\$3,280	\$13,532	\$1,137	\$1,113	\$1,225	\$78,057
333996	Fluid power pump and motor manufacturing	\$39,598	\$2,247	\$9,296	\$782	\$772	\$840	\$53,535
333997	Scale and balance (except laboratory) manufacturing	\$10,853	\$616	\$2,688	\$216	\$218	\$230	\$14,822
333999	All other miscellaneous general purpose machinery manufacturing	\$152,444	\$8,657	\$36,677	\$3,012	\$2,985	\$3,232	\$207,006
334518	Watch, clock, and part manufacturing	\$6,389	\$363	\$1,596	\$127	\$129	\$135	\$8,740
335211	Electric housewares and household fans	\$11,336	\$437	\$1,641	\$149	\$203	\$163	\$13,928
335221	Household cooking appliance manufacturing	appliance \$24,478		\$3,543	\$321	\$438	\$352	\$30,077
335222	Household refrigerator and home freezer manufacturing	ehold refrigerator d home freezer \$26,139 \$1,0		\$3,784	\$343	\$468	\$376	\$32,118

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

				Otanuana (col	itiiiacaj											
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total								
	Household laundry															
335224	equipment	\$24,839	\$958	\$3,596	\$326	\$444	\$357	\$30,521								
	manufacturing															
	Other major household							_								
335228	appliance	\$19,551	\$754	\$2,830	\$256	\$350	\$281	\$24,023								
	manufacturing															
	Automobile	*		4		** *		*								
336111	manufacturing	\$218,635	\$12,444	\$49,525	\$4,203	\$3,914	\$4,636	\$293,357								
	Light truck and utility	***	*	400.00-	4	A= 100	44.44	•								
336112	vehicle manufacturing	\$301,676	\$17,170	\$68,335	\$5,799	\$5,400	\$6,397	\$404,778								
000400	Heavy duty truck	Фоо ооо	ΦΕ 000	# 04.470	#4.000	Ф4.000	04.077	# 405.404								
336120	manufacturing	\$93,229	\$5,303	\$21,179	\$1,800	\$1,692	\$1,977	\$125,181								
000044	Motor vehicle body	# 400.040	#7.040	#00.700	#0.700	ФО C74	#0.004	£407.404								
336211	manufacturing	\$138,218	\$7,849	\$32,738	\$2,722	\$2,674	\$2,931	\$187,131								
220242	Truck trailer	#00.704	ФЕ 22 Е	#04.70 C	C4 044	¢4.704	¢4.000	\$406 F40								
336212	manufacturing	\$93,781	\$5,325	\$5,325	\$5,325	\$5,325	\$5,325	\$5,325	\$5,325	\$5,325	\$5,325	\$21,786	\$1,841	\$1,791	\$1,989	\$126,512
336213	Motor home	\$62,548	\$3,557	\$14,284	\$1,212	\$1,147	\$1,326	\$84,073								
330213	manufacturing	Ψ02,3 4 0	φ 3 ,337	Φ14,204	Φ1,212	Φ1,147	\$1,320	φο4,073								
	Carburetor, piston,							_								
336311	piston ring, and valve	\$30,612	\$1,739	\$7,044	\$598	\$576	\$649	\$41,219								
	manufacturing															
	Gasoline engine and	<u> </u>														
336312	engine parts	\$192,076	\$10,910	\$44,198	\$3,753	\$3,616	\$4,073	\$258,625								
	manufacturing															

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

				Standard (cor	itiliaou)			
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$180,164	\$10,233	\$41,457	\$3,520	\$3,392	\$3,820	\$242,586
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$114,457	\$6,504	\$26,216	\$2,228	\$2,128	\$2,427	\$153,960
336340	Motor vehicle brake system manufacturing	\$98,118	\$5,573	\$22,578	\$1,917	\$1,847	\$2,080	\$132,114
336350	Motor vehicle transmission and power train parts manufacturing	\$243,348	\$13,832	\$55,796	\$4,730	\$4,510	\$5,160	\$327,377
336370	Motor vehicle metal stamping	\$321,190	\$18,237	\$73,408	\$6,282	\$6,057	\$6,810	\$431,985
336399	All other motor vehicle parts manufacturing	\$433,579	\$24,628	\$99,769	\$8,472	\$8,162	\$9,194	\$583,803
336611	Ship building and repair	\$7,868,944	NA	\$412,708	\$397,735	\$26,973	\$43,259	\$8,749,619
336612	Boat building	\$4,928,083	NA	\$258,467	\$249,089	\$16,892	\$27,092	\$5,479,624
336992	Military armored vehicle, tank, and tank component manufacturing	\$20,097	\$1,142	\$4,786	\$394	\$383	\$426	\$27,227

Table V-18: Total Costs for All General Industry and Maritime Establishments Affected by the Proposed Silica Standard (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas	Total
337215	Showcase, partition, shelving, and locker manufacturing	\$171,563	\$9,741	\$41,962	\$3,405	\$3,412	\$3,638	\$233,720
339114	Dental equipment and \$272,308 supplies manufacturing		\$15,901	\$48,135	\$5,524	\$4,157	\$5,930	\$351,955
339116	Dental laboratories	\$103,876	\$62,183	\$892,167	\$21,602	\$335,984	\$23,193	\$1,439,004
339911	Jewelry (except costume) manufacturing	me) \$260,378 \$		\$876,676	\$69,472	\$81,414	\$73,992	\$1,560,353
339913	Jewelers' materials and lapidary work manufacturing	\$53,545	\$40,804	\$180,284	\$14,287	\$16,742	\$15,216	\$320,878
339914	Costume jewelry and novelty manufacturing	\$54,734	\$27,779	\$122,885	\$9,726	\$11,337	\$10,359	\$236,821
339950	Sign manufacturing	\$227,905	\$9,972	\$44,660	\$3,491	\$5,173	\$3,718	\$294,919
423840	Industrial supplies, wholesalers	\$97,304	304 \$8,910 \$60,422 \$3,149 \$4,199		\$3,315	\$177,299		
482110	Rail transportation	\$0	\$327,176	\$1,738,398	\$110,229	\$154,412	\$121,858	\$2,452,073
621210	Dental offices	\$24,957	\$14,985	\$251,046	\$5,286	\$87,408	\$5,572	\$389,256
	Total	\$101,239,507	\$6,914,225	\$29,868,808	\$3,057,076	\$2,995,900	\$2,651,079	\$146,726,595

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

COSTS FOR THE CONSTRUCTION INDUSTRY

Estimation of the costs of the proposed rule for the construction industry is broken out in this section for three categories of costs: (1) control costs to comply with the proposed PEL of $50 \,\mu\text{g/m}^3$; (2) respirator costs, in those cases where engineering controls are not sufficient to guarantee compliance with the proposed PEL; and (3) "program" costs to comply with the ancillary provisions of the rule.

Control Costs

For the purpose of estimating control costs in construction, OSHA judged that only employers with workers exposed above the proposed silica PEL would require (additional) engineering controls and that, in order to minimize exposure monitoring costs, employers would select appropriate controls from Table 1 in the proposed rule. The costs of applying appropriate engineering controls to construction activities as required by Table 1 of the proposed standard are estimated below. These costs are generated by the application of known dust-reducing technology, such as the application of wet methods or ventilation systems, as detailed in the technological feasibility analysis in Chapter IV of this PEA.

OSHA adopted the control cost methodology developed by ERG (2007a). In order to provide some guidance on that cost methodology, OSHA itemizes below the three major steps, with subtasks, used to estimate control costs in construction:

- Step 1: Baseline daily costs, relative costs of controls, and labor share of value
 - Use RSMeans (2008) data to estimate the baseline daily cost for every representative job associated with each silica task (Table V-19).
 - Use unit labor and equipment costs (Table V-20) to estimate the daily costs of each representative job with silica controls in place (Tables V-21 and V-22).
 - o Calculate the incremental cost (in percentage terms) of implementing silica controls for each representative job (Table V-24).
 - Calculate the labor share of total cost for each representative job with controls in place (Table V-24).
 - Calculate the weighted average incremental cost (in percentage terms) and labor share
 of total costs for each silica task using the assumed distribution of associated
 representative jobs (Table V-25).
- Step 2: Total value of silica tasks
 - OES) survey, estimate the full-time-equivalent number of employees by occupation working on each silica task. This is based on assumed percentages of key employees for each task and the associated ratio of supporting workers (Tables V-26 and V-27).
 - Based on the distribution of occupational employment by industry from OES, distribute the full-time-equivalent employment totals for each task by NAICS

- construction industry (Table V-28).
- o Based on mean hourly wage data from OES, adjusted for fringe benefits, calculate the annual labor value of each silica task by NAICS construction industry (Table V-29).
- O Using the labor share of value calculated for each silica task (from the last sub-task in Step 1), estimate the total value of each silica task by industry (Table V-30).

• Step 3: Aggregate silica control costs

- Use the results from the exposure profile to estimate the percentage of workers for each task exposed above the proposed PEL (Table III-5).
- Multiply the total value of silica tasks for each industry by the percentage of task workers exposed above the proposed PEL to calculate the value of construction work requiring controls (Table V-32).
- Multiply the total value of construction tasks requiring controls by the percentage incremental cost associated with the controls required for each silica task (from the last sub-task in Step 1), to calculate the total control costs by task and industry (Table V-33).

Unit Control Costs

Representative Jobs

Using RSMeans *Heavy Construction Cost Data* (RSMeans, 2008), ERG (2007a) defined representative jobs for each silica-generating activity described in the feasibility analysis. These activities and jobs are directly related to the silica-related construction activities described in Chapter IV of this PEA. ERG (2007a) specified each job in terms of the type of work being performed (e.g., concrete demolition), the makeup of the crew necessary to do the work, and the requisite equipment. For example, for the impact drilling activity, ERG defined three representative jobs for various types of demolition work. For each job, ERG derived crew composition and equipment requirement data from the RSMeans (2008) guide and then calculated the per-day baseline cost from the labor rates, equipment charges, material costs, and overhead and profit markups presented in the cost estimating guide.

Table V-19 shows the specifications for each representative job and the associated daily labor, equipment, and material costs. ¹¹ Table V-20 provides a summary of the labor rates and equipment charges used to estimate the daily cost of each representative construction job. Note that the data on hourly wages with overhead and profit in Table V-20, obtained from RSMeans (2008), are employed here to be consistent with other RSMeans cost parameters to estimate the baseline costs of representative jobs. These estimates are later used only to determine the labor share of the costs of representative construction jobs and the percentage increase in the cost of each representative job due to the addition of controls to comply with the proposed PEL. Everywhere else in this cost chapter, OSHA used BLS wage data, which include fringe benefits but not overhead and profit.

¹¹ In one case, drywall finishing, a basic job description is presented twice in order to allow analysis of two different control options later in the analysis.

For example, as shown in Table V-19, Job 1 for the drywall finishing category involves a simple crew (i.e., only two drywall installers). Other crews, such as that for impact drilling (Job 12), involve several workers, including an equipment operator, a labor foreman, and laborers. The daily labor cost for the drywall installers is calculated at \$991.20. The total daily costs of labor, equipment, and materials for representative jobs range from \$427.42 per day for hand-held milling (Job 9) to \$3,515.08 for removal of indoor masonry walls (Job 14) to \$107,500 for an underground construction work crew capable of tunnel work (Job 22).

Baseline Job Safety Practices

OSHA's cost estimates address the extent to which current construction practices incorporate silica dust control measures. Thus, OSHA has attempted to use an accurate baseline reflecting such safety measures as are currently employed. To the limited extent that silica dust control measures are already being employed, OSHA has reduced the estimates of the incremental costs of silica control measures to comply with the proposed PEL.

Table V-19: Representative Job Categories and Unit Labor and Equipment Costs
Applied in OSHA's Silica Construction Cost Model

_			Lab	or		Equipment				Total Dai	ly Costs	
	k Category/ Description	Title	No. of Workers	Daily Wage	Wage Per Min.	Description	No.	Daily Rate	Labor	Equip.	Material	Total
Dry	wall finishing											
1	Drywall, gypsum plasterboard, nailed or screwed to	Drywall installers	2	\$991.20	\$2.07	Tool cost included in labor rate [a]		\$0.00	\$991.20	\$0.00	\$0.00	\$991.20
	studs, 5/8" thick, taped and finished	Total	2									
0	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and	Drywall installers	2	\$991.20	\$2.07	Tool cost included in labor rate [a]		\$0.00	\$991.20	\$0.00	\$0.00	\$991.20
2	finished (Identical to job 1; included so costs of a different control option can be estimated)	Total	2									
Ear	th drilling					I						
		Blast foreman	1	\$416.80	\$0.87	Air track drill 4"	1	\$770.35	\$1,278.40	\$1,209.15	\$0.00	\$2,487.55
	Drilling only, 2" hole	Driller	1	\$392.00	\$0.82	Air compressor, 600 cfm	1	\$411.65				
3	for rock bolts, average	Equipment operator (light)	1	\$469.60	\$0.98	50' air hoses, 3" diameter	2	\$27.15				
		Total	3									
		Blast foreman	1	\$416.80	\$0.87	Air track drill 4"	1	\$770.35	\$1,278.40	\$1,209.15	\$39.60	\$2,527.15
	Pier holes, 1500 cubic	Driller	1	\$392.00	\$0.82	Air compressor, 600 cfm	1	\$411.65				
4	yards of media removed	Equipment operator (light)	1	\$469.60	\$0.98	50' air hoses, 3" diameter	2	\$27.15				
		Total	3									

Table V-19: Representative Job Categories and Unit Labor and Equipment Costs
Applied in OSHA's Silica Construction Cost Model (continued)

Total Daily Costs Labor Equipment Task Category/ No. of Daily Wage Daily **Job Description** Title Description No. Labor Equip. Material Total Workers Wage Per Min. Rate Earth drilling, contd. 2 Auger 4"-36" diameter Laborers \$784.00 \$1.63 1 \$636.98 \$1.165.20 \$869.60 \$0.00 \$2.034.80 Borings, casing Truck borings in earth, no driver 1 \$381.20 \$0.79 Flatbed truck, 3 ton 1 \$232.63 samples, 21/2" (light) diameter Total 3 Grinding and tuckpointing using hand-held tools Cement Floors, 1/4" thick, 2 \$896.80 \$1.87 Tool cost included in labor rate [a] \$0.00 \$896.80 \$0.00 \$0.00 \$896.80 finisher patching concrete 2 Total Labor \$14.65 \$1,984.80 \$177.08 \$15.20 \$2,177.08 2 Air tools and accessories Crack repair, including foreman 1 \$416.80 \$0.87 chipping, sand \$151.90 Air compressor, 250 cfm 1 (outside) blasting, and cleaning; Laborers 4 \$1,568.00 \$3.27 \$10.53 Epoxy injection up to 2 50' air hoses, 1.5" diameter 1/4" wide Total 5 Cut and repoint brick, Bricklayer \$491.60 \$1.02 \$0.00 \$491.60 \$0.00 \$19.25 \$510.85 Tool cost included in labor rate [a] hard mortar, common Total bond Hand-held milling, wall Laborer 1 \$392.00 \$0.82 Wall grinder 1 \$35.42 \$392.00 \$35.42 \$0.00 \$427.42 grinding Heavy construction equipment operating Equip. \$970.68 \$693.20 \$970.68 Dozer, 200 hp 1 \$0.00 \$1,663.88 Backfill, structural, operator 1 \$497.20 \$1.04 from existing stockpile. (medium) no compaction, 50' haul, 0.5 Laborers \$196.00 \$0.41 sand and gravel Total 1.5 Hole drilling using held-held drills Drilling for anchors, up Carpenter 1 \$495.60 \$1.03 \$0.00 \$495.60 \$0.00 \$6.30 \$501.90 Tool cost included in labor rate [a] to 4" in diameter 1 Total including bit and layout in concrete or brick walls, no anchor. 3/4" diameter

Table V-19: Representative Job Categories and Unit Labor and Equipment Costs Applied in OSHA's Silica Construction Cost Model (continued)

			Lal	oor		Equipmen	t			Total Dai	ly Costs	
	k Category/ Description	Title	No. of Workers	Daily Wage	Wage Per Min.	Description	No.	Daily Rate	Labor	Equip.	Material	Total
Imp	act drilling											
	Drilling bituminous	Labor foreman (outside)	1	\$416.80	\$0.87	Breakers, pavement, 60 lb Air compressor, 250 cfm	2 1	\$14.65 \$151.90	\$2,454.40	\$177.08	\$0.00	\$2,631.48
12	material, with hand- held air equipment, up	Laborers Equip.	4	\$1,568.00	\$3.27	50' air hoses, 1.5" diameter	2	\$10.53				
	to 6 inches thick	operator, light	1	\$469.60	\$0.98							
		Total	6									
	Cutout demolition,	Labor foreman (outside)	1	\$416.80	\$0.87	Breakers, pavement, 60 lb Air compressor, 250 cfm	2 1	\$14.65 \$151.90	\$1,984.80	\$177.08	\$0.00	\$2,161.88
13	elevated slab, bar reinforced, under 6 c.f.	Laborers	4	\$1,568.00	\$3.27	50' air hoses, 1.5" diameter	2	\$10.53				
	reinioreed, drider o c.i.	Total	5	* ,	ψ3.27	oo ali noses, 1.5 diameter		Ψ10.55				
	Remove masonry	Labor foreman (outside)	1	\$416.80	\$0.87	Air tools and accessories Air compressor, 250 cfm	2	\$14.65 \$151.90	\$2,979.20	\$535.88	\$0.00	\$3,515.08
14	walls, block, solid	Laborers	4	\$1,568.00	\$3.27	50' air hoses, 1.5" diameter	2	\$10.53				
	(presumed indoor environment)	Equip. operators	2	\$994.40	\$2.07	Front-end loader	1	\$358.80				
		Total	7									
Mas	onry cutting using port	able saws										
	Demolition, concrete	Equipment operator	1	\$469.60	\$0.98	Stakebody truck, 3 ton	1	\$232.63	\$861.60	\$378.80	\$333.20	\$1,573.60
15	slabs, mesh	(light)	ı	Ф409.00	φυ.9ο	Concrete saw (walk-behind)	1	\$130.68				
15	reinforcing, up to 3" deep	Laborer	1	\$392.00	\$0.82	Water tank, 65 gal	1	\$15.50				
	(walk-behind saw)	Total	2									
16	Saw cutting, brick or masonry, with	Building laborer	1	\$392.00	\$0.82	Saw, portable cut-off, 8 hp	1	\$30.26	\$392.00	\$30.26	\$31.25	\$453.51
	hand-held saw, per inch of depth	Total	1									
Mas	onry cutting using port	table saws, co	ontd.									

Table V-19: Representative Job Categories and Unit Labor and Equipment Costs Applied in OSHA's Silica Construction Cost Model (continued) Labor Equipment **Total Daily Costs** Task Category/ No. of Daily Wage **Daily Job Description** Equip. Title Description No. Labor Material Workers Wage Per Min. Rate Equip. \$469.60 \$89.70 \$850.80 \$652.15 \$75.00 \$0.98 1 Wall saw, hydraulic, 10 hp 1 operator 1 \$314.33 (light) Generator, diesel 100 kw Saw cutting, concrete Truck walls, hydraulic saw.

17	walls, flydraulic saw,	TTGGIK										
	plain, per inch of depth	driver (light)	1	\$381.20	\$0.79	Water tank, 65 gal	1	\$15.50				
		Total	2			Flatbed truck, 3 ton	1	\$232.63				
Mas	sonry cutting using stati	ionary saws				,			•			
18	Sawing brick or block,	Bricklayer	1	\$491.60	\$1.02	Tool cost included in labor rate [a]		\$0.00	\$491.60	\$0.00	\$0.00	\$491.60
10	per inch in depth	Total	1									
Mill	ing using portable or m	obile machine	es			•			•			
		Labor foreman	1	\$416.80	\$0.87	Pavement profiler	1	\$3,372.90	\$3,084.40	\$4,211.45	\$0.00	\$7,295.85
	Asphalt cold planing &	Laborers	3	\$1,176.00	\$2.45	Road sweeper	1	\$541.60				
19	cleaning, 1" to 3" asphalt, over 25,000 square yards	Equip. oper. (med)	3	\$1,491.60	\$3.11	Front-end loader (1.75 CY)	1	\$296.95				
		Total	7									
20	Concrete surface	Labor foreman (outside)	1	\$416.80	\$0.87	Concrete grinder, floor, electric	1	\$70.75	\$808.80	\$70.75	\$0.00	\$879.55
20	repair	Laborers	1	\$392.00	\$0.82							
		Total	2									
Roo	k crushing machine ter	nding				•						
		Labor foreman	1	\$416.80	\$0.87	Rock crushing equipment	1	\$3,372.90	\$3,084.40	\$4,169.85	\$0.00	\$7,254.25
	Rock crushing,	Laborers	3	\$1,176.00	\$2.45	Front-end loader (1.75 CY)	1	\$296.95				
21	excavation projects	Equip. operator (medium)	3	\$1,491.60	\$3.11	Truck, dump, 3 axle, 16 ton payload	1	\$500.00				

Ro	ck crushing machine	e tending										
		Labor foreman	1	\$416.80	\$0.87	Rock crushing equipment	1	\$3,372.90	\$3,084.40	\$4,169.85	\$0.00	\$7,254.25
	Rock crushing,	Laborers	3	\$1,176.00	\$2.45	Front-end loader (1.75 CY)	1	\$296.95				
21	excavation projects	Equip. operator (medium)	3	\$1,491.60	\$3.11	Truck, dump, 3 axle, 16 ton payload	1	\$500.00				
		Total	7									
Un	derground (tunnel) c	onstruction work										

Tunnel boring machine and

22 Tunnel construction,

N/A

Total daily

\$16,125.00

\$33.59

\$91,375.00 \$16,125.00

\$91,375.00

\$0.00

\$107,500.00

Total

\$1,577.95

Table V-19: Representative Job Categories and Unit Labor and Equipment Costs
Applied in OSHA's Silica Construction Cost Model (continued)

	Labor				Equipment			Total Daily Costs				
Task Category/ Job Description	Title	No. of Workers	Daily Wage	Wage Per Min.	Description	No.	Daily Rate	Labor	Equip.	Material	Total	
bored tunnels including mucking, 20' in diameter, rock excavation (average cost; assumes 100 feet/day)	crew cost, including equipment (\$1,075 per linear foot)				support system							

[[]a] Costs for smaller hand-held tools are not separately provided, but are included in the labor rate.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a) and RSMeans (2008).

Table V-20: Labor Wages and Equipment Rates Applied in OSHA's Silica Construction Cost Model

Labor Categories	Hourly Wage [a]	Hourly Wage With Overhead & Profit [b]
Blast foreman	\$33.60	\$52.10
Building laborer	\$31.60	\$49.00
Bricklayer	\$40.50	\$61.45
Carpenter	\$39.95	\$61.95
Cement finisher	\$38.30	\$56.05
Driller	\$31.60	\$49.00
Drilling foreman	\$33.60	\$52.10
Equipment operator (heavy)	\$42.55	\$63.95
Equipment operator (medium)	\$41.35	\$62.15
Equipment operator (light)	\$39.05	\$58.70
Labor foreman (outside)	\$33.60	\$52.10
Laborers	\$31.60	\$49.00
Equipment operator (oiler)	\$36.80	\$55.30
Skilled worker	\$40.85	\$63.25
Truck driver (light)	\$30.95	\$47.65
Equipment Categories	Daily Equipment Rate [c]	Daily Rate With Overhead & Profit [b]
Air compressor, 250 cfm	\$147.40	\$151.90
Air compressor, 600 cfm	\$401.90	\$411.65
Air tools and accessories	\$6.95	\$7.33
Auger 4"-36" diameter	\$606.85	\$636.98
Breakers, pavement, 60 lb	\$6.95	\$7.33
Core drill, large	\$92.45	\$97.58
Concrete saw	\$126.25	\$130.68
Concrete grinder, floor, electric	\$66.10	\$70.75
Air track drill 4"	\$736.10	\$770.35
Crawler dozer, 200 HP	\$923.05	\$970.68
Dust control, quarry drill	\$16.47	\$17.33
50' air hoses, 1.5" diameter	\$4.83	\$5.27
	·	
50' air hoses, 3" diameter	\$12.45	\$13.58
50' air hoses, 3" diameter Flatbed truck, 3 ton	·	•
	\$12.45	\$13.58
Flatbed truck, 3 ton	\$12.45 \$228.35	\$13.58 \$232.63
Flatbed truck, 3 ton Front-end loader (1.75 CY)	\$12.45 \$228.35 \$283.70	\$13.58 \$232.63 \$296.95

Table V-20: Labor Wages and Equipment Rates Applied in OSHA's Silica Construction Cost Model (continued)

Equipment Categories	Daily Equipment Rate [c]	Daily Rate With Overhead & Profit [b]
Hose (water), 200', 2" diameter	\$15.10	\$16.45[d]
Pavement profiler	\$3,219.40	\$3,372.90
Quarry drill, 5" drifter	\$850.00	\$887.00
Road sweeper	\$515.60	\$541.60
Rock crushing equipment	\$3,219.40	\$3,372.90[e]
Stakebody truck, 3 ton	\$228.35	\$232.63
Saw, portable cut-off, 8 HP	\$29.00	\$30.26
Tunnel boring machine and accessories	N/E	\$91,375.00[f]
Truck, dump, 3 axle, 16 ton	\$486.00	\$500.00
Vacuum, HEPA, 16 gal., wet/dry	\$14.66	\$15.47
Wall grinder, electric	\$33.09	\$35.42
Wall saw, hydraulic, 10 hp	\$87.00	\$89.70
Water tank, 65 gal	\$14.21	\$15.50
Water tank, engine driven discharge, 5000 gal.	\$115.00	\$121.50

N/E=Not estimated

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a) and RSMeans (2008).

[[]a] Hourly wage includes fringe benefits.

[[]b] "Overhead" includes workers' compensation, unemployment costs, social security taxes, builder's risk insurance, and other unspecified costs. ERG (2007a) assumed a profit rate of 10 percent. Overhead and profit markups for wages as given by RSMeans (2008) vary between 46 percent and 55 percent depending on the labor category.

[[]c] Based on monthly rental costs averaged over 20 days. Includes operation cost. Per RSMeans, a 10 percent markup is applied to equipment daily rental costs (but not operating costs).

[[]d] 10 times the cost of 20' hose

[[]e] Based on costs for pavement profiler.

[[]f Estimated at 90 percent of total daily crew and equipment cost, as estimated in RSMeans (2008).

Engineering Controls

ERG (2007a) defined silica dust control measures for each representative job. Generally, these controls involve either a dust collection system or a water-spray approach (wet method) to capture and suppress the release of respirable silica dust. Wet-method controls require a water source (e.g., tank) and hoses. The size of the tank varies with the nature of the job and ranges from a small hand-pressurized tank (Job 15) to a large tank for earth drilling operations (Job 4). Depending on the tool, dust collection methods entail vacuum equipment, including a vacuum unit and hoses, and either a dust shroud or an extractor. For example, concrete grinding operations using hand-held tools (Jobs 6 and 7) require dust shroud adapters for each tool and a vacuum. The capacity of the vacuum depends on the type and size of tool being used. Some equipment, such as concrete floor grinders, comes equipped with a dust collection system and a port for a vacuum hose. The estimates of control costs for those jobs using dust collection methods assume that an HEPA filter will be required.

For each job, ERG estimated the annual cost of the appropriate controls and translated this cost to a daily charge, based on an assumed use of 150 days per year (30 weeks). The unit costs for control equipment were based on price information collected from manufacturers and vendors. In some cases, control equipment costs were based on data from RSMeans (2008) on equipment rental charges. Table V-21 shows the general unit control equipment costs and the assumptions that OSHA used to estimate the costs of specific types of jobs.

Table V-22, developed using the cost data presented in Tables V-19 and V-21, summarizes the control method and costs per day for each representative job. ¹⁴ These costs include incremental equipment costs and indirect labor costs due to productivity losses (penalties) associated with the use of the control equipment. These productivity penalties are discussed below in the text.

¹² See Chapter IX in this PEA for a discussion on the environmental impacts resulting from the use of wet methods for controlling exposure to silica.

¹³ In response to comments received during the SBREFA Panel process, ERG used 150 days per year, rather than 240 days per year, of control equipment usage because of significantly reduced construction activity in cold weather months.

¹⁴ For example, for Task 1 in Table V-22, drywall finishing, the needed engineering controls for each worker include a 10 to 15 gallon vacuum with a HEPA filter and a dustless drywall sander. As shown in Table V-21, the annualized daily costs for these pieces of equipment are \$3.23 and \$1.08, respectively. For a crew of two, as shown in Table V-22, the incremental daily equipment costs are, therefore, \$8.62. Use of this equipment is estimated to reduce worker productivity by 4%. Given the \$991.20 daily wage of the two-man drywall crew shown in Table V-19, the daily productivity penalty would be \$39.65. Combined, the incremental daily compliance cost is \$48.27.

Table V-21: Unit Equipment Control Costs and Analytical Assumptions Applied in OSHA's Construction Silica Cost Model

Equipment Category	Equipment Cost	Average Lifetime (yrs)	Average Annualized Cost	Average Annual Cost/ Day of Use [a]	Maintenance and Operating Cost/Day [b]	Total Annual Cost/ Day of Use	Source, Comments
Wet kit, with water tank	\$226.73	2	\$125.40	\$0.84	\$0.18	\$1.01	Contractors Direct (2009); Berland (2009); mytoolstore.com (2009)
Dust shrouds: grinder	\$97.33	1	\$97.33	\$0.65	\$0.14	\$0.79	Contractors Direct (2009); Berland (2009); Dust-Buddy (2009); Martin (2008)
Water tank, portable (unspec. capacity)	N/A	N/A	N/A	\$15.50[c]	\$0.00[c]	\$15.50	RSMeans - based on monthly rental cost
Water tank, small capacity (hand pressurized)	\$73.87	1	\$79.04	\$0.53	\$0.11	\$0.64	Contractors Direct (2009); mytoolstore.com (2009)
Hose (water), 20', 2" diameter	N/A	N/A	N/A	\$1.65[c]	\$0.41	\$2.06	RSMeans - based on monthly cost
Custom water spray nozzle and attachments	\$363	1	\$388.68	\$2.59	\$0.54	\$3.14	New Jersey Laborers' Health and Safety Fund (2007)
Hose (water), 200', 2" diameter	N/A	N/A	N/A	\$16.45[c]	\$0.00[c]	\$16.45	RSMeans - based on monthly rental cost
Vacuum, 10-15 gal with HEPA	\$725	2	\$400.99	\$2.67	\$0.56	\$3.23	ICS (2009); Dust Collection (2009); EDCO (2009); CS Unitec (2009)
Vacuum, large capacity with HEPA	\$2,108	2	\$1,165.92	\$7.77	\$1.63	\$9.41	ICS (2009); EDCO (2009); Aramsco (2009)
Dust extraction kit (rotary hammers)	\$215	1	\$214.81	\$1.43	\$0.30	\$1.73	Grainger (2009); mytoolstore.com (2009); Toolmart (2009)
Dust control/quarry drill	N/A	N/A	N/A	\$17.33[c]	\$0.00[c]	\$17.33	RSMeans Heavy Construction Cost Data (2008)
Dustless drywall sander	\$133	1	\$133.33	\$0.89	\$0.19	\$1.08	Home Depot (2009); LSS (2009); Dustless Tech (2009)

Table V-21: Unit Equipment Control Costs and Analytical Assumptions Applied in OSHA's Construction Silica Cost Model (continued)

Equipment Category	Equipment Cost	Average Lifetime (yrs)	Average Annualized Cost	Average Ann. Cost/ Day of Use [a]	Maintenance and Operating Cost/Day [b]	Total Ann. Cost/ Day of Use	Source, Comments
Cab enclosure /w ventilation and air conditioning	\$13,000	10	\$1,850.91	\$12.34	\$2.59	\$14.93	Estimates from equipment suppliers and retrofitters
Foam dust suppression system	\$14,550	10	\$2,071.59	\$13.81	\$162.07	\$175.88	Midyette (2003).
Water tank, engine driven discharge, 5000 gal.	N/A	N/A	N/A	\$121.50[c]	\$0.00[c]	\$121.50	RSMeans (2008) - based on monthly rental cost
Tunnel dust suppression system supplement	\$7,928	5	\$1,933.47	\$12.89	\$2.71	\$15.60	Raring (2003).

N/A=Not applicable. For cost items that are assumed to be leased or rented (as on a per job basis), equipment lifetimes are not relevant and have not been defined

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG estimates of vendors' equipment prices and RSMeans (2008).

[[]a] Except where noted, daily equipment cost is based on the annualized equipment cost divided by 150 to reflect the assumed average number days of use per year.

[[]b] Except where noted, daily operating and maintenance costs are calculated as 25% and 10%, respectively, of annualized equipment costs divided by 150.

[[]c] Daily equipment costs derived from RS Means (2008) monthly rental rates, which include maintenance and operating costs.

Table V-22: Control Methods Modeled for OSHA's Silica Construction Cost Analysis, Specified by Activity

Ta	sk Category/	Control	Control Method		Indirect Lab (Due to produc		()	Incremental Equipment (Cost/Day		Total
	sk Description	Method	Cost Summary	Title	Percentage Productivity Penalty	Cost per Worker Affected	Productivity Penalty Cost	Description	Daily Cost [a]	Total	mental Cost
Dr	ywall finishing										
	Drywall, gypsum plasterboard,	Dust	Setup and	Daniell				Vacuum, 10-15 gal with HEPA	\$6.47		_
1	nailed or screwed to studs, 5/8" thick, taped and finished	Dust collection	operate dust control system	Drywall installers	4.0%	\$39.65	\$39.65	Dustless drywall sander (one each per worker)	\$2.15	\$8.62	\$48.27
2	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and finished (Identical job w/different control)	Use non- silica finishing compound	Use of substitute (Identical job assumed w/ different control)	N/A	0.0%	\$0.00	\$0.00	Use of substitute finishing compound	N/A	\$0.00	\$0.00
Ea	rth drilling										
	-			Blast foreman		\$0.00		Dust control/quarry drill	\$17.33		
	Drilling only, 2" diameter hole for	Dust	Setup and operate	Driller	0.0%	\$0.00	\$0.00	Water tank, portable (unspec. capacity)	\$15.50		
3	rock bolts, average	collection	dust control system	Equip. operator, light		\$0.00		Hose (water), 20', 2" diameter	\$2.06	\$38.01	\$38.01
				J				Custom water spray nozzle	\$3.14		
				Blast foreman		\$0.00		Dust control/quarry drill	\$17.33		
	Pier holes, 1500	Duret	Setup and	Driller	0.0%	\$0.00	\$0.00	Water tank, portable (unspec. capacity)	\$15.50		
4 cubic yards of media removed	Dust collection	Dust operate	Equip. operator,	0.0 %	\$0.00		Hose (water), 20', 2" diameter		\$38.01	\$38.01	
				light				Custom water spray nozzle	\$3.14		

Table V-22: Control Methods Modeled for OSHA's Silica Construction Cost Analysis, Specified by Activity (continued)

Tas	sk Category/	Control	Control Method		Indirect Lab (Due to produ	or Cost/Day ctivity penalt	у)	Incremental Equipment (Cost/Day		Total Incre-
Tas	sk Description	Method	Cost Summary	Title	Percentage Productivity Penalty	Cost per Worker Affected	Productivity Penalty Cost	Description	Daily Cost [a]	Total	mental Cost
				Laborers		\$0.00		Dust control/quarry drill	\$17.33		
	Borings, casing		Setup and					Water tank, portable	\$15.50		
5	borings in earth, no samples, 2 1/2" diameter	Dust collection	operate dust control system	Truck driver (light)	0.0%	\$0.00	\$0.00	(unspec. capacity) Hose (water), 20', 2" diameter	\$2.06	\$38.01	\$38.01
				(light)				Custom water spray nozzle	\$3.14		
Gri	nding and tuckpoin	ting using har	nd-held tools								
6	Floors, 1/4" thick, patching	Dust	Setup and operate	Cement	5.0%	\$44.84	\$44.84	Vacuum, large capacity with HEPA	\$9.41	\$10.19	\$55.03
	concrete	collection	dust control system	finisher				Dust shroud adapter	\$0.79		
	Crack repair, including	Dust	Setup and operate	Labor		A 00.04		Vacuum, large capacity with HEPA	\$9.41	040.55	
7	chipping, sand blasting, and cleaning.	collection	dust control system	foreman (outside)	5.0%	\$20.84	\$99.24	Dust shroud adapter (4; 1 per worker)	\$3.14	\$12.55	\$111.79
	Epoxy injection up to 1/4" wide.			Laborers		\$78.40					
	Cut and repoint brick, hard	Dust	Setup and operate					Dust Shroud	\$0.79		
8	mortar, common bond.	collection	dust control system	Bricklayer	5.0%	\$24.58	\$24.58	Vacuum, 10-15 gal with HEPA	\$3.23	\$4.02	\$28.60
9	Hand-held milling, wall grinding	Dust collection	Setup and operate dust control system	Laborer	5.0%	\$7.84	\$7.84	Vacuum, 10-15 gal with HEPA	\$3.23	\$3.23	\$11.07
Hea	avy construction eq	uipment opera	ation								
10	Backfill, structural, from existing stockpile, no	Cab	N/A	Equip. operator, (medium)	0.0%	\$0.00	\$0.00	Incremental cost for	\$12.81	\$12.81	\$12.81
	compaction, 50' haul, sand and gravel	enclosure		Laborers		\$0.00		enclosed cab	•		

Table V-22: Control Methods Modeled for OSHA's Silica Construction Cost Analysis, Specified by Activity (continued)

Tas	Гаsk Category/ Гаsk Description	Control	Control Method		Indirect Lab (Due to produ	oor Cost/Day ctivity penalt	y)	Incremental Equipment	Cost/Day		Total Incre-
		Method	Cost Summary	Title	Percentage Productivity Penalty	Cost per Worker Affected	Productivity Penalty Cost	Description	Daily Cost [a]	Total	mental Cost
Hol	e drilling using hel	d-held drills									
11	Drilling for anchors, up to 4" in diameter including bit and layout in concrete or brick walls, no anchor. 3/4" diameter	Dust collection	Setup and operate dust control system	Carpenter	2.0%	\$9.91	\$9.91	Dust extraction kit Vacuum, 10-15 gal with HEPA	\$1.73 \$3.23	\$4.97	\$14.88
lmp	act drilling										
	Drilling			Labor foreman		\$12.50		Hose (water), 20', 2" diameter	\$15.50		
	bituminous material, with	Wet	Setup and	(outside)			_	Air tools and accessories	\$2.06		
12	hand-held air equipment, up to 6 inches thick	methods	operate hose/sprayer	Laborers Equip. operator, light	3.0%	\$47.04 \$14.09	\$73.63	Custom water spray nozzle	\$3.14	\$20.69	\$94.32
	Cutout demolition,		Setup and	Labor foremen	3.0%	\$12.50	\$59.54	Water tank, portable (unspec. capacity)	\$15.50		
13	elevated slab,	Wet methods	operate	Laborer	3.076	\$47.04	ψυθ.υ4	Hose (water), 20', 2" diameter	\$2.06	\$20.69	\$80.23
	bar reinforced, under 6 c.f.	methods	hose/sprayer					Custom water spray nozzle	\$3.14		
	Remove masonry	Dust	Setup and operate	Labor foremen		\$20.84		Vacuum, large capacity	\$9.41		
14	walls, block, solid (indoor	collection	dust control	Laborer	5.0%	\$78.40	\$148.96	Dust shroud adapter (2; 1	\$1.57	\$10.98	\$159.94
	environment)		system	Equip. operators		\$49.72		per equip. oper.)	φ1.57		
Mas	sonry cutting using	•	S								
15	Demolition, concrete slabs, mesh	Baseline includes controls, but additional	Properly maintain wet-method	Equip. operator, light	2.0%	\$9.39	\$17.23	Only incremental maintenance required captured in productivity	\$0.00	\$0.00	\$17.23
	reinforcing, up to 3" deep	efforts needed	control	Laborer		\$7.84		penalty			

Table V-22: Control Methods Modeled for OSHA's Silica Construction Cost Analysis, Specified by Activity (continued)

Tas	Task Category/	Control	Control Method		Indirect Lab (Due to produ	oor Cost/Day ctivity penalt	y)	Incremental Equipment	Cost/Day		Total Incre-
	sk Description	Method	Cost Summary	Title	Percentage Productivity Penalty	Cost per Worker Affected	Productivity Penalty Cost	Description	Daily Cost [a]	Total	mental Cost
16	Saw cutting, brick or masonry, with hand-held saw, per inch of depth	Wet methods	Setup and operate water attachment accessory	Building laborer	2.0%	\$7.84	\$7.84	Wet kit with water tank	\$1.01	\$1.01	\$8.85
17	Saw cutting, concrete walls, hydraulic saw, plain, per inch of depth	Baseline includes controls, but additional efforts needed	Properly maintain wet-method control	Equip. operator, light Truck driver (light)	2.0%	\$9.39 \$7.62	\$17.02	Only incremental maintenance required captured in productivity penalty	\$0.00	\$0.00	\$17.02
Mas	sonry cutting using	stationary sav	vs								
18	Sawing brick or block, per inch in depth	Baseline includes controls, but additional	N/A	Bricklayer	2.0%	\$9.83	\$9.83	Only incremental maintenance required. Captured in productivity	\$0.00	\$0.00	\$9.83
		efforts needed						penalty			
	Asphalt cold planing &	Baseline includes	Properly	Labor foreman		\$8.34		Only incremental			
19	cleaning, 1" to 3"	controls, but	maintain	Laborers	2.0%	\$23.52	\$61.69	maintenance required	\$0.00	\$0.00	\$61.69
19	asphalt, over 25,000 square yards	additional efforts needed	wet-method control	Equip. oper. (med)	2.070	\$29.83	φ01.09	captured in productivity penalty	φυ.υυ	φ0.00	ψ01.09
20	Concrete surface repair	Wet methods	Setup and operate water	Labor foreman (outside)	2.0%	\$8.34	\$16.18	Vacuum, large capacity with HEPA	\$9.41	\$9.41	\$25.58
	Topali	memous	attachment accessory	Laborers		\$7.84		widi / 111 / 1			

Table V-22: Control Methods Modeled for OSHA's Silica Construction Cost Analysis, Specified by Activity (continued)

Task Category/ Task Description		Control Method	Control Method Cost Summary	Indirect Labor Cost/Day (Due to productivity penalty)				Incremental Equipment Cost/Day			Total Incre-
				Title	Percentage Productivity Penalty	Cost per Worker Affected	Productivity Penalty Cost	Description	Daily Cost [a]	Total	mental Cost
	Rock crushing, excavation projects	Wet method	Setup and operate	Labor foreman		\$0.00		Foam dust suppression system	\$175.88	\$175.88	\$175.88
21			foam dust	Laborers 0.0	0.0%	\$0.00	\$0.00				
			suppression system	Equip. operator		\$0.00					
Underground (tunnel) construction work											
22	Tunnel construction, bored tunnels including mucking, 20' in diameter, rock excavation (average cost; assumes 100 feet/day)	Supplement- al spray points in dust control system	Install 3 additional spray points in material handling	Tunnel crew	0.0%	\$0.00	\$0.00	Equipment cost of supplemental water spray points in dust control system	\$15.60	\$15.60	\$15.60

[a] See Table V-21.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a) and Tables V-20 and V-21.

Incremental Labor Costs and Productivity Impacts

In addition to incremental equipment costs, OSHA estimated the incremental labor costs generated by implementing silica dust controls. The labor costs are generated by (1) the extra time needed for workers to set up the control equipment, (2) potential reductions in productivity stemming from use of the controls, (3) additional time to service vacuum dust control equipment, and (4) additional housekeeping time associated with or generated by the need to reduce exposures. All labor costs related to the use of controls have been subsumed into a single additional labor productivity penalty estimate for the representative job categories. To compile data on labor productivity impacts, ERG interviewed equipment dealers, selected construction contractors, industry safety personnel, and researchers working on construction health topics.

Because most silica dust controls are not widely used, knowledge about the impact of dust controls on productivity was uneven and quite limited. More precisely, few individuals that ERG interviewed were in any position to compare productivity with and without controls and the literature on this topic appear deficient in this regard. Overall, telephone contacts produced a variety of opinions on labor productivity effects, but very few quantitative estimates. Of all sources contacted, equipment rental agencies and construction firms estimated the largest (negative) productivity impacts. Some equipment vendors suggested that there are positive productivity effects from control equipment due to improved worker comfort (from the reduction in dust levels). Others suggested that the use of dust collection equipment reduces or eliminates the need to clean up dust after job completion.

The estimation of labor productivity effects is also complicated by the highly job- and site-specific factors that influence silica dust exposures and requirements for silica dust control. Potential exposures vary widely with hard-to-predict characteristics of some specific work tasks (e.g., characteristics of materials being drilled), environmental factors (e.g., wet or dry conditions, soil conditions, wind conditions), work locations (e.g., varying dust control and dust cleanup requirements for inside or outside jobs), and other factors. Generalizations about productivity impacts, therefore, are hampered by the range of silica dust control requirements and work circumstances.

After considering the existing evidence, ERG judged that labor productivity impacts are often likely to occur. Depending on the general likelihood of productivity impacts for each activity, ERG selected a productivity impact ranging from zero to a negative 5 percent of output. The factors influencing each selection are described below.

Table V-23 summarizes the labor productivity estimates. While quantitative data are quite limited on productivity, it is possible to gauge the relative productivity effects across the principal control options. For example, ERG judged that there is no productivity penalty for certain controls, such as enclosing an operator's cab on heavy construction equipment. (In that case, the productivity impacts might be positive.) In Table V-24, productivity effects, termed "lost production time", are shown by task category and are factors in OSHA's estimate of incremental cost per day.

Table V-23: Productivity Penalty Estimates for Construction Projects Affected by OSHA's Proposed Silica Standard

Productivity Penalty	Source/Rationale for Productivity Impacts	Job Categories Affected		
None	Dust control is well-integrated into equipment; control set-up can be accomplished with little or no additional effort or as part of substantial set-up effort. (In some cases, dust control can improve worker comfort and might enhance productivity.)	Earth drilling; Rock crushing; Operators of tractors and heavy equipment; Drywall finishing (where non-silica finishing compound is used); Underground (tunnel) construction workers		
2% (approximately 10 minutes/day)	(1) Dust control requires incremental set-up time, or (2) Incremental maintenance, or (3) Additional clean-up. (Controls have little impact on job performance.)	Millers using portable or mobile machines (when wet methods are used); Hole drilling using hand-held drills; Masonry cutting using stationary saws; Masonry cutting using portable saws		
3% (approximately 15 minutes/day)	Dust control requires incremental set-up time and some increase in maintenance or clean-up requirements.	Impact drilling (wet methods)		
4% (approximately 19 minutes/day)	Dust control requires incremental set-up time and regular maintenance during day, but reduces job cleanup.	Drywall finishing (when LEV is used)		
5% (approximately 24 minutes/day)	Dust control requires incremental set-up time and regular maintenance during day.	Impact drilling (where LEV is used); Grinding and tuck-pointing; Millers using portable or mobile machines (when LEV is used)		

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a).

Productivity Impact Estimates, by Task

Drywall Finishing

To reduce respirable silica dust exposures during drywall finishing, workers can use non-silica-containing drywall compound or LEV attachments. In the first case, there is no incremental cost or productive impact. OSHA expects this control approach to be the most common.

For the latter case, workers must use sanders (either powered or hand) with a port for a vacuum attachment. This requirement does not impose design limitations on the sanding head, so the changes to tool design do not generate productivity impacts. Studies by NIOSH on the effectiveness of dust controls during short-duration tests showed no significant productivity impacts associated with dust controls (Mead et al., 1995). In selected circumstances, the dust control equipment might also reduce the need to seal work areas to prevent dust migration to other areas. Reduced dust may also facilitate subsequent painting because less surface cleaning is needed. Further, NIOSH has theorized that workers in cleaner work environments would tend to be more productive, would take fewer breaks for fresh air, and would be absent less frequently (NIOSH, 1999).

Nevertheless, based on its various contacts with knowledgeable industry personnel and researchers, ERG judged that worker use of an attached vacuum hose will generally slow workers, and hourly output will be reduced. Furthermore, workers must periodically empty vacuum bags or barrels and, possibly, clean and unplug filters. These incremental task requirements might sometimes be partly offset by a reduction in the time required to clean up after the job. Nevertheless, some dust cleanup is still likely to be required.

Based on these considerations, ERG judged that there would be a net negative productivity impact equal to 4 percent of the labor time associated with use of drywall sanding dust controls.

Earth Drilling

This activity category covers a range of drilling activities using truck-mounted and similar drilling equipment, such as quarry drills and crawler-type drills. Dust control requires use of either a dust collection system or wet drilling methods. Studies of the effectiveness of available dust collection systems have not addressed performance issues, but ERG judged that their use does not affect drilling productivity. While workers must service the dust control equipment during the workday, this activity generally does not affect the rate of drilling, except perhaps for short-duration jobs. The wet drilling methods are integrated into drilling equipment and also should not adversely affect the drilling rate. Thus, OSHA estimates that there will be no lost production time for this activity category.

Grinding and Tuckpointing

According to ERG's search of the literature, grinding tools can be retrofitted with dust control shrouds that connect to a vacuum system (Buser, 2001 and Buser, 2002). Studies on the use of these controls indicate that extra time is required to install the shroud and periodically clean, empty, or replace the vacuum drums, filters, or bags. The estimated time to install the shroud may be as short as five minutes, although some types of shrouds take longer to install. Once installed, however, the shroud can be left in place, so this activity need not take place at the initiation of each grinding job.

For interior jobs and for exterior work that requires site cleanup of grinding debris, the additional work time required to use a vacuum system might be partially offset by savings in the time required to seal work areas (to prevent dust migration) and to clean the work area after task completion. Overall, clean-up times will vary depending on the size of the job site, the quantity of grinding debris, and the strength and capacity of the vacuum.

Grinding without a dust-control shroud can generate clouds of dust that might impair a worker's views of the grinding area. Whereas metal shrouds also block the view of the grinding area, plastic shrouds allow workers a view of the work area. Some contractors have noted, however, that use of shrouds does not allow for the precision required for certain tasks, such as grinding an inside corner (Lattery, 2001).

For exterior jobs where cleanup is not required and where the work area is not sealed, the use of vacuum equipment imposes a clear productivity penalty for servicing the vacuum collectors. If, for example, five minutes were required to empty the vacuums every two hours, production time would decline about 4 percent, due simply to dumping the accumulated dust.

At some construction sites, vacuums have been used during the grinding process, but without shrouds. In these cases, one worker typically holds the vacuum nozzle near the grinding tool, which another worker operates. Switching to shrouds with a direct vacuum attachment would eliminate the need for this assistant and is a more productive operation.

Manufacturers and vendors cited other benefits from using the shroud-vacuum systems. Because dust does not build up on and clog the surface of the grinding wheel, the wheels last longer, resulting in an approximate 40 percent savings on the grinding discs (Eurovac, 2001). Another source contacted by ERG estimated that shrouds can increase the abrasive life of a grinding wheel by more than 500 percent (Buser, 2002). In this regard, workers would spend slightly less time replacing wheels over the life of the equipment.

ERG concluded that while the productivity impacts of vacuum systems can sometimes be partly offset by other factors, net productivity impacts are likely to remain negative. For exterior work, productivity is clearly lower when workers use a vacuum system. Overall, based on ERG's research, OSHA added 5-percent for lost production time in calculating compliance costs associated with grinding operations in construction.

For a tuckpointing project, NIOSH researchers examined the use of vacuum system controls at a

large college building complex (Gressel et al., 1999). Workers used a shroud-vacuum system with an integral impeller and a fabric dust collection bag. This system required emptying the collection bags about once an hour. The authors reported some problems caused by blocking and kinking of the hose and occasional separations of the hose from the tool. Some of these problems can be attributed to the design of the dust control system and might be rectified by future design innovations. Overall, the vacuum control systems appeared to reduce worker output.

Manufacturers and vendors contacted by ERG estimated that polyurethane shroud-vacuum systems with tuck-pointing equipment, similar to those for hand-held grinders, actually enhance productivity. Among the reasons provided for productivity improvements were: (1) fewer workers were required, (2) cleanup times were reduced, and (3) workers had improved visibility of the work surface and longer blade life (Buser, 2002; Caperton, 2002; Eurovac, 2001; Williams, 2002). These observations on productivity applied to tuck pointers with 2- to 8-inch diameter wheels; in addition, effects on worker productivity have also been reported for shrouds that fit on 5-inch and 7- to 8-inch (18-lb) tuck pointers with integrated dust-collection systems. In the equipment with 5- to 8-inch wheels, an impeller inside the tool housing pushes dust down a hose into a reusable dust-collection bag. It has been estimated that the operational productivity of these tools is no different from that of the same tool without dust control capability. Workers would still be required, however, to periodically empty dust bags, although other clean-up time might be somewhat reduced. Because tuck-pointing work is almost exclusively exterior work, however, clean-up is often not required.

Based on the considerations for hand-held grinding tools discussed above and the findings from the NIOSH tuck-pointing study, ERG judged that use of a vacuum system during tuck-pointing operations would impose, on average, a 5-percent productivity impact. Based on these findings and because manufacturer optimism about any positive productivity impacts has not been documented in controlled studies, OSHA applied a 5-percent negative productivity impact for tuckpointing operations.

Heavy Construction Equipment Operation

The proposed control method is to enclose and ventilate the operator's cab. Using an enclosed cab will not require maintenance beyond the general equipment necessary to maintain the integrity of the cab enclosure. Therefore, no productivity loss will be incurred.

Some equipment operators might experience an increase in productivity due to improved comfort. According to ERG, most vendors of heavy construction equipment or retrofit cab enclosures contend that such gains will occur. Similar arguments have also been made when equipment cabs have been enclosed for other reasons, including for noise control (Meitl, 2000). The size of the productivity gain at any particular site will depend upon many factors, including the interaction of heavy equipment operation with other job site activities. Productivity benefits will not result when the heavy equipment work is not on the critical path for advancing the day's outputs (i.e., such as when the equipment operator works in conjunction with other workers and must frequently wait for other workers to complete complementary tasks).

ERG was unable to identify quantitative studies of the productivity increase from enclosing the cab. Therefore, OSHA has conservatively chosen not to assign any productivity gain for this control measure in heavy construction equipment operation.

Hole Drilling Using Hand-Held Tools

Activities in this category range from core drilling to drilling anchor holes in concrete. Core drills are designed with a water flushing capability, while other drills and rotary hammers use a shroud and vacuum arrangement to control dust. Core drilling (large diameter holes) in concrete is typically done wet, and the equipment is designed for the recovery of the water coolant.

One rock-drill manufacturer asserts that use of vacuum systems speeds the drilling by continuously removing the drill cuttings from the hole, obviating the need for workers to periodically stop drilling to accomplish this task (Atlas-Copco, 2001). On the other hand, the connection and servicing of the vacuum equipment requires incremental work that could reduce productivity. If the construction project at hand involves interior work, this impact might be offset by reductions in the time necessary for cleanup (i.e., interior work would require cleanup, while exterior drilling probably would not). Overall, following ERG, OSHA applied a 2-percent productivity penalty in estimating compliance costs.

Impact Drilling

Silica exposures generated during pavement breaking, concrete demolition, and other concrete work using jack hammers, pavement breakers, and other similar tools are controlled through the use of wet methods. Because the work area generally cannot be presoaked effectively (i.e., dust is generated once impact drillers break through the surface), ERG judged that adequate dust control requires a constant spray of water to the work area. Thus, dust control requires that a water sprayer be mounted onto the jackhammer (or that a mobile sprayer be set up that can move along with the work). Alternatively, a crew member can use a water hose to spray and wet the concrete and asphalt surfaces being broken, although the productivity loss could be substantial, and construction firms would likely try to avoid that approach.

However, ERG judged that the incremental productivity impact from the spraying activity is modest because various crew members could occasionally be enlisted to keep the water spray directed in the correct location. Further, because of the interactive nature of the various crew member activities, the time to move the water sprayer is unlikely to affect the overall crew output. In addition, incremental cleanup costs generally would not be significant since most drilling projects are performed outside. Nevertheless, to allow for some incremental work related to supplying water and positioning the spray, OSHA estimated a 3-percent productivity decline.

Masonry Cutting Using Portable (Hand-Held and Walk-Behind) Saws

Large, walk-behind saws have an integrated water tank, and the sawing is almost always done wet. Wet sawing keeps the blade from overheating, with the water acting as coolant. No incremental costs or productivity impacts are forecast for use of this equipment.

As has been noted, most portable hand-held concrete saws are designed with wet-sawing capability. These saws have a water hookup for a hose attachment, but might also be used for dry cutting. (Dry-cut diamond blades for dry cutting are available; these are made especially so that the tips do not separate during dry cutting.)

A construction equipment distributor judged that there are no operational productivity advantages for dry cutting, as opposed to wet. Wet cutting, however, requires access to water (water line or pressurized tank), and some time is needed to connect the equipment. Further, the water hose hookup can be cumbersome and interfere with the work (Healy, 2002). For these reasons, OSHA assigned a cost of 2-percent in lost production time for using wet methods for hand-held concrete saws.

Masonry Cutting Using Stationary Saws

Stationary saws for masonry, brick, and tile cutting come equipped with water systems for wet cutting, which is the conventional, baseline method for this type of work. Some modest incremental time is needed to provide for and connect the water supply and to maintain the water nozzles and spray system. This incremental time was the basis for OSHA to estimate a 2-percent cost in lost production.

Milling Using Portable or Mobile Machines

These activities range from cold planing and cleaning of asphalt to surface planing or grinding of concrete. In large-scale projects, such as street resurfacing, baseline practices are judged to control silica dust exposures. No additional controls would be needed, and therefore no negative productivity impacts are expected.

While some grinding machines designed for milling concrete surfaces have built-in dust collection or wet-method systems, others must be attached to external vacuum equipment. ERG reviewed the available literature and found no evidence that the grinding operation is slowed when such vacuum equipment is attached. Nevertheless, workers must devote some time to setting up equipment, changing vacuum bags or barrels, and cleaning filters. ERG estimated that there would be a 2-percent productivity penalty for milling using wet methods and a 5-percent productivity penalty when using LEV systems.

Rock Crushing Machines and Tenders

ERG forecast that rock crushing units will be modified to operate automatic dust suppression systems. Once installed, these systems will be part of the rock crushing machine operation and will not impact production rates. Thus, OSHA projects that there will be no productivity impacts for this job category.

Underground Tunneling

Underground tunneling operations currently use conventional dust control measures. Any

increase in maintenance of systems generates negligible incremental work and is forecast to have no impact on crew productivity.

SBREFA Panel Comments on Productivity and Representative Job Costs

During the Small Business Regulatory Enforcement Fairness Act (SBREFA) Panel process, some stakeholders not a part of the process (i.e., not Small Entity Representatives (SERs)) commented on ERG's estimates of the impact of exposure control equipment on productivity during construction operations. A commenter noted that the ERG estimates of the productivity impact of using additional control measures were based on interviews with dealers, contractors, and researchers working on construction health topics and that it was not clear how ERG translated this "purely qualitative analysis into productivity [impact] rates" The commenter indicated that engineering control compliance costs would be sensitive to the ultimate choice of productivity impact measures. ¹⁵

In response to this comment, OSHA refers readers to the discussion above on the basis for OSHA's productivity estimates. As described there, ERG's research revealed little substantive, quantitative evidence about the magnitude of the productivity impacts of the controls, and in some cases, the direction of the impacts (positive or negative) appears to depend on the specific nature of the job. OSHA's estimates in this preliminary analysis reflect ERG's best professional judgment about the likely magnitude of these impacts. Some of the estimates may be conservative because under some scenarios for certain tasks, the productivity impacts could be significantly smaller than those shown in Table V-23 or even positive. OSHA's estimated control costs are sensitive to these productivity impact estimates.

The commenter, representing the Reform OSHA Coalition (2003), also expressed a concern that even though silica is not now considered a hazardous waste, OSHA had not analyzed the impact of the proposed rule on disposal of silica-contaminated wastes. The commenter asserted that disposal issues are "acute on the construction site where a means to readily dispose of such material or water is not available." In response, OSHA believes that since silica wastes are not classified as hazardous, the incremental disposal costs resulting from dust collected in vacuums and other sources are likely to be quite small. An analysis of wet methods for dust controls suggests that in most cases the amount of slurry discharges is not sufficient to cause a runoff to storm drains or surface water.¹⁷

Another SBREFA commenter raised questions about the availability of silica-free joint compound for drywall finishing. ¹⁸ ERG relied on NIOSH studies showing that silica-free joint

¹⁵ OSHA Silica Docket, H006A: Exhibit 9-2-1. SBREFA Comments by the Reform OSHA Coalition on the Draft Standards for Crystalline Silica (hereafter: Reform OSHA Coalition (ROC, 2003)), p. 14. Unless otherwise specified, the term "SBREFA commenter" refers to a third-party stakeholder who was not a SER.

¹⁶ Reform OSHA Coalition (2003), p.23.

¹⁷ For a more detailed discussion of this issue, see Chapter IX of this PEA.

¹⁸ OSHA Silica Docket, H006A: Exhibit 9-2-4. Memorandum for Tom McDonald, Jeff Oliver, and Jerry Painter, Small Entity Representatives, SBREFA Panel for Silica in Construction, Subject: OSHA's Crystalline Silica

compounds have become readily available in recent years (see ERG, 2007a, Section 3.2). ERG's cost model, however, assumes that 20 percent of drywall finishing jobs would continue to use conventional joint compound.¹⁹

OSHA solicits comment on its responses to all these issues raised during the SBREFA Panel process.

Baseline and Incremental Unit Control Costs

Table V-24 summarizes the baseline costs and incremental compliance costs from Table V-22 for each representative job in OSHA's silica construction cost analysis. The incremental compliance costs are the sum of additional labor and equipment costs incurred as a result of the provision and use of silica controls. The negative productivity impacts of silica controls generate incremental labor costs and the silica control equipment generates incremental control costs.

The control costs (defined as incremental costs per day) are shown in Table V-24 as a percentage of the baseline daily job costs. These percentages are then used to calculate the weighted average incremental job costs for the jobs in each category (e.g., drywall finishing). These control costs range from 0 percent of the baseline for those jobs where baseline activities incorporate the relevant controls (such as use of non-silica drywall finishing compound) to over 6 percent where LEV systems are needed for grinding and tuck-pointing tasks. As is evident from Table V-24, the magnitude of the productivity impacts can substantially change the estimate of the overall cost increase associated with the controls.

Table V-25 presents the weighted average of control costs by task category. ERG defined weights for each job category based on the projected relative applicability of the controls and/or tasks within each category (as determined in the technological feasibility analysis in Chapter IV of this PEA). For example, based on the technological feasibility analysis for impact drillers, ERG estimated that impact drillers could use wet methods for 80 percent of jobs but that LEV would be required for 20 percent of the jobs. These percentages then defined the relative frequency of application for the controls assigned to each task category (from Table V-24).

Standard for Construction Operations (hereafter, Mason Contractors Association of America), p. 38.

¹⁹ See Table V-25 below.

Table V-24: Incremental Silica Control Costs as a Percentage of Activity Costs for OSHA's Economic Analysis of the Construction Industry

	Task Category/ Task Description	Total Daily Baseline Cost	Controls	Lost Production Time	Incremental Labor Cost/Day	Incremental Equipment Cost/Day	Total Incremental Cost/Day	Total Incremental Costs as % of Baseline Costs
Dry	wall finishing							
1	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and finished	\$991	Dust collection system	4.0%	\$39.65	\$8.62	\$48.27	4.9%
2	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and finished (Identical job w/different control)	\$991	Use non-silica finishing compound	0.0%	\$0.00	\$0.00	\$0.00	0.0%
Ear	th drilling							
3	Drilling only, 2" hole for rock bolts, average	\$2,488	Dust collection system	0.0%	\$0.00	\$38.01	\$38.01	1.5%
4	Pier holes, up to 1500 cubic yards	\$2,527	Dust collection system	0.0%	\$0.00	\$38.01	\$38.01	1.5%
5	Borings, casing borings in earth, no samples, 21/2" diameter	\$2,035	Dust collection system	0.0%	\$0.00	\$38.01	\$38.01	1.9%
Gri	nding and tuck pointing	g using hand-	held tools					
6	Floors, 1/4" thick, patching concrete	\$897	Dust collection system	5.0%	\$44.84	\$10.19	\$55.03	6.1%

Table V-24: Incremental Silica Control Costs as a Percentage of Activity Costs for OSHA's Economic Analysis of the Construction Industry (continued)

	Task Category/ Task Description	Total Daily Baseline Cost	Controls	Lost Production Time	Incremental Labor Cost/Day	Incremental Equipment Cost/Day	Total Incremental Cost/Day	Total Incremental Costs as % of Baseline Costs
7	Crack repair, including chipping, sand blasting, and cleaning. Epoxy injection up to 1/4" wide.	\$2,177	Dust collection system	5.0%	\$99.24	\$12.55	\$111.79	5.1%
8	Cut and repoint brick, hard mortar, common bond.	\$511	Dust collection system	5.0%	\$24.58	\$4.02	\$28.60	5.6%
9	Hand-held milling, wall grinding	\$427	Dust collection system	5.0%	\$7.84	\$3.23	\$11.07	2.6%
Hea	avy construction equipn	nent operating	g					
10	Backfill, structural, from existing stockpile, no compaction, 50' haul, sand and gravel	\$1,664	Enclosed cab with ventilation	0.0%	\$0.00	\$12.81	\$12.81	0.8%
Hol	e drilling using held-hel	d drills						
11	Drilling for anchors, up to 4" in diameter including bit and layout in concrete or brick walls, no anchor. 3/4" diameter	\$502	Dust Shroud Vacuum system	2.0%	\$9.91	\$4.97	\$14.88	3.0%
Imp	act drilling							
12	Drilling bituminous material, with hand-held air equipment, up to 6 inches thick	\$2,631	Wet method	3.0%	\$73.63	\$20.69	\$94.32	3.6%
13	Cutout demolition, elevated slab, bar reinforced, under 6 c.f.	\$2,162	Wet method	3.0%	\$59.54	\$20.69	\$80.23	3.7%

Table V-24: Incremental Silica Control Costs as a Percentage of Activity Costs for OSHA's Economic Analysis of the Construction Industry (continued)

	Task Category/ Task Description	Total Daily Baseline Cost	Controls	Lost Production Time	Incremental Labor Cost/Day	Incremental Equipment Cost/Day	Total Incremental Cost/Day	Total Incremental Costs as % of Baseline Costs			
14	Remove masonry walls, block, solid (presumed indoor environment)	\$3,515	Dust collection system	5.0%	\$148.96	\$10.98	\$159.94	4.5%			
Masonry cutting using portable saws											
15	Demolition, concrete slabs, mesh reinforcing, up to 3" deep	\$1,574	Baseline includes control measures	2.0%	\$17.23	\$0.00	\$17.23	1.1%			
16	Saw cutting, brick or masonry, with hand-held saw, per inch of depth	\$454	Wet method	2.0%	\$7.84	\$1.01	\$8.85	2.0%			
17	Saw cutting, concrete walls, hydraulic saw, plain, per inch of depth	\$1,578	Baseline includes control measures	2.0%	\$17.02	\$0.00	\$17.02	1.1%			
Mas	onry cutting using stat	ionary saws									
18	Sawing brick or block, per inch in depth	\$492	Wet method	2.0%	\$9.83	\$0.00	\$9.83	2.0%			
Mill	ing using portable or m	obile machin	es								
19	Asphalt cold planing & cleaning, 1" to 3" asphalt, over 25,000 square yards	\$7,296	Baseline includes control measures	2.0%	\$61.69	\$0.00	\$61.69	0.8%			
20	Concrete surface repair	\$880	Wet methods	2.0%	\$16.18	\$9.41	\$25.58	2.9%			

Table V-24: Incremental Silica Control Costs as a Percentage of Activity Costs for OSHA's Economic Analysis of the Construction Industry (continued)

	Task Category/ Task Description	Total Daily Baseline Cost	Controls	Lost Production Time	Incremental Labor Cost/Day	Incremental Equipment Cost/Day	Total Incremental Cost/Day	Total Incremental Costs as % of Baseline Costs
21	Rock crushing, excavation projects	\$7,254	Setup and operate foam dust suppression system	0.0%	\$0.00	\$175.88	\$175.88	2.4%
Un	derground (tunnel) con	struction worl	K					
22	Tunnel construction, bored tunnels including mucking, 20' in diameter, rock excavation (average cost; assumes 400 feet/day)	\$107,500	Additional maintenance	0.0%	\$0.00	\$15.60	\$15.60	0.015%

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a and 2011).

Table V-25: Weighted Average of Incremental Silica Control Costs as a Percentage of Activity Costs, by Job Category, for OSHA's Economic Analysis of the Construction Industry

Job Category/Description		ategory/Description Controls		Labor Costs as a Percentage of Project Costs	Incremental Costs as Percentage of Baseline Costs				
Drywall finishers									
1	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and finished	Dust collection system	20.0%	100.0%	4.9%				
2	Drywall, gypsum plasterboard, nailed or screwed to studs, 5/8" thick, taped and finished (Identical job w/different control)	Use non-silica finishing compound	80.0%	100.0%	0.0%				
	Job category total, averages		100.0%	100.0%	1.0%				
Earth	n drillers								
3	Drilling only, 2" hole for rock bolts, average	Dust collection system	33.3%	51.4%	1.5%				
4	Pier holes, 1500 cubic yards of media removed	Dust collection system	33.3%	50.6%	1.5%				
5	Borings, casing borings in earth, no samples, 2.5" diameter	Dust collection system	33.3%	57.3%	1.9%				
	Job category total, averages		100%	53.1%	1.6%				
3rin	ders and tuck pointers	using hand-held tools							
6	Floors, 1/4" thick, patching concrete	Dust collection system	25.0%	100.0%	6.1%				
7	Crack repair, including chipping, sand blasting, and cleaning. Epoxy injection up to 1/4" wide.		25.0%	91.2%	5.1%				
8	Cut and repoint brick, hard mortar, common bond.	nard mortar,		nard mortar, Dust collection 25.0%		96.2%	5.6%		
9	Hand-held milling, wall grinding	Dust control	25.0%	91.7%	2.6%				
	Job category total, averages		100.0%	94.8%	4.9%				

Table V-25: Weighted Average of Incremental Silica Control Costs as a Percentage of Activity Costs, by Job Category, for OSHA's Economic Analysis of the Construction Industry (continued)

Job	Category/Description	Controls	Relative Frequency Within Job Categories		Incremental Costs as Percentage of Baseline Costs						
Heavy construction equipment operating											
10	Backfill, structural, from existing stockpile, no compaction, 50' haul, sand and gravel	Enclosed cab with ventilation	100.0%	41.7%	0.8%						
Hole	drillers using held-held	l drills									
11	Drilling for anchors, up to 4" in diameter including bit and layout in concrete or brick walls, no anchor. 3/4" diameter	Dust Shroud Vacuum system	100.0%	98.7%	3.0%						
Impa	ct drillers										
12	Drilling bituminous material, with hand-held air equipment, up to 6 inches thick	Wet methods	40.0%	93.3%	3.6%						
13	Cutout demolition, elevated slab, bar reinforced, under 6 c.f.	Wet methods	40.0%	91.8%	3.7%						
14	Remove masonry walls, block, solid (indoor environment)	Dust collection system	20.0%	84.8%	4.5%						
	Job category total, averages		100%	91.0%	3.8%						
Maso	onry cutters using porta	ble saws									
15	Demolition, concrete slabs, mesh reinforcing, up to 3" deep	Baseline includes control measures	33.3%	54.8%	1.1%						
16	Saw cutting, brick or masonry, with hand- held saw, per inch of depth	Saw cutting, brick or masonry, with handheld saw, per inch of Wet method		86.4%	2.0%						
17	Saw cutting, concrete walls, hydraulic saw, plain, per inch of depth	Baseline includes control measures	33.3%	53.9%	1.1%						
	Job category total, averages		100.0%	65.0%	1.4%						

Table V-25: Weighted Average of Incremental Silica Control Costs as a Percentage of Activity Costs, by Job Category, for OSHA's Economic Analysis of the Construction Industry (continued)

Job	Category/Description Controls		Relative Frequency Within Job Categories	Labor Costs as a Percentage of Project Costs	Incremental Costs as Percentage of Baseline Costs
Maso	onry cutters using station	onary saws			
18	Sawing brick or block, per inch in depth	Wet method	100.0%	100.0%	2.0%
Mille	rs using portable or mo	bile machines			
19	Asphalt cold planing & cleaning, 1" to 3" asphalt, over 25,000 square yards	Baseline includes control measures	20.0%	42.3%	0.8%
20	Concrete surface repair Job category total,	Wet methods	80.0% 100.0%	92.0% 82.0%	2.9% 2.5%
Rock	averages ccrushing machines and	d tanders			
21	Rock crushing, excavation projects	Wet methods	100.0%	42.5%	2.4%
Unde	erground (tunnel) const	ruction workers			
22	Tunnel construction, bored tunnels including mucking, 20' in diameter, rock excavation (average cost; assumes 100 feet/day)	Additional maintenance of dust suppression equipment	100.0%	15.0%	0.0%

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a and 2011).

SBREFA Panel Comments on the Incremental Cost Methodology

A participant in the Silica SBREFA process noted that while ERG established the total incremental cost for each silica control method (summarized in Table V-24), the cost estimates are based on the application of a single method. The commenter argued that there may be cases where two or more control methods would have to be applied concurrently to meet the proposed exposure limits. In response, OSHA notes, that for each task, specified control options correspond to the control methods described in the technological feasibility analysis in Chapter IV of this PEA. These methods reflect the choices laid out in Table 1 of the proposed rule; they are also presented in Table V-25 along with OSHA's calculation of the weighted average proportion of project costs attributable to labor and the incremental control costs as a percentage of baseline project cost. OSHA solicits comment on its responses to this issue raised during the SBREFA Panel process.

Aggregate Labor Costs: Methodological Overview

Adopting ERG's methodology, OSHA used the weighted average control costs and labor share of projects shown in Table V-25 to aggregate task-specific crew costs into estimates of the total value of silica-related projects. OSHA first estimated, on an annual basis, the amount of time workers might spend on projects corresponding to each task category. Using wage and employment data from the BLS *Occupational Employment Statistics Survey* (OES), ²² OSHA then estimated the full-time-equivalent number of such employees and the associated value of their work. OSHA used the average labor share of value for each task category to estimate the total annual value of silica-related tasks. ²⁴ The value of projects requiring additional controls was estimated by multiplying the total value by the percentage of workers who are exposed at levels higher than the proposed PEL (see Table III-5 in Chapter III of this PEA). OSHA then multiplied these values by the percentage changes in baseline costs due to required additional controls (shown in Table V-25) to generate estimates of total compliance costs.

²⁰ Reform OSHA Coalition (2003), p. 14.

²¹ Table 1 in the proposed rule shows the control options available to an employer in the construction industry, who need not go further to achieve compliance with the PEL than to adopt one of those control options.

²² BLS (2005).

²³ To ensure consistency of employment estimates, ERG benchmarked the OES employment statistics to County Business Pattern industry totals for 2004 (Census, 2004).

²⁴ Dividing project labor value by the labor share of project value yields an estimate of the total value of the project.

Aggregate "Key" and "Secondary" Labor Costs for Representative Projects

To estimate aggregate labor costs or value for each task category, ERG first matched OES occupational classifications with the labor requirements for each task category. These matching occupations are shown in Table V-26. In order to estimate the percentage of time workers spend on the relevant tasks, ERG designated some occupations as "key" and others as "secondary." The distinction is needed in order to estimate the amount of time workers participate in silicagenerating tasks. In this preliminary cost analysis, OSHA applied ERG's occupation designation, as explained in greater detail below.

"Key" occupations refer to the worker or workers on each crew who perform the principal silicagenerating activity in each task. ERG judged, for example, that drillers represent the key occupation for the earth drilling tasks outlined in the analysis. Earth drillers spend an estimated 75 percent of their time performing relevant drilling tasks, such as those that generate silica exposures. In other cases, the activities of those in key occupations are less closely correlated with the task. For example, the key occupation for impact drilling was judged to be construction laborers. This group performs many diverse construction tasks, and ERG estimated that the time spent on impact drilling was approximately 3 percent.

Other, "secondary" crew members (e.g., the foreman) were estimated in terms of their ratio to the number of key workers. As noted above, ERG used these percentages and ratios to estimate (on an annual basis) the amount of time these employees are engaged in and around task-related work that causes silica exposures. The estimate of the percentage of time performing the silicagenerating task can be viewed in terms of the full-time-equivalent employees engaged in each task category. These estimates and the corresponding ratios for secondary workers are shown in Table V-26.

For the key occupations, ERG had at least some data with which to estimate the proportion of time workers perform silica-generating tasks. For the secondary occupations, such estimates were generally not possible. Thus, their participation in silica-generating tasks was defined based on their relationship to the key occupations. This participation is defined by their presence in the job crews, as shown in Table V-19. To illustrate the need for this approach, consider the difficulty in predicting how often construction foremen of all types are present during silica-generating tasks. BLS data, for example, provide only a total number of foremen, but no information about how they might spend their time. It is reasonable to forecast, however, using the job crew definitions, that foremen will be present in some proportion to the particular impact drilling, earth drilling, and other silica-generating tasks performed by the key occupational groups.

Table V-26: Key and Secondary Occupations, by Task Category, for OSHA's Economic Analysis of the Construction Industry

Analysis of the constitut			
Task Category/Occupations	Percentage in Key Occupations Working on Task (Full-Time Equivalent)	Ratio of Secondary to Key Workers	
Drywall finishing			
Key Occupation(s):			
Drywall and Ceiling Tile Installers	25.0%		
Tapers	25.0%		
Secondary Occupation(s):			
None		N/A	
Earthdrilling			
Key Occupation(s):	 -0.4		
Earth Drillers, Except Oil and Gas	75.0%		
0			
Secondary Occupation(s): First-Line Supervisors/Managers of Construction Trades			
and Extraction Workers		0.50	
Construction Laborers		1.00	
Operating Engineers and Other Construction Equipment		1.00	
Operators		1.00	
Explosives Workers, Ordnance Handling Experts, and		0.25	
Blasters		0.25	
HelpersExtraction Workers		0.25	
Grinding and tuckpointing			
Key Occupation(s): Brickmasons and Blockmasons	2.5%		
Cement Masons and Concrete Finishers	2.5%		
HelpersBrickmasons, Blockmasons, Stonemasons, and Tile			
and Marble Setters	2.5%		
Secondary Occupation(s):			
First-Line Supervisors/Managers of Construction Trades		1.0	
and Extraction Workers			
Construction Laborers		3.0	
Heavy construction equipment operation			
Key Occupation(s): Operating Engineers and Other Construction Equipment			
Operators	75.0%		
Excavating and Loading Machine and Dragline Operators	50.0%		
Highway Maintenance Workers [a]	5.0%		
Secondary Occupation(s):			
Construction Laborers		0.5	
Constituction Laborers		0.5	

Table V-26: Key and Secondary Occupations, by Task Category, for OSHA's Economic Analysis of the Construction Industry (continued)

Analysis of the Construction in		
Task Category/Occupations	Percentage in Key Occupations Working on Task (Full-Time Equivalent)	Ratio of Secondary to Key Workers
Hole drillers using hand-held drills		
Key Occupation(s):		
Carpenters	1.0%	
HelpersCarpenters	1.0%	
Secondary Occupation(s):		
Construction Laborers		1.0
Impact drilling		
Key Occupation(s):		
Construction Laborers	3.0%	
Highway Maintenance Workers [a]	2.5%	
Secondary Occupation(s):		
First-Line Supervisors/Managers of Construction Trades		0.25
and Extraction Workers Operating Engineers and Other Construction Equipment		0.25
Operators Masonry cutters using portable saws		
Key Occupation(s):		
Brickmasons and Blockmasons	10.0%	
Stonemasons	10.0%	
HelpersBrickmasons, Blockmasons, Stonemasons, and Tile		
and Marble Setters	10.0%	
Secondary Occupation(s):		
Construction Laborers		1.0
Masonry cutters using stationary saws		
Key Occupation(s):		
Brickmasons and Blockmasons	10.0%	
Stonemasons	10.0%	
HelpersBrickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	10.0%	
Secondary Occupation(s):		
None		N/A
	·	·

Table V-26: Key and Secondary Occupations, by Task Category, for OSHA's Economic Analysis of the Construction Industry (continued)

Task Category/Occupations	Percentage in Key Occupations Working on Task (Full-Time Equivalent)	Ratio of Secondary to Key Workers
Millers using portable or mobile machines		
Key Occupation(s):		
Cement Masons and Concrete Finishers	5.0%	
Paving, Surfacing, and Tamping Equipment Operators	5.0%	
Secondary Occupation(s):		
First-Line Supervisors/Managers of Construction Trades		
and Extraction Workers		0.67
Construction Laborers		1.00
Rockcrushing		
Key Occupation(s): Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders	75.0%	
Secondary Occupation(s):		
First-Line Supervisors/Managers of Construction Trades		
and Extraction Workers		0.33
Construction Laborers		1.00
Underground construction (tunnel) work		
Key Occupation(s):		
Tunnel Workers [b]	50.0%	

Note: Occupations based on BLS, Occupational Employment Survey classification system (BLS, 2005).

[[]a] State and local government employees only.

[[]b] Tunnel workers not identified by specific occupational title.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a and 2011).

As illustration of the use of these estimates for specific tasks, in impact drilling the construction laborer is the key occupation, and first-line supervisors and equipment operators are the secondary occupations. Because the applicable standard work crew (as specified in RSMeans, 2008) consists of a supervisor, an equipment operator, and four construction laborers, ERG used a ratio of 1 to 4 (0.25, as shown in Table V-26) to estimate the participation level for each of these secondary occupations relative to the key occupation in impact drilling. In another example, in heavy construction equipment operation, ERG estimated that construction laborers are a secondary occupation and heavy equipment operators are the key occupation for standard work crews involving such equipment. The standard work crew in RSMeans (2008) calls for a heavy equipment operator and 0.5 construction laborers. Therefore, ERG's cost model uses a ratio of 1 to 2 (0.5, as shown in Table V-26) to estimate the participation level of construction laborers relative to key occupations in tasks involving heavy equipment operations.

For some activities, the crew size and composition vary among the jobs defined in the activity category. In those cases, ERG made a judgment as to the most representative crew composition and used that crew model to define the ratio of secondary to key occupations.

ERG's estimates of the number of full-time equivalent employees performing silica-generating tasks are one of many factors that influence the final cost estimates. There are little data, however, on the breakdown of time spent by construction workers in various activities. The following discussion presents ERG's basis for the time-on-task estimates for the key occupations.

Drywall Finishers

Workers who perform drywall finishing typically divide their time between drywall installation, finishing, and cleanup tasks. Of these, finishing was judged to require less than one-quarter of the job time.

Earth Drillers

A review of NIOSH reports covering earth drillers showed that over 75 percent of driller time was spent on actual drilling. (NIOSH 1992a, 1992b, 1995; NIOSH ECTB 233-122c, 1999). Therefore, ERG used 75 percent as the best indication of the time spent on the dust-generating task for this group.

Grinding and Tuckpointing

Grinding and tuckpointing are only two of the numerous jobs performed by brickmasons, cement masons, and their helpers. The tasks that are much more commonly performed by this trade are bricklaying, cement, and masonry construction. Where grinding and tuckpointing tasks are being performed, ERG's review of the OSHA Special Emphasis Program reports revealed that the time spent on these tasks varied widely (see the technological feasibility analysis for this activity in Chapter IV of this PEA). ERG estimated that 2.5 percent of the time for each of the applicable operations would be spent on these tasks.

Heavy Construction Equipment Operation

Heavy equipment operators often spend the bulk of their work shift on the equipment itself, engaged in construction work. OSHA Inspection Reports and other documentation consistently show that heavy equipment operators perform their tasks for more than 7 hours per shift (OSHA SEP Inspection Reports 122212079, 116179359; Greenspan, et al., 1995; NIOSH HETA 93-0696-2395, 1999; NIOSH ECTB 233-122c, 1999; NIOSH ECTB 233-120, 1999c.). Nevertheless, this occupational category also includes operators of such equipment as pile drivers, cranes, and air compressors that are not generally associated with silica dust generation. ERG used an estimate of 75 percent for operating engineers and 50 percent for excavating and loading machine and dragline operators in this category to reflect the extent of silica-related heavy equipment operations.

Hole Drilling

While many workers might occasionally be assigned to drill holes in concrete, this activity represents a very small part of the activities of the large occupational groups performing this work. ERG judged that one percent of the time for carpenters and carpenter assistants in the affected industries is spent in hole drilling.

Impact Drilling

ERG judged that among the key occupation, construction laborers, relatively few are engaged in impact drilling. ERG examined a snapshot of construction activities from the BLS publication, *Injuries to Construction Laborers* (BLS, 1986). That source presents a survey of injured construction workers and includes questions about their activities at the time they were injured. The survey indicated that 3 percent of construction workers were using jackhammers at the time they were injured. ERG judged that, while the survey was not intended to characterize typical construction activities, and a survey of injured workers introduces considerable potential bias into the observations, this estimate was useful as an observation of representative construction activities. ERG also judged that, because jackhammers are heavier, more cumbersome, and more powerful than much construction equipment, workers are probably injured more frequently while using jackhammers, on average, than when using all other construction equipment. Thus, the 3 percent figure is likely to be an upper bound of the amount of time spent on impact drilling. In lieu of other data, ERG estimated that 3 percent of laborers are performing this task.

Masonry Cutting Using Portable Saws

The key occupations for masonry cutting, namely brickmasons, blockmasons, stonemasons, and their helpers, spend, on average, a small share of their time cutting masonry with portable saws. According to OSHA and NIOSH reports, saw operators perform multiple masonry activities and might engage in cutting for only a small portion of their shift (OSHA SEP Inspection Report 300646510; NIOSH ECTB 233-118c, 1999). Another glimpse of this activity can be gleaned from the BLS injury report for construction laborers, where 3 percent of workers were injured

while breaking up or cutting concrete, asphalt, brick, rocks, etc.²⁵ For each of the applicable occupations, ERG estimated that 10 percent of the time would be spent on these tasks.

Masonry Cutting Using Stationary Saws

As noted above, OSHA and NIOSH surveillance publications report that saw operators perform multiple masonry activities and might engage in cutting for only a small portion of their shift (OSHA SEP Inspection Report 300646510; NIOSH ECTB 233-118c, 1999). ERG estimated that mason occupations spend 10 percent of their time on cutting tasks.

Milling Using Portable or Mobile Machines

Milling represents a small share of the overall job duties of the two applicable key occupations: (1) cement masons and (2) paving, surfacing, and tamping equipment operators. ERG judged that 5 percent of all work for these occupations is spent in milling tasks.

Rockcrushers

According to information collected from ERG communication and OSHA SEP inspection reports, rock crushing machine operators spend most, if not all, of their shift at and around the rock crushing process (Polhemus, 2000; Haney, 2001; OSHA SEP Inspection Report 2116507; OSHA SEP Inspection Report 300441862.) ERG estimated that this occupational group spends 75 percent of its time on the rock crushing task.

Underground (Tunnel) Construction Workers

Underground workers perform both tunnel work and other types of construction work. ERG estimated that underground workers participate in underground work approximately 50 percent of the time. (As described further below, this level of work also generates estimates of the labor value of tunneling work that are approximately consistent with the level of work measured in Census estimates.)

SBREFA Panel Comments on Key and Secondary Occupations

As stated in the comments during the Silica SBREFA process, one participant was "unable to reconcile ERG's statement that 'the amount of time . . . grinders and tuck-pointers perform grinding ranges widely, from about 1 hour per shift up to a full 8-hour shift (or longer)' [see the discussion on technological feasibility in Chapter IV of this PEA] with the 2.5% estimate in Table 4-8 [in the ERG report (2007a); Table V-26 in this PEA]." The commenter also asserted that masonry cutters use stationary saws approximately 20 to 30 percent of their working time (rather than 10 percent), and that masonry cutters use portable saws approximately 5 percent of their working time (rather than 10 percent).

²⁵ OSHA notes that these data are of uncertain value since they probably exclude most craft workers (i.e., masons) and may contain various other potential biases in injury data.

²⁶ Mason Contractors Association of America, p. 34.

In response, OSHA reiterates that Table V-26 shows the estimates of the full-time-equivalent number of workers in key and secondary occupations working on silica-generating tasks. These occupations are taken from the BLS *Occupational Employment Survey* classification system and are much broader than the "masonry cutter" category referred to by the commenter, implying a lower percentage of time devoted to tasks involving masonry cutting. To summarize, for each occupation, the estimates in Table V-26 are meant to reflect the typical or average amount of a worker's time (over a year) devoted to the listed tasks. OSHA solicits comment on its response to this issue raised during the SBREFA Panel process.

FTE At-Risk Employment by Task Category

Tables V-27a and V-27b provide estimates, by occupation, of the full-time-equivalent (FTE) number of key and secondary workers, respectively, for each task category, using the percentages and ratios from Table V-26.

Table V-28 shows the corresponding estimates by NAICS code for the construction industry. ²⁷ OSHA distributed FTE at-risk workers across NAICS codes according to the combination of task categories and occupational (key and secondary) categories (from BLS, 2005) derived by ERG for each industry group (ERG, 2007a). ²⁸ Overall, a full-time equivalent of 652,029 workers is estimated to work on silica-related tasks in construction, ranging from 1,331 for underground construction to 369,655 for heavy construction equipment operations.

OSHA notes that some industries appear unlikely to generate silica exposures even when the affected occupational categories are included within their employment totals. Despite this, OSHA has not eliminated these industries from consideration on the grounds that some establishments might participate substantially in more than one type of construction activity, a fact which might not be fully represented by the NAICS classification. Further, eliminating these industries would create accounting and estimation difficulties for the analysis.

²⁸ For example, OSHA estimated that the full-time-equivalent of 29,872, or 25% of the total employment of 119,489, drywall and ceiling tile installers work on drywall finishing tasks where silica exposures occur. OSHA then distributed these FTE at-risk workers by industry, assuming the same share of drywall and ceiling tile installers are affected in each industry. Thus, NAICS 236100, Residential Building Construction, which employs an estimated 5,360 drywall and ceiling tile installers, was estimated to have 1,340 FTE affected workers in this occupation (0.25 x 5,360). Similarly, NAICS 238300, Building Finishing Contractors, which employs at estimated 113,829 drywall and ceiling tile installers, was estimated to have 28,457 FTE affected workers in this occupation (0.25 x 113,829).

Table V-27a: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters)

		_			ne Equivalent At-Risk Tasks			Operators of tractors and	Grinders and	Hole drillers
OES Code	Key Occupation	Total Employment	Number of Workers	Percentage of Total Employment	Drywall finishers	Earth drillers	other heavy construction vehicles and equipment	tuckpointers using hand- held tools	using hand-held drills	
47-1011	First-Line Supervisors/Managers of Construction Trades and Extraction Workers	489,790	0	0.0%	0	0	0	0	0	
47-2021	Brickmasons and Blockmasons	111,585	25,107	22.5%	0	0	0	2,790	0	
47-2022	Stonemasons	17,414	3,483	20.0%	0	0	0	0	0	
47-2031	Carpenters	783,255	7,833	1.0%	0	0	0	0	7,833	
47-2051	Cement Masons and Concrete Finishers	192,037	14,403	7.5%	0	0	0	4,801	0	
47-2061	Construction Laborers	823,733	24,712	3.0%	0	0	0	0	0	
47-2071	Paving, Surfacing, and Tamping Equipment Operators	51,857	2,593	5.0%	0	0	0	0	0	
47-2073	Operating Engineers and Other Construction Equipment Operators	295,758	221,818	75.0%	0	0	221,818	0	0	
47-2081	Drywall and Ceiling Tile Installers	119,489	29,872	25.0%	29,872	0	0	0	0	
47-2082	Tapers	32,185	8,046	25.0%	8,046	0	0	0	0	
47-3011	HelpersBrickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	56,602	12,735	22.5%	0	0	0	1,415	0	
47-3012	HelpersCarpenters	77,858	779	1.0%	0	0	0	0	779	
47-4051	Highway Maintenance Worker	131,180	9,839	7.5%	0	0	6,559	0	0	
47-5021	Earth Drillers, Except Oil and Gas	11,694	8,770	75.0%	0	8,770	0	0	0	
47-5031	Explosives Workers, Ordnance Handling Experts, and Blasters	543	0	0.0%	0	0	0	0	0	

Table V-27a: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Key Occupation	Total	Equivaler	Full-Time at Working on sk Tasks	Impact	Millers using	Masonry cutters using	Masonry cutting	Rock- crushing machine	Underground construction workers
Code		Employment	Number of Workers	Percentage of Total Employment	drillers	portable or mobile machines	portable saws	using stationary saws	operators and tenders	
47-1011	First-Line Supervisors/Managers of Construction Trades and Extraction Workers	489,790	0	0.0%	0	0	0	0	0	0
47-2021	Brickmasons and Blockmasons	111,585	25,107	22.5%	0	0	11,158	11,158	0	0
47-2022	Stonemasons	17,414	3,483	20.0%	0	0	1,741	1,741	0	0
47-2031	Carpenters	783,255	7,833	1.0%	0	0	0	0	0	0
47-2051	Cement Masons and Concrete Finishers	192,037	14,403	7.5%	0	9,602	0	0	0	0
47-2061	Construction Laborers	823,733	24,712	3.0%	24,712	0	0	0	0	0
47-2071	Paving, Surfacing, and Tamping Equipment Operators	51,857	2,593	5.0%	0	2,593	0	0	0	0
47-2073	Operating Engineers and Other Construction Equipment Operators	295,758	221,818	75.0%	0	0	0	0	0	0
47-2081	Drywall and Ceiling Tile Installers	119,489	29,872	25.0%	0	0	0	0	0	0
47-2082	Tapers	32,185	8,046	25.0%	0	0	0	0	0	0
47-3011	Helpers Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	56,602	12,735	22.5%	0	0	5,660	5,660	0	0
47-3012	HelpersCarpenters	77,858	779	1.0%	0	0	0	0	0	0
47-4051	Highway Maintenance Worker	131,180	9,839	7.5%	3,280	0	0	0	0	0
47-5021	Earth Drillers, Except Oil and Gas	11,694	8,770	75.0%	0	0	0	0	0	0
47-5031	Explosives Workers, Ordnance Handling Experts, and Blasters	543	0	0.0%	0	0	0	0	0	0

Table V-27a: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Kan Oa annatian	Total	Equivalent	full-Time Working on k Tasks	Dan arrall Gariah ana		Operators of tractors and other heavy	Grinders and	Hole drillers
Code	Key Occupation	Employment	Number of Workers	Percentage of Total Employment	Drywall finishers	Earth drillers	construction vehicles and equipment	tuckpointers using hand- held tools	using hand- held drills
47-5081	HelpersExtraction Workers	5,060	0	0.0%	0	0	0	0	0
51-9021	Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders	1,249	937	75.0%	0	0	0	0	0
53-7032	Excavating and Loading Machine and Dragline Operators	36,118	18,059	50.0%	0	0	18,059	0	0
99999	Tunnel workers [a]	2,662	1,331	50.0%	0	0	0	0	0
	Total	3,237,406	390,316	12.1%	37,919	8,770	246,436	9,006	8,611

Table V-27a: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Kan Qaanatian	Total	Equivalen	Full-Time It Working on Sk Tasks	Impact	Millers using	Masonry cutters	Masonry cutting	Rock- crushing machine	Underground
Code	Key Occupation	Employment	Number of Workers	Percentage of Total Employment	drillers	portable or mobile machines	using portable saws	using stationary saws	operators and tenders	construction workers
47-5081	HelpersExtraction Workers	5,060	0	0.0%	0	0	0	0	0	0
51-9021	Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders	1,249	937	75.0%	0	0	0	0	937	0
53-7032	Excavating and Loading Machine and Dragline Operators	36,118	18,059	50.0%	0	0	0	0	0	0
99999	Tunnel workers [a]	2,662	1,331	50.0%	0	0	0	0	0	1,331
	Total	3,237,406	390,316	12.1%	27,991	12,195	18,560	18,560	937	1,331

Table V-27b: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters)

				ne Equivalent At-Risk Tasks			Operators of tractors and	Grinders and	Hole drillers
OES Code	Secondary Occupation (b)	Total Employment	Number of Workers	Percentage of Total Employment	Drywall finishers	Earth drillers	other heavy construction vehicles and equipment	tuckpointers using hand- held tools	using hand-held drills
47-1011	First-Line Supervisors/Managers of Construction Trades and Extraction Workers	489,790	28,746	5.9%	0	4,385	0	9,006	0
47-2021	Brickmasons and Blockmasons	111,585	0	0.0%	0	0	0	0	0
47-2022	Stonemasons	17,414	0	0.0%	0	0	0	0	0
47-2031	Carpenters	783,255	0	0.0%	0	0	0	0	0
47-2051	Cement Masons and Concrete Finishers	192,037	0	0.0%	0	0	0	0	0
47-2061	Construction Laborers	823,733	199,308	24.2%	0	8,770	123,218	27,017	8,611
47-2073	Operating Engineers and Other Construction Equipment Operators	295,758	15,528	5.3%	0	8,770	0	0	0
47-2081	Drywall and Ceiling Tile Installers	119,489	0	0.0%	0	0	0	0	0
47-2082	Tapers	32,185	0	0.0%	0	0	0	0	0
47-3011	HelpersBrickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	56,602	0	0.0%	0	0	0	0	0
47-3012	HelpersCarpenters	77,858	0	0.0%	0	0	0	0	779
47-4051	Highway Maintenance Worker	131,180	0	0.0%	0	0	0	0	0
47-5021	Earth Drillers, Except Oil and Gas	11,694	0	0.0%	0	0	0	0	0
47-5031	Explosives Workers, Ordnance Handling Experts, and Blasters	543	497	91.6%	0	497	0	0	0

Table V-27b: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Secondary	Total	Equivalen	Full-Time at Working on sk Tasks	Impact	Millers using portable or	Masonry cutters using	Masonry cutting	Rock- crushing machine	Underground construction
Code	Occupation (b)	Employment	Number of Workers	Percentage of Total Employment	drillers	mobile machines	portable saws	using stationary saws	operators and tenders	workers
47-1011	First-Line Supervisors/Managers of Construction Trades and Extraction Workers	489,790	0	0.0%	0	0	0	0	0	0
47-2021	Brickmasons and Blockmasons	111,585	25,107	22.5%	6,757	0	0	0	0	0
47-2022	Stonemasons	17,414	3,483	20.0%	0	0	0	0	0	0
47-2031	Carpenters	783,255	7,833	1.0%	0	0	0	0	0	0
47-2051	Cement Masons and Concrete Finishers	192,037	14,403	7.5%	0	0	0	0	0	0
47-2061	Construction Laborers	823,733	24,712	3.0%	0	0	0	0	0	0
47-2071	Paving, Surfacing, and Tamping Equipment Operators	51,857	2,593	5.0%	0	0	0	0	0	0
47-2073	Operating Engineers and Other Construction Equipment Operators	295,758	221,818	75.0%	0	0	0	0	0	0
47-2081	Drywall and Ceiling Tile Installers	119,489	29,872	25.0%	0	0	0	0	0	0
47-2082	Tapers	32,185	8,046	25.0%	0	0	0	0	0	0
47-3011	Helpers Brickmasons, Blockmasons, Stonemasons, and Tile and Marble Setters	56,602	12,735	22.5%	0	0	5,660	5,660	0	0
47-3012	HelpersCarpenters	77,858	779	1.0%	0	0	0	0	0	0
47-4051	Highway Maintenance Worker	131,180	9,839	7.5%	3,280	0	0	0	0	0
47-5021	Earth Drillers, Except Oil and Gas	11,694	8,770	75.0%	0	0	0	0	0	0
47-5031	Explosives Workers, Ordnance Handling Experts, and Blasters	543	0	0.0%	0	0	0	0	0	0

Table V-27b: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Secondary	Total	Equivalent	Full-Time t Working on k Tasks	Drywall finishers	Earth drillers	Operators of tractors and other heavy	Grinders and tuckpointers	Hole drillers using hand-	
Code	Occupation (b)	Employment	Number of Workers	Percentage of Total Employment	Drywaii iiiiishers	Earth drillers	construction vehicles and equipment	using hand- held tools	held drills	
47-5081	HelpersExtraction Workers	5,060	2,187	43.2%	0	2,187	0	0	0	
51-9021	Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders	1,249	0	0.0%	0	0	0	0	0	
53-7032	Excavating and Loading Machine and Dragline Operators	36,118	0	0.0%	0	0	0	0	0	
	Total	3,237,406	246,267	7.6%	0	24,611	123,218	36,022	8,611	
	Total for key and secondary occupations		636,583	19.7%	37,919	33,381	369,655	45,028	17,222	

Table V-27b: Estimated Full-Time-Equivalent Employment, by Occupation and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Excludes Abrasive Blasters) (continued)

OES	Secondary	Total	Equivaler	Full-Time It Working on sk Tasks	Impact	Millers using	Masonry cutters	Masonry cutting	Rock- crushing machine	Underground
Code	Occupation (b)	Employment	Number of Workers	Percentage of Total Employment	drillers	portable or mobile machines	using portable saws	using stationary saws	operators and tenders	construction workers
47-5081	HelpersExtraction Workers	5,060	0	0.0%	0	0	0	0	0	0
51-9021	Crushing, Grinding, and Polishing Machine Setters, Operators, and Tenders	1,249	937	75.0%	0	0	0	0	937	0
53-7032	Excavating and Loading Machine and Dragline Operators	36,118	18,059	50.0%	0	0	0	0	0	0
	Total	3,237,406	390,316	12.1%	27,991	12,195	18,560	18,560	937	1,331
	Total for key and secondary occupations		636,583	19.7%	41,747	32,438	37,120	18,560	2,183	1,331

[[]a] Tunnel workers not identified by specific occupational title. Tunnel worker employment included in the totals for other listed occupations.

[[]b] Total number of full-time equivalent workers constrained by occupational employment totals for each industry.

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on task percentages shown in Table V-26.

Table V-28: Estimated Full-Time-Equivalent Employment, by NAICS Code and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Includes Abrasive Blasters)

NAICS	Industry	Total	Equivalent	Full-Time Working on k Tasks	Drywall finishers	Earth drillers	Operators of tractors and other heavy	Grinders and tuckpointers	Hole drillers using hand-
NAICS	industry	Employment	Number of Workers	Percentage of Total Employment	Drywaii iiiiisiieis	Earth trillers	construction vehicles and equipment	using hand- held tools	held drills
236100	Residential Building Construction	966,198	27,669	2.9%	1,431	0	8,663	2,011	6,606
236200	Nonresidential Building Construction	741,978	34,788	4.7%	482	0	17,938	3,135	3,112
237100	Utility System Construction	496,628	96,181	19.4%	13	24,188	65,917	578	164
237200	Land Subdivision	77,406	3,255	4.2%	0	0	2,912	43	43
237300	Highway, Street, and Bridge Construction	325,182	66,916	20.6%	0	419	55,367	1,583	279
237900	Other Heavy and Civil Engineering Construction	90,167	18,835	20.9%	13	1,015	16,370	171	111
238100	Foundation, Structure, and Building Exterior Contractors	1,167,986	111,946	9.6%	148	0	11,929	30,747	3,343
238200	Building Equipment Contractors	1,940,281	10,179	0.5%	13	141	8,061	59	158
238300	Building Finishing Contractors	975,335	60,006	6.2%	35,807	0	94	2,079	2,943
238900	Other Specialty Trade Contractors	557,638	137,219	24.6%	13	7,541	107,169	4,437	252
999000	State and Local Governments	5,762,939	85,034	1.5%	0	79	75,235	186	212
	Total	13,101,738	652,029	5.0%	37,919	33,381	369,655	45,028	17,222

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on task percentages shown in Table V-26.

Table V-28: Estimated Full-Time-Equivalent Employment, by NAICS Code and Task, At Risk of Silica Exposure, for OSHA's Economic Analysis of the Construction Industry (Includes Abrasive Blasters) (continued)

NAICS	Industry	Total	Equivaler	Full-Time at Working on sk Tasks	Impact	Millers using portable or	Masonry cutters using	Masonry cutting using	Rock- crushing machine	Under- ground construc-	Abrasive
NAICS	industry	Employment	Number of Workers	Percentage of Total Employment	drillers	mobile machines	portable saws	stationary saws	operators and tenders	tion workers	blasters
236100	Residential Building Construction	966,198	27,669	2.9%	5,784	1,602	1,048	524	0	0	0
236200	Nonresidential Building Construction	741,978	34,788	4.7%	5,212	2,301	1,739	869	0	0	0
237100	Utility System Construction	496,628	96,181	19.4%	4,316	765	102	51	87	0	0
237200	Land Subdivision	77,406	3,255	4.2%	202	55	0	0	0	0	0
237300	Highway, Street, and Bridge Construction	325,182	66,916	20.6%	3,695	4,016	10	5	211	1,331	0
237900	Other Heavy and Civil Engineering Construction	90,167	18,835	20.9%	808	215	30	15	87	0	0
238100	Foundation, Structure, and Building Exterior Contractors	1,167,986	111,946	9.6%	6,235	14,654	29,869	14,934	87	0	0
238200	Building Equipment Contractors	1,940,281	10,179	0.5%	1,609	13	84	42	0	0	0
238300	Building Finishing Contractors	975,335	60,006	5.0%	1,503	530	3,005	1,503	1,500	0	11,043
238900	Other Specialty Trade Contractors	557,638	137,219	23.8%	5,500	6,124	1,130	565	87	0	4,403
999000	State and Local Governments	5,762,939	85,034	1.5%	6,883	2,161	104	52	122	0	0
	Total	13,101,738	652,029	5.0%	41,747	32,438	37,120	18,560	2,183	1,331	15,446

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on task percentages shown in Table V-26.

Labor Cost and Total Value of Silica Exposure-Generating Tasks

To derive labor costs and project value for the construction tasks where occupational exposure to silica is found, ERG multiplied the mean hourly wage, as reported by OES (BLS, 2009) for each affected job category within each affected industry, by 2,000 hours and by the number of affected full-time-equivalent employees to derive the total value of annual wages expended for each silica exposure-generating task. These estimates were then inflated to adjust for fringe benefits. These loaded-wage costs, totaled by industry and task category, are summarized in Table V-29 as the annual labor value (or labor cost) of silica-generating projects. Thus for earth drilling, for example, ERG estimated the labor share of the project value, or cost, was \$1,929.3 million annually. Overall, ERG estimated the labor value of all silica-generating construction tasks at \$34.0 billion annually.

ERG then extrapolated the labor values for each industry and task category to the total project value by dividing by the labor share of project costs. Because the labor share for each task category equals the labor value divided by project value, dividing the labor value by the labor share generates an estimate of project value. Table V-30 shows the estimated labor share for each task category as derived in Table V-25 and the associated estimates of total project value for each industry and task category. For example, for earth drilling, the labor share of costs was estimated at 53.1 percent (from Table V-25). The total project value for these earth drilling tasks was estimated, therefore, at 1.88 (1 divided by 0.531) times the labor value of \$1,929.3 million—or \$3,634.6 million annually. Overall, ERG estimated the value of silica-generating construction tasks at \$65.2 billion. The values for specific task categories ranged from \$251.3 million for rock crushing to \$46.8 billion for heavy construction equipment operations.

The value of at-risk tasks were then summed within NAICS industry codes to derive the total value of at-risk projects, a base from which OSHA calculated control costs associated with the proposed PEL. Aggregate control costs are presented below, following the discussion of the costs of abrasive blasting in construction.

²⁹ Bureau of Labor Statistics, *Employer Costs for Employee Compensation*, 2008 (BLS, 2009). For private-sector, construction-industry employees, wages and salaries comprised 69.2 percent of total compensation in the fourth quarter of 2004.

Table V-29: Estimated Labor Value of Construction Tasks with Risk of Silica Exposure, for OSHA's Cost Analysis of the Construction Industry (millions of 2009 dollars)

NAICS	Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construction vehicles and equipment	Grinders and tuckpointers using hand- held tools	Hole drillers using hand-held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
236100	Residential Building Construction	\$1,459.7	\$79.7	\$0.0	\$471.6	\$107.1	\$323.2	\$303.8	\$90.6	\$53.1	\$30.5	\$0.0	\$0.0
236200	Nonresidential Building Construction	\$2,105.2	\$33.1	\$0.0	\$1,100.6	\$187.1	\$176.9	\$309.6	\$143.8	\$98.6	\$55.5	\$0.0	\$0.0
237100	Utility System Construction	\$5,537.3	\$0.7	\$1,398.7	\$3,800.8	\$31.9	\$8.8	\$238.9	\$44.6	\$5.3	\$3.0	\$4.6	\$0.0
237200	Land Subdivision	\$164.1	\$0.0	\$0.0	\$145.2	\$2.4	\$2.2	\$11.0	\$3.3	\$0.0	\$0.0	\$0.0	\$0.0
237300	Highway, Street, and Bridge Construction	\$4,030.7	\$0.0	\$25.3	\$3,359.9	\$93.2	\$16.1	\$217.9	\$243.8	\$0.5	\$0.3	\$11.5	\$62.1
237900	Other Heavy and Civil Engineering Construction	\$1,042.1	\$0.7	\$57.8	\$903.9	\$9.7	\$5.6	\$44.4	\$13.2	\$1.5	\$0.8	\$4.6	\$0.0
238100	Foundation, Structure, and Building Exterior Contractors	\$6,105.7	\$9.9	\$0.0	\$728.0	\$1,648.0	\$164.9	\$339.1	\$828.0	\$1,518.8	\$865.0	\$4.0	\$0.0
238200	Building Equipment Contractors	\$596.1	\$0.6	\$8.2	\$477.6	\$3.3	\$8.6	\$90.5	\$0.8	\$4.2	\$2.4	\$0.0	\$0.0
238300	Building Finishing Contractors	\$2,738.6	\$2,084.9	\$0.0	\$5.2	\$106.8	\$152.3	\$76.5	\$30.5	\$135.9	\$71.4	\$75.1	\$0.0
238900	Other Specialty Trade Contractors	\$7,293.6	\$0.6	\$437.9	\$5,872.6	\$236.4	\$12.9	\$289.9	\$343.1	\$60.4	\$35.5	\$4.4	\$0.0
999000	State and Local Governments	\$2,901.0	\$0.0	\$1.4	\$2,617.1	\$2.5	\$6.8	\$222.6	\$40.1	\$3.9	\$3.9	\$2.6	\$0.0
	Totals	\$33,974.2	\$2,210.2	\$1,929.3	\$19,482.6	\$2,428.4	\$878.2	\$2,144.2	\$1,781.9	\$1,882.4	\$1,068.2	\$106.8	\$62.1

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a and 2011).

Table V-30: Estimated Total Value of Construction Tasks with Risk of Silica Exposure, for OSHA's Cost Analysis of the Construction Industry (millions of 2009 dollars)

						illillons of 200	o dollaro,						
NAICS	Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construction vehicles and equipment	Grinders and tuckpointers using hand- held tools	Hole drillers using hand-held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
Average L	abor Share of Pro	oject Value	100.0%	53.1%	41.7%	94.8%	98.7%	91.0%	82.0%	65.0%	100.0%	42.5%	15.0%
236100	Residential Building Construction	\$2,208.6	\$79.7	\$0.0	\$1,132.1	\$113.0	\$327.3	\$334.0	\$110.5	\$81.7	\$30.5	\$0.0	\$0.0
236200	Nonresidential Building Construction	\$3,774.2	\$33.1	\$0.0	\$2,641.7	\$197.4	\$179.2	\$340.3	\$175.3	\$151.6	\$55.5	\$0.0	\$0.0
237100	Utility System Construction	\$12,140.3	\$0.7	\$2,635.1	\$9,123.1	\$33.6	\$8.9	\$262.6	\$54.3	\$8.2	\$3.0	\$10.8	\$0.0
237200	Land Subdivision	\$369.4	\$0.0	\$0.0	\$348.6	\$2.5	\$2.3	\$12.0	\$4.0	\$0.0	\$0.0	\$0.0	\$0.0
237300	Highway, Street, and Bridge Construction	\$9,205.8	\$0.0	\$47.6	\$8,064.6	\$98.3	\$16.3	\$239.5	\$297.3	\$0.8	\$0.3	\$27.1	\$413.8
237900	Other Heavy and Civil Engineering Construction	\$2,373.9	\$0.7	\$108.8	\$2,169.7	\$10.3	\$5.7	\$48.7	\$16.1	\$2.2	\$0.8	\$10.8	\$0.0
238100	Foundation, Structure, and Building Exterior Contractors	\$8,255.1	\$9.9	\$0.0	\$1,747.5	\$1,738.8	\$167.0	\$372.8	\$1,009.6	\$2,335.3	\$865.0	\$9.4	\$0.0
238200	Building Equipment Contractors	\$1,283.8	\$0.6	\$15.5	\$1,146.3	\$3.5	\$8.7	\$99.4	\$1.0	\$6.5	\$2.4	\$0.0	\$0.0
238300	Building Finishing Contractors	\$2,942.6	\$2,084.9	\$0.0	\$12.5	\$112.7	\$154.2	\$84.1	\$37.2	\$208.9	\$71.4	\$176.7	\$0.0
238900	Other Specialty Trade Contractors	\$16,059.5	\$0.6	\$824.9	\$14,096.0	\$249.4	\$13.0	\$318.6	\$418.3	\$92.9	\$35.5	\$10.2	\$0.0
999000	State and Local Governments	\$6,603.6	\$0.0	\$2.6	\$6,281.8	\$2.7	\$6.8	\$244.6	\$48.9	\$6.1	\$3.9	\$6.2	\$0.0
	Totals	\$65,216.9	\$2,210.2	\$3,634.6	\$46,763.8	\$2,562.2	\$889.3	\$2,356.7	\$2,172.5	\$2,894.3	\$1,068.2	\$251.3	\$413.8

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007a and 2011).

Abrasive Blasting

Based on ERG (2011), OSHA estimated program compliance costs for construction industry abrasive blasters. Table V-31 presents the unit costs and analytical assumptions applied in OSHA's cost analysis of controlling silica exposures during abrasive blasting operations. As shown in the table, after accounting for the number of affected workers, crew size, daily output, blasting cost per square foot, number of blasting days per year, and the percentage of crews using sand, OSHA estimates that baseline annual costs for sand blasting total \$231.7 million. According to ERG (2011), the incremental cost for wet blasting is 30 percent of baseline costs; ERG estimates that 50 percent of crews currently use wet methods. Therefore, the annual costs to comply with the proposed standard by using wet methods during sand blasting are expected to total \$34.8 million, or \$2,250 per worker for the approximately 15,450 workers exposed to silica dust.

Distributing these annualized costs by industry, OSHA estimates that employers in NAICS 238200, Building Finishing Contractors, will incur compliance costs of \$24.9 million annually, while firms in NAICS 238900, Other Specialty Trade Contractors, will incur compliance costs of \$9.9 million annually.

Table V-31: Unit and Total Engineering Costs for Controlling Silica Exposure during Abrasive Blasting Construction Operations

Cost Variab	le	Cost or Parameter	Comment
	workers in blasting operations	<u> </u>	
	uilding Finishing Contractors	11,043	ERG estimate; projected to 2006 levels
238900 Ot	her Specialty Trade Contractors	4,403	
Tc	otal	15,446	
Blasting crev	w size	4	ERG estimate based on RSMeans (2008)
Output per d	lay (square ft.)	1,500	ERG estimate based on RSMeans (2008)
Blasting cos	t per square foot (dry blasting)	\$2.00	ERG estimate based on RSMeans (2008)
Blasting day	s per year	100	ERG estimate
Percent of b	lasting crews using sand	20.0%	ERG estimate
Annual costs	s of sand blasting	\$231,690,000	
Incremental	cost for wet blasting	30.0%	ERG estimate based on RSMeans (2008)
Share of bla	sting currently with wet methods	50.0%	ERG estimate
Cost of requ methods	iring all sand blasting to use wet	\$34,753,500	
Cost per bla	sting worker	\$2,250	
Costs by In	dustry		
238300 Bu	uilding Finishing Contractors	\$24,846,750	
238900 Ot	her Specialty Trade Contractors	\$9,906,750	

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG, 2011.

Aggregate Control Costs in Construction to Comply with the Proposed PEL

The percentage of workers, by construction industry, requiring controls for the proposed 50 μ g/m³ PEL can be derived from Table III-6 in Chapter III of this PEA. These figures are a weighted average of the percentage of workers for each task category within a particular construction industry estimated to be exposed at levels above the PEL. ERG multiplied these percentages by the total project values for each task category, shown in Table V-30, to derive the value of silica-generating projects for which additional engineering controls are required to meet the proposed PEL of 50 μ g/m³. These values are shown in Table V-32 by task category and by NAICS construction industry. For the proposed PEL of 50 μ g/m³, 11.9 billion dollars' worth of silica-generating construction projects will require controls. Operation of tractors and other heavy construction vehicles and equipment constitute approximately 49 percent of the value of silica-generated construction projects affected by OSHA's proposed standard.

Table V-32: Estimated Value of At-Risk Construction Tasks Requiring Controls under OSHA's Proposed Silica Standard (millions of 2009 dollars)

NAICS	Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construction vehicles and equipment	Grinders and tuckpointers using hand- held tools	Hole drillers using hand- held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
Avera	age Labor Share o Value	of Project	100.0%	53.1%	41.7%	94.8%	98.7%	91.0%	82.0%	65.0%	100.0%	42.5%	15.0%
236100	Residential Building Construction	\$554.8	\$5.3	\$0.0	\$141.5	\$34.3	\$163.6	\$134.8	\$25.2	\$41.3	\$8.7	\$0.0	\$0.0
236200	Nonresidential Building Construction	\$751.9	\$2.2	\$0.0	\$330.2	\$59.9	\$89.6	\$137.4	\$40.1	\$76.7	\$15.9	\$0.0	\$0.0
237100	Utility System Construction	\$2,226.6	\$0.0	\$945.9	\$1,140.4	\$10.2	\$4.4	\$106.0	\$12.4	\$4.2	\$0.9	\$2.2	\$0.0
237200	Land Subdivision	\$51.2	\$0.0	\$0.0	\$43.6	\$0.8	\$1.1	\$4.9	\$0.9	\$0.0	\$0.0	\$0.0	\$0.0
237300	Highway, Street, and Bridge Construction	\$1,310.4	\$0.0	\$17.1	\$1,008.1	\$29.8	\$8.2	\$96.7	\$68.0	\$0.4	\$0.1	\$5.4	\$76.6
237900	Other Heavy and Civil Engineering Construction	\$343.2	\$0.0	\$39.1	\$271.2	\$3.1	\$2.8	\$19.7	\$3.7	\$1.1	\$0.2	\$2.2	\$0.0
238100	Foundation, Structure, and Building Exterior Contractors	\$2,641.0	\$0.7	\$0.0	\$218.4	\$527.7	\$83.5	\$150.5	\$230.8	\$1,180.5	\$247.1	\$1.9	\$0.0
238200	Building Equipment Contractors	\$198.6	\$0.0	\$5.6	\$143.3	\$1.1	\$4.3	\$40.1	\$0.2	\$3.3	\$0.7	\$0.0	\$0.0
238300	Building Finishing Contractors	\$455.6	\$139.0	\$0.0	\$1.6	\$34.2	\$77.1	\$34.0	\$8.5	\$105.6	\$20.4	\$35.3	\$0.0
238900	Other Specialty Trade Contractors	\$2,423.7	\$0.0	\$296.1	\$1,762.0	\$75.7	\$6.5	\$128.6	\$95.6	\$47.0	\$10.1	\$2.0	\$0.0
999000	State and Local Governments	\$905.7	\$0.0	\$0.9	\$785.2	\$0.8	\$3.4	\$98.7	\$11.2	\$3.1	\$1.1	\$1.2	\$0.0
	Totals	\$11,862.8	\$147.3	\$1,304.7	\$5,845.5	\$777.6	\$444.7	\$951.3	\$496.6	\$1,463.1	\$305.2	\$50.3	\$76.6

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG, 2007a and 2011.

ERG next multiplied the value of construction tasks for which additional engineering controls are required when silica exposures exceed $50 \,\mu\text{g/m}^3$ (from Table V-32) by the incremental cost percentage for each task (from Table V-25) to derive estimates in Table V-33 of aggregate incremental compliance costs to meet the proposed PEL. Using the drywall task as an example, projects requiring additional engineering controls are estimated in Table V-25 to incur a 0.97 percent increase (or 1.0 percent after rounding) in total cost. For a PEL of $50 \,\mu\text{g/m}^3$, the total value of drywall finishing tasks requiring controls is estimated in Table V-32 at \$5.3 million per year in the residential building construction industry (NAICS 2361). The incremental cost of silica controls in this industry per year is thus estimated in Table V-33 to be \$5.3 million times 1.0 percent, or approximately \$52,000 per year (shown rounded in Table V-33 as \$0.1 million). OSHA performed this type of calculation for each construction task and NAICS industry code. As indicated in Table V-33, OSHA estimates that the incremental compliance costs for engineering controls (excluding abrasive blasting) will total \$207.8 million for construction tasks affected by the proposed standard.

Table V-33 shows that the largest share of compliance costs, roughly 25 percent, is forecast for operators of tractors and other heavy equipment (\$52.5 million), largely due to the significant share of total affected workers represented by this task category (as shown in Table V-27b, 369,655 of 636,583 affected full-time-equivalent (FTE) workers, or 58 percent of affected FTEs). Grinding and tuckpointing tasks and impact drilling tasks are expected to generate the next highest levels of compliance costs (\$43.2 million and \$36.4 million, respectively).

Examining incremental control costs by NAICS industry, for the proposed PEL of $50 \mu g/m^3$, foundation, structure, and building exterior contractors (NAICS 2381) will incur the highest costs at \$66.5 million per year. Other specialty trade contractors (NAICS 2389) and utility system construction (NAICS 2371) are also expected to incur significant control costs to comply with the proposed PEL. Foundation, structure, and building exterior contractors would incur almost half of their costs to control grinding and tuckpointing operations, whereas for utility system contractors and other specialty trade contractors, earth drilling and operation of heavy construction vehicles and equipment were activities that accounted for a large share of engineering control costs.

Table V-33: Incremental Control Costs for Construction Tasks Affected by OSHA's Proposed Silica Standard (millions of 2009 dollars)

NAICS	Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construction vehicles and equipment	Grinders and tuckpointers using hand- held tools	Hole drillers using hand- held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
236100	Residential Building Construction	\$14.6	\$0.1	\$0.0	\$1.3	\$1.9	\$4.9	\$5.2	\$0.6	\$0.6	\$0.2	\$0.0	\$0.0
236200	Nonresidential Building Construction	\$16.6	\$0.0	\$0.0	\$3.0	\$3.3	\$2.7	\$5.3	\$1.0	\$1.1	\$0.3	\$0.0	\$0.0
237100	Utility System Construction	\$30.9	\$0.0	\$15.5	\$10.2	\$0.6	\$0.1	\$4.1	\$0.3	\$0.1	\$0.0	\$0.1	\$0.0
237200	Land Subdivision	\$0.7	\$0.0	\$0.0	\$0.4	\$0.0	\$0.0	\$0.2	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
237300	Highway, Street, and Bridge Construction	\$16.8	\$0.0	\$0.3	\$9.0	\$1.7	\$0.2	\$3.7	\$1.7	\$0.0	\$0.0	\$0.1	\$0.0
237900	Other Heavy and Civil Engineering Construction	\$4.2	\$0.0	\$0.6	\$2.4	\$0.2	\$0.1	\$0.8	\$0.1	\$0.0	\$0.0	\$0.1	\$0.0
238100	Foundation, Structure, and Building Exterior Contractors	\$66.5	\$0.0	\$0.0	\$2.0	\$29.3	\$2.5	\$5.8	\$5.8	\$16.2	\$4.9	\$0.0	\$0.0
238200	Building Equipment Contractors	\$3.2	\$0.0	\$0.1	\$1.3	\$0.1	\$0.1	\$1.5	\$0.0	\$0.0	\$0.0	\$0.0	\$0.0
238300	Building Finishing Contractors	\$9.8	\$1.4	\$0.0	\$0.0	\$1.9	\$2.3	\$1.3	\$0.2	\$1.5	\$0.4	\$0.9	\$0.0
238900	Other Specialty Trade Contractors	\$33.3	\$0.0	\$4.8	\$15.8	\$4.2	\$0.2	\$4.9	\$2.4	\$0.6	\$0.2	\$0.0	\$0.0
999000	State and Local Governments	\$11.4	\$0.0	\$0.0	\$7.0	\$0.0	\$0.1	\$3.8	\$0.3	\$0.0	\$0.0	\$0.0	\$0.0
	Totals	\$207.8	\$1.4	\$21.3	\$52.5	\$43.2	\$13.2	\$36.4	\$12.4	\$20.1	\$6.1	\$1.2	\$0.0

SBREFA Panel Comments on Cost Methodology for Construction

One SBREFA commenter criticized the methodology discussed above for estimating engineering control costs on the grounds that while RSMeans data were used to establish the marginal costs of new controls (as a percentage of baseline costs), ERG used average wage rates (including fringe benefits) from the BLS *Occupational Employment Statistics Survey*, 2000, to calculate the value of at-risk tasks without providing a justification for not using RSMeans wage data. Since BLS wage rates are significantly lower than the RSMeans rates used by ERG in earlier parts of the analysis, the commenter argued that this would significantly lower the base to which the marginal cost factors are applied to estimate compliance costs. ³⁰

As described above, ERG used the RSMeans data only to develop costs for the representative jobs and then to determine the incremental compliance costs as a percentage of the total and the share (percentage) of project value accounted for by labor. Dividing project labor value by the labor share of project value yields an estimate of total project value. The absolute level of the RSMeans wage and equipment cost levels do not directly affect the resultant aggregate compliance costs. While lower wage rates would lower the baseline costs of the representative jobs, it does not follow that control costs as a percent of baseline costs would also be lower. In fact, if lower wage rates are combined with the same equipment costs, the equipment part of incremental control costs would be a *higher* percentage of total baseline costs. Only the labor share (percentage) of baseline costs and the incremental compliance costs as a percent of baseline costs are taken from the analysis of representative costs and used in the subsequent estimation of aggregate costs. The absolute levels of the wage rates and equipment costs taken from RSMeans do not directly enter the aggregate cost analysis.

This SBREFA commenter further argued that the RSMeans data are likely to be on the high end of estimated wages because they only cover unionized labor and are therefore likely to lead to high estimates of impacts. The commenter then recommended that more appropriate indexed labor wage costs be computed and used consistently throughout the analysis.³¹ In response, OSHA notes, to restate a point made above, that ERG used the RSMeans data only to estimate the percentage of the value of projects covered by the standard attributable to labor ("the labor share") and compliance costs as a percentage of total baseline costs. The BLS wage data, on which the aggregate compliance costs are based, are obtained from a statistically valid, national survey of employment and compensation levels and are the best available data characterizing national averages of wages by detailed occupation.

Another SBREFA commenter criticized ERG's cost estimation methodology, arguing that fundamental errors resulted in serious underestimates of the costs of engineering controls. The commenter asserted that ERG's task-by-task incremental cost estimates shown in Table V-23 should be multiplied by two factors: "the ratio of the RSMeans labor rate to the BLS wage and benefits rate" and the inverse of the "percentage in key occupations working on task" from Table V-26. Under this approach, the commenter argued that "the cost of PEL controls for

 $^{^{30}}$ Reform OSHA Coalition (ROC, 2003), p. 13.

³¹ Reform OSHA Coalition (ROC, 2003), p. 14.

brickmasons, blockmasons, cement masons and concrete finishers performing grinding and tuckpointing would be approximately seventy-two (72.0) times the ERG estimate, and . . . the cost of PEL controls for drywall finishing (at the 50 μ g/m3 PEL) would be approximately 7.2 times the ERG estimate."

The rationalization for these calculations was not provided, and OSHA finds no merit in these conclusions. The incremental control costs shown in Table V-23 are based on RSMeans data for labor and equipment costs. As shown in Table V-23, these cost estimates, after adjustments for productivity impacts, are used to calculate the percentage increase in baseline costs associated with each control. The RSMeans-based cost estimates shown in Table V-23 are also used to estimate the share of total baseline task/project costs accounted for by labor requirements. The averages of the percentage increase due to incremental control costs and the labor share (percentage) of total baseline costs are shown in Table V-26. ERG used these two percentages to extrapolate the aggregate control costs associated with each task. This extrapolation was based on (1) the full-time-equivalent employment in key and secondary occupations associated with each task, and (2) the value of the labor time as measured by the BLS occupational wage statistics, adjusted for fringe benefits.

This commenter further argued that ERG's analysis contained five more "fundamental errors." First, the commenter asserted that the ERG calculations understate the actual cost because they are based on 1999 or 2000 data from RSMeans rather than RSMeans 2003 data. In response, OSHA notes that the RSMeans data do not directly determine the absolute level of aggregate compliance costs, but rather the labor share (percentage) of project costs and incremental compliance costs as a percentage of baseline costs. Therefore, OSHA would expect that compliance costs would only be minimally affected by the year from which the RSMeans data were drawn. Furthermore, ERG has since updated its analysis (ERG, 2013) to incorporate 2009 RSMeans data (RSMeans, 2008).

Second, the commenter asserted that there is no information to "suggest much less substantiate the premise that the exposure monitoring data in Tables 3-1 and 3-2 [in the ERG (2007a) report] (even if they were properly collected and analyzed) are in any way representative of current workplace exposures across the country." In response, OSHA points out that the profiles used to estimate the numbers of workers exposed in excess of each PEL option are, in fact, based on the extensively documented technological feasibility analysis presented in Chapter IV of this PEA (and based on ERG, 2007a). Also, because many of the data points in the profiles are taken from the findings of OSHA inspections (which tend to over-represent cases of overexposure), OSHA believes that its exposure profiles in the technological feasibility analysis are likely to be conservative (i.e., they probably overestimate the number of workers exposed at higher levels).

Third, the commenter claimed that there is "is no information to suggest much less substantiate the premise that the exposure monitoring data in Tables 3-1 and 3-2 (even if they were representative of current workplace exposures) are in any way representative of the non-existent, theoretical jobs artificially created by the FTE [full-time equivalent] analysis so as to justify their

³² Mason Contractors Association of America, p. 34.

³³ Mason Contractors Association of America, p. 34.

use as the foundation for Table 4-12." However, OSHA notes that ERG designed the representative jobs on which the cost analysis is based to correspond directly to the tasks assessed in the technological feasibility analysis. Furthermore, Table 4-12 in ERG (2007a) is derived directly from Table 3-2 and is independent of the "FTE analysis."

Fourth, the commenter argued that a more logical and appropriate methodology would assume that all FTEs were exposed above the PEL in the absence of controls and that they (the commenter) could find "no justification, and substantial support to the contrary, for an approach that artificially condenses actual exposures into far more highly concentrated exposures (by condensing all at-risk task hours into FTEs) and then [assumes] that, despite the impact of this change, the grab bag of exposure monitoring described in ERG Tables 3-1, 3-2 and 4-12 represents these FTEs." The commenter asserted that the effect in ERG (2007a) of "first multiplying total project costs by the FTE percentage (from Table 4-8) and then by the 'Percentage of Workers Requiring Controls' from Table 4-12 (and then by the average 'Total Incremental Costs as % of Baseline Costs' by job category from Table 4-7) results in an unjustified double discounting of exposed workers in the incremental cost calculation."

However, OSHA notes that ERG (2007a) used the exposure profiles from Section 3 to estimate the number of full-time equivalent workers that are exposed above the PEL. In other words, this exposure profile is applicable if all exposed workers worked full time only at the specified silicagenerating tasks. In ERG's analysis, the *actual* number exposed above the PEL is represented by the *adjusted* FTE numbers (see Table 4-22 in ERG, 2007a). The adjusted FTE estimate takes into account that most workers, irrespective of occupation, spend some time working on jobs where no silica contamination is present. For the control cost analysis, however, it matters only how many worker-days there are in which exposures are above the PEL; for these worker-days, controls are required. The control costs (as opposed to some program costs) are independent of the number of workers associated with these worker-days. The thrust of the comment about "double discounting" is unclear. Nothing is "discounted" in ERG's estimation of aggregate control costs.

Finally, the SBREFA commenter argued that the "application of the FTE analysis to the additional equipment costs is based on the wholly unfounded assumption, contrary to actual experience, that this additional equipment could be used with perfect efficiency (i.e., never idle) so that it is only at a particular site during the time the at-risk tasks are being performed." In response, OSHA notes that ERG's analysis does in fact assume some efficiency with respect to the use of additional equipment required for controls. However, many of the equipment costs are based on monthly equipment rental rates provided by RSMeans which already embody some degree of idleness over the course of a year (see ERG, 2007a, Table 4-3). In other cases, ERG directly estimated daily equipment costs based on equipment purchase costs, annualization factors, and assumed operating and maintenance costs (see, for example, Table 4-3, "cab enclosures"). ERG originally translated these to daily costs on the assumption of full-time usage (240 days per year). However, in response to this comment, ERG adjusted this rate downward, assuming instead that equipment would be used 150 days per year (30 weeks), on average; OSHA applied this downward adjustment to equipment usage in this PEA and the effect of this change in equipment usage was to increase the daily cost of some control equipment.

OSHA solicits comment on its responses to all these issues raised during the SBREFA Panel process.

Respirator Costs

For costing purposes, employers in the construction sector whose workers receive exposures above the PEL are assumed to adopt the appropriate task-specific engineering controls and, where required, respirators prescribed in Table 1 and paragraph (g)(1) in the proposed standard. Thus, with Table 1 and paragraph (g)(1) as a backdrop, ERG first identified the respirators for each of the tasks evaluated in the engineering cost analysis. Where respirators varied among control methods for a given task, ERG used the respirator type associated with the most commonly used control method. The respirator specifications are shown in Table V-34. Respirator costs by task are weighted by usage of 4 hours or less for 50 percent of workers and more than 4 hours for 50 percent of workers.³⁴ The table also shows, for each respirator type, annualized unit costs as derived in an earlier respirator study for OSHA (ERG, 2003). The annualized cost per worker is estimated at \$570 per year (in 2009 dollars) to use a half-mask nonpowered air-purifying respirator and at \$638 per year (in 2009 dollars) to use a full-face nonpowered air-purifying respirator. These unit costs reflect the annualized cost of respirator use, including accessories (e.g., filters), training, fit testing, and cleaning. OSHA notes that respirator costs—and, in particular, filter costs—may have declined appreciably since they were originally estimated for use in this PEA. The Agency has therefore, in its sensitivity analysis presented in Chapter VII of this PEA, included an analysis of the effects on annualized costs and net benefits of a 40 percent reduction in the cost of respirator filters.³⁵ OSHA also invites comments on the costs of filters and the annualized cost of respirators suitable for regular use in a construction environment where respirable crystalline silica is present at levels above the proposed PEL of $50 \mu g/m^3$.

³⁴ Note that for tasks in Table 1 involving more than 4 hours of silica exposure, respirators are required to be worn during the entire task, not just after 4 hours.

³⁵ OSHA's respirator costs are based on estimates of the annual costs of respirator use derived in an earlier study (OSHA, 2003). These costs include not only the purchase cost of the respirator itself, but the ancillary costs of accessories (e.g., filters) and other costs associated with respirator cleaning and required training and fit testing. The 2003 estimates were based a unit cost of \$3.57 for a replacement pair of filters for half-mask and full-face negative-pressure air-purifying respirators. These were extrapolated to an annual cost of \$285.52 per year, assuming that the filters would be changed 80 times a year, or roughly every 3 days. These filter costs accounted for 61% and 51% of the total annualized respirator costs estimates for half-mask and full-face respirators, respectively.

In the silica cost analysis, respirator costs from the 2003 study were used, but inflated from 2003 to 2009 dollars using the implicit price deflator for this period, or 16.7%. This resulted in an annual filter cost estimate of \$333.07. Current research, however, shows that filter prices have not, in fact, increased over this period, and might well have declined, at least for the N95 particulate filters used for silica protection. A sample of 21 filter prices obtained from various Internet vendors shows a median value slightly less than comparable price used in the 2003 estimates. This sample also showed significant variation in price for comparable N95 particulate filters, depending on the manufacturer and vendor. While the performance characteristics of different filters are not known, it is clear that filters meeting the N95 standard are available at a cost significantly less than the median price found in this sample. When ranked by price, the 25th percentile price was calculated at \$2.50 per pair. If filters at this price were changed out 80 times a year, the resultant cost would be \$200.05, or 60.1% of the inflated filter price used in the silica cost analysis. It is on this basis that a 40 percent reduction in filter prices was used to conduct the sensitivity analysis in Chapter VII.

Using these annualized unit respirator costs, Table V-35 shows that the estimated costs of respirator use in construction are \$80.8 million annually. These costs have been adjusted to take into account OSHA's estimate—consistent with the findings from the NIOSH Respiratory Survey (NIOSH, 2003)—that 56 percent of employees in the construction industry whose exposures are high enough that they would need respirators under the proposed silica rule are already using respirators that would bring them into compliance. OSHA's derivation of the 56 percent current compliance rate in construction, in the context of the proposed silica rule, is a bit complicated, and the eight-step process is described in the footnote below. OSHA requests comment on its estimate of 56 percent current respirator compliance with the proposed silica rule by affected employees in construction and on the methodology the Agency used to derive this estimate. In particular, OSHA invites comment on whether an alternative methodology to

- 1. According to the 2001 NIOSH Respirator Survey, 64,200 construction establishments, or 9.6%, required the use of respirators in the previous 12 months (Text Table 3, page 4). This implies a total of 668,750 (64,200/.096) construction establishments in 2001.
- 2. In 2006 (the base year for the silica estimates in OSHA's silica proposal), there were 802,349 construction establishments (Silica Draft PEA, Chapter III: Industry Profile, page III-9, Table III-2; from Bureau of the Census, 2006 construction establishments), or 1.2 times as many as when the NIOSH Respirator Survey was performed (802,349/668,750).
- 3. A total of 60,012 construction establishments and 566,909 construction employees use air-purifying respirators (NIOSH Respirator Survey, Table 8, page 28).
- 4. A total of 15,263 construction establishments (NIOSH Respirator Survey, Table 65, page 151) use air purifying respirators for silica (25.4% of the total 60,012 construction establishments using airpurifying respirators).
- 5. Accordingly, OSHA concludes that 144,183 employees use these respirators for silica (25.4% x 566,909).
- 6. If inflated by the growth in the construction industry, this implies that 172,988 employees would have been using respirators for silica protection in 2006 (144,183 x 1.20).
- 7. The proposed silica rule requires an estimated 308,513 private sector employees (314,777 Total 6,264 for State and Local Governments) to use respirators.
- 8. Thus, the current percentage of private sector employees in construction using air-purifying respirators is estimated to be approximately 56% (172,988/308,513=56.07%).

³⁶ Note that these respirator costs do not include the costs of disposable respirators used in regulated areas or as part of an access control plan. The costs for these disposable respirators are separately estimated in Table V-45 in this chapter as part of the costs of a regulated area or an access control plan.

³⁷ OSHA notes that the NIOSH Respirator Survey (NIOSH, 2003) reported required use of respirators during the prior 12 months, but did not specify how frequently they were used. Therefore, OSHA's estimate of 56 percent current compliance may overstate the regular use of respirators that would be needed under the proposed rule.

³⁸ The eight steps, which relate to the 2001 NIOSH Respirator Survey published in 2003 (NIOSH, 2003), are as follows:

estimate current compliance—i.e., a methodology that does not depend on the number of respirators required by the proposed rule—might be preferred.³⁹

Table V-35 also shows, by task and NAICS industry, the aggregate respirator costs for those workers requiring respirators, as prescribed in Table 1, to comply with the proposed $50 \,\mu\text{g/m}^3$ PEL. These costs are most highly concentrated in grinding and tuckpointing due to two factors: (1) many workers in that task group are believed to be exposed above the proposed PEL and (2) Table 1 specifies that tuckpointers must wear full-face respirators. Table 1 does not specify respirators for some workers, such as drywall finishers, heavy equipment operators, hole drillers, tunnel workers, and, depending upon the PEL, some other categories of workers. For these workers, Table V-35 shows zero costs.

In addition to bearing the costs associated with the provision of respirators, employers will incur a cost burden to establish a respirator program. OSHA projects that this expense will involve an initial 8 hours of a supervisor's time for establishments with 500 or more employees and 4 hours for all other firms. After the first year, OSHA estimates that 20 percent would revise the program every year, with the largest establishments (500 or more employees) expending 4 hours for program revision, and all other employers expending two hours for program revision. OSHA estimates that 56 percent of construction firms currently have a respirator program. ⁴⁰ Table V-36 presents, by NAICS industry, total annual costs for the respirator program and, combined with annual costs for respirator use, total annual costs—of \$84.0 million—for respiratory protection in construction.

³⁹ For example, for the alternative PEL of $100 \,\mu\text{g/m}^3$, using the same methodology, OSHA estimated that, based on current respirator use by affected employees in construction relative to the number of respirators required to meet the PEL of $100 \,\mu\text{g/m}^3$, approximately a 97 percent current compliance rate.

⁴⁰ Even though NIOSH (2003) estimated from its survey that 9.6 percent of all construction establishments require use of respirators, OSHA has judged that 56 percent is a more plausible estimate for those establishments with elevated silica exposures that would be affected by this proposed rule. OSHA welcomes comment and data on this estimate.

Table V-34: Parameters and Unit Costs Applied in OSHA's Preliminary Analysis of Costs for Respirators in Construction (PEL=50; 2009 dollars)

	Control/		Requirement Proposed Sta	(from Table 1 in the ndard)	Weighted Re Cos	•	_	Cost by	Overall
Respirator Selection by Task	Use Shares	≤ 4 hrs	>4 hrs	Type of Control	≤ 4 hrs	>4 hrs	≤ 4 hrs	>4 hrs	Weighted Average Cost
Drywall finishers	100.0%	None	None		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Earth drillers	90.0% 10.0%	None None	Half-mask None	Operator only in cab	\$0.00 \$0.00	\$513.11 \$0.00	\$0.00	\$513.11	\$384.84
Grinders and tuckpointers using hand-held	tools								
Hand-held grinders Hand-held milling machines	30.0% 30.0% 5.0% 5.0%	None Half-mask Half-mask Half-mask	Half-mask Half-mask Half-mask Half-mask	Wet methods Dust collection Wet methods Dust collection	\$0.00 \$171.04 \$28.51 \$28.51	\$171.04 \$171.04 \$28.51 \$28.51	\$419.43	\$590.47	\$547.71
Tuckpointing	30.0%	Full face NAP [a]	Full face NAP [a]	Dust collection	\$191.38	\$191.38			
Operators of tractors and other heavy construction vehicles and equipment	100.0%	None	None		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Hole drillers using hand-held drills	100.0%	None	None		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Impact drillers	90.0% 10.0%	None Half-mask	Half-mask Half-mask	Wet methods Dust collection	\$0.00 \$57.01	\$513.11 \$57.01	\$57.01	\$570.13	\$441.85
Masonry cutters using portable saws									
Hand held Walk-behind	30.0% 30.0% 40.0%	None Half-mask None	Half-mask Half-mask None	Wet methods Dust collection Wet methods	\$0.00 \$171.04 \$0.00	\$171.04 \$171.04 \$0.00	\$171.04	\$342.08	\$299.32
	75.0%	None	Half-mask	Wet methods	\$0.00	\$427.60			
Masonry cutting using stationary saws	25.0%	None	Half-mask	Ventilated enclosure	\$0.00	\$142.53	\$0.00	\$570.13	\$427.60
Millers using portable or mobile machines	25.0%	None	None	Wet methods - asphalt Wet methods -	\$0.00	\$0.00	\$0.00	\$427.60	\$320.70
	75.0%	None	Half-mask	concrete	\$0.00	\$427.60			
Rock-crushing machine operators and tenders	75.0%	Half-mask	Full facepiece	Wet methods or dust suppressants	\$427.60	\$478.45	\$570.13	\$620.98	\$608.27
Hadaanaan daar (m. C	25.0%	Half-mask	Half-mask	LEV	\$142.53	\$142.53	Ф0.00	#0.00	Φο οο
Underground construction workers	100.0%	None	None		\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

Table V-34: Parameters and Unit Costs Applied in OSHA's Preliminary Analysis of Costs for Respirators in Construction (PEL=50; 2009 dollars) (continued)

Parameters

Half-mask - annual cost [b] \$570.13

Full-face - annual cost [b] \$637.94

No respirator \$0.00

Percentage of workers 4 hours or less at task

Compliance Rate [c] 56%

[[]a] "Full face NAP" stands for "full-faced nonpowered air-purifying respirator."

[[]b] Based on annualized costs for a half-mask or full-faced nonpowered air-purifying respirator, including accessories, training, fit testing, and cleaning. See ERG (2003). Costs inflated based on the 2003-2009 GDP implicit price deflator as reported by the Bureau of Economic Analysis.

[[]c] Based on findings from NIOSH Respirator Survey (2003).

Table V-35: Total Costs for Respirator Use in Construction Industries under the Proposed Silica Standard (2009 dollars)

					(20	03 dollal	<u> </u>					
NAICS/ Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construc- tion vehicles and equipment	Grinders and tuck- pointers using hand- held tools	Hole drillers using hand- held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
236100 - Residential Building Construction	\$2,252,523	\$0	\$0	\$0	\$770,401	\$0	\$1,064,955	\$103,369	\$243,406	\$70,393	\$0	\$0
236200 - Nonresidential Building Construction	\$7,074,102	\$0	\$0	\$0	\$3,002,232	\$0	\$2,398,907	\$371,011	\$1,009,891	\$292,061	\$0	\$0
237100 - Utility System Construction	\$2,708,363	\$0	\$1,422,075	\$0	\$249,893	\$0	\$896,768	\$55,681	\$26,745	\$7,735	\$0	\$0
237200 - Land Subdivision	\$57,109	\$0	\$0	\$0	\$16,359	\$0	\$37,185	\$3,565	\$0	\$0	\$0	\$0
237300 - Highway, Street, and Bridge Construction	\$2,566,514	\$0	\$33,384	\$0	\$928,119	\$0	\$1,041,473	\$396,660	\$3,557	\$1,029	\$0	\$0
237900 - Other Heavy and Civil Engineering Construction	\$414,898	\$0	\$65,694	\$0	\$81,316	\$0	\$184,978	\$17,266	\$8,662	\$2,505	\$0	\$0
238100 - Foundation, Structure, and Building Exterior Contractors	\$57,151,594	\$0	\$0	\$0	\$29,442,036	\$0	\$2,869,751	\$2,363,201	\$17,349,522	\$5,017,491	\$0	\$0
238200 - Building Equipment Contractors	\$352,058	\$0	\$7,327	\$0	\$22,517	\$0	\$296,177	\$858	\$19,531	\$5,648	\$0	\$0

Table V-35: Total Costs for Respirator Use in Construction Industries under the Proposed Silica Standard (2009 dollars) (continued)

NAICS/ Industry	Total	Drywall finishers	Earth drillers	Operators of tractors and other heavy construc- tion vehicles and equipment	Grinders and tuck- pointers using hand-held tools	Hole drillers using hand- held drills	Impact drillers	Millers using portable or mobile machines	Masonry cutters using portable saws	Masonry cutting using stationary saws	Rock- crushing machine operators and tenders	Under- ground construc- tion workers
238300 - Building Finishing Contractors	\$2,759,662	\$0	\$0	\$0	\$796,243	\$0	\$276,724	\$34,170	\$698,268	\$201,939	\$752,318	\$0
238900 - Other Specialty Trade Contractors	\$3,882,009	\$0	\$392,877	\$0	\$1,699,313	\$0	\$1,012,597	\$395,055	\$262,434	\$75,896	\$43,837	\$0
999000 - State and Local Governments	\$1,574,648	\$0	\$4,103	\$0	\$71,339	\$0	\$1,267,270	\$139,413	\$24,164	\$6,988	\$61,372	\$0
Total	\$80,793,481	\$0	\$1,925,460	\$0	\$37,079,767	\$0	\$11,346,783	\$3,880,249	\$19,646,180	\$5,681,686	\$1,233,357	\$0

Table V-36: Total Costs for the Provision of Respiratory Protection in Construction, as Required under the Proposed Silica Standard (2009 dollars)

NAICS	Industry	Respirator Costs	Respirator Program Costs	Total Costs
236100	Residential Building Construction	\$2,252,523	\$103,983	\$2,356,507
236200	Nonresidential Building Construction	\$7,074,102	\$265,292	\$7,339,394
237100	Utility System Construction	\$2,708,363	\$100,206	\$2,808,570
237200	Land Subdivision	\$57,109	\$2,497	\$59,606
237300	Highway, Street, and Bridge Construction	\$2,566,514	\$88,301	\$2,654,815
237900	Other Heavy and Civil Engineering Construction	\$414,898	\$15,229	\$430,127
238100	Foundation, Structure, and Building Exterior Contractors	\$57,151,594	\$2,276,284	\$59,427,878
238200	Building Equipment Contractors	\$352,058	\$14,252	\$366,310
238300	Building Finishing Contractors	\$2,759,662	\$115,257	\$2,874,918
238900	Other Specialty Trade Contractors	\$3,882,009	\$162,670	\$4,044,680
999000	State and Local Governments	\$1,574,648	\$67,064	\$1,641,712
	Totals	\$80,793,481	\$3,211,036	\$84,004,516

SBREFA Panel Comments on Respirator Costs

A SBREFA commenter questioned how ERG was able to determine the full-time-equivalent number of at-risk construction workers who are exposed above the PEL. ⁴¹ To restate ERG's methodology for calculating the number of at-risk workers, OSHA notes that ERG estimated aggregate respirator costs for *all* workers at risk above the proposed PEL, by task and industry (and also by the PEL option, to provide alternatives for analytical purposes ⁴²). The total number of at-risk workers is derived from estimates in Table 4-9 (full-time equivalent workers by occupation and task) and Table 4-22 in ERG (2007a). ⁴³

Another commenter asserted that ERG's respirator analysis was based on two incorrect assumptions: (1) a condensed group of FTEs wear a respirator full-time (rather than a larger pool of workers wearing respirators on an intermittent basis, a more realistic assumption in the mind of the commenter) and (2) the respirators are shared optimally from a cost-efficiency standpoint. In response to these criticisms, OSHA emphasizes that, in fact, ERG based its estimates of compliance costs on respirators for *all* workers at risk above the proposed PEL, thereby not requiring respirator-sharing by workers who might not be engaged in the Table 1 tasks full-time.

OSHA solicits comment on its responses to these issues raised during the SBREFA Panel process.

Program Costs

This section presents OSHA's estimated costs for ancillary silica control programs for the construction industry as required under the proposed rule. Based on the program requirements contained in the proposed standard, OSHA considered four potential cost elements: exposure assessments (air monitoring), medical surveillance, provision of information and training, and regulated areas.

For costing purposes, ERG judged that employers will comply with these program requirements by including all workers who are either currently exposed or are at all likely to be exposed to silica hazards during their work. Accordingly, ERG concluded that employers will include program elements for employees who perform dusty tasks, even if only sporadically. This broad inclusion of program elements for workers is projected to be less costly for employers than manipulating worker assignments so that only those with silica-related training and health

⁴¹ Reform OSHA Coalition, p. 18.

⁴² See Table 4-28 in ERG (2007a).

⁴³ Total workers at risk above the PEL were referred to as "adjusted full-time-equivalent workers" or "adjusted workers at risk" in ERG (2007a). The following section in this chapter of the PEA provides further explanation of the derivation of the total number of workers at risk, as well as estimates in Table V-37 below.

⁴⁴ Mason Contractors Association of America, p. 29.

⁴⁵ This is explained in the note to Table 4-28 in ERG (2007a).

screening would be allowed to perform certain dusty tasks. Instead, employers are expected to develop inclusive programs and retain the latitude to assign workers according to normal scheduling demands.

As shown in Table V-37, ERG identified the number of at-risk full-time-equivalent workers in construction by industry and then increased those estimates to include the share of workers who are likely to be exposed to respirable silica periodically, regardless of their degree of contact with dusty operations. As can be seen in Table V-37, there is some breadth to the distribution of silica-generating tasks among workers in all construction industries. The construction industries include a sufficiently diverse mix of occupations that many workers are likely to perform silica-generating tasks with some regularity. Further, employers will likely wish to define participation in silica programs inclusively so as to avoid limitations on possible worker assignments due to lack of worker readiness to perform silica-generating activities.

ERG classified the affected construction industries according to whether silica-generating tasks are distributed narrowly or widely among workers in the industry. For the industries where such activities are narrowly distributed among relatively specialized workers, ERG estimated that the number of workers requiring participation in silica control programs would be twice the fulltime-equivalent number of workers profiled in the compliance cost calculations. For industries where silica-generating work is widely distributed, ERG increased the number of workers to be included in programs by a factor of 5 over number of the full-time-equivalent workers used in the earlier analysis of control costs. 46 Thus, ERG judged that large numbers of workers in certain occupations, such as brickmasons, sometimes will engage in dusty operations, such as grinding. Even though these dusty operations represent a small part of most construction jobs (and thus the full-time-equivalent number of workers incurring incremental compliance costs represent only a small share of the occupational or industry-based total number of workers), most workers will sometimes perform the dusty tasks. Similarly, a potentially large percentage of construction laborers in highway and street construction will sometimes perform impact drilling, even though these activities do not represent a large portion of all hours spent by construction laborers in this industry.

Given the frequent dustiness of the tasks producing silica exposure for the construction occupations recognized in the analysis (as shown in Table V-25 above), widespread participation in the silica program elements would appear to be necessary. As shown in Table V-37, these adjustments result in an estimate of approximately 1.8 million at-risk workers in construction. For three NAICS groups – 237100, Utility System Construction; 237300, Highway Street and Bridge Construction; and 237900, Other Heavy and Civil Engineering Construction – OSHA projects that all workers will be at risk of silica exposure.

⁴⁶ These multipliers of 2 and 5 applied to full-time-equivalent workers are subject to the constraint that the number of at-risk workers not exceed the number of workers in at-risk industries.

V-37: Estimated Number of Construction Employees Exposed to Silica (and thus Affected by OSHA's Proposed Standard)

		Total No. of	At-Risk	FTE	Total At-
NAICS	Industry	Employees in At-Risk Industries	FTE Employees	Adjustment Factor	Risk Employees [a]
236100	Residential Building Construction	574,527	27,669	2	55,338
236200	Nonresidential Building Construction	394,565	34,788	5	173,939
237100	Utility System Construction	217,070	96,181	5	217,070
237200	Land Subdivision	13,076	3,255	2	6,511
237300	Highway, Street, and Bridge Construction	204,899	66,916	5	204,899
237900	Other Heavy and Civil Engineering Construction	46,813	18,835	5	46,813
238100	Foundation, Structure, and Building Exterior Contractors	643,349	111,946	5	559,729
238200	Building Equipment Contractors	128,499	10,179	2	20,358
238300	Building Finishing Contractors	405,094	60,006	2	120,012
238900	Other Specialty Trade Contractors	326,852	137,219	2	274,439
999000	State and Local Governments	300,770	85,034	2	170,068
	Total	3,255,514	652,029	_	1,849,175

[[]a] The total number of at-risk employees in each construction industry was constrained so as not to exceed the number of employees in that at-risk industry.

Exposure Assessment Costs

Paragraph (d)(8)(1) of the proposed rule for the construction industry specifies that, where employees perform operations listed in Table 1 and where the engineering controls, work practices, and respiratory protection specified in Table 1 for that operation have been implemented, the employer is not required to assess the exposure of employees performing such operations. OSHA anticipates that many employers, aware that their operations currently expose their workers to silica levels above the PEL, will simply choose to comply with Table 1 and avoid the costs of conducting exposure assessments. However, for purposes of estimating costs, OSHA has taken a more conservative approach and assumed that all employers in at-risk construction activities will conduct initial exposure assessments and additional exposure monitoring as needed.

In particular, consistent with ERG (2007a), OSHA, in estimating the costs of the exposure assessment requirements in the proposed rule, assumed the following:

- (1) Employers will perform initial exposure assessments of workers who perform dusty tasks;
- (2) For workers found to be exposed below the action level, no further action is necessary.
- (3) For workers found to be over the PEL, the employer will choose to comply with Table 1. Because the employer would then be in compliance with Table 1 requirements, there would be no further monitoring requirements.
- (4) For workers exposed at or above the action level, but below the PEL, periodic monitoring will be performed (as required by paragraphs (d)(3) and (d)(4) in the proposed rule).

Table V-9, presented in the discussion of exposure assessment costs for general industry and maritime, also displays the parameters, unit costs, and other assumptions employed by OSHA to estimate exposure assessment costs for construction. The costing methodology and unit costs are identical to the earlier estimates for general industry and maritime with the exception that construction industry wages are used to calculate productivity losses and recordkeeping costs.

OSHA again assumed that most establishments wishing to perform exposure monitoring will require the assistance of an outside consulting industrial hygienist (IH) to obtain accurate results. While some firms might already employ or train qualified staff, ERG judged that the testing protocols are fairly challenging and that few firms have competent staff to obviate the need for outside consultants.

The OSH Act provides for the right of an employee-designated representative to observe exposure monitoring and measuring procedures. OSHA is not aware of any published studies presenting data on the frequency by which this right is exercised. OSHA believes that in some cases union officials are given the opportunity to observe monitoring at no direct cost to the employer. For these reasons, ERG included no additional cost for this provision.

The proposed standard does not require that each worker be monitored, and ERG (2007a) estimated that the exposure assessment requirement would be satisfied through testing, on average, of one in every four workers. This level was judged sufficient to characterize exposures among at-risk workers across the range of activities likely to be undertaken. Therefore, OSHA, based on ERG (2007a), estimated in its cost model that there are four workers per work area and, furthermore, interpreted the initial exposure assessment as requiring first-year testing of at least one worker in each distinct job classification and work area who is, or may reasonably be expected to be, exposed to airborne concentrations of respirable crystalline silica at or above the action level. The four workers in each work area who would be subject to exposure assessment consist of a combination of key and secondary occupations described above in Table V-26 and the surrounding text. The exact combination of key and secondary occupation categories will vary by task.

For periodic monitoring, the proposed standard provides employers an option of assessing employee exposures either under a fixed schedule (paragraph (d)(3)(i)) or a performance—based schedule (paragraph (d)(3)(ii)). Under the fixed schedule, the proposed standard requires semi-annual periodic sampling for exposures above the action level and quarterly sampling exposures above the PEL. Monitoring must be continued until the employer can demonstrate that exposures are no longer at or above the action level. OSHA used the fixed schedule option under the frequency of monitoring requirements to estimate, for costing purposes, that exposure monitoring will be conducted twice a year where initial or subsequent exposure monitoring reveals that employee exposures are at or above the action level but at or below the PEL. For exposures above the PEL, OSHA judged that all employers in construction would choose to comply with Table 1 and therefore would not have to conduct periodic exposure monitoring.

As required by paragraph (d)(4) of the proposed rule, whenever there is a change in the production, process, control equipment, personnel, or work practices that may result in new or additional exposures at or above the action level or when the employer has any reason to suspect that a change may result in new or additional exposures at or above the action level, the employer must conduct additional monitoring. Based on ERG (2007a), OSHA estimated that approximately 15 percent of workers whose initial exposure or subsequent monitoring was at or above the action level would undertake additional monitoring.

As in general industry and maritime, ERG (2011) estimated the cost per exposure monitoring sample in construction is projected to range from \$195.88 to \$383.38 (depending on establishment size). Other costs per exposure monitoring sample stem from the estimated 30-minute loss in employee time while attaching and unattaching the pump and the 15 minutes required for recordkeeping (recording the sampling results and notifying the employee of the sampling results). Overall, OSHA estimates that unit costs in construction will range from approximately \$227.98 to \$415.48 per sample.

Although OSHA believes that some establishments in construction currently conduct exposure

⁴⁷ OSHA anticipates that the performance-based schedule option would generally be less expensive than the fixed schedule option for employers that choose the performance-based option; otherwise they wouldn't have chosen it.

monitoring, the Agency has no evidence to support this belief. Therefore for costing purposes for the proposed silica rule, OSHA has assumed no current compliance with the proposed exposure monitoring requirements. OSHA requests information from interested parties on current levels of exposure monitoring.

The aggregate annual cost estimates, by construction industry, for exposure monitoring requirements under the proposed rule are presented in Table V-38. As shown, costs for exposure monitoring in construction total \$44.6 million annually.

Table V-38: Estimated Annualized Costs for Exposure Assessment in Construction for OSHA's Proposed Silica Standard (all establishments)

NAICS	Industry	No. of At-Risk Workers (AL=25)	Initial Assessment	Periodic Assessment	Total Assessment Costs
236100	Residential Building Construction	32,260	\$396,823	\$1,552,863	\$1,949,685
236200	Nonresidential Building Construction	83,003	\$855,678	\$3,298,221	\$4,153,899
237100	Utility System Construction	76,687	\$746,336	\$3,712,564	\$4,458,900
237200	Land Subdivision	1,745	\$20,337	\$107,846	\$128,183
237300	Highway, Street, and Bridge Construction	58,441	\$561,759	\$2,976,386	\$3,538,146
237900	Other Heavy and Civil Engineering Construction	12,904	\$130,579	\$694,668	\$825,247
238100	Foundation, Structure, and Building Exterior Contractors	396,582	\$4,344,489	\$13,000,639	\$17,345,127
238200	Building Equipment Contractors	6,752	\$74,147	\$320,123	\$394,270
238300	Building Finishing Contractors	49,202	\$559,017	\$2,064,746	\$2,623,763
238900	Other Specialty Trade Contractors	87,267	\$999,421	\$4,879,176	\$5,878,597
999000	State and Local Governments [c]	45,847	\$525,062	\$2,732,070	\$3,257,131
	Total - Construction	850,690	\$9,213,648	\$35,339,300	\$44,552,948

SBREFA Panel Comments on Exposure Assessment Costs

A SBREFA commenter asserted that ERG's calculation of compliance costs related to exposure assessments was "plagued by a number of inappropriate assumptions and omissions." In support, the commenter gave the example that ERG's methodology of computing a unit cost per tested sample and applying that cost to a calculated pool of at-risk workers, using an assumption of one test per four workers, is "at odds with OSHA's own recommendations requiring more tests." In response to this comment, OSHA notes that the proposed standard, at paragraph (d)(1)(iii), permits *representative* sampling of employees who are or may be exposed to respirable crystalline silica at or above the action level. Specifically, proposed paragraph (d)(1)(iii) requires:

8-hour TWA employee exposures [to be determined] on the basis of *one or more samples* that reflect the full-shift exposures on each shift, for each job classification, in each work area. Where several employees perform the same job tasks on the same shift and in the same work area, the employer may sample a representative fraction of the employees in order to meet this requirement. In representative sampling, the employer shall sample the employee(s) who are expected to have the highest exposure to respirable crystalline silica. (emphasis added)

Consistent with the language in the proposed standard, ERG estimated that one out of every four workers would be sampled.

The commenter also argued that ERG failed to identify several costs, including the cost of the cartridge needed to take the sample, the costs of blanks, and the cost of analyzing bulk samples. However, OSHA notes that the cost per sample (\$133.38) used by ERG includes the relevant testing supplies such as the cartridge and blanks. No costs were included for bulk sampling, but such a procedure would not be required on a regular basis anyway, and therefore OSHA believes that ERG's methodology was appropriate.

The commenter stated that the draft standard lacked clarity on the schedule for exposure assessment and criticized ERG's assumption "through its exposed labor force analysis that employees get tested once during initial assessment and at least semi-annually thereafter (Option 1)." In response, OSHA believes that the draft standard was in fact clear in stating that Option 1 required semi-annual periodic sampling for the 75 μ g/m³ and 100 μ g/m³ PEL options and quarterly sampling for the 50 μ g/m³ PEL option (see paragraph (f)(3) in the draft standard, Docket H006A, Ex. 3-2). In the current proposal, employers not in compliance with Table 1 would only need to conduct semi-annual periodic sampling for exposures between the proposed action level of 25 μ g/m³ and the proposed PEL of 50 μ g/m³.

⁴⁸ Reform OSHA Coalition, (2003) p. 14.

⁴⁹ Reform OSHA Coalition, (2003) p. 16.

⁵⁰ Reform OSHA Coalition, (2003) p. 18.

The commenter further stated that ERG had significantly underestimated the amount of professional time required for any single sample, arguing instead that it would take as much as ten hours to collect a single sample at a job site. ⁵¹ ERG originally specified one hour of professional time per sample based the assumption that a typical job site would be large enough for a fully occupied industrial hygiene technician to collect eight samples during an 8-hour work shift. ERG (2011) later revised this figure to two samples during an 8-hour work shift for small (1-19 employee) establishments and six samples during an 8-hour work shift for medium-sized (20-499 employee) establishments, while retaining eight samples during an 8-hour work shift for large (500+ employee) establishments.

OSHA solicits comment on its responses to all these issues raised during the SBREFA Panel process.

Medical Surveillance Costs

Paragraph (h) of the proposed standard requires an initial health screening and then triennial periodic screenings for workers exposed above the proposed PEL of $50 \,\mu\text{g/m}^3$ for 30 days or more per year. ERG (2011) assembled information on representative unit costs of initial and periodic medical surveillance. Separate costs were estimated for current employees and for new hires as a function of the employment size (i.e., 1-19, 20-499, or 500+) of affected establishments. Table V-39 presents ERG's unit cost data and modeling assumptions used by OSHA to estimate medical surveillance costs.

OSHA's analysis of costs for medical surveillance in construction is, with the exception of certain unit costs and a few baseline assumptions, virtually identical to its methodology for modeling medical surveillance costs for general industry and maritime. The latter analysis was presented earlier in this chapter.

In accordance with paragraph (h)(2) of the proposed rule, the initial (baseline) medical examination would consist of (1) a medical and work history, (2) a physical examination with special emphasis on the respiratory system, (3) a chest x-ray that meets certain standards of the International Labour Organization, (4) a pulmonary function test that meets certain criteria and is administered by a NIOSH-certified spirometry technician, (5) testing for latent TB infection, and (6) any other tests deemed appropriate by the physician or PLHCP.

As shown in Table V-39, the estimated unit cost of the initial health screening for current employees in construction ranges from approximately \$389.38 to \$424.94 and includes direct medical costs, the opportunity cost of worker time (evaluated at the worker's 2009 hourly wage, including fringe benefits) for offsite travel and for the initial health screening itself, and recordkeeping costs. The variation in the unit cost of the initial health screening is due entirely to differences in the percentage of workers expected to travel offsite for the health screening. In OSHA's experience, the larger the establishment the more likely it is that the selected physician

⁵¹ Reform OSHA Coalition, (2003) p. 9.

⁵² As previously noted, approximately 46 percent of at-risk workers in construction are at or above the action level.

Table V-39: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Medical Surveillance in the Silica Construction Standard (Coverage: All employees exposed above PEL)

Screening Tool	Cost Parameter	Initial Screening	Periodic Screening	Comments/Assumptions
<u>Direct Costs</u>				
Complete occupational and health history survey	\$33.33	Yes	Yes	Assumed one third of physica exam cost
Triennial review and updating of health history	\$33.33	N/A	Yes	Assumed one third of physica exam cost
Physical examination by knowledgeable HCP [a]	\$100.00	Yes	Yes	Evaluation and office consultation including detailed examination.
Chest X-ray	\$79.61	Yes	Yes	Radiologic examination, chest; stereo, frontal. Costs include consultation and written report.
Chest X-ray classified by a NIOSH-certified B Reader	\$39.19	Yes	Yes	Average of three estimates made by B Readers to ERG
Pulmonary function test	\$54.69	Yes	Yes	Spirometry, including graphic record, total and timed vital capacity, expiratory flow rate measurements(s), and/or maximal voluntary ventilation
Examination by a pulmonary specialist [b]	\$190.28	Yes	N/A	Office consultation and evaluation by a pulmonary specialist
Other necessary tests	\$60.00	Yes	Yes	Assumed required by 10 percent of workers
Dermal TB Test [a]	\$15.00			Assumed required by 20 percent of workers

Table V-39: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Medical Surveillance in the Silica Construction Standard

(Coverage: All employees exposed above PEL) (continued)

Time Requirements for Medical Examination	<u>Mir</u>	<u>nutes</u>		
Complete occupational and health history survey and exam, including x-ray	1	20		Per survey and exam
Health history review and update	;	30		Per review
Physical exam and tests (without x-ray)	(60		Per exam
Chest x-ray	;	30		Per x-ray
Reading of Dermal TB Test (return exam)		5		
Examination by a pulmonary specialist		60		
Recordkeeping (initial and periodic screenings)		15		Average per screening
Recordkeeping (referrals)	60			Includes time for referrals an notification of NIOSH of new silica-related disease cases
Percentage of employees seeing off-	site physician I	by establishment	size	
	Small (<20)	Medium (20- 499)	Large (500+)	
-Initial examination	80.0%	25.0%	0.0%	
-New hires	90.0%	50.0%	10.0%	
Travel Time (minutes) – off-site location				
Initial Test	!	90		
Return for reading	!	90		
Separations rate (layoffs, quits, and retirements)	64.0%			2008 separations rate for construction industries. BLS Job Openings and Labor Turnover Survey (JOLTS)
Share of new hires requiring initial health screening	40	0.0%		

Table V-39: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Medical Surveillance in the Silica Construction Standard (Coverage: All employees exposed above PEL) (continued)

Medical Exam or Other Cost Variable		Establishment Size				
	Small (<20)	Medium (20- 499)	Large (500+)			
Initial screening:						
Medical costs	312.83	\$312.83	\$312.83	Including components specified above in "Direct Costs"		
Lost work time - exam	\$59.27	\$59.27	\$59.27	Based on average construction worker wage, adjusted for benefits		
Lost work time - travel	\$35.56	\$11.11	\$0.00	Based on average construction worker wage, adjusted for benefits		
Record keeping	\$17.28	\$17.28	\$17.28	Based on manager's wage rate, adjusted for benefits		
Total	\$424.94	\$400.49	\$389.38			
Initial screening: New hires:				Including components		
Medical costs	\$312.83	\$312.83	\$312.83	specified above in "Direct Costs"		
Lost work time - exam	\$59.27	\$59.27	\$59.27	Based on average construction worker wage, adjusted for benefits		
Lost work time - travel	\$40.00	\$22.22	\$4.44	Based on average construction worker wage, adjusted for benefits		
Record keeping	\$17.28	\$17.28	\$17.28	Based on manager's wage rate, adjusted for benefits		
Total	\$429.38	\$411.60	\$393.82			
Triennial screening						
Medical costs	\$312.83	\$312.83	\$312.83	Including components specified above in "Direct Costs"		
Lost work time - exam	\$59.27	\$59.27	\$59.27	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value.		
Lost work time - travel	\$35.56	\$11.11	\$0.00	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value. Assumes all exams are off site.		
Record keeping	\$17.28	\$17.28	\$17.28	Based on manager's wage rate, adjusted for benefits (BLS, 2008). Inflated to 200 value.		
Total	\$424.94	\$400.49	\$389.38			

Table V-39: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Medical Surveillance in the Silica Construction Standard

(Coverage: All employees exposed above PEL) (continued)

Medical Exam or Other Cost Variable	E	Stablishment S	Size	Comments/Assumptions	
	Small (<20)	Medium (20- 499)	Large (500+)		
Examination by pulmonary specialist		,			
Medical costs	\$190.28	\$190.28	\$190.28	Including components specified above in "Direct Costs"	
Lost work time - exam	\$29.63	\$29.63	\$29.63	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value.	
Lost work time - travel	\$44.45	\$44.45	\$44.45	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value. Assumes all exams are off site.	
Record keeping	\$69.12	\$69.12	\$69.12	Based on manager's wage rate, adjusted for benefits (BLS, 2008). Inflated to 200 value.	
Total	\$333.48	\$333.48	\$333.48		
Initial TB Testing					
ilitial 15 Testing					
Test cost	\$15.00	\$15.00	\$15.00		
Lost work time - exam	\$2.47	\$2.47	\$2.47	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value.	
Lost work time - travel	\$23.71	\$7.41	\$0.00	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value. Assumes a exams are off site.	
Total	\$41.18	\$24.88	\$17.47		
New Hire and subsequent TB testing					
Test cost	\$15.00	\$15.00	\$15.00		
Lost work time - exam	\$2.47	\$2.47	\$2.47	Based on average producti worker wage, adjusted for benefits (BLS, 2008). Inflato to 2009 value.	
Lost work time - travel	\$26.67	\$14.82	\$2.96	Based on average production worker wage, adjusted for benefits (BLS, 2008). Inflate to 2009 value. Assumes a exams are off site.	
Total	\$44.14	\$32.29	\$20.43		
Annualized costs – initial testing	\$5.86	\$3.54	\$2.49		
Annualized costs – new hire and subsequent testing	\$44.14	\$32.29	\$20.43		

Table V-39: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Medical Surveillance in the Silica Construction Standard

(Coverage: All employees exposed above PEL) (continued)

Percentage of employees tested in initial year		
Current Employees	100.0%	
New Hires	40.0%	
Percent of employees recommended for annual TB testing	20.0%	

[[]a] Typical charge based on ERG contacts with occupational health providers.

Other costs for physical exams and tests, chest X-ray, and pulmonary tests are direct medical costs used in bundling services under Medicare (Intellimed, 2003). Costs are inflated by 30% to eliminate the effect of Medicare discounts that are unlikely to apply to occupational medicine environments. Inflated to 2009 costs based on medical care services component of the CPI inflator.

[[]b] Mean expense per office-based physician visit to a pulmonary specialist for diagnosis and treatment, based on data from the 2004 Medical Expenditure Panel Survey (MEPS, 2004). Inflated to 2009 dollars using the consumer price deflator for medical services.

or PLHCP would provide the health screening services at the establishment's worksite. OSHA estimates that, on average, 20 percent of establishments with fewer than 20 employees, 75 percent of establishments with 20-499 employees, and 100 percent of establishments with 500 or more employees would have the initial health screening for current employees conducted onsite.

The unit cost components of the initial health screening for new hires in construction are identical to those for existing construction employees with the exception that the percentage of workers expected to travel offsite for the health screening would be somewhat larger (due to fewer workers being screened annually, in the case of new hires, and therefore yielding fewer economies of onsite screening). OSHA estimates that, on average, 10 percent of establishments with fewer than 20 employees, 50 percent of establishments with 20-499 employees, and 90 percent of establishments with 500 or more employees would have the initial health screening for new hires conducted onsite. As shown in Table V-39, the estimated unit cost of the initial health screening for new hires in construction ranges from approximately \$393.82 to \$429.38.

In accordance with paragraph (h)(3) of the proposed rule, the periodic medical examination (every third year after the initial health screening) would consist of (1) a medical and work history review and update, (2) a physical examination with special emphasis on the respiratory system, (3) a chest x-ray that meets certain standards of the International Labour Organization, (4) a pulmonary function test that meets certain criteria and is administered by a NIOSH-certified spirometry technician, (5) testing for latent TB infection, if recommended by the physician or PLHCP, and (6) any other tests deemed appropriate by the physician or PLHCP.

The estimated unit cost of periodic health screening also includes direct medical costs, the opportunity cost of worker time, and recordkeeping costs. As shown in Table V-39, these triennial unit costs vary from roughly \$389.38 to \$424.94. The variation in the unit cost (with or without the chest x-ray and pulmonary function test) is due entirely to differences in the percentage of workers expected to travel offsite for the periodic health screening. OSHA estimated that the share of workers traveling offsite, as a function of establishment size, would be the same for the periodic health screening as for the initial health screening for existing employees.

Although OSHA believes that some affected establishments in construction currently provide some medical testing to their silica-exposed employees, the Agency doubts that many provide the comprehensive health screening required under the proposed rule. Therefore for costing purposes for the proposed rule, OSHA has assumed no current compliance with the proposed health screening requirements. OSHA requests information from interested parties on the current levels and the comprehensiveness of health screening in construction.

In order to estimate turnover rates in construction, ERG (2011) used the separations rate (layoffs, quits, retirements) of 64.0 percent in construction as estimated by the Bureau of Labor Statistics (BLS, 2007). However, not all new hires would require initial medical testing. As specified in paragraph (h)(2) of the proposed rule, employees who had received a qualifying medical examination within the previous twelve months would be exempt from the initial medical examination. OSHA estimates that 60 percent of new hires in construction would be exempt from the initial medical examination.

Based on a ten-year time horizon, OSHA estimated the total annualized costs in construction for health screenings (to include initial health screenings for existing employees and new hires and periodic health screenings) as required by the proposed rule. These estimates, disaggregated by affected NAICS industry, are presented in Table V-40.

Finally, OSHA estimated the unit cost of a medical examination by a pulmonary specialist for those employees found to have signs or symptoms of silica-related disease (1/0 or higher on the ILO scale) or are otherwise referred by the PLHCP. As shown in Table V-39, the estimated unit cost of a medical examination by a pulmonary specialist is \$333.48. This cost includes direct medical costs, the opportunity cost of worker time, and recordkeeping costs (to include the cost of the employer's time to make a referral to a pulmonary specialist). In all cases, OSHA anticipates that the worker will travel offsite to receive the medical examination by a pulmonary specialist.

Based on its calculation of residual risk after the silica rule takes effect, OSHA estimates that there would be 117 new cases a year of silicosis of 2/1 or higher identified as a result of the proposed medical surveillance requirements for construction workers. OSHA used the Buchannan et al. (2003) silicosis risk model to estimate that there would be 396 new cases a year of silicosis of 1/0 or higher identified as a result of the proposed medical surveillance requirements for construction workers. ERG distributed these disease cases among industries in proportion to the number of at-risk workers. Table V-41, which multiplies the unit cost by the number of referred workers, shows the total annualized cost in construction of medical examinations by a pulmonary specialist.

Tables V-42, which combines total health screening costs and the total costs of medical examinations by a pulmonary specialist, shows the aggregate annual cost in construction, by NAICS industry, for the medical surveillance requirements in the proposed rule. Combined over all affected NAICS construction industries, the estimated cost of these medical surveillance requirements is \$76.0 million annually.

Table V-40: Estimated Medical Surveillance Costs in Construction for OSHA's Proposed Silica Standard (all establishments)

NAICS	Industry	No. of At-Risk Workers (AL=25)	Initial Screening	Screening for New Hires	Triennial Screening	TB Testing	Total
236100	Residential Building Construction	8,842	\$521,701	\$953,879	\$483,458	\$69,356	\$2,028,394
236200	Nonresidential Building Construction	27,658	\$1,596,768	\$2,931,643	\$1,476,796	\$186,774	\$6,191,980
237100	Utility System Construction	10,756	\$615,729	\$1,129,756	\$568,848	\$67,582	\$2,381,914
237200	Land Subdivision	225	\$13,191	\$24,147	\$12,216	\$1,684	\$51,239
237300	Highway, Street, and Bridge Construction	10,090	\$578,285	\$1,063,758	\$534,515	\$64,643	\$2,241,201
237900	Other Heavy and Civil Engineering Construction	1,641	\$94,587	\$173,825	\$87,476	\$10,984	\$366,872
238100	Foundation, Structure, and Building Exterior Contractors	221,887	\$12,904,253	\$23,664,291	\$11,943,068	\$1,580,395	\$50,092,007
238200	Building Equipment Contractors	1,398	\$81,394	\$149,329	\$75,343	\$10,039	\$316,105
238300	Building Finishing Contractors	26,169	\$1,529,159	\$2,802,588	\$1,415,930	\$192,803	\$5,940,479
238900	Other Specialty Trade Contractors	21,314	\$1,247,020	\$2,285,587	\$1,154,855	\$158,503	\$4,845,965
999000	State and Local Governments [c]	6,264	\$366,501	\$671,737	\$339,414	\$46,584	\$1,424,236
	Totals	336,244	\$19,548,587	\$35,850,541	\$18,091,919	\$2,389,344	\$75,880,392

Table V-41: Estimated Costs in Construction for Medical Examinations by a Pulmonary Specialist, as Required under the Proposed Silica Standard (2009 dollars)

NAICS	Industry	No. of At-Risk Workers	No. of Annual Referrals	Cost
236100	Residential Building Construction	8,842	10	\$3,473
236200	Nonresidential Building Construction	27,658	33	\$10,863
237100	Utility System Construction	10,756	13	\$4,224
237200	Land Subdivision	225	0	\$88
237300	Highway, Street, and Bridge Construction	10,090	12	\$3,963
237900	Other Heavy and Civil Engineering Construction	1,641	2	\$644
238100	Foundation, Structure, and Building Exterior Contractors	221,887	261	\$87,145
238200	Building Equipment Contractors	1,398	2	\$549
238300	Building Finishing Contractors	26,169	31	\$10,278
238900	Other Specialty Trade Contractors	21,314	25	\$8,371
999000	State and Local Governments [c]	6,264	7	\$2,460
	Totals	336,244	396	\$132,059

Table V-42: Aggregate Costs in Construction, by NAICS industry, for the Medical Surveillance Requirements in the Proposed Silica Rule (2009 dollars)

NAICS	Industry	Total Cost of Examinations	Cost of Pulmonary Specialist Examinations	Total Cost
236100	Residential Building Construction	\$2,028,394	\$3,473	\$2,031,866.45
236200	Nonresidential Building Construction	\$6,191,980	\$10,863	\$6,202,842.46
237100	Utility System Construction	\$2,381,914	\$4,224	\$2,386,138.65
237200	Land Subdivision	\$51,239	\$88	\$51,327.44
237300	Highway, Street, and Bridge Construction	\$2,241,201	\$3,963	\$2,245,163.95
237900	Other Heavy and Civil Engineering Construction	\$366,872	\$644	\$367,516.51
238100	Foundation, Structure, and Building Exterior Contractors	\$50,092,007	\$87,145	\$50,179,151.99
238200	Building Equipment Contractors	\$316,105	\$549	\$316,654.52
238300	Building Finishing Contractors	\$5,940,479	\$10,278	\$5,950,756.67
238900	Other Specialty Trade Contractors	\$4,845,965	\$8,371	\$4,854,335.72
999000	State and Local Governments [c]	\$1,424,236	\$2,460	\$1,426,696.18
	Totals	\$75,880,392	\$132,059	\$76,012,451

SBREFA Comments on Medical Surveillance Costs

One SBREFA commenter asked why ERG annualized the one-time expense of an initial screening over a 10-year period when essentially similar exams are scheduled for the same worker every 3 years under Option 1 of the proposed rule.⁵³ To clarify, OSHA notes that ERG's costs for the required health screenings (initial and follow-up), embodied in the aggregate costs shown in Tables 4-33 through 4-38 in ERG (2007a), reflect the annualized value of the discounted costs of the required screenings and medical tests over a ten-year period. An earlier version of this chapter, at the time of the SBREFA panel, failed to indicate that all health screening costs were, in fact, discounted and annualized.

The commenter also argued that ERG's source for medical costs might have resulted in low estimates for health care services required by the standard. The commenter provided examples of costs for certain procedures that are higher than the unit costs specified by ERG and are taken from the *Physicians' Fee Reference* and described as the average of the 50th and 75th percentile values. However the commenter did not provide details regarding the types of procedures performed. In response, OSHA notes that ERG's unit costs were primarily derived from Medicare reimbursement rates for representative procedures required by the draft standard. ERG inflated these rates by 30 percent to represent charges that small employers or individual workers might encounter. Larger employers or those represented by major insurance companies, HMOs, PPOs, or other large health management organizations might negotiate lower rates. Codes for the specific medical procedures costed by ERG are shown in Table 4-32 in ERG (2007a).

OSHA solicits comment on its responses to all these issues raised during the SBREFA Panel process.

⁵³ Reform OSHA Coalition (2003), p. 21.

⁵⁴ Reform OSHA Coalition (2003), p. 9. The Physician Fee Reference is a licensed American Medical Association product that provides, by 3-digit zip code, 50th, 75th, and 90th percentile physicians' fees charged for a variety of CPT-coded (current procedure terminology) procedures. Fees negotiated by insurance companies, PPOs, and other large payers are typically less than the listed fee.

Information and Training Costs

As specified in paragraph (i)(1) of the proposed rule and 29 CFR 1910.1200, training is required for all employees in construction in jobs where there is potential exposure to respirable crystalline silica. In addition, new hires would require training before starting work. ERG (2011) provided an estimate of the new-hire rate in construction, based on the BLS-estimated separations rate of 64.0 percent in construction (BLS, 2008). OSHA estimated separate costs for training current employees and for training new hires. Given that new hire training might need to be performed frequently during the year, OSHA estimated a smaller class size for new hires. OSHA notes that the training discussed in this section does not include respirator training, whose costs were included as part of the respirator costs presented earlier in this chapter.

OSHA anticipates that training, in accordance with the requirements of the proposed rule (to include hazard communication under proposed paragraph (i)(1) and employee information and training under proposed paragraph (i)(2)), will be conducted by in-house safety or supervisory staff with the use of training modules or videos and will last, on average, one hour. ERG (2007b) judged that establishments could purchase sufficient training materials at an average cost of \$2 per worker, encompassing the cost of handouts, video presentations, and training manuals and exercises. ERG (2011) included in the cost estimates for training the value of worker and trainer time as measured by 2009 hourly wage rates (to include fringe benefits) in construction for employees and supervisors, respectively. ERG also developed estimates of average class sizes as a function of establishment size.

For initial training, ERG estimated an average class size of 5 workers for establishments with fewer than 20 employees; 10 workers for establishments with 20 to 499 employees; and 20 workers for establishments with 500 or more employees. For new hire training, ERG estimated an average class size of 2 workers for establishments with fewer than 20 employees; 5 workers for establishments with 20 to 499 employees; and 10 workers for establishments with 500 or more employees. The unit costs of training are presented below in Table V-43. Based on ERG's work, OSHA estimated the annualized cost (annualized over 10 years) of initial training at between \$3.68 and \$4.37 per employee and the annual cost of new hire training at between \$27.46 and \$40.39 per employee, depending on establishment size.

OSHA recognizes that many affected establishments in construction currently provide training on the hazards of respirable crystalline silica in the workplace. Consistent with some estimates developed by ERG(2007b), OSHA estimates that 50 percent of affected establishments already provide such training. However, some of the training specified in the proposed rule requires that workers be familiar with the training and medical surveillance provisions in the rule. OSHA expects that this training is not currently being provided. Therefore, for costing purposes for the proposed rule, OSHA has estimated that 50 percent of affected establishments currently provide their workers, and would provide new hires, with training that would comply with approximately 50 percent of the training requirements. In other words, OSHA estimates that those (50 percent of) establishments currently providing training on workplace silica hazards would provide an additional 30 minutes of training to comply with the proposed rule; the remaining (50 percent of) establishments would provide 60 minutes of training to comply with the proposed rule. As clarified above, this hazards-centered training would not include the respirator training described

earlier in this chapter. OSHA also recognizes that many new hires in construction may have been previously employed in construction, and in some cases by the same establishment, so that they might have already received (partial) silica training. However, for costing purposes, OSHA estimates that all new hires will receive the full silica training from the new employer. OSHA requests comments from interested parties on the reasonableness of these estimates and on the reasonableness of all of the other assumptions and estimates applied in this analysis of information and training costs, including any upfront costs associated with familiarizing employees with new procedures they would have to conduct and equipment they would have to operate as part of their employers' compliance with the proposed standard.

Table V-44 summarizes the annual costs in the construction sector, by NAICS industry, of the training requirements in the proposed rule. Combined over all NAICS construction industries, the cost of the training requirements is \$47.3 million annually.

Table V-43: Analytical Assumptions and Unit Costs Applied in OSHA's Cost Model for Training in Construction

Cost Category		Cost Parameter		Comments/Assumptions
Direct Costs				
Instructor cost per hour		\$43.12		Based on supervisor wage, adjusted for fringe benefits (BLS, 2008), updated to 2009 dollars
Materials for class per attendee		\$2.00		Estimated cost of \$2 per worker for the training/reading materials.
Labor Costs				
Time spent in class (min)				ERG estimates.
Establishments without existing silica training		60		
Establishments with existing silica training		30		
Percentage of establishments with exis silica training program Class size by Establishment Size Cl		50%		
Class size by Establishment size Cl	Small (<20)	Medium (20-499)	Large (500+	
Initial training	5	10	20	
New hire training	2	5	10	
Value of worker time spent in class	\$22.22	\$22.22	\$22.22	Based on worker wage, adjusted for fringe benefits (BLS, 2008)
Annualized Training Cost per Emplo				
	Small (<20)	Medium (20-499)	Large (500+)	
Initial training				
Value of instructor's time	\$6.47	\$3.23	\$1.62	
Value of employee's time	\$22.22	\$22.22	\$22.22	
Cost of materials	\$2.00	\$2.00	\$2.00	
Total	\$30.69	\$27.46	\$25.48	
Annualized total	\$4.37	\$3.91	\$3.68	

Table V-43: Analytical Assumptions and Unit Costs Applied in OSHA's Cost Model for Training in Construction (continued)

Cost Category	Cost Parameter			Comments/Assumptions		
New hire training						
Value of instructor's time	\$16.17	\$6.47	\$3.23			
Value of employee's time	\$22.22	\$22.22	\$22.22			
Cost of materials	\$2.00	\$2.00	\$2.00			
Total	\$40.39	\$30.69	\$27.46			
Separations rate (layoffs, quits, and retirements)		64.0%		2008 annual hires rate for the construction industry (BLS Job Openings and Labor Turnover Survey)		

Table V-44: Estimated Training Costs in Construction for OSHA's Proposed Silica Standard (all establishments)

NAICS	Industry	Number of At-Risk Workers	Initial Training	New Hire Training	Total Cost
236100	Residential Building Construction	55,338	\$230,831	\$1,284,217	\$1,515,047
236200	Nonresidential Building Construction	173,939	\$695,939	\$3,653,578	\$4,349,517
237100	Utility System Construction	217,070	\$853,897	\$4,391,824	\$5,245,721
237200	Land Subdivision	6,511	\$26,791	\$146,392	\$173,183
237300	Highway, Street, and Bridge Construction	204,899	\$808,466	\$4,152,500	\$4,960,966
237900	Other Heavy and Civil Engineering Construction	46,813	\$186,787	\$975,318	\$1,162,105
238100	Foundation, Structure, and Building Exterior Contractors	559,729	\$2,271,434	\$12,164,420	\$14,435,854
238200	Building Equipment Contractors	20,358	\$82,762	\$443,793	\$526,555
238300	Building Finishing Contractors	120,012	\$491,505	\$2,664,500	\$3,156,004
238900	Other Specialty Trade Contractors	274,439	\$1,126,700	\$6,125,224	\$7,251,924
999000	State and Local Governments [c]	170,068	\$698,209	\$3,795,760	\$4,493,968
	Total – Construction	1,849,175	\$7,473,320	\$39,797,524	\$47,270,844

SBREFA Panel Comments on Training Costs

One participant in the silica SBREFA process objected to ERG's analytical assumption (used in OSHA's Preliminary Initial Regulatory Flexibility Analysis) that training is needed only for those workers exposed above the action level and suggested that training might be necessary for all at-risk workers. For the proposed rule, the scope feature in this requirement was revised so that the provision now would apply to all at-risk workers—those with any potential workplace exposure to respirable crystalline silica—and OSHA has estimated training costs in this PEA accordingly. Therefore, the participant's comment is no longer germane. OSHA solicits comment on its responses to this issue raised during the SBREFA Panel process.

Regulated Areas and Access Control Plan Costs

Paragraph (e)(1) of the proposed standard requires employers to implement measures to minimize silica exposure for employees not directly involved in operations that generate respirable crystalline silica. To meet this performance objective, employers have the option of either establishing regulated areas in accordance with proposed paragraph (e)(2) or establishing and implementing an access control plan in accordance with proposed paragraph (e)(3).

Under the first option, the proposed standard requires employers to establish a regulated area whenever an employee's exposure to airborne concentrations of silica is or can reasonably be expected to exceed the PEL. Based on the respirator specifications developed by ERG (2007a) and shown in Table V-34, ERG derived the full-time-equivalent number of workers engaged in tasks where respirators are required and estimated the costs of establishing a regulated area for these workers.

Under the second option for access control plans, the employer must include the following elements in the plan: competent person provisions; notification and demarcation procedures; multi-employer workplace procedures; provisions for limiting access; provisions for supplying respirators, and protective work clothing procedures. OSHA anticipates that employers will incur costs for labor, materials, and respiratory protection to comply with the proposed access control requirements.

Table V-45 shows the unit costs and assumptions for developing costs for regulated areas and for access control plans. ERG estimated separate costs for developing an access control plan and for implementing the plan. ERG judged that developing either a regulated area or an access control plan would take approximately 4 hours of a supervisor's time. The time allowed to set up a regulated area or an access control plan is intended to allow for the communication of access restrictions and locations at multi-employer worksites. ERG estimated a cost of \$115.92 per job based on job frequency and the costs for hazard tape and warning signs (which are reusable). ERG estimated a labor cost of \$26.94 per job for implementing a written access control plan (covering the time expended for revision of the access control plan for individual jobs and communication of the plan). In addition, ERG estimated that there would be annual disposable clothing costs of \$333 per crew and annual respirator costs of \$60 per crew for employers who

-

⁵⁵ Reform OSHA Coalition (2003), p. 22.

implement either the regulated area or the access control plan option.

ERG aggregated costs by estimating an average crew size of four in construction and an average job length of ten days. ERG judged that in 75 percent of the cases regulated areas would be selected. OSHA requests comments from interested parties on these estimates.

Applying these parameters to the full-time-equivalent number of construction workers affected by this provision, OSHA estimates, in Table V-46, annual costs of \$16.7 million for regulated areas and access control plans under the proposed rule and provides a breakdown of annual costs by NAICS construction industry.

Table V- 45: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Access Control Plans and Regulated Areas under the Proposed Silica Construction Standard

Access Control Plan	Parameter	Unit cost	Comment
Time to develop plan (hours)	4	\$172.48	One time cost. Valued at supervisors' wage rate. Includes provisions for limiting access and procedures for respirator provision. (BLS, 2008)
Number of workers covered by plan	8		Average. Estimated by ERG
Cost per worker		\$21.56	Based on worker wage, adjusted for fringe benefits (BLS, 2008)
Annualized cost per worker		\$3.07	
Implementation of Access Control Plan Option			
Revise plan for specific job (hours)	0.25	\$10.78	Per job. Valued at supervisor's wage.
· · · · · ·	0.1		Per job. Value of supervisors' and workers' time for briefing on job specific site-control provisions.
Communication of plan provisions (hours)		\$4.31	Per job. Valued at supervisor's wage.
		\$11.85	Crew members; based on crew size assumption below
Total cost for implementing plan (per job)		\$26.94	
Disposable clothing (annual costs per crew)		\$333.00	\$5.55 per suit. Assumes daily clothing for 10% of workers (Lab Safety Supply, 2010).
Extra respirators (annual costs per crew)		\$60.00	\$1.00 per respirator, typical cost for N95 disposable respirator (Lab Safety Supply, 2010). Assumes extra respirators equal to 10% of workers
Implementation of Regulated Areas Option			
Access control materials (per crew) Hazard tape per job (100 ft)		\$5.80	(Lab Safety Supply, 2010)
Warning signs (3)		\$75.90	\$25.30 per sign (Lab Safety Supply, 2010)
Warning signs - annualized cost		\$28.92	Assumes 3 year life
Total annualized costs		\$115.92	Based on job frequency and crew size assumptions below
Material cost per worker (per year)		\$28.98	accumptions bolow
Disposable clothing (annual costs per crew)		\$333.00	\$5.55 per suit. Assumes daily clothing for 10% of workers (Lab Safety Supply, 2010).
Extra respirators (annual costs per crew)		\$60.00	\$1.00 per respirator, typical cost for N95 disposable respirator (Lab Safety Supply, 2010). Assumes extra respirators equal to 10% of workers.
Supervisor time to identify and set up regulated area (hours)	0.25	\$10.78	Per job

Table V- 45: Unit Costs and Analytical Assumptions Applied in OSHA's Cost Model for Access Control Plans and Regulated Areas under the Proposed Silica Construction Standard (continued)

Access Control Plan	Parameter	Unit cost	Comment
Job Frequency and Crew Size Assumptions			
Share of jobs requiring a regulated area rather than an access control plan	75.0%		Estimated by ERG.
Average crew size (workers)	4		Estimated by ERG.
Average job length (days)	10		Estimated by ERG.
Working days per year	150		Estimated by ERG.
Per-worker costs for access contro setup implementation	ol plan or regula	ated area	
Annual cost per worker - briefing only		\$199.29	
Annual cost per worker - regulated area set up only		\$167.65	
Weighted average annual cost per worker		\$175.56	Applies to workers with exposures above the PEL.

Table V-46: Estimated Annualized Costs for Regulated Areas and Access Control Plans in Construction for OSHA's Proposed Silica Standard (all establishments)

	•	Ni-makan at At	Number of	Davide	lance la marcos (
NAICS	Industry	Number of At- Risk Workers	Workers Using Respirators	Develop Plan	Implement Plan	Total Cost
236100	Residential Building Construction	24,445	8,842	\$49,512	\$776,142	\$825,654
236200	Nonresidential Building Construction	63,198	27,658	\$50,957	\$971,159	\$1,022,115
237100	Utility System Construction	53,073	10,756	\$104,302	\$836,732	\$941,034
237200	Land Subdivision	1,172	225	\$2,678	\$19,766	\$22,443
237300	Highway, Street, and Bridge Construction	39,273	10,090	\$58,585	\$578,497	\$637,082
237900	Other Heavy and Civil Engineering Construction	8,655	1,641	\$15,937	\$115,905	\$131,843
	Foundation, Structure, and Building Exterior	222 440	224 007	¢ 042.460	¢7 704 062	#9 024 520
238100	Contractors	323,119	221,887	\$243,468	\$7,791,062	\$8,034,530
238200	Building Equipment Contractors	4,947	1,398	\$10,363	\$122,750	\$133,113
238300	Building Finishing Contractors	37,952	26,169	\$75,514	\$949,891	\$1,025,405
238900	Other Specialty Trade Contractors	60,894	21,314	\$133,937	\$2,681,081	\$2,815,017
999000	State and Local Governments [c]	31,080	6,264	\$70,366	\$1,087,061	\$1,157,427
	Total - Construction	647,807	336,244	\$815,618	\$15,930,046	\$16,745,663

SBREFA Panel Comments on Regulated Area Costs

During the SBREFA process for OSHA's draft silica rule, one commenter questioned ERG's interpretation of the draft standard with respect to regulated areas, arguing that while ERG's analysis requires employers to establish a regulated area around any of the operations listed in Table 1 where respiratory protection is required, the draft standard did not in fact mention Table 1 in paragraph (e) specifying provisions for regulated area. The commenter stated that the draft standard requires that the employer ensure that the competent person establishes regulated areas wherever the airborne concentration of respirable crystalline silica exceeds or can reasonably be expected to exceed the PEL (emphasis added). According to the commenter, this wording suggests that Table 4-22 in ERG (2007a) would be the appropriate source for determining the number of at-risk FTE workers (and not Table 4-30 in ERG, 2007a).

In response to the concerns of this commenter, OSHA draws attention to the fact that in the draft standard, paragraph (e)(1) requires that employers "ensure that the competent person establishes regulated areas wherever the airborne concentration of respirable crystalline silica exceeds or can reasonably be expected to exceed the PEL." (Similar language, with the exception of the reference to a competent person, is found in paragraph (e)(2) in the proposed standard.) Since the cost analysis assumes compliance with the requirements of Table 1 and since such compliance is presumed to result in exposures below the PEL, except, possibly, where respirator use is also required, a direct correspondence exists between required respirator use and the need for regulated areas. OSHA believes that the use of all at-risk full-time-equivalent workers, as shown in Table 4-22 of ERG (2007a), would, therefore, overestimate the extent to which regulated areas would be required and that the use of the number of FTE workers in Table 4-30 of ERG (2007a) was appropriate.

The commenter also noted that ERG relied on BLS wage data to estimate the value of time required to set up regulated areas and that higher costs would be obtained if RSMeans wage data had been used.⁵⁷ To clarify the methodology used in this PEA, it should be understood that OSHA and ERG used the RSMeans data only to cost the representative jobs and to estimate incremental control costs and labor share of project costs necessary to aggregate controls costs into industry totals. Elsewhere, OSHA and ERG consistently used BLS wage data to estimate the cost of labor time required to comply with the program requirements of the proposed standard.

OSHA solicits comment on its responses to all these issues raised during the SBREFA Panel process.

⁵⁶ Reform OSHA Coalition (2003), p. 19.

⁵⁷ Reform OSHA Coalition, (2003), p. 19.

Combined Construction Control, Respirator, and Program Costs

Table V-47 summarizes the engineering control costs, respirator costs, and program costs of the proposed rule for the construction industry. Annualized compliance costs in construction are expected to total \$511.2 million, of which \$242.6 million are for engineering controls, \$84.0 million are for respirators, and \$184.6 million are to meet the ancillary provisions of the proposed rule. These ancillary annual costs consist of \$44.6 million for exposure monitoring; \$76.0 million for medical surveillance; \$47.3 million for training; and \$16.7 million for restricted areas and access control.

Among affected industry groups, foundation, structure, and building exterior contractors (NAICS 238100) will face the largest compliance costs at \$215.9 million annually, followed by other specialty trade contractors (NAICS 238900), at \$68.0 million annually in compliance costs, and building finishing contractors (NAICS 238300), at \$50.3 million annually in compliance costs.

Table V-B-1 in Appendix B presents estimated compliance costs by NAICS industry code and program element for small entities (as defined by the Small Business Administration) in construction, while Table V-B-2 presents estimated compliance costs, by NAICS code and program element, for very small entities (fewer than twenty employees) in construction.

Table V-47: Annualized Compliance Costs for Construction Employers Affected by OSHA's Proposed Silica Standard (2009 dollars)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas and Access Control	Total
236100	Residential Building Construction	\$14,610,121	\$2,356,507	\$1,949,685	\$2,031,866	\$1,515,047	\$825,654	\$23,288,881
236200	Nonresidential Building Construction	\$16,597,147	\$7,339,394	\$4,153,899	\$6,202,842	\$4,349,517	\$1,022,115	\$39,664,913
237100	Utility System Construction	\$30,877,799	\$2,808,570	\$4,458,900	\$2,386,139	\$5,245,721	\$941,034	\$46,718,162
237200	Land Subdivision	\$676,046	\$59,606	\$128,183	\$51,327	\$173,183	\$22,443	\$1,110,789
237300	Highway, Street, and Bridge Construction	\$16,771,688	\$2,654,815	\$3,538,146	\$2,245,164	\$4,960,966	\$637,082	\$30,807,861
237900	Other Heavy and Civil Engineering Construction	\$4,247,372	\$430,127	\$825,247	\$367,517	\$1,162,105	\$131,843	\$7,164,210
238100	Foundation, Structure, and Building Exterior Contractors	\$66,484,670	\$59,427,878	\$17,345,127	\$50,179,152	\$14,435,854	\$8,034,530	\$215,907,211
238200	Building Equipment Contractors	\$3,165,237	\$366,310	\$394,270	\$316,655	\$526,555	\$133,113	\$4,902,138
238300	Building Finishing Contractors	\$34,628,392	\$2,874,918	\$2,623,763	\$5,950,757	\$3,156,004	\$1,025,405	\$50,259,239
238900	Other Specialty Trade Contractors	\$43,159,424	\$4,044,680	\$5,878,597	\$4,854,336	\$7,251,924	\$2,815,017	\$68,003,978
999000	State and Local Governments [c]	\$11,361,299	\$1,641,712	\$3,257,131	\$1,426,696	\$4,493,968	\$1,157,427	\$23,338,234
	Total - Construction	\$242,579,193	\$84,004,516	\$44,552,948	\$76,012,451	\$47,270,844	\$16,745,663	\$511,165,616

TOTAL COST SUMMARY

As shown in Table V-48, annualized compliance costs associated with the proposed rule are expected to total \$657.9 million. Table V-48 also provides total annualized costs for general industry, maritime, and construction, by major provision or program element included in the proposed rule. This table shows that engineering control costs represent 69 percent of the costs of the proposed standard for general industry and maritime and 47 percent of the costs of the proposed standard for construction. Considering other leading cost categories, costs for exposure assessment and respirators represent, respectively, 20 percent and 5 percent of the costs of the proposed standard for general industry and maritime; costs for respirators and medical surveillance represent, respectively, 16 percent and 15 percent of the costs of the proposed standard for construction.

While the costs presented here represent the Agency's best estimate of the costs to industry of complying with the proposed rule under static conditions (that is, using existing technology and the current deployment of workers), OSHA recognizes that the actual costs could be somewhat higher or lower, depending on the Agency's possible overestimation or underestimation of various cost factors. In Chapter VII of this PEA, OSHA provides a sensitivity analysis of its cost estimates by modifying certain critical unit cost factors. Beyond the sensitivity analysis, OSHA notes that its cost estimates do not reflect the possibility that, in response to the rule, industry may be able to take two types of actions to reduce compliance costs.

First, in construction, 53 percent of the estimated costs of the proposed rule (all costs except engineering controls) vary directly with the number of workers exposed to silica. However, as shown in Table III-2 in this PEA, almost three times as many construction workers would be affected by the proposed rule as would the number of full-time-equivalent construction workers necessary to do the work. This is because most construction workers currently do work involving silica exposure for only a portion of their workday. In response to the proposed rule, many employers are likely to assign work so that fewer construction workers perform tasks involving silica exposure; correspondingly, construction work involving silica exposure will tend to become a full-time job for some construction workers.⁵⁸ Were this approach fully implemented in construction, the actual cost of the proposed rule would decline by over 25 percent, or by \$180 million annually, to under \$480 million annually.⁵⁹

Second, the costs presented here do not take into account the likely development and

⁵⁸ There are numerous instances of job reassignments and job specialties arising in response to OSHA regulation. For example, asbestos removal and confined space work in construction have become activities performed by well-trained specialized employees, not general laborers (whose only responsibility is to identify the presence of asbestos or a confined space situation and then to notify the appropriate specialist).

⁵⁹ OSHA expects that such a structural change in construction work assignments would not have a significant effect on the benefits of the proposed rule. As discussed in Chapter VII of this PEA, the estimated benefits of the proposed rule are relatively insensitive to changes in average occupational tenure or how total silica exposure in an industry is distributed among individual workers.

⁶⁰ Evidence of such technological responses to regulation is widespread (see for example Ashford, Ayers, and Stone (1985), OTA (1995), and OSHA's regulatory reviews of existing standards under § 610 of the Regulatory Flexibility Act ("610 lookback reviews")).

Table V-48: Annualized Compliance Costs for Employers in General Industry, Maritime, and Construction Affected by OSHA's Proposed Silica Standard (2009 dollars)

Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas or Access Control	Total
General Industry	\$88,442,480	\$6,914,225	\$29,197,633	\$2,410,253	\$2,952,035	\$2,580,728	\$132,497,353
Maritime	\$12,797,027	N/A	\$671,175	\$646,824	\$43,865	\$70,352	\$14,229,242
Construction	\$242,579,193	\$84,004,516	\$44,552,948	\$76,012,451	\$47,270,844	\$16,745,663	\$511,165,616
Total	\$343,818,700	\$90,918,741	\$74,421,757	\$79,069,527	\$50,266,744	\$19,396,743	\$657,892,211

operations, repair and replacement of refractory materials, foundry operations, and the railroad transportation industry. Another is expanded uses of automated processes, which would allow workers to be isolated from the points of operation that involve silica exposure (such as tasks between the furnace and the pouring machine in foundries and at sand transfer stations in structural clay production facilities). Yet another example is the further development and use of bags with valves that seal effectively when filled, thereby preventing product leakage and worker exposure (for example, in mineral processing and concrete products industries). Probably the most pervasive and significant technological advances, however, will likely come from the integration of compliant control technology into production equipment as standard equipment. Such advances would both increase the effectiveness and reduce the costs of silica controls retrofitted to production equipment. Possible examples include local exhaust ventilation (LEV) systems attached to portable tools used by grinders and tuckpointers; enclosed operator cabs equipped with air filtration and air conditioning in industries that mechanically transfer silica or silica-containing materials; and machine-integrated wet dust suppression systems used, for example, in road milling operations. Of course, all the possible technological advances in response to the proposed rule and their effects on costs are difficult to predict.⁶¹

OSHA has decided at this time not to create a more dynamic and predictive analysis of possible cost-reducing technological advances or worker specialization because the technological and economic feasibility of the proposed rule can easily be demonstrated using existing technology and employment patterns. However, OSHA believes that actual costs, if future developments of this type were fully accounted for, would be lower than those estimated here.

OSHA invites comment on this discussion concerning the costs of the proposed rule.

COSTS UNDER ALTERNATIVE PEL $(100 \,\mu g/m^3)$ SCENARIO

Appendix V-C presents annualized compliance costs (totaling \$352.3 million) for an alternative PEL of $100 \,\mu\text{g/m}^3$ (examined for analytical purposes). Table V-C-1 displays costs for general industry, maritime, and construction by program element. Tables V-C-2 and V-C-3 show total costs by NAICS industry code for all affected establishments, for business entities defined as small by the Small Business Administration, and for very small business entities (those with fewer than twenty employees).

⁶¹ A dramatic example from OSHA's 610 lookback review of its 1984 ethylene oxide (EtO) standard is the use of EtO as a sterilant. OSHA estimated the costs of add-on controls for EtO sterilization, but in response to the standard, improved EtO sterilizers with built-in controls were developed and widely disseminated at about half the cost of the equipment with add-on controls. (See OSHA, 2005.) Lower-cost EtO sterilizers with built-in controls did not exist, and their development had not been predicted by OSHA, at the time the final rule was published in 1984.

COSTS UNDER ALTERNATIVE DISCOUNT RATES

An appropriate discount rate⁶² is needed to reflect the timing of costs after the rule takes effect and to allow conversion to an equivalent steady stream of annualized costs.

Alternative Discount Rates for Annualizing Costs

Following OMB (2003) guidelines, OSHA has estimated the annualized costs of the proposed rule using separate discount rates of 3 percent and 7 percent. Consistent with the Agency's own practices in recent proposed and final rules, ⁶³ OSHA has also estimated, for benchmarking purposes, undiscounted costs—that is, costs using a zero percent discount rate.

The question remains, what is the "appropriate" or "preferred" discount rate to use to annualize costs? OSHA believes that the appropriate discount rate for annualizing costs is one based on an "opportunity cost of capital" approach. ⁶⁴ Consistent with OMB's (2003) position, the opportunity cost of capital is the appropriate discount rate to use whenever regulatory costs displace or alter the use of capital in the private sector. Alternatively, it can be viewed as the cost to business of borrowing capital to comply with a regulation.

The relevant measure of the opportunity cost of capital is the pre-tax rate of return on the foregone investment (Lind, 1982, pp. 24-32). Based on OMB (2003), the average pre-tax rate of return to private capital in the United States in recent decades has been approximately 7 percent. Accordingly, OSHA believes that a reasonable estimate of the opportunity cost of capital would be 7 percent and will use this as its preferred discount rate for reporting the annualized costs of the proposed rule.

Summary of Annualized Costs under Alternative Discount Rates

In addition to using a seven percent discount rate in its cost analysis, OSHA estimated compliance costs, in Appendix V-D, using alternative discount rates of three percent and zero percent. Table V-D-1 and V-D-2 in Appendix V-D present total costs at a three percent discount rate for, respectively, (1) all employers by major industry category and program element, and (2) affected employers by NAICS industry code and employment size class (all establishments, small entities, and very small entities). Tables V-D-3 and V-D-4 in Appendix V-D present total costs at a zero percent discount rate, where the data are displayed as in Tables V-D-1 and V-D-2.

 $^{^{62}}$ Here and elsewhere throughout this PEA, unless otherwise noted, the term "discount rate" always refers to the real discount rate—that is, the discount rate net of any inflationary effects.

 $^{^{63}}$ See, for example, 70 FR 34822 and 71 FR 10099, the preambles for the proposed and final hexavalent chromium rule.

⁶⁴ As explained in Chapter VII of this PEA, OSHA recommends a different approach for choosing a discount rate to annualize benefits and subsequently selected a discount rate different from the one chosen here.

As shown in Appendix V-D, the choice of discount rate has only a minor effect on total annualized compliance costs, with annualized costs declining from \$658 million using a seven percent discount rate to \$637 million using a three percent discount rate to \$623 million using a zero percent discount rate. The reason is that the preponderance of compliance costs would be borne annually. For example, even for control costs, many expenses would be for recurring labor costs (e.g., housekeeping practices) and for equipment maintenance and operating costs, and a significant portion of the equipment costs would involve rental, not purchase.

TIME DISTRIBUTION OF COSTS

OSHA analyzed the stream of (unannualized) compliance costs, by industry sector, for the first ten years after the rule would take effect. As shown in Table V-49, compliance costs are expected to decline from Year 1 to Years 2 and 3 after the initial set of capital and program start-up expenditures has been incurred. Costs are then projected to rise moderately in Year 4 as a result of the triennial medical examinations. OSHA notes that the differences between costs for Year 1 and costs for subsequent years are narrower than might otherwise be the case due to (1) the expectation that, in the construction sector, control equipment will be rented (leading to annual expenses) and not purchased as capital in Year 1; (2) the expectation that the only engineering controls needed in the maritime sector would be wet methods, which do not require capital expenditures; and (3) the fact that, other than engineering controls in general industry and respirators, there are very few capital expenses that would be incurred to comply with the proposed rule.

Table V-49: Distribution of Compliance Costs by Year for Establishments Affected by the Proposed Silica Standard (2009 dollars)

(2009 dollars)								
Year	Engineering controls	Program Requirements [a]	Total					
General Industry								
1	\$212,244,940	\$63,320,427	\$275,565,368					
2	\$67,578,707	\$38,744,874	\$106,323,581					
3	\$68,151,942	\$39,136,399	\$107,288,341					
4	\$67,578,707	\$41,056,230	\$108,634,937					
5	\$68,151,942	\$39,607,916	\$107,759,858					
6	\$67,578,707	\$39,216,391	\$106,795,098					
7	\$68,151,942	\$40,773,668	\$108,925,609					
8	\$67,578,707	\$39,454,204	\$107,032,911					
9	\$68,151,942	\$39,845,729	\$107,997,671					
10	\$67,578,707	\$40,042,160	\$107,620,868					
Maritime								
1	\$12,797,027	\$2,625,430	\$15,422,456					
2	\$12,797,027	\$968,123	\$13,765,150					
3	\$12,797,027	\$968,123	\$13,765,150					
4	\$12,797,027	\$1,592,698	\$14,389,725					
5	\$12,797,027	\$1,095,536	\$13,892,563					
6	\$12,797,027	\$1,095,536	\$13,892,563					
7	\$12,797,027	\$1,410,546	\$14,207,573					
8	\$12,797,027	\$1,159,798	\$13,956,825					
9	\$12,797,027	\$1,159,798	\$13,956,825					
10	\$12,797,027	\$1,318,676	\$14,115,703					
Construction [b]								
1	\$242,579,193	\$493,477,084	\$736,056,277					
2	\$242,579,193	\$213,334,029	\$455,913,223					
3	\$242,579,193	\$217,987,824	\$460,567,017					
4	\$242,579,193	\$343,785,625	\$586,364,818					
5	\$242,579,193	\$231,410,029	\$473,989,222					
6	\$242,579,193	\$226,756,234	\$469,335,428					
7	\$242,579,193	\$264,594,347	\$507,173,540					
8	\$242,579,193	\$233,525,835	\$476,105,028					
9	\$242,579,193	\$238,179,630	\$480,758,823					
10	\$242,579,193	\$250,262,623	\$492,841,816					

Table V-49: Distribution of Compliance Costs by Year for Establishments
Affected by the Proposed Silica Standard
(2009 dollars) (continued)

Year	Engineering controls		
Total			_
1	\$467,621,160	\$559,422,941	\$1,027,044,101
2	\$322,954,928	\$253,047,026	\$576,001,954
3	\$323,528,162	\$258,092,346	\$581,620,508
4	\$322,954,928	\$386,434,553	\$709,389,481
5	\$323,528,162	\$272,113,481	\$595,641,643
6	\$322,954,928	\$267,068,161	\$590,023,089
7	\$323,528,162	\$306,778,560	\$630,306,722
8	\$322,954,928	\$274,139,837	\$597,094,765
9	\$323,528,162	\$279,185,157	\$602,713,319
10	\$322,954,928	\$291,623,459	\$614,578,387

[[]a] Includes costs for respirators and respirator programs.

[[]b] Engineering control costs for construction based on short term equipment rental rates.

REFERENCES

- American Conference of Government Industrial Hygienists (ACGIH, 2001). Industrial Ventilation. 24th Edition. Cincinnati, OH. 2001. **OSHA-2010-0034-1607**
- Aramsco (Aramsco, 2009).

 http://www.aramsco.com/eserv/eclipse.ecl?PROCID=WEBDISP.WOEB.MAIN&TRAC

 KNO=J1960896961. OSHA-2010-0034-0531
- Ashford, N.A., C. Ayers, and R.F. Stone, 1985. Using Regulation to Change the Market for Innovation. Harvard Environmental Law Review 9(2): 871-906. **OSHA-2010-0034-0536**
- Atlas-Copco (Atlas-Copco, 2001). Facsimile specifications sheets for dust collectors, light rock drills, and medium-weight rock drills. Atlas-Copco Construction Tools, Lynnfield, MA. December 3. www.atlas-copco.com. Accessed November 28, 2002. **OSHA-2010-0034-0542**
- Berland's House of Tools (Berland, 2009). http://www.berlands.com/. **OSHA-2010-0034- 0551**
- Buchanan D., B. G. Miller, and A. C. Soutar, 2003. Quantitative relations between exposure to respirable quartz and risk of silicosis. Occup. Environ Med. 60:159-164. **OSHA-2010-0034-0306**
- Bureau of Labor Statistics (BLS, 1986). U.S. Department of Labor, *Injuries to Construction Laborers*, 1986. **OSHA-2010-0034-0558**
- Bureau of Labor Statistics (BLS, 2005). U.S. Department of Labor. *Occupational Employment Statistics Survey*, 2004. Accessed online at http://www.bls.gov/news.release/archives/ocwage_05262005.pdf, March 2007. **OSHA-2010-0034-0559**
- Bureau of Labor Statistics (BLS, 2008). U.S. Department of Labor. *Employer Cost for Employee Compensation*. December 2008: Private Industry, All Workers, Total Benefits. Released March 12, 2009. http://bls.gov/news.release/archives/ecec 03122009.pdf.

 OSHA-2010-0034-0560
- Bureau of Labor Statistics (BLS, 2008). U.S. Department of Labor. *Occupational Employment Statistics Survey, May 2008*. http://bls.gov/oes/tables.htm. **OSHA-2010-0034-0561**
- Buser, John (Buser, 2001, 2002). Telephone conversations between Carol Wendel, Senior Analyst, ERG and John Buser, Owner and President, Shave Away Europe, San Diego, CA. November 29, 2001 and January 23, 2002. Letter dated November 29. http://www.dustmuzzle.com. Accessed November 27, 2002. **OSHA-2010-0034-0577**

- CS Unitec, Inc. (CS Unitec, 2009). http://www.csunitec.com/. OSHA-2010-0034-0614
- Caperton, Dan. (Caperton, 2001, 2002). Telephone conversations between Carol Wendel, Senior Analyst, ERG and Dan Caperton, Sales Representative, Niagara Machine Inc., Erie, PA. November 29, 2001, and January 24, 2002. **OSHA-2010-0034-0580**
- Cecala, Andrew, Anthony Covelli, and Edward Thimmons (Cecala, et al., 1986). *Dust Reduction Capabilities of Five Commercially Available Bag Valves*. Bureau of Mines Circular: IC 9068, 1986. **OSHA-2010-0034-0591**
- Contractors Direct (Contractors Direct, 2009). http://www.contractorsdirect.com/. OSHA-2010-0034-0608
- Dust-Buddy (Dust-Buddy, 2009). http://www.dust-buddy.com/. OSHA-2010-0034-0627
- Dustless Depot (Dust Collection, 2009). http://www.dustlessdepot.com/Default.asp?Redirected=Y OSHA-2010-0034-0626
- Dustless Technologies (Dustless Tech, 2009). http://dustlesstechnologies.com/. OSHA-2010-0034-0631
- Eastern Research Group (ERG, 2003). Support for a Revised Economic Analysis of a Proposed OSHA Standard for Assigned Protection Factors for Respirators: Final Report. May 16, 2003. **OSHA-2010-0034-1612**
- Eastern Research Group (ERG, 2007a). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for Construction. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007.
- Eastern Research Group (ERG, 2007b). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for General Industry. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007. **OSHA-2010-0034-1608**
- Eastern Research Group (ERG, 2013). Revised Excel Spreadsheet Support for OSHA's Preliminary Economic Analysis for Proposed Respirable Crystalline Silica Standard: Excel Spreadsheets of Economic Costs and Impacts. Submitted to Occupational Safety and Health Administration, Directorate of Standards and Guidance, Office of Regulatory Analysis under Task Order 34, Contract No. Contract No. GS-10F-0125P, May 2013.

- EDCO, Inc. (EDCO, 2009). http://www.edcoinc.com/. OSHA-2010-0034-0638
- EMSL Analytical, Inc. (EMSL, 2000). Indoor Air Quality Analytical Pricing. Laboratory Testing Services. **OSHA-2010-0034-0649**
- Eurovac (Eurovac, 2001). Specification sheet for Eurovac II grinding portable vacuum. Concord, Ontario. December 28, 2001. **OSHA-2010-0034-0668**
- Fastenal Company (Fastenal, 2007). Online Product Catalog, 2007. Accessed at www.fastenal.com, March 2007. **OSHA-2010-0034-0670**
- Gressel, Michael, Alan Echt, Daniel Almaguer, and Loren Gunderson (Gressel, et al., 1999).

 Control technology and exposure assessment for occupation exposure to crystalline silica: case 23 masonry tuck-pointing. NIOSH File No. ECTB 233-123c. November 19, 1999.

 OSHA-2010-0034-0229
- Haney, Robert (Haney, 2001). Personal telephone communication between Mr. Haney of MSHA and Whitney Long, Laura Lewis, and Amishi Gandhi of ERG, Inc. February 16, 2001. **OSHA-2010-0034-0721**
- Healy, Scott (Healy, 2002). Interview between Chester Fenton of ERG and Scott Healey, Manager, United Tool Rentals. Roxbury, MA. January 23, 2002. **OSHA-2010-0034-0726**
- Intellimed International (Intellimed, 2003). Outpatient Procedures, Benchmark Tables. Accessed on-line at http://www.mecqa.com/frame.cfm?page=consumer/phyoutcptsearch.htm. January 2003. **OSHA-2010-0034-0750**
- Kestner, Mark (Kestner, 2003). Telephone communication between Robert Carney, ERG and Mark Kestner, President, National Environmental Service Company. May 20, 2003. **OSHA-2010-0034-0762**
- Lab Safety Supply (LSS, 2009). GHC Specialty Brands, LLC. http://www.labsafety.com/. 2009 (and earlier years). OSHA-2010-0034-0786
- Lattery, Bruce (Lattery, 2001). Telephone conversation between Tim O'Leary, ERG and Bruce Lattery of Baker Concrete Construction. February 12, 2001. **OSHA-2010-0034-0777**
- McCarthy, Ray (McCarthy, 2003). Telephone communication between Robert Carney, ERG and Ray McCarthy, Senior District Sales Manager, Nilfisk. May 1, 2003. **OSHA-2010-0034-0796**
- Martin Sprocket & Gear, Inc. (Martin, 2008). http://www.martinsprocket.com/material.htm. OSHA-2010-0034-0792
- Mead, Kenneth, Thomas Fishbach, and Ronald Kovein (Mead, et al., 1995). A laboratory

- comparison of conventional drywall sanding techniques versus commercially available controls. NIOSH Report No. ECTB: 208-11a. June 1995. **OSHA-2010-0034-0213**
- Medical Expenditure Panel Survey. (MEPS, 2004). Agency for Healthcare Research and Quality, U.S. Department of Health & Human Services, 2005. Accessed at http://www.meps.ahrq.gov/mepsweb/, March 2007. **OSHA-2010-0034-0806**
- Meitl, Ken (Meitl, 2000). Noise Control for Construction Equipment, National Conference to Prevent Hearing Loss in Construction, Laborers Health and Safety Fund. http://www.lhsfna.org/index.cfm?objectid=0E9016E1-D56F-E6FA-9A1355EDBCD01AF6, accessed, May 2010. **OSHA-2010-0034-0805**
- Midyette, Lin. (Midyette, 2003). Telephone conversation between Rob Carney, ERG and Lin Midyette, Sales Manager for the Utility and Mining Group. Martin Marietta Magnesia Specialties. June 10, 2003. **OSHA-2010-0034-0810**
- mytoolstore.com (mytoolstore, 2009). http://www.mytoolstore.com. OSHA-2010-0034-0825
- NIOSH (NIOSH, 1992a). *Environmental surveillance report: J.F. Allen Company, WV.* U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Morgantown, WV. **OSHA-2010-0034-0894**
- NIOSH (NIOSH, 1992b). Environmental surveillance report: Breckenridge Construction Drilling, Westover, WV. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Morgantown, WV. OSHA-2010-0034-0904
- NIOSH (NIOSH, 1995). *Environmental surveillance report: The Shelley Company, Thornville, OH.* U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Respiratory Disease Studies, Morgantown, WV. **OSHA-2010-0034-0907**
- NIOSH (NIOSH ECTB 233-118c, 1999). Control technology and exposure assessment for occupational exposure to crystalline silica: Case 18 cutting brick and concrete masonry units. ECTB 233-118c. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Physical Sciences and Engineering, Cincinnati, OH. OSHA-2010-0034-0231
- NIOSH (NIOSH ECTB 233-122c, 1999). Control technology and exposure assessment for occupational exposure to crystalline silica: Case 22 rock drilling. ECTB 233-122c. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Physical Sciences and Engineering, Cincinnati, OH. OSHA-2010-0034-0228

- NIOSH (NIOSH, 1999). Control of Drywall Sanding Dust Exposures. Hazard Control 30. DHHS (NIOSH) Publication 99-113. http://www.cdc.gov/niosh/hc30.html. OSHA-2010-0034-0848
- NIOSH/BLS (NIOSH/BLS, 2003). Respirator Usage in Private Sector Firms, 2001. National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Department of Health and Human Services; and Bureau of Labor Statistics, U.S. Department of Labor. September 2003. **OSHA-2010-0034-1492**
- Norton, Dave (Norton, 2003). Telephone communication between Reetika Motwane, ERG and Dave Norton, Norton Sandblasting Equipment. May 16, 2003. **OSHA-2010-0034-0917**
- OSHA (OSHA, 1993). U.S. Department of Labor. Description and Evaluation of Medical Surveillance Programs in General Industry and Construction. Draft Report. July 1993. OSHA-2010-0034-1673
- OSHA (OSHA, 2003a). Preliminary Initial Regulatory Flexibility Analysis of the Draft Proposed OSHA Standard for Silica Exposure in Construction. U.S. Dept. of Labor, Occupational Safety and Health Administration, Office of Regulatory Analysis. Docket H006A, Ex. 3-3. October 3, 2003. **OSHA-2010-0034-1685**
- OSHA (OSHA, 2003b). Preliminary Initial Regulatory Flexibility Analysis of the Draft Proposed OSHA Standard for Silica Exposure in General Industry and Maritime. U.S. Dept. of Labor, Occupational Safety and Health Administration, Office of Regulatory Analysis. Docket H006A, Ex. 4-3. October 3, 2003. **OSHA-2010-0034-0938**
- OSHA (OSHA SEP Inspection Report 300646510). OSHA Special Emphasis Program (SEP) Inspection Report 300646510. **OSHA-2010-0034-0084**
- Polhemus, Burt. (Polhemus, 2000). Personal e-mail communication between Laura Lewis, ERG, and Burt Polhemus of Raytheon. February 8, 2000. **OSHA-2010-0034-0958**
- Raring, Dave (Raring 2003). Personal communication between Robert Carney, ERG and Dave Raring, President, Raring Corporation. June 20, 2003. **OSHA-2010-0034-0964**
- The Reform OSHA Coalition (Reform OSHA Coalition, 2003). SBREFA Panel Comments by the Reform OSHA Coalition on the Draft Standards for Crystalline Silica. Docket H006A, Ex. 9-2-1. November 21, 2003. **OSHA-2010-0034-0968**
- RSMeans (RSMeans, 2002). 2003 Heavy Construction Cost Data, Kingston, MA. **OSHA-2010-0034-1686**
- RSMeans (RSMeans, 2008). 2009 Heavy Construction Cost Data, 23rd Annual Edition, Kingston, MA. **OSHA-2010-0034-1331**

- Toolmart, Inc. (Toolmart, 2009). http://www.toolmartinc.com/. OSHA-2010-0034-1186
- U.S. Census Bureau (Census, 2004). *County Business Patterns*. U.S. Dept. of Commerce. **OSHA-2010-0034-0592**
- U.S. Office of Technology Assessment (OTA, 1995). Gauging Control Technology and Its Regulatory Impacts in Occupational Safety and Health. Washington, DC: US Congress, Office of Technology Assessment, 1995; Publication Number OTA-ENV-635. OSHA-2010-0034-0947
- W.W. Grainger, Inc. (Grainger, 2009). http://www.grainger.com/Grainger/wwg/start.shtml. OSHA-2010-0034-0714

APPENDIX V-A Background Data Supporting OSHA's Analysis of Control Costs for General Industry and Maritime

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Cut Stone					
Sawyer					
Control other dust sources in area	Addressed by other controls	N/A	N/A	N/A	
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 ga capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	\$913	100.0%	Additional 20 minutes/day
Manage slurry-assumed included in housekeeping costs		N/A	N/A	N/A	
Pre-wash stone to be cut	Incremental labor	N/A	\$456	100.0%	5 mins per worker per day
Keep floors wet; washdown with high pressure hose	Includes major plumbing, floor work	N/A	\$8,443	100.0%	Includes cost of water and labor time.
Increase water use at saw blade	Extra saw maintenance	N/A	\$456	25.0%	5 mins per worker per day; equipment has water capabilities
Use water-fed equipment	Applicable to sites over 100 μg/m ³	N/A	\$456	100.0%	5 mins per worker per day; equipment has water capabilities
Enclose saw	Build enclosure	N/A	\$238	10.0%	8'x8'x8' dust partition, with plastic sheeting, assumes 5 year life (Means, 2003)
Exhaust saw	LEV	450	\$2,399	100.0%	Based on saw LEV (e.g., pg 10-158, 159, 160, ACGIH, 2001)
Fabricator					,
Use water fed equipment	No cost, most tools have water capability	N/A	N/A	N/A	
Management of dust-carrying water slurry	Incremental housekeeping	N/A	N/A	N/A	
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 ga capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	\$456	100.0%	5 mins per worker per day
Splitter/chipper		N/A			
Use work practices to position work near duct	Judged to be a negligible cost	N/A	N/A	N/A	Work practices adjustments assumed to be negligible cos

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	\$913	100.0%	30 mins per worker per day
Pre-wash stone	Labor	N/A	\$456	100.0%	5 mins per worker per day
Use flexible trunk LEV for hand chipping	Flexible trunk LEV	600	\$3,199	75.0%	Granite cutting and finishing; (pg. 10-94, ACGIH, 2001); granite, limestone, and marble assumed to account for 75 percent of establishments.
Tool-mounted LEV for hand-held chipping tools	Shroud and vacuum	N/A	\$823	37.5%	Vacuum plus shroud adapter; 35% for maintenance and operating costs; assumes one half of the non-slate establishments (75%) need this control.
Keep floors wet; washdown with high pressure hose	Already costed (see sawyers)	N/A	N/A	N/A	High-pressure hose and floor trough installation
Machine operator					
Control other dust sources in area	Addressed by other controls	N/A	N/A	N/A	
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	\$913	100.0%	30 mins per worker per day
Wash stone before and after each process	Add misters to conveyor line	N/A	\$287	100.0%	Assumes 8 hours of shop labo and \$200 in materials to fabricate; 2-year life
Keep conveyor clean and damp	Addressed in other requirements	N/A	N/A	N/A	
Management of dust-carrying water	Included in housekeeping	N/A	N/A	N/A	
Enclose machinery	Build enclosure in machine shop	N/A	\$168	100.0%	8'x8'x8' enclosure, plastic sheeting, from Means, 2003. Five-year life.
Exhaust trimming machine	LEV	500	\$2,666	100.0%	Based on abrasive cut-off saw (pg. 10-134, ACGIH, 2001)
Abrasive blasting operator					·

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
For use of maintained, interlocked, ventilated glove-box cabinet	Cost of maintaining blast cabinet	N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or addit. interlocks at \$1,800/cabinet (Heastrup, 2003).
Use only non-silica blasting media	Negligible incremental cost	N/A	N/A	5.0%	Based on ERG manufacturer interviews
Increase blasting cabinet ventilation	Incremental LEV	1,250	\$6,663	100.0%	Assumes an increase in cfm for a 7'x7' booth, approximately 25% of ACGIH recommended 100 cfm per square ft. of opening, or 4,900 cfm in total.
Use HEPA vacuums for machine cleaning	Vacuum replaces compressed air cleaning	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Flat glass					
Material handler					
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	
Bag opening station (small facilities only)	Add bag opening station	1,513	\$8,068	36.0%	Bag opening station (pg. 10- 19, ACGIH, 2001); applies to small establishments only (36% with <20 employees.).
Batch operator					
Conveyor enclosures	Limit dust and spills	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)
LEV for batch operator workstation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	\$635	100.0%	Oil-based sawdust sweeping compound
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	\$962	100.0%	10 minutes per worker per day

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
HEPA vacuums	Small HEPA needed	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Other glass					
Material handler					
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	
Bag opening station (small facilities only)	LEV	1,513	\$8,068	69.0%	Bag opening station (p. 10-19, ACGIH, 2001); applies to small establishments only (69% with <20 employees.).
Batch operator					
Conveyor enclosures	Limit dust and spills	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)
LEV for batch operator workstation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	\$635	100.0%	Oil-based sawdust sweeping compound
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	\$962	100.0%	10 minutes per worker per day
HEPA vacuums	Small HEPA needed	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Mineral Wool					
Material handler		·			
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	
Bag opening station (small facilities only)	LEV	1,513	\$8,068	52.0%	Bag opening station (p. 10-19, ACGIH, 2001); applies to small establishments only (52% with <20 employees.).
Batch operator					
Conveyor enclosures	Limit dust and spills	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

LEV for batch operator workstation	LEV			[c]	Assumptions
	v	1,050	\$5,599	100.0%	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	\$635	100.0%	Oil-based sawdust sweeping compound
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	\$913	100.0%	10 minutes per worker per day
HEPA vacuums	Small HEPA needed	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. Capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Concrete Products					
Material handler					
Yard dust suppression	Wetting with yard hose	N/A	\$5,614	100.0%	100' of 1" contactor hose and nozzle; 2 year life; (www.pwmall.com). Assumes alabor hour per day.
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Mixer operator					
Wet methods to clean equipment	Additional cleaning time	N/A	\$917	100.0%	10 mins per day per worker
LEV for bag opening stations	LEV with bag dumping station	1,513	\$8,068	75.0%	Bag opening station (p. 10-19, ACGIH, 2001)
Ventilated control room and HEPA filter	LEV	200	\$3,485	25.0%	ERG estimates based on Means and ACGIH
Forming line operator					
Dust control for adjacent operations	Addressed by other controls	N/A	N/A	N/A	
Abrasive blasting operator					
Use wet process	Shop-built sprayer	N/A	\$134	N/A	Assumes 2-year life
Finishing operator					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Work concrete green	Penalty for overall productivity	N/A	\$2,200	25.0%	Assumes 5% productivity penalty per worker; other controls are available
Use wet process	Shop built sprayer	N/A	\$134	75.0%	Assumes 2-year life; other controls are available.
LEV where wet methods are infeasible	Shroud and vacuum	not estimated	\$993	25.0%	Vacuum plus shroud adapter; 35% for maintenance and operating costs; other controls are available.
Use alternative blast media	Use of more expensive non-silica media	N/A	\$33,646	25.0%	Based on 212,000 square feet of coverage per year per crew; assumes 25% of establishments perform open blasting.
Packaging operator					
LEV for bag filling stations	LEV with bag filling station	1,500	\$7,998	100.0%	Bag filling station (p. 10-15, ACGIH, 2001)
Extended polyethylene bag valves to reduce dust release	Use bags with dust- control feature	N/A	\$4,728	100.0%	Assumes 5 bags per minute; 200 days a year; applies only to bulk product producers in NAICS 327999
Pottery					
Material handler					
Well-ventilated bag dumping stations	LEV	1,513	\$5,599	100.0%	Bag opening station (p. 10-19, ACGIH, 2001)
Ventilated cab enclosures	Retrofit with cab or replacement equip	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
LEV for mixer	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation, unvented mixers (p. 10-69, ACGIH, 2001)
Forming line operator					
LEV- hand grinding bench controls	LEV	1,400	\$7,465	100.0%	Bench hood ventilation (p. 10- 149, ACGIH, 2001)
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 addition minutes of

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
					labor time per day.
Reduce dust generation during mold parting (redesign talc bag)	Cost judged negligible	N/A	N/A	N/A	
Substitute non-silica parting compounds	Option not costed	N/A	N/A	N/A	
Finishing operator					
LEV- hand grinding bench controls	LEV	2,400	\$12,797	100.0%	Hand grinding bench (p. 10- 135, ACGIH, 2001)
Wet finishing	Option not costed	N/A	N/A	N/A	
Coatings preparer					
Well-ventilated bag dumping stations	LEV	1,513	\$8,068	100.0%	Bag opening station (p. 10-19, ACGIH, 2001)
Well-ventilated or enclosed, automated systems for charging mixing equipment with glaze materials	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Coatings operator					
Substitute low silica content inputs	Option not costed	N/A	N/A	N/A	
Improved LEV for spray booths and enclosures	Increased airflow, additional cfm	1,000	\$1,333	100.0%	Additional cfm at 25% of installed price
Spray booth maintenance	Booth repairs	N/A	\$231	100.0%	Annually, \$100 materials plus a hours maintenance time
Paint					
Material handler					
No overexposure	No control needed	N/A	N/A	N/A	
Mixer operator					
Substitute low silica content materials	Not generally control of choice	N/A	N/A	N/A	
Well-ventilated bag dumping stations	LEV	1,513	\$8,068	100.0%	Bag opening station (p. 10-19 ACGIH, 2001)
Structural Clay					,
Material handler/loader operator					
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance
Thorough, semi-annual professional	Commercial cleaning	N/A	N/A	N/A	Addressed in program costs
J ,			· · · · · · · · · · · · · · · · · · ·	***	

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
cleaning	service				
Improve cab maintenance and keep windows closed	Use existing cabs for dust control	N/A	\$758	100.0%	Judged to be incremental cost equal to one-half normal maintenance cost
Cover conveyors in material handling area	Conveyor covers	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)
Apply LEV to conveyors in material handling area	LEV	10,000	\$53,322	100.0%	ERG estimate of cfm requirements.
Material handler/production					·
Misters on conveyor line	Water spray to suppress dust	N/A	\$2,474	50.0%	100 feet of conveyor. National Environmental Services Company (Kestner, 2003).
LEV, push-pull system	LEV	4,000	\$21,329	50.0%	Assumes twice the airflow for a clean air island (1,500 cfm).
Material handler/post-production					
Misters on conveyor line	Water spray to suppress dust	N/A	\$2,474	100.0%	100 feet of conveyor. National Environmental Services Company (Kestner, 2003).
Dust suppression in yard	Option not costed	N/A	N/A	N/A	
Grinding operator					
Ventilated control room and HEPA filter	LEV	200	\$3,485	30.0%	ERG estimates based on Means, 2003 and ACGIH, 2001; Assumes 30% of establishments need new control room.
Control room improvements and repairs	In-house repairs	N/A	\$319	70.0%	Assumes repairs are 20% of new control room cost; assumes 70% of establishments need control room improvements.
Enclosures with LEV for grinding equipment	LEV	17,000	\$90,647	100.0%	Additional ventilation equal to half the total cfm required for a medium sized facility; ERG estimate based on consultant input.

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Purchase additional HEPA vacuums	0	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Enhanced housekeeping with HEPA vacuums	Labor costs	N/A	\$1,772	100.0%	Additional 20 minutes per day
Cover conveyors in grinding area	Conveyor covers	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)
Dust suppression for raw materials	0	N/A	\$635	100.0%	\$0.22/lb (www.fastenal.com); 2 lbs used per day; 5 labor minutes per day.
Tightly sealed storage units	Option not costed	N/A	N/A	N/A	·
Forming line operator/pug mill operator					
Enclosed and ventilated pug mill equipment	0	6,000	\$31,993	100.0%	ERG estimate based on consultant input.
Forming line operator/coatings blender					
Well-ventilated bag dumping stations	0	1,513	\$8,068	50.0%	Bag opening station (p. 10-19, ACGIH, 2001); installation of control adequate for 50% of establishments.
Enclosed and ventilated feed hopper, conveyors, tumble tote charging, and transfer to transfer tote	Best judgment	9,000	\$47,990	50.0%	ERG estimate based on consultant input; more extensive controls needed for 50% of establishments.
Improved area cleanup with HEPA or central vacuum system	0	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning.
Enhanced housekeeping with HEPA vacuums	Labor costs	N/A	\$1,772	100.0%	Additional 20 minutes per day
Forming line operator/formers					
Improved area cleanup with HEPA or central vacuum system	0	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Enhanced housekeeping with HEPA	0	N/A	\$1,772	100.0%	Additional 20 minutes per day

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
vacuums					
Well-ventilated bag dumping stations	0	1,513	\$8,068	50.0%	Bag opening station (p. 10-19 ACGIH, 2001); installation of control adequate for 50% of establishments.
Enclosed and ventilated workstations	LEV plus clean air island	3,550	\$18,929	50.0%	ERG estimate based on consultant input; assumes control needed for 50% of establishments.
Dental laboratories					
Dental technician					
Improved LEV in grinding, blasting	Dental lab dust control systems	N/A	\$194	100.0%	Self-contained dust collectior system. Darby Dental Lab Supply, 2005 (www.darbylab.com)
Fine jewelry					
Jewelry workers					
Substitution of low-silica modeling/investment materials	Not costed	N/A	N/A	N/A	
LEV for abrasive blasting and finishing	Small-scale jewelry bench LEV	100	\$533	100.0%	Small-scale LEV adequate
Costume Jewelry					
Jewelry workers					
Substitution of low-silica modeling/investment materials	Not costed	N/A	N/A	N/A	
LEV for abrasive blasting and finishing	Small-scale jewelry bench LEV	100	\$533	100.0%	Small-scale LEV adequate
Refractories					
Material handler					
Ventilated bag dumping stations with bag compactor	LEV	1,513	\$8,068	100.0%	Bag opening station (3.5'x1.5 opening); (p. 10-19, ACGIH, 2001); 3.5'x1.5' opening; with ventilated bag crusher (200 cfm)

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Enclosed and ventilated mixing equipment	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87, ACGIH, 2001)
Forming Operator					
Increased LEV maintenance	Additional cost per operator	N/A	\$344	100.0%	Assumes 1 hour additional maintenance time per operator per month
Finishing operator					
No overexposures	N/A	N/A	N/A	N/A	
Ceramic fiber furnace operator					
No overexposures	N/A	N/A	N/A	N/A	
Packaging operator					
LEV for bag filling stations	LEV/ per cfm	1,500	\$7,998	100.0%	Bag filling station (p. 10-15, ACGIH, 2001). Includes costs for air shower
Bag valves to reduce dust release		N/A	\$4,728	100.0%	Assumes 5 bags per minute; 200 days a year

Ready-Mix Concrete

Material handler					
Yard dust suppression	Wetting with yard hose	N/A	\$5,614	50.0%	100' of 1" contactor hose and nozzle; 2 year life; (www.pwmall.com). Assumes 1 labor hour per day.
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$7,467	50.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Batch operator					
No overexposures	No controls necessary	N/A	N/A	N/A	_
Maintenance operator					
Wet methods to clean equipment	Additional cleaning time	N/A	\$917	100.0%	10 mins per day per worker
Quality control technician					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
No overexposures	No controls necessary	N/A	N/A	N/A	
Truck driver	-				
Wet methods for drum cleaning	Water fed chipping equipment	N/A	\$117	100.0%	Estimated annualized retrofit cots.
Ventilation for drum cleaning	Forced ventilation	N/A	\$392	100.0%	Electric blower (1,277 cfm) and 25 ft. of duct. Northern Safety Co. (p. 193). Assumed 5-year life.
Iron Foundries					
Sand mixer (muller) operator					
LEV, mixer & muller hood	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$26,696	100.0%	Conveyor belt ventilation; (p. 10-70, ACGIH, 2001); 2' wide belt; one take-off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation for unvented mixers (p. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$8,531	100.0%	Bucket elevator ventilation (p. 10-68; ACGIH, 2001); 2'x3'x30 casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$6,399	100.0%	Ventilated screen (p. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	•
Molder					
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation (p. 10 69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Rigorous housekeeping- labor	Labor costs	N/A	\$1,922	100.0%	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	
Coremaker					
Eliminated compressed air	Additional labor time	N/A	\$961	100.0%	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Furnace operator					
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	\$461	100.0%	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	
Pouring operator					
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$13,330	100.0%	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	
Shakeout operator					
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$153,567	10.0%	Shakeout double side-draft table (p. 10-23, ACGIH, 2001) assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$12,862	90.0%	Ventilated enclosing hood (p. 10-23, ACGIH, 2001); 4'x4' openings; assumes control

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
					adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$53,322	100.0%	ERG estimate, based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	
Knockout operator					
Installing and improving LEV	Small knockout table	1,350	\$2,466	50.0%	Portable grinding table (p. 10- 136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$8,769	50.0%	Hand grinding table (p. 10-135 ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$2,740	50.0%	Ventilated cut-off saw (p. 10- 134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	
Abrasive blasting operator	-				
Improved maintenance for blasting cabinet		N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator					2003).

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
LEV for workstations	Hand grinding bench	3,750	\$19,996	50.0%	Bench with LEV (p. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$767	50.0%	ERG estimate of cfm; control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	
Material handler					
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator					
Use low silica refractory	Option not costed	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$993	100.0%	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5- year life.
Pre-wetting lining to be removed	Additional labor	N/A	\$3,325	100.0%	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	\$1,662	100.0%	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	
Housekeeping worker					
Controls not identified		N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Other Ferrous Sand Casting Foundries	•				

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Sand mixer (muller) operator		•			
LEV, mixer & muller hood	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$26,696	100.0%	Conveyor belt ventilation; (p. 10-70, ACGIH, 2001); 2' wide belt; one take-off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation for unvented mixers (p. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$8,531	100.0%	Bucket elevator ventilation (p. 10-68; ACGIH, 2001); 2'x3'x30 casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$6,399	100.0%	Ventilated screen (p. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	·
Molder					
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation (p. 10 69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	\$1,922	100.0%	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	. ,
Coremaker					
Eliminated compressed air	Additional labor time	N/A	\$961	100.0%	10 minutes per worker per da
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Furnace operator					
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	\$461	100.0%	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	
Pouring operator					
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$13,330	100.0%	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	
Shakeout operator					
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$153,567	10.0%	Shakeout double side-draft table (p. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$37,539	90.0%	Ventilated enclosing hood (p. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$53,322	100.0%	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere	Enclosed, ventilated shakeout conveyor	N/A	N/A	N/A	
Knockout operator					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Installing and improving LEV	Small knockout table	1,350	\$7,198	50.0%	Portable grinding table (p. 10- 136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$25,594	50.0%	Hand grinding table (p. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$7,998	50.0%	Ventilated cut-off saw (p. 10- 134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	
Abrasive blasting operator					
Improved maintenance for blasting cabinet		N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator					
LEV for workstations	Hand grinding bench	3,750	\$19,996	50.0%	Bench with LEV (p. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$767	50.0%	ERG estimate of cfm; control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	
Material handler					
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance
Maintenance operator					
Use low silica refractory	Option not costed	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$993	100.0%	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5- year life.
Pre-wetting lining to be removed	Additional labor	N/A	\$3,325	100.0%	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	\$1,662	100.0%	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	
Housekeeping worker					
Controls not identified		N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Nonferrous Sand Casting Foundries					
Sand mixer (muller) operator					
LEV, mixer & muller hood	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87 ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$26,696	100.0%	Conveyor belt ventilation; (p. 10-70, ACGIH, 2001); 2' wide belt; one take-off point at-leas every 30', 7 overall

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Bin and hopper ventilation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation for unvented mixers (p. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$8,531	100.0%	Bucket elevator ventilation (p. 10-68; ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$6,399	100.0%	Ventilated screen (p. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	•
Molder					
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation (p. 10- 69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	\$1,922	100.0%	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	
Coremaker					
Eliminated compressed air	Additional labor time	N/A	\$961	100.0%	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Furnace operator					
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	\$461	100.0%	20 hours additional maintenance time per year

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Pouring operator					
Operator booths or cabs	Based on clean-air island costs	2,500	\$13,330	100.0%	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	
Shakeout operator					
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$153,567	10.0%	Shakeout double side-draft table (p. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$37,539	90.0%	Ventilated enclosing hood (p. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$53,322	100.0%	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	
Knockout operator					
Installing and improving LEV	Small knockout table	1,350	\$7,198	50.0%	Portable grinding table (p. 10- 136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$25,594	50.0%	Hand grinding table (p. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
					for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$7,998	50.0%	Ventilated cut-off saw (p. 10- 134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	
Abrasive blasting operator					
mproved maintenance for blasting cabinet		N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003) or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator					
LEV for workstations	Hand grinding bench	3,750	\$19,996	50.0%	Bench with LEV (p. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$767	50.0%	ERG estimate of cfm; contro assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal capacity (Bibbo, 2003). Assume 5 mins additional tim per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	· · · · · · · · · · · · · · · · · · ·
Process automation	Option not costed	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Material handler					
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance
Maintenance operator					
Use low silica refractory	Option not costed	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$993	100.0%	Vacuum plus shroud adapter 35% for maintenance and operating costs. Assumes 5- year life.
Pre-wetting lining to be removed	Additional labor	N/A	\$3,325	100.0%	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	\$1,662	100.0%	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	
Housekeeping worker					
Controls not identified		N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Non-Sand Casting Foundries					
Sand mixer (muller) operator					
LEV, mixer & muller hood	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87 ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$26,696	100.0%	Conveyor belt ventilation; (p 10-70, ACGIH, 2001); 2' wide belt; one take-off point at-leas every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation for unvented mixers (p. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$8,531	100.0%	Bucket elevator ventilation (p 10-68; ACGIH, 2001); 2'x3'x3 casing; 4 take-offs @250 cfm

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
					100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$6,399	100.0%	Ventilated screen (p. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	
Molder					
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation (p. 10 69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	\$1,922	100.0%	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	
Coremaker					
Eliminated compressed air	Additional labor time	N/A	\$961	100.0%	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Furnace operator					
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	\$461	100.0%	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	. ,
Pouring operator					
<u> </u>					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$13,330	100.0%	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	
Shakeout operator					
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$153,567	10.0%	Shakeout double side-draft table (p. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$37,539	90.0%	Ventilated enclosing hood (p. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$53,322	100.0%	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	
Knockout operator					
Installing and improving LEV Small knockout table		1,350	\$7,198	50.0%	Portable grinding table (p. 10- 136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$25,594	50.0%	Hand grinding table (p. 10-135 ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	- AITTIOW		Applicability [c]	Estimate Source and Assumptions
Installing and improving LEV	Ventilated abrasive cutoff saw	ive 1,500	\$7,998	50.0%	Ventilated cut-off saw (p. 10- 134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	
Abrasive blasting operator					
Improved maintenance for blasting cabinet		N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator					
LEV for workstations Hand grinding bench		3,750	\$19,996	50.0%	Bench with LEV (p. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$767	50.0%	ERG estimate of cfm; control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum) HEPA vacuum plus additional time		N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	
Process automation	Process automation Option not costed		N/A	N/A	
Wet methods Option not costed		N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	
Material handler					
Enclosed, ventilated cab Retrofit with cab or replace equipment		N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Maintenance operator					
Use low silica refractory	Option not costed	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$993	100.0%	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5- year life.
Pre-wetting lining to be removed	Additional labor	N/A	\$3,325	100.0%	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	\$1,662	100.0%	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	
Housekeeping worker					
Controls not identified		N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Captive Foundries					
Sand mixer (muller) operator					
LEV, mixer & muller hood	LEV	1,050	\$5,599	100.0%	Mixer & muller hood (p. 10-87 ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$26,696	100.0%	Conveyor belt ventilation; (p. 10-70, ACGIH, 2001); 2' wide belt; one take-off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation for unvented mixers (p. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$8,531	100.0%	Bucket elevator ventilation (p. 10-68; ACGIH, 2001); 2'x3'x30 casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$6,399	100.0%	Ventilated screen (p. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	•
Molder					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$5,599	100.0%	Bin & hopper ventilation (p. 10-69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	\$1,922	100.0%	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	
Coremaker					
Eliminated compressed air	Additional labor time	N/A	\$961	100.0%	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Furnace operator					
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	\$461	100.0%	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	
Pouring operator					
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	
Operator booths or cabs Based on clean-air island costs		2,500	\$13,330	100.0%	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)			N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	
Shakeout operator					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$153,567	10.0%	Shakeout double side-draft table (p. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$37,539	90.0%	Ventilated enclosing hood (p. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$53,322	100.0%	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere			N/A	N/A	
Knockout operator					
Installing and improving LEV	Small knockout table	1,350	\$7,198	50.0%	Portable grinding table (p. 10- 136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$25,594	50.0%	Hand grinding table (p. 10-135 ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$7,998	50.0%	Ventilated cut-off saw (p. 10- 134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	esidual sand on castings Option not costed		N/A	N/A	
Automate knockout process			N/A	N/A	
Abrasive blasting operator					

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Improved maintenance for blasting cabinet		N/A	\$1,349	100.0%	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator					
LEV for workstations	Hand grinding bench	3,750	\$19,996	50.0%	Bench with LEV (p. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$767	50.0%	ERG estimate of cfm; control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$1,503	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	
Material handler					
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator					
Use low silica refractory	Option not costed	N/A	N/A	N/A	
LEV for chipping tools Dust collector with HEPA vacuum		N/A	\$993	100.0%	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5- year life.
Pre-wetting lining to be removed	Additional labor	N/A	\$3,325	100.0%	2 hours per week
Maintaining moisture level in the refractory applied Additional labor		N/A	\$1,662	100.0%	1 hour per week

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	
Housekeeping worker					
Controls not identified		N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	
Railroads					
Ballast dumper					
Spray system for right-of-way maintenance Costs estimated per vehicles car, see Table 3		N/A	N/A	N/A	
Machine operator					
Spray system for right-of-way maintenance vehicles	Costs estimated per rail car, see Table 3-6	N/A	N/A	N/A	
Asphalt Roofing Materials					
Production operator					
Process enclosure	Enclose conveyors and equip	N/A	\$967	100.0%	200 feet at \$17.10 per linear foot (Landola, 2003)
Enhanced ventilation	Conveyor ventilation	700	\$3,733	100.0%	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$1,009	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003).
Rigorous housekeeping- labor	Incremental labor costs	N/A	\$1,504	100.0%	Additional 10 minutes labor time per day
Material handler					
No additional controls required	N/A	N/A	N/A	N/A	Controls for production operator adequate
Porcelain Enameling			·		
Preparer					
Well-ventilated bag dumping stations LEV		1,513	\$8,068	100.0%	Bag opening station (p. 10-19 ACGIH, 2001)
Porcelain applicator					
Improved LEV for spray booths and enclosures increased airflow\cfm		1,000	\$1,333	100.0%	Additional cfm at 25% of installed price

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Spray booth maintenance	Materials plus labor	N/A	\$231	100.0%	Annually, \$100 materials plus 4 hours maintenance time
Mineral Processing					
Production worker					
Enclosed ventilation equipment	Conveyor cover; 200'	N/A	\$967	50.0%	200 feet at \$17.10 per linear foot (Landola, 2003); assumes cover adequate for 50% of establishments
Conveyor ventilation	LEV	4,900	\$26,128	50.0%	Conveyor belt ventilation; (p. 10-70, ACGIH, 2001) One take-off point at-least every 30', 7 overall; assumes 50% of establishments needed ventilated conveyor covers.
Improved maintenance	Labor costs	N/A	\$1,139	50.0%	1 hour additional maintenance time per week per production worker; assumes 50% of establishments need improved maintenance of ventilation system.
Professional cleaning	Commercial cleaning service; semiannual	N/A	N/A	N/A	
Improved area cleanup with HEPA	Equipment cost	N/A	\$899	100.0%	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Enhanced housekeeping with HEPA vacuums	Additional labor time	N/A	\$1,825	100.0%	Additional 20 minutes per day
Dental Equipment and Supplies					
Production operator					B
Ventilated bag dumping stations with bag compactor	LEV	1,513	\$8,068	50.0%	Bag opening station (p. 10-19, ACGIH, 2001); other controls are available.
Enclosed and ventilated mixing equipment	LEV	1,050	\$5,599	50.0%	Mixer & muller hood (p. 10-87, ACGIH, 2001); other controls are available.
Increased LEV maintenance	Additional cost per operator	N/A	\$280	100.0%	Assumes 1 hour additional maintenance time per operator per month

Table V-A-1: Detailed Exposure Control Requirements, Analytical Assumptions and Sources for the Cost Data Applied in OSHA's Analysis of Control Costs in General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Annualized Cost (b)	Applicability [c]	Estimate Source and Assumptions
Asphalt Paving Products					
Plant operator					
No overexposures	Additional controls not needed	N/A	N/A	N/A	
Front-end loader operator					
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$7,467	100.0%	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance worker					
No overexposures	Additional controls not needed	N/A	N/A	N/A	
Quality control worker					
No overexposures	Additional controls not needed	N/A	N/A	N/A	
Refractory Repair					
Production operator					
Portable exhaust ventilation	LEV	400	\$2,133	33.3%	Moveable exhaust hoods example: p. 10-93 (ACGIH, 2001); other controls are available.
Wet methods for chipping tools	Shop-built water feed equipment	N/A	\$117	33.3%	Assumes \$100 in annual costs; other controls are available.
LEV for chipping tools	LEV for chipping tools LEV		\$3,199	33.3%	Granite cutting and finishing; (p. 10-94, ACGIH, 2001); other controls are available.
Improved maintenance for spay guns	Improved maintenance for spay guns Labor costs		\$344	100.0%	Assumes 1 hour additional maintenance time per operator per month

a) "Control not costed" means that other less costly control measures were available to achieve the same level of exposure reduction.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b) and ERG (2011).

b) Costs are annualized using a 7 percent discount rate over the lifetime of the equipment, typically 10 years.

c) Indicates the percentage of establishments for which the control is applied.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Cut Stone								
Sawyer								
Control other dust sources in area	Addressed by other controls	N/A	N/A	N/A	N/A	N/A	N/A	
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$913	\$913	1	\$913	Additional 20 minutes/day
Manage slurry-assumed included in housekeeping costs		N/A	N/A	N/A	N/A	N/A	N/A	
N/A	N/A	N/A	N/A	\$456	\$456	1	\$456	5 mins per worker per day
N/A	Includes major plumbing, floor work	N/A	\$36,412	\$3,259	\$8,443	4	\$2,111	Includes cost of water and labor time.
N/A	Extra saw maintenance	N/A	N/A	\$456	\$456	1	\$456	5 mins per worker per day; equipment has water capabilities
N/A	Applicable to sites over 100 μg/m³	N/A	N/A	\$456	\$456	2	\$228	5 mins per worker per day; equipment has water capabilities
N/A	Build enclosure	N/A	\$488	\$119	\$238	4	\$59	8'x8'x8' dust partition, with plastic sheeting, assumes 5 year life (Means, 2003)
Exhaust saw	LEV	450	\$5,774	\$1,577	\$2,399	4	\$600	Based on saw LEV (e.g., p. 10-158, 159, 160, ACGIH, 2001)
Fabricator								
Use water fed equipment	No cost, most tools have water capability	N/A	N/A	N/A	N/A	N/A	N/A	
Management of dust-carrying water slurry	Incremental housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$456	\$456	1	\$456	5 mins per worker per day
Splitter/chipper								
Use work practices to position work near duct	Judged to be a negligible cost	N/A	N/A	N/A	N/A	N/A	N/A	Work practices adjustments assumed to be negligible cost.
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$913	\$913	1	\$913	30 mins per worker per day
Pre-wash stone	Labor	N/A	N/A	\$456	\$456	1	\$456	5 mins per worker per day
Use flexible trunk LEV for hand chipping	Flexible trunk LEV	600	\$7,699	\$2,103	\$3,199	2	\$1,600	Granite cutting and finishing; p. 10-94 (ACGIH, 2001); granite, limestone, and marble assumed to account for 75 percent of establishments.
Tool-mounted LEV for hand- held chipping tools	Shroud and vacuum	N/A	\$1,672	\$585	\$823	2	\$412	Vacuum plus shroud adapter; 35% for maintenance and operating costs; assumes one half of the non-slate establishments (75%) need this control.
Keep floors wet; washdown with high pressure hose	Already costed (see sawyers)	N/A	N/A	N/A	N/A	N/A	N/A	High-pressure hose and floor trough

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

for General Industry and Maritime								
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
		Ì						installation
Machine operator								
Control other dust sources in area	Addressed by other controls	N/A	N/A	N/A	N/A	N/A	N/A	
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$913	\$913	1	\$913	30 mins per worker per day
Wash stone before and after each process	Add misters to conveyor line	N/A	\$439	\$44	\$287	2	\$143	Assumes 8 hours of shop labor and \$200 in materials to fabricate; 2-year life
Keep conveyor clean and damp	Addressed in other requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Management of dust-carrying water	Included in housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	
Enclose machinery	Build enclosure in machine shop	N/A	\$488	\$49	\$168	4	\$42	8'x8'x8' enclosure, plastic sheeting, from Means, 2003. Five- year life.
Exhaust trimming machine	LEV	500	\$6,416	\$1,753	\$2,666	4	\$667	Based on abrasive cut-off saw (p. 10- 134) (ACGIH, 2001)
Abrasive blasting operator								, ,
For use of maintained, interlocked, ventilated glovebox cabinet	Cost of maintaining blast cabinet	N/A	\$2,450	\$1,000	\$1,349	4	\$337	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or addit. interlocks at

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								\$1,800/cabinet (Heastrup, 2003).
Use only non-silica blasting media	Negligible incremental cost	N/A	N/A	N/A	N/A	N/A	N/A	Based on ERG manufacturer interviews
Increase blasting cabinet ventilation	Incremental LEV	1,250	\$16,040	\$4,382	\$6,665	4	\$1,666	Assumes an increa in cfm for a 7'x7' booth, approximate 25% of ACGIH recommended 100 cfm per square ft. o opening, or 4,900 c in total.
Use HEPA vacuums for machine cleaning	Vacuum replaces compressed air cleaning	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact of labor requirements for cleaning
Flat glass								
Material handler								
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Bag opening station (small facilities only)	Add bag opening station	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening static (p. 10-19, ACGIH 2001); applies to small establishmer only (36% with <2 employees).
Batch operator								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Conveyor enclosures	Limit dust and spills	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)
LEV for batch operator workstation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	N/A	\$635	\$635	4	\$159	Oil-based sawdust sweeping compound
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	N/A	\$962	\$962	1	\$962	10 minutes per worker per day
HEPA vacuums	Small HEPA needed	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Other glass								
Material handler								
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	N/A	0	N/A	
Bag opening station (small facilities only)	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (p. 10-19, ACGIH, 2001); applies to small establishments only (69% with <20 employees).
Batch operator								
Conveyor enclosures	Limit dust and spills	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
LEV for batch operator workstation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	N/A	\$635	\$635	4	\$159	Oil-based sawdust sweeping compound
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	N/A	\$962	\$962	1	\$962	10 minutes per worker per day
HEPA vacuums	Small HEPA needed	N/A	\$3,493	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Mineral Wool								
Material handler								
Automated and ventilated unloading equipment	Not costed	N/A	N/A	N/A	N/A	0	N/A	
Bag opening station (small facilities only)	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (p. 10-19, ACGIH, 2001); applies to small establishments only (52% with <20 employees).
Batch operator								
Conveyor enclosures	Limit dust and spills	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)
LEV for batch operator workstation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation and unvented mixers (p. 10-69, ACGIH, 2001)
Dust suppressants	Use commercial dry suppressants	N/A	N/A	\$635	\$635	4	\$159	Oil-based sawdust sweeping compound

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Substitute wider HEPA vacuum use for compressed air	HEPA available, requires more labor	N/A	N/A	\$913	\$913	1	\$913	10 minutes per worker per day
HEPA vacuums	Small HEPA needed	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Concrete Products								
Material handler								
Yard dust suppression	Wetting with yard hose	N/A	\$204	\$5,501	\$5,614	4	\$1,403	100' of 1" contactor hose and nozzle; 2 year life; (www.pwmall.com). Assumes 1 labor hour per day.
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Mixer operator								
Wet methods to clean equipment	Additional cleaning time	N/A	N/A	\$917	\$917	1	\$917	10 mins per day per worker
LEV for bag opening stations	LEV with bag dumping station	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001)
Ventilated control room and HEPA filter	LEV	200	\$19,557	\$701	\$3,485	4	\$871	ERG estimates based on Means and ACGIH
Forming line operator								
Dust control for adjacent operations	Addressed by other controls	N/A	N/A	N/A	N/A	N/A	N/A	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Abrasive blasting operator		(cfm)	Unit Cost	Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Use wet process	Shop-built sprayer	N/A	\$205	\$20	\$134	4	\$33	
Finishing operator								
Work concrete green	Penalty for overall productivity	N/A	N/A	\$2,200	\$2,200	1	\$2,200	Assumes 5% productivity penalty per worker; other controls are available
Use wet process	Shop built sprayer	N/A	\$205	\$20	\$134	4	\$33	Assumes 2-year life; other controls are available.
LEV where wet methods are infeasible	Shroud and vacuum	not estimated	\$1,672	\$585	\$993	2	\$496	Vacuum plus shroud adapter; 35% for maintenance and operating costs; other controls are available.
Use alternative blast media	Use of more expensive non-silica media	N/A	N/A	\$33,646	\$33,646	4	\$8,412	Based on 212,000 square feet of coverage per year per crew; assumes 25% of establishments perform open blasting.
Packaging operator								
LEV for bag filling stations	LEV with bag filling station	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Bag filling station (pg. 10-15, ACGIH, 2001)
Extended polyethylene bag valves to reduce dust release	Use bags with dust- control feature	N/A	N/A	\$4,728	\$4,728	1	\$4,728	Assumes 5 bags per minute; 200 days a year; applies only to bulk product producers in NAICS 327999

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Material handler								
Well-ventilated bag dumping stations	LEV	1,513	\$13,473	\$3,680	\$5,599	4	\$1,400	Bag opening station (pg. 10-19, ACGIH, 2001)
Ventilated cab enclosures	Retrofit with cab or replacement equip	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
LEV for mixer	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation, unvented mixers (pg. 10-69, ACGIH, 2001)
Forming line operator								
LEV- hand grinding bench controls	LEV	1,400	\$17,964	\$4,907	\$7,465	4	\$1,866	Bench hood ventilation (pg. 10- 149, ACGIH, 2001)
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,495	\$1,006	\$1,503	4	\$376	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 addition minutes of labor time per day.
Reduce dust generation during mold parting (redesign talc bag)	Cost judged negligible	N/A	N/A	N/A	N/A	N/A	N/A	
Substitute non-silica parting compounds	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Finishing operator								
LEV- hand grinding bench controls	LEV	2,400	\$30,796	\$8,413	\$12,797	4	\$3,199	Hand grinding bench (pg. 10-135, ACGIH, 2001)
Wet finishing	Option not costed	N/A	N/A	N/A	N/A	1	N/A	·
Coatings preparer								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Well-ventilated bag dumping stations	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001)
Well-ventilated or enclosed, automated systems for charging mixing equipment with glaze materials	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation and unvented mixers (pg. 10-69, ACGIH, 2001)
Coatings operator								
Substitute low silica content inputs	Option not costed	N/A	N/A	N/A	N/A	1	N/A	
Improved LEV for spray booths and enclosures	Increased airflow, additional cfm	1,000	\$3,208	\$876	\$1,333	4	\$333	Additional cfm at 25% of installed price
Spray booth maintenance	Booth repairs	N/A	N/A	\$231	\$231	4	\$58	Annually, \$100 materials plus 4 hours maintenance time
Paint								
Material handler								
No overexposure	No control needed	N/A	N/A	N/A	N/A	N/A	N/A	
Mixer operator								
Substitute low silica content materials	Not generally control of choice	N/A	N/A	N/A	N/A	N/A	N/A	
Well-ventilated bag dumping stations	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001)
Structural Clay								•
Material handler/loader operator								
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews Assumes 35% markup for maintenance.
Thorough, semi-annual professional cleaning	Commercial cleaning service	N/A	N/A	N/A	N/A	N/A	N/A	Addressed in program costs

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Improve cab maintenance and keep windows closed	Use existing cabs for dust control	N/A	N/A	\$758	\$758	4	\$190	Judged to be incremental cost equal to one-half normal maintenance cost
Cover conveyors in material handling area	Conveyor covers	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)
Apply LEV to conveyors in material handling area	LEV	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate of cfm requirements.
Material handler/production								
Misters on conveyor line	Water spray to suppress dust	N/A	\$10,207	\$1,021	\$2,474	4	\$618	100 feet of conveyor. National Environmental Services Company (Kestner, 2003).
LEV, push-pull system	LEV	4,000	\$51,327	\$14,021	\$21,329	4	\$5,332	Assumes twice the airflow for a clean air island (1,500 cfm).
Material handler/post- production								
Misters on conveyor line	Water spray to suppress dust	N/A	\$10,207	\$1,021	\$2,474	4	\$618	100 feet of conveyor. National Environmental Services Company (Kestner, 2003).
Dust suppression in yard	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Grinding operator								
Ventilated control room and HEPA filter	LEV	200	\$19,557	\$701	\$3,485	4	\$871	ERG estimates based on Means, 2003 and ACGIH, 2001; Assumes 30% of establishments need new control room.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		101 0	eneral indu	Suy and Ma	an tunne			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Control room improvements and repairs	In-house repairs	N/A	\$2,240	NA	\$319	4	\$80	ERG estimate; assumes repairs are 20% of new control room cost; assumes 70% of establishments need control room improvements.
Enclosures with LEV for grinding equipment	LEV	17,000	\$218,140	\$59,589	\$90,647	4	\$22,662	Additional ventilation equal to half the total cfm required for a medium sized facility; ERG estimate based on consultant input.
Purchase additional HEPA vacuums		N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Enhanced housekeeping with HEPA vacuums	Labor costs	N/A	N/A	\$1,772	\$1,772	1	\$1,772	Additional 20 minutes per day
Cover conveyors in grinding area	Conveyor covers	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)
Dust suppression for raw materials		N/A	N/A	\$635	\$635	1	\$635	\$0.22/lb (www.fastenal.com); 2 lbs used per day; 5 labor minutes per day.
Tightly sealed storage units	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	•
Forming line operator/pug mill operator								
Enclosed and ventilated pug mill equipment		6,000	\$76,991	\$21,031	\$31,993	4	\$7,998	ERG estimate based on consultant input.
Forming line								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis

		tor G	eneral Indu	stry and Ma	aritime			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
operator/coatings blender								
Well-ventilated bag dumping stations		1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001); installation of control adequate for 50% of establishments.
Enclosed and ventilated feed hopper, conveyors, tumble tote charging, and transfer to transfer tote	Best judgment	9,000	\$115,486	\$31,547	\$47,990	4	\$11,997	erg estimate based on consultant input; more extensive controls needed for 50% of establishments.
Improved area cleanup with HEPA or central vacuum system		N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning.
Enhanced housekeeping with HEPA vacuums	Labor costs	N/A	N/A	\$1,772	\$1,772	1	\$1,772	Additional 20 minutes per day
Forming line operator/formers								
Improved area cleanup with HEPA or central vacuum system		N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Enhanced housekeeping with HEPA vacuums		N/A	N/A	\$1,772	\$1,772	1	\$1,772	Additional 20 minutes per day
Well-ventilated bag dumping stations		1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001); installation of control adequate for

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

for General Industry and Maritime									
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source	
								50% of establishments.	
Enclosed and ventilated workstations	LEV plus clean air island	3,550	\$45,553	\$12,444	\$18,929	4	\$4,732	ERG estimate based on consultant input; assumes control needed for 50% of establishments.	
Dental laboratories									
Dental technician									
Improved LEV in grinding, blasting	Dental lab dust control systems	N/A	\$800	\$80	\$194	2	\$97	Self-contained dust collection system. Darby Dental Lab Supply, 2005 (www.darbylab.com)	
Fine jewelry									
Jewelry workers									
Substitution of low-silica modeling/investment materials	Not costed	N/A	N/A	N/A	N/A	2	N/A		
LEV for abrasive blasting and finishing	Small-scale jewelry bench LEV	100	\$1,283	\$351	\$533	2	\$267	Small-scale LEV adequate	
Costume Jewelry									
Jewelry workers									
Substitution of low-silica modeling/investment materials	Not costed	N/A	N/A	N/A	N/A	2	N/A		
LEV for abrasive blasting and finishing	Small-scale jewelry bench LEV	100	\$1,283	\$351	\$533	2	\$267	Small-scale LEV adequate	
Refractories									
Material handler									
Ventilated bag dumping stations with bag compactor	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (3.5'x1.5' opening); (pg. 10-19, ACGIH, 2001); 3.5'x1.5'	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		for G	enerai indu	stry and Ma	aritime			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								opening; with ventilated bag crusher (200 cfm)
Enclosed and ventilated mixing equipment	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)
Forming Operator								
Increased LEV maintenance	Additional cost per operator	N/A	N/A	\$344	\$344	1	\$344	Assumes 1 hour additional maintenance time peroperator per month
Finishing operator								· ·
No overexposures	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Ceramic fiber furnace operator								
No overexposures	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Packaging operator								
LEV for bag filling stations	LEV/per cfm	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Bag filling station (pg 10-15, ACGIH, 2001) Includes costs for ai shower
Bag valves to reduce dust release		N/A	N/A	\$4,728	\$4,728	1	\$4,728	Assumes 5 bags pe minute; 200 days a year
Ready-Mix Concrete								•
Material handler								
Yard dust suppression	Wetting with yard hose	N/A	\$204	\$5,523	\$5,614	2	\$2,807	100' of 1" contactor hose and nozzle; 2 year life; (www.pwmall.com). Assumes 1 labor hour per day.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$15,165	\$5,308	\$7,467	2	\$3,733	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Batch operator								
No overexposures	No controls necessary	N/A	N/A	N/A	N/A	N/A	N/A	
Maintenance operator								
Wet methods to clean equipment	Additional cleaning time	N/A	N/A	\$917	\$917	1	\$917	10 mins per day per worker
Quality control technician								
No overexposures	No controls necessary	N/A	N/A	N/A	N/A	N/A	N/A	
Truck driver								
Wet methods for drum cleaning	Water fed chipping equipment	N/A	\$117	N/A	\$117	4	\$29	Estimated annualize retrofit cots.
Ventilation for drum cleaning	Forced ventilation	N/A	792	198	391	4	\$98	Electric blower (1,27) cfm) and 25 ft. of duct. Northern Safety Co. (p. 193). Assumed 5-year life.
Iron Foundries								
Sand mixer (muller) operator								
LEV, mixer & muller hood	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$66,865	\$17,176	\$26,696	4	\$6,674	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001); 2' wide belt; one take- off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation for unvented mixers (pg 10-69, ACGIH, 2001

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Bucket elevator ventilation	LEV	1,600	\$20,531	\$5,608	\$8,531	4	\$2,133	Bucket elevator ventilation (pg. 10-68; ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$15,398	\$4,206	\$6,399	4	\$1,600	Ventilated screen (pg. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Molder								
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation (pg. 10-69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$1,922	\$1,922	1	\$1,922	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	
Coremaker								
Eliminated compressed air	Additional labor time	N/A	N/A	\$961	\$961	1	\$961	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category -		LEV	onoral maa	Annual			Annualized	
Control Requirements/Options	Control Description (a)	Airflow (cfm)	Unit Cost	Operating Cost	Annualized Cost (b)	Workers per Control	Cost per worker	Estimate Source
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Furnace operator								
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	N/A	\$461	\$461	4	\$115	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pouring operator								
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$32,079	\$8,763	\$13,330	4	\$3,333	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Shakeout operator								
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$369,555	\$100,951	\$153,567	4	\$38,392	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$90,336	\$24,677	\$37,539	4	\$9,385	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Knockout operator								
Installing and improving LEV	Small knockout table	1,350	\$17,323	\$4,732	\$7,198	4	\$1,800	Portable grinding table (pg. 10-136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$61,593	\$16,825	\$25,594	4	\$6,399	Hand grinding table (pg. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Ventilated cut-off saw (pg. 10-134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	·

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Abrasive blasting operator								
Improved maintenance for blasting cabinet		N/A	\$2,450	\$1,000	\$1,349	2	\$674	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator								
LEV for workstations	Hand grinding bench	3,750	\$48,119	\$13,145	\$19,996	4	\$4,999	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$464	\$701	\$767	2	\$384	erg estimate of cfm control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,495	\$1,006	\$1,503	4	\$376	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Material handler								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator								
Use low silica refractory	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$1,672	\$585	\$993	4	\$248	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5-year life.
Pre-wetting lining to be removed	Additional labor	N/A	N/A	\$3,325	\$3,325	8	\$416	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	N/A	\$1,662	\$1,662	8	\$208	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Housekeeping worker								
Controls not identified		N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Other Ferrous Sand Casting Foundries								
Sand mixer (muller) operator								
LEV, mixer & muller hood	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$66,865	\$17,176	\$26,696	4	\$6,674	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001); 2' wide belt; one take- off point at-least

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

			eneral muu	stry and Ma	mume			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
·		•						every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation for unvented mixers (pg. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$20,531	\$5,608	\$8,531	4	\$2,133	Bucket elevator ventilation (pg. 10-68; ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$15,398	\$4,206	\$6,399	4	\$1,600	Ventilated screen (pg. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Molder								
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation (pg. 10-69 ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$1,922	\$1,922	1	\$1,922	Additional 20 minutes of labor time per day

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		101 0	chici ai illiuu	Stry ariu wia	i itiliie			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	NA	NA	NA	NA	
Coremaker								
Eliminated compressed air	Additional labor time	N/A	N/A	\$961	\$961	1	\$961	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Furnace operator								
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	N/A	\$461	\$461	4	\$115	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pouring operator								
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$32,079	\$8,763	\$13,330	4	\$3,333	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Shakeout operator								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$369,555	\$100,951	\$153,567	4	\$38,392	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$90,336	\$24,677	\$37,539	4	\$9,385	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere	Enclosed, ventilated shakeout conveyor	N/A	N/A	N/A	N/A	N/A	N/A	
Knockout operator								
Installing and improving LEV	Small knockout table	1,350	\$17,323	\$4,732	\$7,198	4	\$1,800	Portable grinding (table pg. 10-136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$61,593	\$16,825	\$25,594	4	\$6,399	Hand grinding table (pg. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		tor G	eneral Indu	stry and Ma	ırıtıme			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Ventilated cut-off saw (pg. 10-134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Abrasive blasting operator								
Improved maintenance for blasting cabinet		N/A	\$2,450	\$1,000	\$1,349	2	\$674	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator								
LEV for workstations	Hand grinding bench	3,750	\$48,119	\$13,145	\$19,996	4	\$4,999	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$464	\$701	\$767	2	\$384	ERG estimate of cfm control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,493	\$1,000	\$1,497	4	\$374	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Stry and Ma Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Material handler								
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator								
Use low silica refractory	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$1,672	\$585	\$993	4	\$248	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5-year life.
Pre-wetting lining to be removed	Additional labor	N/A	N/A	\$3,325	\$3,325	8	\$416	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	N/A	\$1,662	\$1,662	8	\$208	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Housekeeping worker								
Controls not identified		N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Nonferrous Sand Casting								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

			onciai maa					
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Foundries								
Sand mixer (muller) operator								
LEV, mixer & muller hood	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$66,833	\$17,173	\$26,688	4	\$6,672	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001); 2' wide belt; one take- off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$13,467	\$3,680	\$5,597	4	\$1,399	Bin & hopper ventilation for unvented mixers (pg. 10-69, ACGIH, 2001)
Bucket elevator ventilation	LEV	1,600	\$20,521	\$5,607	\$8,529	4	\$2,132	Bucket elevator ventilation (pg. 10-68; ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section
Screen ventilation	LEV	1,200	\$15,391	\$4,206	\$6,397	4	\$1,599	Ventilated screen (pg. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Molder								
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation (pg. 10-69, ACGIH, 2001)

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Stry and Ma Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$1,922	\$1,922	1	\$1,922	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	
Coremaker								
Eliminated compressed air	Additional labor time	N/A	N/A	\$961	\$961	1	\$961	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Furnace operator								
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	N/A	\$461	\$461	4	\$115	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Pouring operator								
Operator booths or cabs	Based on clean-air island costs	2,500	\$32,079	\$8,763	\$13,330	4	\$3,333	Assumes 125 cfm/sq. ft. for 20 square feet.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Shakeout operator								
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$369,555	\$100,951	\$153,567	4	\$38,392	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$90,336	\$24,677	\$37,539	4	\$9,385	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Knockout operator								
Installing and improving LEV	Small knockout table	1,350	\$17,323	\$4,732	\$7,198	4	\$1,800	Portable grinding table (pg. 10-13, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		for Ge	eneral Indu	stry and Ma	ıritime			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Installing and improving LEV	Large knockout table	4,800	\$61,563	\$16,825	\$25,594	4	\$6,399	Hand grinding table (pg. 10-135, ACGIH 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$19,238	\$5,257	\$7,998	4	\$2,000	Ventilated cut-off sav (pg. 10-134, ACGIH 2001), 2'x3' opening control assumed appropriate for 50% of establishments.
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Automate knockout process	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Abrasive blasting operator								
Improved maintenance for blasting cabinet		N/A	\$2,450	\$1,000	\$1,349	2	\$674	Assumes 50% increase in maintenance costs (of up to \$2,000) an purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).
Cleaning/finishing operator								Danah with LEV//
LEV for workstations	Hand grinding bench	3,750	\$48,119	\$13,145	\$19,996	4	\$4,999	Bench with LEV (pg 10-135, ACGIH, 2001); 3'x5'; contro assumed appropriat for 50% of establishments,
LEV on hand tools		200	\$464	\$701	\$767	2	\$384	ERG estimate of cfr control assumed appropriate for 50%

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

			eneral muu	stry and Ma	mume			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,495	\$1,006	\$1,503	4	\$376	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Material handler								
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator								
Use low silica refractory	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$1,672	\$585	\$993	4	\$248	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5-year life.
Pre-wetting lining to be removed	Additional labor	N/A	N/A	\$3,325	\$3,325	8	\$416	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	N/A	\$1,662	\$1,662	8	\$208	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

for General Industry and Maritime										
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source		
Housekeeping worker										
Controls not identified		N/A	N/A	N/A	N/A	N/A	N/A			
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A			
Non-Sand Casting Foundries										
Sand mixer (muller) operator										
LEV, mixer & muller hood	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)		
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$66,865	\$17,176	\$26,696	4	\$6,674	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001); 2' wide belt; one take- off point at-least every 30', 7 overall		
Bin and hopper ventilation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation for unvented mixers (pg. 10-69, ACGIH, 2001)		
Bucket elevator ventilation	LEV	1,600	\$20,521	\$5,607	\$8,529	4	\$2,132	Bucket elevator ventilation (pg. 10-68; ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of cross section		
Screen ventilation	LEV	1,200	\$15,391	\$4,206	\$6,397	4	\$1,599	Ventilated screen (pg. 10-173, ACGIH, 2001); 4'x6' screen; 50 cfm per ft ²		
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A			
Molder										
Upgraded sand handling equipment - covered		N/A	N/A	N/A	N/A	N/A	N/A			

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

			eneral indu	Stry and Ma	an itiniie			
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
elsewhere								
Upgrade or install LEV	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation (pg. 10-69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$1,922	\$1,922	1	\$1,922	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	
Coremaker								
Eliminated compressed air	Additional labor time	N/A	N/A	\$961	\$961	1	\$961	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Furnace operator								
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Well-maintained furnace emission control system		N/A	N/A	\$461	\$461	4	\$115	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pouring operator								
•								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$32,079	\$8,763	\$13,330	4	\$3,333	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Shakeout operator								
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$369,555	\$100,951	\$153,567	4	\$38,392	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001) assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$90,336	\$24,677	\$37,539	4	\$9,385	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate based on expert input.
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Knockout operator								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

for General Industry and Maritime										
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source		
Installing and improving LEV	Small knockout table	1,350	\$17,323	\$4,732	\$7,198	4	\$1,800	Portable grinding table (pg. 10-136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.		
Installing and improving LEV	Large knockout table	4,800	\$61,593	\$16,825	\$25,594	4	\$6,399	Hand grinding table (pg. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.		
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Ventilated cut-off sav (pg. 10-134, ACGIH, 2001), 2'x3' opening control assumed appropriate for 50% of establishments.		
Reduce residual sand on castings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A			
Automate knockout process	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A			
Abrasive blasting operator										
Improved maintenance for blasting cabinet		N/A	\$2,450	\$1,000	\$1,349	2	\$674	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet (Heastrup, 2003).		

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
LEV for workstations	Hand grinding bench	3,750	\$48,119	\$13,145	\$19,996	4	\$4,999	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$464	\$701	\$767	2	\$384	ERG estimate of cfm control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,495	\$1,006	\$1,503	4	\$376	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Material handler								
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews Assumes 35% markup for maintenance.
Maintenance operator				-	-			
Use low silica refractory	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$1,672	\$585	\$993	4	\$248	Vacuum plus shrou adapter; 35% for maintenance and operating costs. Assumes 5-year life
Pre-wetting lining to be	Additional labor	N/A	N/A	\$3,325	\$3,325	8	\$416	2 hours per week

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
removed								
Maintaining moisture level in the refractory applied	Additional labor	N/A	N/A	\$1,662	\$1,662	8	\$208	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Housekeeping worker								
Controls not identified		N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Captive Foundries								
Sand mixer (muller) operator								
LEV, mixer & muller hood	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001)
Conveyor enclosures	200 feet, ventilated (7 take-off points)	4,900	\$66,865	\$17,176	\$26,696	4	\$6,674	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001); 2 wide belt; one take- off point at-least every 30', 7 overall
Bin and hopper ventilation	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation for unvented mixers (pg 10-69, ACGIH, 2001
Bucket elevator ventilation	LEV	1,600	\$20,531	\$5,608	\$8,531	4	\$2,133	Bucket elevator ventilation (pg. 10-68 ACGIH, 2001); 2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq. ft. of
Screen ventilation	LEV	1,200	\$15,398	\$4,206	\$6,399	4	\$1,600	Ventilated screen (pg. 10-173, ACGIH

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

		101 0	Jiiciai iiiaa	Stry and wie				
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								2001); 4'x6' screen; 50 cfm per ft. ²
Substitute silica-free materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Molder								
Upgraded sand handling equipment - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Upgrade or install LEV	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Bin & hopper ventilation (pg. 10-69, ACGIH, 2001)
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	5	\$202	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume negligible impact on labor requirements for cleaning
Rigorous housekeeping- labor	Labor costs	N/A	N/A	\$1,922	\$1,922	1	\$1,922	Additional 20 minutes of labor time per day
Eliminated compressed air	Included in rigorous housekeeping	N/A	N/A	N/A	N/A	N/A	N/A	
Coremaker								
Eliminated compressed air	Additional labor time	N/A	N/A	\$961	\$961	1	\$961	10 minutes per worker per day
Enclosed conveyors, covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Non-silica cores and core coatings	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Furnace operator								
Control dust releases from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Well-maintained furnace emission control system		N/A	N/A	\$461	\$461	4	\$115	20 hours additional maintenance time per year
Minimize dust generated by sand contamination of scrap	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pouring operator								
Control dust from adjacent processes - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Operator booths or cabs	Based on clean-air island costs	2,500	\$32,079	\$8,763	\$13,330	4	\$3,333	Assumes 125 cfm/sq. ft. for 20 square feet.
Physical isolation of pouring area (create a pouring room)	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Modify ventilation system to reduce airflow from other areas into the pouring area	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Shakeout operator								
Improve existing ventilation system efficiency (very large castings)	Double-draft shake-out table	28,800	\$369,555	\$100,951	\$153,567	4	\$38,392	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001); assumes control needed for 10% of establishments producing large castings.
Improve existing ventilation system efficiency	Shakeout enclosing hood	7,040	\$90,336	\$24,677	\$37,539	4	\$9,385	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings; assumes control adequate except for establishments producing large castings (10%).
Partially enclose process	Enclosed, ventilated shakeout conveyor	10,000	\$128,318	\$35,052	\$53,322	4	\$13,330	ERG estimate based on expert input.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Control emissions from associated operations - covered elsewhere		N/A	N/A	N/A	N/A	N/A	N/A	
Knockout operator								
Installing and improving LEV	Small knockout table	1,350	\$17,323	\$4,732	\$7,198	4	\$1,800	Portable grinding table (pg. 10-136, ACGIH, 2001), 3'x3' opening; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Large knockout table	4,800	\$61,593	\$16,825	\$25,594	4	\$6,399	Hand grinding table (pg. 10-135, ACGIH, 2001), 4'x6' surface; control assumed appropriate for 50% of establishments.
Installing and improving LEV	Ventilated abrasive cutoff saw	1,500	\$19,248	\$5,258	\$7,998	4	\$2,000	Ventilated cut-off saw (pg. 10-134, ACGIH, 2001), 2'x3' opening; control assumed appropriate for 50% of establishments.
Reduce residual sand on	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
castings Automate knockout process	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Abrasive blasting operator	Option not cooled	14// (14/71	14/71	14// (14/71	14/7	
Improved maintenance for blasting cabinet		N/A	\$2,450	\$1,000	\$1,349	2	\$674	Assumes 50% increase in maintenance costs (of up to \$2,000) and purchase of new cabinets (25%) at \$8,000/cabinet (Norton, 2003), or additional interlocks at \$1,800/cabinet

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								(Heastrup, 2003).

Cleaning/finishing operator								
LEV for workstations	Hand grinding bench	3,750	\$48,119	\$13,145	\$19,996	4	\$4,999	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'; control assumed appropriate for 50% of establishments,
LEV on hand tools		200	\$464	\$701	\$767	2	\$384	ERG estimate of cfm; control assumed appropriate for 50% of establishments.
Eliminated compressed air (switch to vacuum)	HEPA vacuum plus additional time	N/A	\$3,495	\$1,000	\$1,503	4	\$376	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003). Assume 5 mins additional time per day.
Substitution with non-silica materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Process automation	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Wet methods	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Pre-cleaning with automated equipment	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Material handler								
Enclosed, ventilated cab	Retrofit with cab or replace equipment	N/A	\$15,165	\$5,308	\$7,467	4	\$1,867	ERG estimate based on vendor interviews. Assumes 35% markup for maintenance.
Maintenance operator								

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Use low silica refractory	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
LEV for chipping tools	Dust collector with HEPA vacuum	N/A	\$1,672	\$585	\$993	4	\$248	Vacuum plus shroud adapter; 35% for maintenance and operating costs. Assumes 5-year life.
Pre-wetting lining to be removed	Additional labor	N/A	N/A	\$3,325	\$3,325	8	\$416	2 hours per week
Maintaining moisture level in the refractory applied	Additional labor	N/A	N/A	\$1,662	\$1,662	8	\$208	1 hour per week
Also, use of precast refractories and automated equipment for powdered refractory materials	Option not costed	N/A	N/A	N/A	N/A	N/A	N/A	
Housekeeping worker								
Controls not identified		N/A	N/A	N/A	N/A	N/A	N/A	
Professional-level cleaning	Covered by program requirements	N/A	N/A	N/A	N/A	N/A	N/A	
Railroads								
Ballast dumper								
Spray system for right-of-way maintenance vehicles	Costs estimated per rail car, see Table 3-6	N/A	N/A	N/A	N/A	N/A	N/A	
Machine operator								
Spray system for right-of-way maintenance vehicles	Costs estimated per rail car, see Table 3-6	N/A	N/A	N/A	N/A	N/A	N/A	
Asphalt Roofing Materials								
Production operator								
Process enclosure	Enclose conveyors and equip	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003)
Enhanced ventilation	Conveyor ventilation	700	\$8,982	\$2,454	\$3,733	4	\$933	Bin & hopper ventilation and unvented mixers (pg. 10-69, ACGIH, 2001)

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Rigorous housekeeping- capital	HEPA vacuum	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003).
Rigorous housekeeping- labor	Incremental labor costs	N/A	N/A	\$1,486	\$1,486	1	\$1,486	Additional 10 minutes labor time per day
Material handler								
No additional controls required	N/A	N/A	N/A	N/A	N/A	N/A	N/A	Controls for production operator adequate
Porcelain Enameling								
Preparer								
Well-ventilated bag dumping stations	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station; (pg. 10-19, ACGIH, 2001)
Porcelain applicator								,
Improved LEV for spray booths and enclosures	increased airflow\cfm	1,000	\$3,208	\$876	\$1,333	4	\$333	Additional cfm at 25% of installed price
Spray booth maintenance	Materials plus labor	N/A	N/A	\$231	\$231	4	\$58	Annually, \$100 materials plus 4 hours maintenance time
Mineral Processing								
Production worker								
Enclosed ventilation equipment	Conveyor cover; 200'	N/A	\$3,990	\$399	\$967	4	\$242	200 feet at \$17.10 per linear foot (Landola, 2003); assumes cover adequate for 50% of establishments
Conveyor ventilation	LEV	4,900	\$62,876	\$17,176	\$26,128	4	\$6,532	Conveyor belt ventilation; (pg. 10- 70, ACGIH, 2001) One take-off point at- least every 30', 7 overall; assumes

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

	for General Industry and Maritime											
Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source				
								50% of establishments needed ventilated conveyor covers.				
Improved maintenance	Labor costs	N/A	N/A	\$1,139	\$1,139	1	\$1,139	1 hour additional maintenance time per week per production worker; assumes 50% of establishments need improved maintenance of ventilation system.				
Professional cleaning	Commercial cleaning service; semiannual	N/A	N/A	N/A	N/A	1	N/A					
Improved area cleanup with HEPA	Equipment cost	N/A	\$3,495	\$511	\$1,009	4	\$252	Nilfisk HEPA vacuum, 15 gal. capacity (Bibbo, 2003)				
Enhanced housekeeping with HEPA vacuums	Additional labor time	N/A	N/A	\$1,825	\$1,825	1	\$1,825	Additional 20 minutes per day				
Dental Equipment and Supplies												
Production operator												
Ventilated bag dumping stations with bag compactor	LEV	1,513	\$19,414	\$5,303	\$8,068	4	\$2,017	Bag opening station (pg. 10-19, ACGIH, 2001); other controls are available.				
Enclosed and ventilated mixing equipment	LEV	1,050	\$13,473	\$3,680	\$5,599	4	\$1,400	Mixer & muller hood (pg. 10-87, ACGIH, 2001); other controls are available.				
Increased LEV maintenance	Additional cost per operator	N/A	N/A	\$280	\$280	1	\$280	Assumes 1 hour additional maintenance time per				

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
								operator per month
Asphalt Paving Products								
Plant operator								
No overexposures	Additional controls not needed	N/A	N/A	N/A	N/A	N/A	N/A	
Front-end loader operator								
Enclosed cabs	Retrofit with cab or replacement equip	N/A	\$15,165	\$5,308	\$7,467	2	\$3,733	ERG estimate base on vendor interview Assumes 35% markup for maintenance.
Maintenance worker								
No overexposures	Additional controls not needed	N/A	N/A	N/A	N/A	N/A	N/A	
Quality control worker								
No overexposures	Additional controls not needed	N/A	N/A	N/A	N/A	N/A	N/A	
Refractory Repair								
Production operator								
Portable exhaust ventilation	LEV	400	\$5,133	\$1,402	\$2,133	2	\$1,066	Moveable exhaus hoods example: pg 10-93 (ACGIH, 2001); other contro are available.
Wet methods for chipping tools	Shop-built water feed equipment	N/A	\$117	0	\$117	1	\$117	Assumes \$100 in annual costs; othe controls are available.
LEV for chipping tools	LEV	600	\$7,699	\$2,103	3,199	2	\$1,600	Granite cutting an finishing; (pg. 10-9 ACGIH, 2001); oth controls are available.

Table A-2: Unit and Annualized Costs and Model Specifications for Silica Engineering Controls Applied in OSHA's Cost Analysis for General Industry and Maritime

Sector/Job Category - Control Requirements/Options	Control Description (a)	LEV Airflow (cfm)	Unit Cost	Annual Operating Cost	Annualized Cost (b)	Workers per Control	Annualized Cost per worker	Estimate Source
Improved maintenance for spay guns	Labor costs	N/A	N/A	\$344	\$344	1	\$344	Assumes 1 hour additional maintenance time per operator per month

a) "Control not costed" means that other less costly control measures were available to achieve the same level of exposure reduction.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b) and ERG (2011).

b) Costs are annualized using a 7 percent discount rate over the lifetime of the equipment, typically 10 years.

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of W At R				Empl	rexposed oyees Control hieve	Tota	l Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Cut Stone								
Sawyer	1,808	556						
Control other dust sources in area			N/A	N/A	N/A	N/A	\$0	\$0
Rigorous housekeeping- capital			\$252	100.0%	100.0%	100.0%	\$455,985	\$140,303
Rigorous housekeeping- labor			\$913	100.0%	100.0%	100.0%	\$1,649,995	\$507,691
Manage slurry-assumed included in housekeeping costs			N/A	N/A	N/A	N/A	\$0	\$0
Pre-wash stone to be cut			\$456	100.0%	100.0%	100.0%	\$824,998	\$253,845
Keep floors wet; washdown with high pressure hose			\$2,111	100.0%	0.0%	100.0%	\$1,174,284	\$1,174,284
Increase water use at saw blade			\$456	25.0%	100.0%	100.0%	\$206,249	\$63,461
Use water-fed equipment			\$228	100.0%	0.0%	100.0%	\$126,923	\$126,923
Enclose saw			\$59	10.0%	100.0%	100.0%	\$10,753	\$3,309
Exhaust saw			\$600	100.0%	100.0%	100.0%	\$1,084,596	\$333,722
Fabricator	1,189	991						
Use water fed equipment			N/A	N/A	N/A	N/A	\$0	\$0
Management of dust-carrying water slurry			N/A	N/A	N/A	N/A	\$0	\$0
Rigorous housekeeping- capital			\$252	100.0%	100.0%	100.0%	\$299,861	\$249,884
Rigorous housekeeping- labor			\$456	100.0%	100.0%	100.0%	\$542,527	\$452,106
Splitter/chipper	543	380						
Use work practices to position work near duct			N/A	N/A	N/A	N/A	\$0	\$0
Rigorous housekeeping- capital			\$252	100.0%	100.0%	100.0%	\$136,886	\$95,820
Rigorous housekeeping- labor			\$913	100.0%	100.0%	100.0%	\$495,325	\$346,728
Pre-wash stone			\$456	100.0%	100.0%	100.0%	\$247,663	\$173,364
Use flexible trunk LEV for hand chipping			\$1,600	75.0%	0.0%	100.0%	\$455,831	\$455,831
Tool-mounted LEV for hand-held chipping tools			\$412	37.5%	0.0%	100.0%	\$58,635	\$58,635

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	No. of W At R				Emple		Total	Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
eep floors wet; washdown with high pressure hose			N/A	N/A	N/A	N/A	\$0	\$0
Machine operator	3,321	2,214						
Control other dust sources in area			N/A	N/A	N/A	N/A	\$0	\$0
Rigorous housekeeping- capital			\$252	100.0%	100.0%	100.0%	\$837,626	\$558,418
Rigorous housekeeping- labor			\$913	100.0%	100.0%	100.0%	\$3,030,976	\$2,020,651
Wash stone before and after each process			\$143	100.0%	100.0%	100.0%	\$476,380	\$317,587
Keep conveyor clean and damp			N/A	N/A	N/A	N/A	\$0	\$0
Management of dust-carrying water			N/A	N/A	N/A	N/A	\$0	\$0
Enclose machinery			\$42	100.0%	100.0%	100.0%	\$139,260	\$92,840
Exhaust trimming machine			\$667	100.0%	100.0%	100.0%	\$2,213,734	\$1,475,822
Abrasive blasting operator	580	435						
For use of maintained, interlocked, ventilated glove-box cabinet			\$337	100.0%	100.0%	100.0%	\$195,678	\$146,758
Use only non-silica blasting media			N/A	5.0%	100.0%	100.0%	\$0	\$0
Increase blasting cabinet ventilation			\$1,666	100.0%	100.0%	100.0%	\$966,944	\$725,208
Use HEPA vacuums for machine cleaning			\$252	100.0%	100.0%	100.0%	\$146,348	\$109,761
Flat glass								
Material handler	48	29						
Automated and ventilated unloading equipment			N/A	N/A	N/A	N/A	\$0	\$0
Bag opening station (small facilities only)			\$2,017	36.0%	100.0%	100.0%	\$34,919	\$20,952
Batch operator	106	35						·
Conveyor enclosures			\$242	100.0%	100.0%	100.0%	\$25,723	\$8,574
LEV for batch operator workstation			\$1,400	100.0%	100.0%	100.0%	\$148,935	\$49,645
Dust suppressants			\$159	100.0%	100.0%	100.0%	\$16,880	\$5,627
Substitute wider HEPA vacuum use for compressed air			\$962	100.0%	100.0%	100.0%	\$102,384	\$34,128
HEPA vacuums			\$252	100.0%	100.0%	100.0%	\$26,835	\$8,945

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	No. of W At R				% of Ove Emplo Needing to Ac Contro	oyees Control hieve	Total	Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Other glass								
Material handler	322	193						
Automated and ventilated unloading equipment			N/A	N/A	N/A	N/A	\$0	\$0
Bag opening station (small facilities only)			\$2,017	69.0%	100.0%	100.0%	\$448,148	\$268,889
Batch operator	685	228						
Conveyor enclosures			\$242	100.0%	100.0%	100.0%	\$165,587	\$55,196
LEV for batch operator workstation			\$1,400	100.0%	100.0%	100.0%	\$958,758	\$319,586
Dust suppressants			\$159	100.0%	100.0%	100.0%	\$108,662	\$36,221
Substitute wider HEPA vacuum use for compressed air			\$962	100.0%	100.0%	100.0%	\$659,087	\$219,696
HEPA vacuums			\$202	100.0%	100.0%	100.0%	\$138,199	\$46,066
Mineral Wool								
Material handler	216	130						
Automated and ventilated unloading equipment			N/A	N/A	N/A	N/A	\$0	\$0
Bag opening station (small facilities only)			\$2,017	52.0%	100.0%	100.0%	\$226,808	\$136,085
Batch operator	415	138						
Conveyor enclosures			\$242	100.0%	100.0%	100.0%	\$100,439	\$33,480
LEV for batch operator workstation			\$1,400	100.0%	100.0%	100.0%	\$581,548	\$193,849
Dust suppressants			\$159	100.0%	100.0%	100.0%	\$65,910	\$21,970
Substitute wider HEPA vacuum use for compressed air			\$913	100.0%	100.0%	100.0%	\$379,161	\$126,387
HEPA vacuums			\$202	100.0%	100.0%	100.0%	\$83,826	\$27,942
Concrete Products								
Material handler	7265	3,302						
Yard dust suppression			\$1,403	100.0%	100.0%	100.0%	\$10,196,244	\$4,634,656
Enclosed cabs		·	\$1,867	100.0%	0.0%	100.0%	\$6,164,453	\$6,164,453
Mixer operator	1,986	1,986						

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of Workers At Risk				Emplo Needing	rexposed oyees Control hieve Level	Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Wet methods to clean equipment			\$917	100.0%	100.0%	100.0%	\$1,820,752	\$1,820,752
LEV for bag opening stations			\$2,017	75.0%	100.0%	100.0%	\$3,004,087	\$3,004,087
Ventilated control room and HEPA filter			\$871	25.0%	100.0%	100.0%	\$432,625	\$432,625
Forming line operator	1,215	304						
Dust control for adjacent operations			N/A	N/A	N/A	N/A	\$0	\$0
Abrasive blasting operator	3,546	3,102						
Use wet process			\$33	100.0%	100.0%	100.0%	\$118,483	\$88,862
Finishing operator	3,354	2,396						
Work concrete green			\$2,200	25.0%	100.0%	100.0%	\$1,844,991	\$1,317,851
Use wet process			\$33	25.0%	100.0%	100.0%	\$28,020	\$20,014
LEV where wet methods are infeasible			\$496	25.0%	100.0%	100.0%	\$416,214	\$297,295
Use alternative blast media			\$8,412	25.0%	100.0%	100.0%	\$7,052,986	\$5,037,847
Packaging operator	1,838	919						
LEV for bag filling stations			\$2,000	100.0%	100.0%	100.0%	\$3,675,349	\$1,837,675
Extended polyethylene bag valves to reduce dust release			\$4,728	100.0%	100.0%	100.0%	\$8,691,020	\$4,345,510
Pottery								
Material handler	578	321						
Well-ventilated bag dumping stations			\$1,400	100.0%	100.0%	100.0%	\$809,444	\$449,691
Ventilated cab enclosures			\$1,867	100.0%	100.0%	100.0%	\$1,079,514	\$599,730
LEV for mixer			\$1,400	100.0%	100.0%	100.0%	\$809,444	\$449,691
Forming line operator	1,866	1,083						
LEV- hand grinding bench controls			\$1,866	100.0%	100.0%	100.0%	\$3,481,721	\$2,021,644
Eliminate compressed air (switch to vacuum)			\$376	100.0%	100.0%	100.0%	\$701,158	\$407,124
Reduce dust generation during mold parting (redesign talc bag)			N/A	N/A	N/A	N/A	\$0	\$0
Substitute non-silica parting compounds			N/A	N/A	N/A	N/A	\$0	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of Workers At Risk				% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Finishing operator	355	218						
LEV- hand grinding bench controls			\$3,199	100.0%	100.0%	100.0%	\$1,134,477	\$698,140
Wet finishing			N/A	N/A	N/A	N/A	\$0	\$0
Coatings preparer	466	302						
Well-ventilated bag dumping stations			\$2,017	100.0%	100.0%	100.0%	\$940,044	\$608,264
Well-ventilated or enclosed, automated systems for charging mixing equipment with glaze materials			\$1,400	100.0%	100.0%	100.0%	\$652,377	\$422,126
Coatings operator	1,513	1,164						
Substitute low silica content inputs			N/A	N/A	N/A	N/A	\$0	\$0
Improved LEV for spray booths and enclosures			\$333	100.0%	100.0%	100.0%	\$504,129	\$387,792
Spray booth maintenance			\$58	100.0%	100.0%	100.0%	\$87,485	\$67,296
Paint								
Material handler	0	0						
No overexposure			N/A	N/A	N/A	N/A	\$0	\$0
Mixer operator	404	404						
Substitute low silica content materials			N/A	N/A	N/A	N/A	\$0	\$0
Well-ventilated bag dumping stations			\$2,017	100.0%	100.0%	100.0%	\$815,448	\$815,448
Structural Clay								
Material handler/loader operator	118	59						
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$219,462	\$109,731
Thorough, semi-annual professional cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Improve cab maintenance and keep windows closed			\$190	100.0%	100.0%	100.0%	\$22,286	\$11,143
Cover conveyors in material handling area			\$242	100.0%	0.0%	100.0%	\$14,210	\$14,210
Apply LEV to conveyors in material handling area			\$13,330	100.0%	0.0%	100.0%	\$783,609	\$783,609

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	nts/Options			Needing	oyees Control hieve	Total	Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Material handler/production	1,360	544						
Misters on conveyor line			\$618	50.0%	100.0%	100.0%	\$420,631	\$168,252
LEV, push-pull system			\$5,332	50.0%	100.0%	100.0%	\$3,626,367	\$1,450,547
Material handler/post-production	161	32						
Misters on conveyor line			\$618	100.0%	100.0%	100.0%	\$99,354	\$19,871
Dust suppression in yard			N/A	N/A	N/A	N/A	\$0	\$0
Grinding operator	580	406						
Ventilated control room and HEPA filter			\$871	30.0%	100.0%	100.0%	\$151,532	\$106,073
Control room improvements and repairs			\$80	70.0%	100.0%	100.0%	\$32,352	\$22,647
Enclosures with LEV for grinding equipment			\$22,662	100.0%	100.0%	100.0%	\$13,136,330	\$9,195,431
Purchase additional HEPA vacuums			\$252	100.0%	100.0%	100.0%	\$146,191	\$102,334
Enhanced housekeeping with HEPA vacuums			\$1,772	100.0%	100.0%	100.0%	\$1,027,122	\$718,985
Cover conveyors in grinding area			\$242	100.0%	100.0%	100.0%	\$140,130	\$98,091
Dust suppression for raw materials	,		\$635	100.0%	100.0%	100.0%	\$367,826	\$257,478
Tightly sealed storage units			N/A	N/A	N/A	N/A	\$0	\$0
Forming line operator/pug mill operator	274	229						
Enclosed and ventilated pug mill equipment			\$7,998	100.0%	100.0%	100.0%	\$2,194,104	\$1,828,420
Forming line operator/coatings blender	256	96						
Well-ventilated bag dumping stations			\$2,017	50.0%	100.0%	100.0%	\$258,197	\$96,824
Enclosed and ventilated feed hopper, conveyors, tumble tote charging, and transfer to transfer tote			\$11,997	50.0%	100.0%	100.0%	\$1,535,873	\$575,952
Improved area cleanup with HEPA or central vacuum system			\$252	100.0%	100.0%	100.0%	\$64,571	\$24,214
Enhanced housekeeping with HEPA vacuums			\$1,772	100.0%	100.0%	100.0%	\$453,670	\$170,126

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	No. of V At F				% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Forming line operator/formers	1,860	1,222						
Improved area cleanup with HEPA or central vacuum system			\$252	100.0%	100.0%	100.0%	\$468,962	\$308,175
Enhanced housekeeping with HEPA vacuums			\$1,772	100.0%	100.0%	100.0%	\$3,294,881	\$2,165,207
Well-ventilated bag dumping stations			\$2,017	50.0%	100.0%	100.0%	\$1,875,218	\$1,232,286
Enclosed and ventilated workstations			\$4,732	50.0%	100.0%	100.0%	\$4,399,883	\$2,891,352
Dental laboratories								
Dental technician	1,324	0						
Improved LEV in grinding, blasting			\$97	100.0%	100.0%	100.0%	\$128,398	\$0
Fine jewelry								
Jewelry workers	4,121	2,944						
Substitution of low-silica modeling/investment materials			N/A	N/A	N/A	N/A	\$0	\$0
LEV for abrasive blasting and finishing			\$267	100.0%	100.0%	100.0%	\$1,098,731	\$784,808
Costume Jewelry								
Jewelry workers	459	328						
Substitution of low-silica modeling/investment materials			N/A	N/A	N/A	N/A	\$0	\$0
LEV for abrasive blasting and finishing			\$267	100.0%	100.0%	100.0%	\$122,427	\$87,448
Refractories								
Material handler	361	180						
Ventilated bag dumping stations with bag compactor			\$2,017	100.0%	100.0%	100.0%	\$727,591	\$363,796
Enclosed and ventilated mixing equipment			\$1,400	100.0%	100.0%	100.0%	\$504,938	\$252,469
Forming Operator	420	210						
Increased LEV maintenance			\$344	100.0%	100.0%	100.0%	\$144,560	\$72,280
Finishing operator	0	0						
No overexposures			N/A	N/A	N/A	N/A	\$0	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	No. of V At R				Emplo Needing to Ac	rexposed oyees Control hieve Level	Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Ceramic fiber furnace operator	0	0						
No overexposures			N/A	N/A	N/A	N/A	\$0	\$0
Packaging operator	42	42						
LEV for bag filling stations			\$2,000	100.0%	100.0%	100.0%	\$83,447	\$83,447
Bag valves to reduce dust release			\$4,728	100.0%	100.0%	100.0%	\$197,326	\$197,326
Ready-Mix Concrete								
Material handler	1,981	0						
Yard dust suppression			\$2,807	50.0%	100.0%	100.0%	\$2,779,669	\$0
Enclosed cabs			\$3,733	50.0%	100.0%	100.0%	\$3,697,176	\$0
Batch operator	0	0						
No overexposures			N/A	N/A	N/A	N/A	\$0	\$0
Maintenance operator	603	0						
Wet methods to clean equipment			\$917	100.0%	100.0%	100.0%	\$552,865	\$0
Quality control technician	0	0						
No overexposures			N/A	N/A	N/A	N/A	\$0	\$0
Truck driver	29,526	29,526						
Wet methods for drum cleaning			\$29	100.0%	100.0%	100.0%	\$861,082	\$861,082
Ventilation for drum cleaning			\$98	100.0%	100.0%	100.0%	\$2,890,079	\$2,890,079
Iron Foundries								
Sand mixer (muller) operator	660	440						
LEV, mixer & muller hood			\$1,400	100.0%	100.0%	100%	\$923,114	\$615,410
Conveyor enclosures			\$6,674	100.0%	100.0%	100%	\$4,401,520	\$2,934,347
Bin and hopper ventilation			\$1,400	100.0%	100.0%	100%	\$923,114	\$615,410
Bucket elevator ventilation			\$2,133	100.0%	100.0%	100%	\$1,406,650	\$937,767
Screen ventilation			\$1,600	100.0%	100.0%	100%	\$1,054,988	\$703,325
Substitute silica-free materials			N/A	N/A	N/A	N/A	\$0	\$0
Molder	2,169	897						

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	3			% of Ove Emplo Needing to Ac Contro	oyees Control hieve	Total Cost		
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Upgraded sand handling equipment - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Upgrade or install LEV			\$1,400	100.0%	0.0%	100%	\$1,255,036	\$1,255,036
Rigorous housekeeping- capital			\$202	100.0%	0.0%	100%	\$180,905	\$180,905
Rigorous housekeeping- labor			\$1,922	100.0%	0.0%	100%	\$1,723,348	\$1,723,348
Eliminate compressed air			N/A	N/A	N/A	N/A	\$0	\$0
Coremaker	1,866	581						
Eliminated compressed air			\$961	100.0%	100.0%	100.0%	\$1,793,625	\$558,017
Enclosed conveyors, covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Non-silica cores and core coatings			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Furnace operator	495	495						
Control dust releases from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Well-maintained furnace emission control system			\$115	100.0%	100.0%	100.0%	\$57,041	\$57,041
Minimize dust generated by sand contamination of scrap			N/A	N/A	N/A	N/A	\$0	\$0
Pouring operator	660	440						
Control dust from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Operator booths or cabs			\$3,333	100.0%	0.0%	100.0%	\$1,465,261	\$1,465,261
Physical isolation of pouring area (create a pouring room)			N/A	N/A	N/A	N/A	\$0	\$0
Modify ventilation system to reduce airflow from other areas into the pouring area			N/A	N/A	N/A	N/A	\$0	\$0
Shakeout operator	263	131						
Improve existing ventilation system efficiency (very large castings)			\$38,392	10.0%	100.0%	100.0%	\$1,009,430	\$504,715

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options	No. of V At R				% of Overexposed Employees Needing Control to Achieve Control Level		Tota	Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100	
Improve existing ventilation system efficiency			\$9,385	90.0%	100.0%	100.0%	\$2,220,746	\$1,110,373	
Partially enclose process			\$13,330	100.0%	100.0%	100.0%	\$3,504,966	\$1,752,483	
Control emissions from associated operations - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0	
Knockout operator	238	154							
Installing and improving LEV			\$1,800	50.0%	100.0%	100.0%	\$213,875	\$139,019	
Installing and improving LEV			\$6,399	50.0%	100.0%	100.0%	\$760,444	\$494,288	
Installing and improving LEV			\$2,000	50.0%	100.0%	100.0%	\$237,639	\$154,465	
Reduce residual sand on castings			N/A	N/A	N/A	N/A	\$0	\$0	
Automate knockout process			N/A	N/A	N/A	N/A	\$0	\$0	
Abrasive blasting operator	1,362	811							
Improved maintenance for blasting cabinet			\$674	100.0%	100.0%	100.0%	\$918,655	\$546,818	
Cleaning/finishing operator	2,489	1,728							
LEV for workstations			\$4,999	50.0%	100.0%	100.0%	\$6,221,948	\$4,318,217	
LEV on hand tools			\$384	50.0%	100.0%	100.0%	\$477,412	\$331,339	
Eliminate compressed air (switch to vacuum)			\$376	100.0%	0.0%	100.0%	\$649,312	\$649,312	
Substitution with non-silica materials			N/A	N/A	N/A	N/A	\$0	\$0	
Process automation			N/A	N/A	N/A	N/A	\$0	\$0	
Wet methods			N/A	N/A	N/A	N/A	\$0	\$0	
Pre-cleaning with automated equipment			N/A	N/A	N/A	N/A	\$0	\$0	
Material handler	817	337							
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$1,526,010	\$628,357	
Maintenance operator	328	211							
Use low silica refractory			N/A	N/A	N/A	N/A	\$0	\$0	
LEV for chipping tools			\$248	100.0%	100.0%	100.0%	\$81,291	\$52,258	
Pre-wetting lining to be removed		·	\$416	100.0%	100.0%	100.0%	\$136,113	\$87,501	

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options		Workers Risk			% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Maintaining moisture level in the refractory applied			\$208	100.0%	100.0%	100.0%	\$68,056	\$43,751
Also, use of precast refractories and automated equipment for powdered refractory materials			N/A	N/A	N/A	100%	\$0	\$0
Housekeeping worker	157	63						
Controls not identified			N/A	N/A	N/A	100%	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	100%	\$0	\$0
Other Ferrous Sand Casting Foundries								
Sand mixer (muller) operator	197	132						
LEV, mixer & muller hood			\$1,400	100.0%	100.0%	100.0%	\$276,297	\$184,198
Conveyor enclosures			\$6,674	100.0%	100.0%	100.0%	\$1,317,418	\$878,279
Bin and hopper ventilation			\$1,400	100.0%	100.0%	100.0%	\$276,297	\$184,198
Bucket elevator ventilation			\$2,133	100.0%	100.0%	100.0%	\$421,024	\$280,683
Screen ventilation			\$1,600	100.0%	100.0%	100.0%	\$315,768	\$210,512
Substitute silica-free materials			N/A	N/A	N/A	N/A	\$0	\$0
Molder	649	268						
Upgraded sand handling equipment - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Upgrade or install LEV			\$1,400	100.0%	0.0%	100.0%	\$375,645	\$375,645
Rigorous housekeeping- capital			\$202	100.0%	0.0%	100.0%	\$54,147	\$54,147
Rigorous housekeeping- labor			\$1,922	100.0%	0.0%	100.0%	\$515,815	\$515,815
Eliminate compressed air			N/A	N/A	N/A	N/A	\$0	\$0
Coremaker	559	174						
Eliminated compressed air			\$961	100.0%	100.0%	100.0%	\$536,850	\$167,020
Enclosed conveyors, covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Non-silica cores and core coatings			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Furnace operator	148	148						

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of W At R				Emple		Tota	l Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Control dust releases from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Well-maintained furnace emission control system			\$115	100.0%	100.0%	100.0%	\$17,073	\$17,073
Minimize dust generated by sand contamination of scrap			N/A	N/A	N/A	N/A	\$0	\$0
Pouring operator	197	132						
Control dust from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Operator booths or cabs			\$3,333	100.0%	0.0%	100.0%	\$438,567	\$438,567
Physical isolation of pouring area (create a pouring room)			N/A	N/A	N/A	N/A	\$0	\$0
Modify ventilation system to reduce airflow from other areas into the pouring area			N/A	N/A	N/A	N/A	\$0	\$0
Shakeout operator	79	39						
Improve existing ventilation system efficiency (very large castings)			\$38,392	10.0%	100.0%	100.0%	\$302,132	\$151,066
Improve existing ventilation system efficiency			\$9,385	90.0%	100.0%	100.0%	\$2,220,746	\$1,110,373
Partially enclose process			\$13,330	100.0%	100.0%	100.0%	\$1,049,071	\$524,535
Control emissions from associated operations - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Knockout operator	71	46						
Installing and improving LEV			\$1,800	50.0%	100.0%	100.0%	\$213,875	\$139,019
Installing and improving LEV			\$6,399	50.0%	100.0%	100.0%	\$760,444	\$494,288
Installing and improving LEV			\$2,000	50.0%	100.0%	100.0%	\$237,639	\$154,465
Reduce residual sand on castings			N/A	N/A	N/A	N/A	\$0	\$0
Automate knockout process Abrasive blasting operator	408	243	N/A	N/A	N/A	N/A	\$0	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Sector/Job Category - Control Requirements/Options		Workers Risk			% of Ove Emplo Needing to Ac Contro	oyees Control hieve	Tota	l Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Improved maintenance for blasting cabinet			\$674	100.0%	100.0%	100.0%	\$274,962	\$163,668
Cleaning/finishing operator	745	517						
LEV for workstations			\$4,999	50.0%	100.0%	100.0%	\$1,862,290	\$1,292,485
LEV on hand tools			\$384	50.0%	100.0%	100.0%	\$142,894	\$99,173
Eliminate compressed air (switch to vacuum)			\$376	100.0%	0.0%	100.0%	\$194,345	\$194,345
Substitution with non-silica materials			N/A	N/A	N/A	N/A	\$0	\$0
Process automation			N/A	N/A	N/A	N/A	\$0	\$0
Wet methods			N/A	N/A	N/A	N/A	\$0	\$0
Pre-cleaning with automated equipment			N/A	N/A	N/A	N/A	\$0	\$0
Material handler	245	101						
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$456,750	\$188,074
Maintenance operator	98	63						
Use low silica refractory			N/A	N/A	N/A	N/A	\$0	\$0
LEV for chipping tools			\$248	100.0%	100.0%	100.0%	\$24,331	\$15,641
Pre-wetting lining to be removed			\$416	100.0%	100.0%	100.0%	\$40,740	\$26,190
Maintaining moisture level in the refractory applied			\$208	100.0%	100.0%	100.0%	\$20,370	\$13,095
Also, use of precast refractories and automated equipment for powdered refractory materials			N/A	N/A	N/A	N/A	\$0	\$0
Housekeeping worker	47	19						
Controls not identified			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Nonferrous Sand Casting Foundries								
Sand mixer (muller) operator	227	151						
LEV, mixer & muller hood			\$1,400	100.0%	100.0%	100.0%	\$318,030	\$212,020
Conveyor enclosures			\$6,674	100.0%	100.0%	100.0%	\$1,516,406	\$1,010,937
Bin and hopper ventilation			\$1,400	100.0%	100.0%	100.0%	\$318,030	\$212,020

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Sector/Job Category - Control Requirements/Options	No. of V At F				% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Bucket elevator ventilation			\$2,133	100.0%	100.0%	100.0%	\$484,617	\$323,078
Screen ventilation			\$1,600	100.0%	100.0%	100.0%	\$363,463	\$242,309
Substitute silica-free materials			N/A	N/A	N/A	N/A	\$0	\$0
Molder	747	309						
Upgraded sand handling equipment - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Upgrade or install LEV			\$1,400	100.0%	0.0%	100.0%	\$432,383	\$432,383
Rigorous housekeeping- capital			\$202	100.0%	0.0%	100.0%	\$62,325	\$62,325
Rigorous housekeeping- labor			\$1,922	100.0%	0.0%	100.0%	\$593,725	\$593,725
Eliminate compressed air			N/A	N/A	N/A	N/A	\$0	\$0
Coremaker	643	200						
Eliminated compressed air			\$961	100.0%	100.0%	100.0%	\$617,937	\$192,247
Enclosed conveyors, covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Non-silica cores and core coatings			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Furnace operator	170	170						
Control dust releases from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Well-maintained furnace emission control system			\$115	100.0%	100.0%	100.0%	\$19,652	\$19,652
Minimize dust generated by sand contamination of scrap			N/A	N/A	N/A	N/A	\$0	\$0
Control dust from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Pouring operator	227	151						
Operator booths or cabs			\$3,333	100.0%	0.0%	100.0%	\$504,810	\$504,810
Physical isolation of pouring area (create a pouring room)			N/A	N/A	N/A	N/A	\$0	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Affected by the	i iopose	o Onica		all Alternative	Jilica i L	a i LL oi 100 μg/iii			
Sector/Job Category - Control Requirements/Options		Workers Risk			Emplo Needing to Ac	rexposed oyees Control hieve I Level	Tota	l Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100	
Modify ventilation system to reduce airflow from other areas into the pouring area			N/A	N/A	N/A	N/A	\$0	\$0	
Shakeout operator	91	45							
Improve existing ventilation system efficiency (very large castings)			\$38,392	10.0%	100.0%	100.0%	\$347,767	\$173,884	
Improve existing ventilation system efficiency			\$9,385	90.0%	100.0%	100.0%	\$2,220,746	\$1,110,373	
Partially enclose process			\$13,330	100.0%	100.0%	100.0%	\$1,207,526	\$603,763	
Control emissions from associated operations - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0	
Knockout operator	82	53							
Installing and improving LEV			\$1,800	50.0%	100.0%	100.0%	\$213,875	\$139,019	
Installing and improving LEV			\$6,399	50.0%	100.0%	100.0%	\$760,444	\$494,288	
Installing and improving LEV			\$2,000	50.0%	100.0%	100.0%	\$237,639	\$154,465	
Reduce residual sand on castings			N/A	N/A	N/A	N/A	\$0	\$0	
Automate knockout process	-		N/A	N/A	N/A	N/A	\$0	\$0	
Abrasive blasting operator	469	279							
Improved maintenance for blasting cabinet			\$674	100.0%	100.0%	100.0%	\$316,494	\$188,389	
Cleaning/finishing operator	858	595							
LEV for workstations			\$4,999	50.0%	100.0%	100.0%	\$2,143,577	\$1,487,706	
LEV on hand tools			\$384	50.0%	100.0%	100.0%	\$164,477	\$114,152	
Eliminate compressed air (switch to vacuum)			\$376	100.0%	0.0%	100.0%	\$223,700	\$223,700	
Substitution with non-silica materials			N/A	N/A	N/A	N/A	\$0	\$0	
Process automation			N/A	N/A	N/A	N/A	\$0	\$0	
Wet methods			N/A	N/A	N/A	N/A	\$0	\$0	
Pre-cleaning with automated equipment			N/A	N/A	N/A	N/A	\$0	\$0	
Material handler	282	116							
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$525,739	\$216,481	

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options					Emple Needing to Ac	of Overexposed Employees eeding Control to Achieve Control Level		
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Maintenance operator	92	59						
Use low silica refractory			N/A	N/A	N/A	N/A	\$0	\$0
LEV for chipping tools			\$248	100.0%	100.0%	100.0%	\$22,863	\$14,698
Pre-wetting lining to be removed			\$416	100.0%	100.0%	100.0%	\$38,282	\$24,610
Maintaining moisture level in the refractory applied			\$208	100.0%	100.0%	100.0%	\$19,141	\$12,305
Also, use of precast refractories and automated equipment for powdered refractory materials			N/A	N/A	N/A	N/A	\$0	\$0
Housekeeping worker	54	22						
Controls not identified			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Non-Sand Casting Foundries								
Sand mixer (muller) operator	379	253						
LEV, mixer & muller hood			\$1,400	100.0%	100.0%	100.0%	\$530,499	\$353,666
Conveyor enclosures			\$6,674	100.0%	100.0%	100.0%	\$2,529,483	\$1,686,322
Bin and hopper ventilation			\$1,400	100.0%	100.0%	100.0%	\$530,499	\$353,666
Bucket elevator ventilation			\$2,133	100.0%	100.0%	100.0%	\$808,380	\$538,920
Screen ventilation			\$1,600	100.0%	100.0%	100.0%	\$606,285	\$404,190
Substitute silica-free materials			N/A	N/A	N/A	N/A	\$0	\$0
Molder	1,247	515						
Upgraded sand handling equipment - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Upgrade or install LEV			\$1,400	100.0%	0.0%	100.0%	\$721,249	\$721,249
Rigorous housekeeping- capital			\$202	100.0%	0.0%	100.0%	\$103,963	\$103,963
Rigorous housekeeping- labor			\$1,922	100.0%	0.0%	100.0%	\$990,381	\$990,381
Eliminate compressed air			N/A	N/A	N/A	N/A	\$0	\$0
Coremaker	1,073	334						
Eliminated compressed air			\$961	100.0%	100.0%	100.0%	\$1,030,768	\$320,683

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 $\mu g/m^3$

Sector/Job Category - Control Requirements/Options		Workers Risk			% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Enclosed conveyors, covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Non-silica cores and core coatings			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Furnace operator	284	284						
Control dust releases from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Well-maintained furnace emission control system			\$115	100.0%	100.0%	100.0%	\$32,780	\$32,780
Minimize dust generated by sand contamination of scrap			N/A	N/A	N/A	N/A	\$0	\$0
Pouring operator	379	253						
Control dust from adjacent processes - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Operator booths or cabs	•		\$3,333	100.0%	0.0%	100.0%	\$842,062	\$842,062
Physical isolation of pouring area (create a pouring room)			N/A	N/A	N/A	N/A	\$0	\$0
Modify ventilation system to reduce airflow from other areas into the pouring area			N/A	N/A	N/A	N/A	\$0	\$0
Shakeout operator	151	76						
Improve existing ventilation system efficiency (very large castings)			\$38,392	10.0%	100.0%	100.0%	\$580,103	\$290,052
Improve existing ventilation system efficiency			\$9,385	90.0%	100.0%	100.0%	\$2,220,746	\$1,110,373
Partially enclose process			\$13,330	100.0%	100.0%	100.0%	\$2,014,248	\$1,007,124
Control emissions from associated operations - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Knockout operator	137	89						
Installing and improving LEV			\$1,800	50.0%	100.0%	100.0%	\$213,875	\$139,019
Installing and improving LEV	•		\$6,399	50.0%	100.0%	100.0%	\$760,444	\$494,288

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Sector/Job Category - Control Requirements/Options	No. of Workers At Risk				% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Installing and improving LEV			\$2,000	50.0%	100.0%	100.0%	\$237,639	\$154,465
Reduce residual sand on castings			N/A	N/A	N/A	N/A	\$0	\$0
Automate knockout process			N/A	N/A	N/A	N/A	\$0	\$0
Abrasive blasting operator	783	466						
Improved maintenance for blasting cabinet			\$674	100.0%	100.0%	100.0%	\$527,936	\$314,248
Cleaning/finishing operator	1,431	993						
LEV for workstations			\$4,999	50.0%	100.0%	100.0%	\$3,575,654	\$2,481,611
LEV on hand tools			\$384	50.0%	100.0%	100.0%	\$274,361	\$190,415
Eliminate compressed air (switch to vacuum)			\$376	100.0%	0.0%	100.0%	\$373,149	\$373,149
Substitution with non-silica materials			N/A	N/A	N/A	N/A	\$0	\$0
Process automation			N/A	N/A	N/A	N/A	\$0	\$0
Wet methods			N/A	N/A	N/A	N/A	\$0	\$0
Pre-cleaning with automated equipment			N/A	N/A	N/A	N/A	\$0	\$0
Material handler	470	193						
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$876,974	\$361,107
Maintenance operator	154	99						
Use low silica refractory			N/A	N/A	N/A	N/A	\$0	\$0
LEV for chipping tools			\$248	100.0%	100.0%	100.0%	\$38,138	\$24,517
Pre-wetting lining to be removed			\$416	100.0%	100.0%	100.0%	\$63,858	\$41,052
Maintaining moisture level in the refractory applied			\$208	100.0%	100.0%	100.0%	\$31,929	\$20,526
Also, use of precast refractories and automated equipment for powdered refractory materials			N/A	N/A	N/A	N/A	\$0	\$0
Housekeeping worker	90	36						
Controls not identified			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Captive Foundries								

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers
Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μg/m³

% of Overexposed **Employees** No. of Workers **Needing Control Total Cost** At Risk Sector/Job Category - Control to Achieve Requirements/Options **Control Level** Cost per Percent 50 100 50 100 50 100 Worker **Applicability** Sand mixer (muller) operator 406 270 LEV, mixer & muller hood \$1400 100.0% 100.0% 100.0% \$567,675 \$378,450 Conveyor enclosures \$6.674 100.0% 100.0% 100.0% \$1,804,497 \$2,706,745 Bin and hopper ventilation \$1,400 100.0% 100.0% 100.0% \$567,675 \$378,450 100.0% 100.0% Bucket elevator ventilation \$2,133 100.0% \$865,029 \$576,686 Screen ventilation \$1.600 100.0% 100.0% 100.0% \$648,772 \$432.515 N/A N/A \$0 \$0 Substitute silica-free materials N/A N/A 1,334 551 Molder Upgraded sand handling equipment - covered N/A N/A N/A N/A \$0 \$0 elsewhere \$1,400 \$771,793 Upgrade or install LEV 100.0% 0.0% 100.0% \$771,793 \$202 100.0% 0.0% \$111,249 Rigorous housekeeping- capital 100.0% \$111,249 Rigorous housekeeping-labor \$1.922 100.0% 0.0% 100.0% \$1,059,785 \$1,059,785 N/A N/A N/A N/A \$0 \$0 Eliminate compressed air Coremaker 1.148 357 Eliminated compressed air \$961 100.0% 100.0% 100.0% \$1,103,002 \$343,156 N/A N/A N/A N/A \$0 \$0 Enclosed conveyors, covered elsewhere N/A \$0 \$0 N/A N/A N/A Non-silica cores and core coatings Professional-level cleaning N/A N/A N/A N/A \$0 \$0 304 304 Furnace operator Control dust releases from adjacent N/A N/A N/A N/A \$0 \$0 processes - covered elsewhere Well-maintained furnace emission control \$115 100.0% 100.0% 100.0% \$35,078 \$35,078 system Minimize dust generated by sand N/A N/A N/A N/A \$0 \$0 contamination of scrap 406 270 Pouring operator Control dust from adjacent processes -N/A N/A \$0 \$0 N/A N/A covered elsewhere

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Sector/Job Category - Control Requirements/Options	No. of Workers At Risk		Out to the second		Employed Needing to Ac	rexposed oyees Control hieve Level		
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Operator booths or cabs			\$3,333	100.0%	0.0%	100.0%	\$901,072	\$901,072
Physical isolation of pouring area (create a pouring room)			N/A	N/A	N/A	N/A	\$0	\$0
Modify ventilation system to reduce airflow from other areas into the pouring area			N/A	N/A	N/A	N/A	\$0	\$0
Shakeout operator	162	81						
Improve existing ventilation system efficiency (very large castings)			\$38,392	10.0%	100.0%	100.0%	\$620,756	\$310,378
Improve existing ventilation system efficiency			\$9,385	90.0%	100.0%	100.0%	\$2,220,746	\$1,110,373
Partially enclose process			\$13,330	100.0%	100.0%	100.0%	\$2,155,403	\$1,077,701
Control emissions from associated operations - covered elsewhere			N/A	N/A	N/A	N/A	\$0	\$0
Knockout operator	146	95						
Installing and improving LEV			\$1,800	50.0%	100.0%	100.0%	\$213,875	\$139,019
Installing and improving LEV			\$6,399	50.0%	100.0%	100.0%	\$760,444	\$494,288
Installing and improving LEV			\$2,000	50.0%	100.0%	100.0%	\$237,639	\$154,465
Reduce residual sand on castings			N/A	N/A	N/A	N/A	\$0	\$0
Automate knockout process			N/A	N/A	N/A	N/A	\$0	\$0
Abrasive blasting operator	838	499						
Improved maintenance for blasting cabinet			\$674	100.0%	100.0%	100.0%	\$564,933	\$336,270
Cleaning/finishing operator	1,531	1,062						
LEV for workstations			\$4,999	50.0%	100.0%	100.0%	\$3,826,230	\$2,655,518
LEV on hand tools			\$384	50.0%	100.0%	100.0%	\$293,588	\$203,759
Eliminate compressed air (switch to vacuum)			\$376	100.0%	0.0%	100.0%	\$399,299	\$399,299
Substitution with non-silica materials			N/A	N/A	N/A	N/A	\$0	\$0
Process automation			N/A	N/A	N/A	N/A	\$0	\$0
Wet methods			N/A	N/A	N/A	N/A	\$0	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of V At R	/orkers		an Alternative	% of Ove	rexposed oyees Control hieve	-	l Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Pre-cleaning with automated equipment			N/A	N/A	N/A	N/A	\$0	\$0
Material handler	503	207						
Enclosed, ventilated cab			\$1,867	100.0%	100.0%	100.0%	\$938,431	\$386,413
Maintenance operator	201	129						
Use low silica refractory			N/A	N/A	N/A	N/A	\$0	\$0
LEV for chipping tools			\$248	100.0%	100.0%	100.0%	\$49,990	\$32,137
Pre-wetting lining to be removed			\$416	100.0%	100.0%	100.0%	\$83,704	\$53,809
Maintaining moisture level in the refractory applied			\$208	100.0%	100.0%	100.0%	\$41,852	\$26,905
Also, use of precast refractories and automated equipment for powdered refractory materials			N/A	N/A	N/A	N/A	\$0	\$0
Housekeeping worker	97	39						
Controls not identified			N/A	N/A	N/A	N/A	\$0	\$0
Professional-level cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Railroads								
Ballast dumper	1,671	499						
Spray system for right-of-way maintenance vehicles			N/A	N/A	N/A	N/A	\$6,686,499	\$6,686,499
Machine operator	3,959	95						
Spray system for right-of-way maintenance vehicles			N/A	N/A	N/A	N/A	\$8,919,027	\$8,919,027
Asphalt Roofing Materials								
Production operator	1,497	749						
Process enclosure			\$242	100.0%	100.0%	100.0%	\$361,950	\$180,975
Enhanced ventilation			\$933	100.0%	100.0%	100.0%	\$1,397,137	\$698,568
Rigorous housekeeping- capital			\$252	100.0%	100.0%	100.0%	\$377,603	\$188,802
Rigorous housekeeping- labor			\$1,504	100.0%	100.0%	100.0%	\$2,251,610	\$1,125,805
Material handler	466	186						

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of W At R				Emplo Needing to Ac	rexposed oyees Control hieve Level	Total	l Cost
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
No additional controls required			N/A	N/A	N/A	N/A	\$0	\$0
Porcelain Enameling								
Preparer	1,877	704						
Well-ventilated bag dumping stations			\$2,017	100.0%	100.0%	100.0%	\$3,785,026	\$1,419,385
Porcelain applicator	1,877	704						
Improved LEV for spray booths and enclosures			\$333	100.0%	100.0%	100.0%	\$625,417	\$234,531
Spray booth maintenance			\$58	100.0%	100.0%	100.0%	\$108,533	\$40,700
Mineral Processing								
Production worker	891	297						
Enclosed ventilation equipment			\$242	50.0%	100.0%	100.0%	\$107,740	\$35,913
Conveyor ventilation			\$6,532	50.0%	100.0%	100.0%	\$2,911,152	\$970,384
Improved maintenance			\$1,139	50.0%	100.0%	100.0%	\$507,587	\$169,196
Professional cleaning			N/A	N/A	N/A	N/A	\$0	\$0
Improved area cleanup with HEPA			\$252	100.0%	100.0%	100.0%	\$224,799	\$74,933
Enhanced housekeeping with HEPA vacuums			\$1,825	100.0%	100.0%	100.0%	\$1,626,882	\$542,294
Dental Equipment and Supplies								
Production operator	274	137						
Ventilated bag dumping stations with bag compactor			\$2,017	50.0%	100.0%	100.0%	\$276,287	\$138,143
Enclosed and ventilated mixing equipment			\$1,400	50.0%	100.0%	100.0%	\$191,739	\$95,870
Increased LEV maintenance			\$280	100.0%	100.0%	100.0%	\$76,590	\$38,295
Asphalt Paving Products								
Plant operator	0	0						
No overexposures			\$0	N/A	N/A	N/A	\$0	\$0
Front-end loader operator	48	0						
Enclosed cabs			\$0	100.0%	100.0%	100.0%	\$179,111	\$0

Table V-A-3: Total Control Costs by Sector, Job Category, and Control for General Industry and Maritime Employers

Affected by the Proposed Silica PEL and an Alternative Silica PEL of 100 μ g/m³

Sector/Job Category - Control Requirements/Options	No. of W At R				% of Overexposed Employees Needing Control to Achieve Control Level		Total Cost	
	50	100	Cost per Worker	Percent Applicability	50	100	50	100
Maintenance worker	0	0						
No overexposures			\$0	N/A	N/A	N/A	\$0	\$0
Quality control worker	0	0						
No overexposures			\$0	N/A	N/A	N/A	\$0	\$0
Refractory Repair								
Production operator	153	77						
Portable exhaust ventilation			\$1,066	33.3%	100.0%	100.0%	\$54,387	\$27,194
Wet methods for chipping tools			\$117	33.3%	100.0%	100.0%	\$5,949	\$2,975
LEV for chipping tools			\$1,600	33.3%	100.0%	100.0%	\$81,581	\$40,790
Improved maintenance for spay guns			\$344	100.0%	100.0%	100.0%	\$52,690	\$26,345
All Workers [a]	122,317	77,871				_	\$241,498,924	\$155,394,667

[[]a] Excludes abrasive blasters in shipyards (NAICS 336611; 336612)

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2007b) and ERG (2011).

APPENDIX V-B

Preliminary Compliance Costs for Small Entities (as defined by SBA) and Very Small Entities (fewer than twenty employees)

Affected by the Proposed Silica Standard

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
	Asphalt paving mixture							
324121	and block	\$100,144	\$1,563	\$5,765	\$555	\$31,697	\$581	\$140,305
	manufacturing							
324122	Asphalt shingle and	\$606,427	\$31,487	\$200,036	\$10,880	\$12,040	\$11,745	\$872,614
324122	roofing materials	Ψ000,421	ψ51,407	Ψ200,030	ψ10,000	ψ12,040	ψ11,743	ψ0/2,014
325510	Paint and coating	\$0	\$10,269	\$37,889	\$3,644	\$16,100	\$3,816	\$71,718
323310	manufacturing	ΨΟ	ψ10,209	ψ57,009	ψ5,044	ψ10,100	ψ3,010	Ψ7 1,7 10
	Vitreous china							
327111	plumbing fixtures &	\$157,739	\$10,690	\$51,628	\$3,744	\$4,053	\$3,990	\$231,845
327111	bathroom accessories	Ψ137,733	φ10,090	ψ31,020	ψ3,744	ψ4,000	ψ3,990	Ψ231,043
	manufacturing							
	Vitreous china, fine							
327112	earthenware, & other	\$1,203,753	\$81,945	\$475,652	\$29,081	\$33,593	\$30,448	\$1,854,472
327112	pottery product	φ1,203,733	φο1,943	φ47 3,032	φ29,001	φ33,393	φ30,446	φ1,004,472
	manufacturing							
327113	Porcelain electrical	\$652,017	\$44,386	\$257,638	\$15,752	\$18,196	\$16,492	\$1,004,480
327 113	supply mfg	φ032,017	φ44,360	φ237,036	φ13,732	φ10,190	φ10,492	φ1,004,400
327121	Brick and structural	\$2,657,426	\$59,168	\$280,688	\$20,998	\$22,007	\$21,985	\$3,062,272
327 121	clay mfg	φ2,037,420	φ39,100	Ψ200,000	Ψ20,990	φ22,007	φ21,903	φ3,002,212
327122	Ceramic wall and floor	\$1,899,845	\$42,301	\$200,669	\$15,012	\$15,733	\$15,718	\$2,189,278
327 122	tile mfg	φ1,099,045	φ42,30 l	φ200,009	φ13,012	φ15,735	φ13,716	φ2, 109,270
327123	Other structural clay	\$443,280	\$9,870	\$46,821	\$3,503	\$3,671	\$3,667	\$510,811
321 123	product mfg	\$443,200	φ 9 ,670	Ψ40,0∠ I	φ3,303	φ3,07 i	φ3,00 <i>1</i>	कुछ १७,७ १ ।
327124	Clay refractory	\$407.00G		\$62,720	\$3,143	¢7 724	\$2.200	\$212 OSE
321124	manufacturing	\$127,226	\$8,855	Φ0Z,1ZU	Ф 3,143	\$7,731	\$3,290	\$212,965

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327125	Nonclay refractory manufacturing	\$133,555	\$9,254	\$54,536	\$3,241	\$7,472	\$3,454	\$211,512
327211	Flat glass manufacturing	\$227,805	\$8,960	\$29,108	\$3,138	\$2,800	\$3,344	\$275,155
327212	Other pressed and blown glass and glassware manufacturing	\$202,359	\$7,710	\$25,085	\$2,700	\$2,400	\$2,878	\$243,132
327213	Glass container manufacturing	\$48,107	\$1,833	\$5,963	\$639	\$571	\$684	\$57,797
327320	Ready-mixed concrete manufacturing	\$4,148,637	\$1,103,956	\$4,144,601	\$391,774	\$291,395	\$410,198	\$10,490,561
327331	Concrete block and brick mfg	\$1,834,896	\$138,710	\$712,642	\$49,226	\$75,896	\$51,541	\$2,862,910
327332	Concrete pipe mfg	\$924,057	\$69,855	\$358,887	\$24,790	\$38,221	\$25,956	\$1,441,766
327390	Other concrete product mfg	\$5,657,090	\$427,652	\$2,197,114	\$151,766	\$233,990	\$158,903	\$8,826,516
327991	Cut stone and stone product manufacturing	\$5,286,256	\$388,777	\$1,949,133	\$137,970	\$121,837	\$144,458	\$8,028,431
327992	Ground or treated mineral and earth manufacturing	\$1,588,541	\$23,007	\$455,230	\$8,165	\$25,159	\$8,549	\$2,108,649
327993	Mineral wool manufacturing	\$238,858	\$9,750	\$32,455	\$3,419	\$3,026	\$3,637	\$291,145

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327999	All other misc. nonmetallic mineral product mfg	\$724,387	\$54,761	\$281,339	\$19,434	\$29,962	\$20,347	\$1,130,230
331111	Iron and steel mills	\$315,559	\$17,939	\$72,403	\$6,129	\$5,836	\$6,691	\$424,557
331112	Electrometallurgical ferroalloy product manufacturing	\$3,707	\$211	\$851	\$72	\$69	\$79	\$4,987
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$62,639	\$3,552	\$14,556	\$1,239	\$1,222	\$1,328	\$84,537
331221	Rolled steel shape manufacturing	\$31,618	\$1,793	\$7,348	\$625	\$617	\$670	\$42,672
331222	Steel wire drawing	\$42,648	\$2,419	\$9,911	\$843	\$832	\$904	\$57,557
331314	Secondary smelting and alloying of aluminum	\$11,347	\$644	\$2,607	\$222	\$215	\$241	\$15,277
331423	Secondary smelting, refining, and alloying of copper	\$3,112	\$177	\$729	\$61	\$60	\$66	\$4,206
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$13,583	\$771	\$3,183	\$268	\$264	\$288	\$18,357
331511	Iron foundries	\$3,730,144	\$212,862	\$1,133,208	\$75,541	\$81,534	\$79,093	\$5,312,382
331512	Steel investment foundries	\$1,199,284	\$68,203	\$363,147	\$24,204	\$25,192	\$25,342	\$1,705,373

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331513	Steel foundries (except investment)	\$1,770,847	\$101,054	\$537,978	\$35,862	\$38,708	\$37,549	\$2,521,998
331524	Aluminum foundries (except die-casting)	\$3,035,274	\$172,615	\$919,091	\$61,258	\$63,759	\$64,139	\$4,316,135
331525	Copper foundries (except die-casting)	\$1,122,571	\$63,840	\$339,918	\$22,656	\$23,581	\$23,721	\$1,596,288
331528	Other nonferrous foundries (except diecasting)	\$436,250	\$24,809	\$132,098	\$8,804	\$9,164	\$9,218	\$620,344
332111	Iron and steel forging	\$33,266	\$1,898	\$10,106	\$674	\$727	\$705	\$47,376
332112	Nonferrous forging	\$9,167	\$523	\$2,785	\$186	\$200	\$194	\$13,056
332115	Crown and closure manufacturing	\$3,567	\$204	\$1,084	\$72	\$78	\$76	\$5,080
332116	Metal stamping	\$148,935	\$8,499	\$45,246	\$3,016	\$3,255	\$3,158	\$212,110
332117	Powder metallurgy part manufacturing	\$12,314	\$703	\$3,741	\$249	\$269	\$261	\$17,537
332211	Cutlery and flatware (except precious) manufacturing	\$7,316	\$417	\$2,222	\$148	\$160	\$155	\$10,419
332212	Hand and edge tool manufacturing	\$61,509	\$3,510	\$18,686	\$1,246	\$1,344	\$1,304	\$87,599
332213	Saw blade and handsaw manufacturing	\$6,474	\$369	\$1,967	\$131	\$142	\$137	\$9,221

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332214	Kitchen utensil, pot, and pan manufacturing	\$7,355	\$420	\$2,234	\$149	\$161	\$156	\$10,475
332323	Ornamental and architectural metal work	\$22,284	\$869	\$4,342	\$308	\$482	\$323	\$28,608
332439	Other metal container manufacturing	\$30,795	\$1,757	\$9,355	\$624	\$673	\$653	\$43,857
332510	Hardware manufacturing	\$55,146	\$3,147	\$16,753	\$1,117	\$1,205	\$1,169	\$78,538
332611	Spring (heavy gauge) manufacturing	\$9,880	\$564	\$3,002	\$200	\$216	\$209	\$14,071
332612	Spring (light gauge) manufacturing	\$25,858	\$1,476	\$7,855	\$524	\$565	\$548	\$36,826
332618	Other fabricated wire product manufacturing	\$79,768	\$4,552	\$24,233	\$1,615	\$1,744	\$1,691	\$113,603
332710	Machine shops	\$724,969	\$41,371	\$220,243	\$14,682	\$15,847	\$15,372	\$1,032,483
332812	Metal coating and allied services	\$1,939,689	\$75,849	\$379,617	\$26,918	\$42,100	\$28,183	\$2,492,357
332911	Industrial valve manufacturing	\$37,580	\$2,145	\$11,417	\$761	\$821	\$797	\$53,520
332912	Fluid power valve and hose fitting manufacturing	\$29,289	\$1,671	\$8,898	\$593	\$640	\$621	\$41,712
332913	Plumbing fixture fitting and trim manufacturing	\$13,367	\$763	\$4,061	\$271	\$292	\$283	\$19,037

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332919	Other metal valve and pipe fitting manufacturing	\$21,499	\$1,227	\$6,531	\$435	\$470	\$456	\$30,618
332991	Ball and roller bearing manufacturing	\$10,032	\$570	\$2,415	\$198	\$196	\$213	\$13,624
332996	Fabricated pipe and pipe fitting manufacturing	\$52,405	\$2,990	\$15,920	\$1,061	\$1,145	\$1,111	\$74,633
332997	Industrial pattern manufacturing	\$14,582	\$832	\$4,430	\$295	\$319	\$309	\$20,767
332998	Enameled iron and metal sanitary ware manufacturing	\$10,576	\$505	\$2,113	\$176	\$220	\$189	\$13,779
332999	All other miscellaneous fabricated metal product manufacturing	\$162,076	\$9,249	\$49,238	\$3,282	\$3,543	\$3,437	\$230,825
333319	Other commercial and service industry machinery manufacturing	\$86,939	\$4,961	\$26,412	\$1,761	\$1,900	\$1,843	\$123,816
333411	Air purification equipment manufacturing	\$18,973	\$1,083	\$5,764	\$384	\$415	\$402	\$27,021
333412	Industrial and commercial fan and blower manufacturing	\$19,063	\$1,088	\$5,791	\$386	\$417	\$404	\$27,149

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333414	Heating equipment (except warm air furnaces) manufacturing	\$31,813	\$1,815	\$9,665	\$644	\$695	\$675	\$45,308
333511	Industrial mold manufacturing	\$100,560	\$5,739	\$30,550	\$2,036	\$2,198	\$2,132	\$143,216
333512	Machine tool (metal cutting types) manufacturing	\$31,488	\$1,797	\$9,566	\$638	\$688	\$668	\$44,845
333513	Machine tool (metal forming types) manufacturing	\$21,321	\$1,217	\$6,477	\$432	\$466	\$452	\$30,365
333514	Special die and tool, die set, jig, and fixture manufacturing	\$143,060	\$8,164	\$43,461	\$2,897	\$3,127	\$3,033	\$203,742
333515	Cutting tool and machine tool accessory manufacturing	\$73,244	\$4,180	\$22,251	\$1,483	\$1,601	\$1,553	\$104,313
333516	Rolling mill machinery and equipment manufacturing	\$6,744	\$385	\$2,049	\$137	\$147	\$143	\$9,604
333518	Other metalworking machinery manufacturing	\$26,934	\$1,537	\$8,183	\$545	\$589	\$571	\$38,359

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$17,615	\$1,005	\$5,351	\$357	\$385	\$374	\$25,087
333613	Mechanical power transmission equipment manufacturing	\$18,384	\$1,049	\$5,585	\$372	\$402	\$390	\$26,182
333911	Pump and pumping equipment manufacturing	\$29,042	\$1,657	\$8,823	\$588	\$635	\$616	\$41,360
333912	Air and gas compressor manufacturing	\$16,815	\$960	\$5,108	\$341	\$368	\$357	\$23,948
333991	Power-driven handtool manufacturing	\$6,928	\$395	\$2,105	\$140	\$151	\$147	\$9,867
333992	Welding and soldering equipment manufacturing	\$16,251	\$927	\$4,937	\$329	\$355	\$345	\$23,144
333993	Packaging machinery manufacturing	\$38,529	\$2,199	\$11,705	\$780	\$842	\$817	\$54,872
333994	Industrial process furnace and oven manufacturing	\$24,167	\$1,379	\$7,342	\$489	\$528	\$512	\$34,418

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333995	Fluid power cylinder and actuator manufacturing	\$22,644	\$1,292	\$6,879	\$459	\$495	\$480	\$32,249
333996	Fluid power pump and motor manufacturing	\$10,714	\$611	\$3,255	\$217	\$234	\$227	\$15,258
333997	Scale and balance (except laboratory) manufacturing	\$8,516	\$486	\$2,587	\$172	\$186	\$181	\$12,129
333999	All other miscellaneous general purpose machinery manufacturing	\$86,635	\$4,944	\$26,320	\$1,754	\$1,894	\$1,837	\$123,384
334518	Watch, clock, and part manufacturing	\$4,667	\$266	\$1,418	\$95	\$102	\$99	\$6,646
335211	Electric housewares and household fans	\$2,707	\$104	\$392	\$35	\$48	\$39	\$3,326
335221	Household cooking appliance manufacturing	\$5,307	\$205	\$768	\$70	\$95	\$76	\$6,521
335222	Household refrigerator and home freezer manufacturing	\$26,139	\$1,009	\$3,784	\$343	\$468	\$376	\$32,118
335224	Household laundry equipment manufacturing	\$24,839	\$958	\$3,596	\$326	\$444	\$357	\$30,521

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
335228	Other major household appliance manufacturing	\$1,496	\$58	\$289	\$21	\$32	\$22	\$1,917
336111	Automobile manufacturing	\$218,635	\$12,444	\$49,525	\$4,203	\$3,914	\$4,636	\$293,357
336112	Light truck and utility vehicle manufacturing	\$301,676	\$17,170	\$68,335	\$5,799	\$5,400	\$6,397	\$404,778
336120	Heavy duty truck manufacturing	\$93,229	\$5,303	\$21,179	\$1,800	\$1,692	\$1,977	\$125,181
336211	Motor vehicle body manufacturing	\$138,218	\$7,849	\$32,738	\$2,722	\$2,674	\$2,931	\$187,131
336212	Truck trailer manufacturing	\$38,013	\$2,169	\$11,548	\$770	\$831	\$806	\$54,137
336213	Motor home manufacturing	\$62,548	\$3,557	\$14,284	\$1,212	\$1,147	\$1,326	\$84,073
336311	Carburetor, piston, piston ring, and valve manufacturing	\$7,211	\$411	\$2,191	\$146	\$158	\$153	\$10,269
336312	Gasoline engine and engine parts manufacturing	\$48,844	\$2,774	\$11,239	\$954	\$919	\$1,036	\$65,767
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$53,045	\$3,013	\$12,206	\$1,036	\$999	\$1,125	\$71,423

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$18,951	\$1,077	\$4,341	\$369	\$352	\$402	\$25,492
336340	Motor vehicle brake system manufacturing	\$24,424	\$1,387	\$5,620	\$477	\$460	\$518	\$32,886
336350	Motor vehicle transmission and power train parts manufacturing	\$34,839	\$1,980	\$7,988	\$677	\$646	\$739	\$46,869
336370	Motor vehicle metal stamping	\$111,753	\$6,377	\$33,950	\$2,263	\$2,443	\$2,370	\$159,156
336399	All other motor vehicle parts manufacturing	\$125,811	\$7,146	\$28,950	\$2,458	\$2,368	\$2,668	\$169,401
336611	Ship building and repair	\$7,868,944	\$0	\$412,708	\$397,735	\$26,973	\$43,259	\$8,749,619
336612	Boat building	\$2,304,547	\$0	\$164,659	\$121,002	\$9,212	\$12,669	\$2,612,088
336992	Military armored vehicle, tank, and tank component manufacturing	\$20,097	\$1,142	\$4,786	\$394	\$383	\$426	\$27,227
337215	Showcase, partition, shelving, and locker manufacturing	\$124,142	\$7,084	\$37,714	\$2,514	\$2,714	\$2,632	\$176,800
339114	Dental equipment and supplies manufacturing	\$195,887	\$11,481	\$42,361	\$4,075	\$3,323	\$4,266	\$261,393

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
339116	Dental laboratories	\$86,572	\$52,020	\$909,690	\$18,461	\$311,198	\$19,329	\$1,397,271
339911	Jewelry (except costume) manufacturing	\$210,599	\$161,062	\$832,346	\$57,158	\$71,043	\$59,846	\$1,392,054
339913	Jewelers' materials and lapidary work manufacturing	\$38,924	\$29,768	\$153,837	\$10,564	\$13,130	\$11,061	\$257,285
339914	Costume jewelry and novelty manufacturing	\$51,107	\$26,031	\$134,689	\$9,238	\$11,421	\$9,672	\$242,158
339950	Sign manufacturing	\$199,057	\$8,741	\$45,788	\$3,102	\$4,874	\$3,248	\$264,810
423840	Industrial supplies, wholesalers	\$70,777	\$6,536	\$58,061	\$2,355	\$3,472	\$2,411	\$143,614
482110	Rail transportation	\$0	\$0	\$0	\$0	\$0	\$0	\$0
621210	Dental offices	\$23,734	\$14,251	\$238,739	\$5,027	\$83,123	\$5,299	\$370,174
Total – G Maritime	General Industry and	\$57,563,800	\$3,823,972	\$19,871,006	\$1,874,031	\$1,910,195	\$1,477,054	\$86,520,059
236100	Residential Building Construction	\$11,679,003	\$1,883,739	\$1,497,930	\$1,617,853	\$1,189,401	\$660,009	\$18,527,934
236200	Nonresidential Building Construction	\$9,960,350	\$4,404,548	\$2,858,810	\$3,799,420	\$2,806,661	\$613,396	\$24,443,185
237100	Utility System Construction	\$19,630,172	\$1,785,513	\$3,443,515	\$1,565,272	\$3,710,478	\$598,251	\$30,733,201
237200	Land Subdivision	\$315,507	\$27,818	\$75,890	\$24,809	\$91,833	\$10,474	\$546,331
237300	Highway, Street, and Bridge Construction	\$7,157,915	\$1,133,037	\$1,857,199	\$985,682	\$2,351,262	\$271,898	\$13,756,992

Table V-B-1: Total Costs for Small Entities Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
	Other Heavy and Civil							
237900	Engineering	\$3,111,938	\$315,143	\$706,418	\$275,186	\$922,202	\$96,598	\$5,427,484
	Construction							
	Foundation, Structure,							
238100	and Building Exterior	\$46,297,621	\$41,383,516	\$13,035,158	\$35,368,755	\$10,480,139	\$5,594,969	\$152,160,159
	Contractors							
238200	Building Equipment	\$2,170,740	\$251,217	¢204.004	¢240 E40	\$375,396	\$91,290	\$3,399,252
230200	Contractors			\$291,091	\$219,518	Ф375,396		
238300	Building Finishing	¢25 220 049	\$2,094,721	£4 000 220	\$4.264.E2E	64,535 \$2,351,132	\$747,130	\$36,777,673
230300	Contractors	\$25,230,918		\$1,989,238	\$4,364,535			
220000	Other Specialty Trade	¢22.744.052	¢2.462.442	£4.744.040	#2.044.050	ФЕ 700 074	\$2,200,768	# E0 400 040
238900	Contractors	\$33,741,853	\$3,162,113	\$4,744,348	\$3,814,256	\$5,768,874		\$53,432,213
000000	State and Local	¢4 4E0 4C0	¢240.740	£440.400	¢402.447	\$ E76.000	¢440 F00	\$2.00E.0EE
999000	Governments [a]	\$1,458,463	\$210,748	\$418,122	\$183,147	\$576,896	\$148,580	\$2,995,955
Total C	Total Construction \$160		\$56,652,114	\$30,917,719	\$52,218,432	\$30,624,274	\$11,033,362	\$342,200,381

[[]a] Applies to state and local governments in State-Plan States.

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2011).

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
324121	Asphalt paving mixture and block manufacturing	\$19,148	\$301	\$1,381	\$108	\$6,721	\$111	\$27,770
324122	Asphalt shingle and roofing materials	\$52,113	\$2,736	\$27,108	\$986	\$1,302	\$1,009	\$85,253
325510	Paint and coating manufacturing	\$0	\$2,350	\$10,789	\$847	\$4,057	\$867	\$18,910
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$16,177	\$1,109	\$8,011	\$400	\$501	\$409	\$26,606
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$454,734	\$31,176	\$225,182	\$11,235	\$14,073	\$11,502	\$747,902
327113	Porcelain electrical supply mfg	\$48,534	\$3,327	\$24,034	\$1,199	\$1,502	\$1,228	\$79,824
327121	Brick and structural clay mfg	\$64,979	\$1,457	\$8,601	\$525	\$597	\$538	\$76,696
327122	Ceramic wall and floor tile mfg	\$324,376	\$7,274	\$42,937	\$2,621	\$2,979	\$2,684	\$382,871
327123	Other structural clay product mfg	\$56,913	\$1,276	\$7,534	\$460	\$523	\$471	\$67,176
327124	Clay refractory manufacturing	\$16,531	\$1,159	\$10,213	\$418	\$1,114	\$428	\$29,861

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327125	Nonclay refractory manufacturing	\$18,856	\$1,322	\$11,649	\$476	\$1,271	\$488	\$34,061
327211	Flat glass manufacturing	\$3,485	\$139	\$674	\$50	\$52	\$51	\$4,450
327212	Other pressed and blown glass and glassware manufacturing	\$69,291	\$2,671	\$12,995	\$962	\$990	\$985	\$87,895
327213	Glass container manufacturing	\$3,784	\$146	\$710	\$51	\$54	\$54	\$4,798
327320	Ready-mixed concrete manufacturing	\$679,165	\$182,012	\$850,308	\$65,591	\$52,902	\$67,153	\$1,897,131
327331	Concrete block and brick mfg	\$327,459	\$24,931	\$159,382	\$8,984	\$15,021	\$9,198	\$544,975
327332	Concrete pipe mfg	\$70,104	\$5,337	\$34,121	\$1,923	\$3,216	\$1,969	\$116,670
327390	Other concrete product mfg	\$1,132,938	\$86,255	\$551,429	\$31,083	\$51,968	\$31,823	\$1,885,496
327991	Cut stone and stone product manufacturing	\$1,703,909	\$126,205	\$787,342	\$45,480	\$43,551	\$46,563	\$2,753,051
327992	Ground or treated mineral and earth manufacturing	\$278,008	\$4,055	\$99,842	\$1,461	\$4,883	\$1,496	\$389,745
327993	Mineral wool manufacturing	\$37,709	\$1,556	\$7,603	\$561	\$571	\$574	\$48,575

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327999	All other misc. nonmetallic mineral product mfg	\$187,387	\$14,266	\$91,206	\$5,141	\$8,595	\$5,264	\$311,859
331111	Iron and steel mills	\$6,210	\$357	\$2,364	\$129	\$151	\$132	\$9,342
331112	Electrometallurgical ferroalloy product manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$1,134	\$65	\$432	\$23	\$27	\$24	\$1,706
331221	Rolled steel shape manufacturing	\$1,072	\$62	\$408	\$22	\$26	\$23	\$1,612
331222	Steel wire drawing	\$1,954	\$112	\$744	\$40	\$47	\$41	\$2,939
331314	Secondary smelting and alloying of aluminum	\$833	\$48	\$317	\$17	\$20	\$18	\$1,254
331423	Secondary smelting, refining, and alloying of copper	\$0	\$0	\$0	\$0	\$0	\$0	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$1,926	\$111	\$733	\$40	\$47	\$41	\$2,897
331511	Iron foundries	\$219,725	\$12,628	\$83,654	\$4,551	\$5,326	\$4,659	\$330,543

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331512	Steel investment foundries	\$31,896	\$1,827	\$12,104	\$658	\$743	\$674	\$47,902
331513	Steel foundries (except investment)	\$108,133	\$6,215	\$41,169	\$2,240	\$2,621	\$2,293	\$162,670
331524	Aluminum foundries (except die-casting)	\$334,945	\$19,184	\$127,104	\$6,913	\$7,803	\$7,078	\$503,027
331525	Copper foundries (except die-casting)	\$246,442	\$14,115	\$93,519	\$5,087	\$5,741	\$5,208	\$370,110
331528	Other nonferrous foundries (except die-casting)	\$107,898	\$6,180	\$40,945	\$2,227	\$2,514	\$2,280	\$162,043
332111	Iron and steel forging	\$2,718	\$156	\$1,035	\$56	\$66	\$58	\$4,089
332112	Nonferrous forging	\$521	\$30	\$198	\$11	\$13	\$11	\$784
332115	Crown and closure manufacturing	\$660	\$38	\$251	\$14	\$16	\$14	\$992
332116	Metal stamping	\$18,051	\$1,037	\$6,872	\$374	\$438	\$383	\$27,154
332117	Powder metallurgy part manufacturing	\$1,378	\$79	\$524	\$29	\$33	\$29	\$2,072
332211	Cutlery and flatware (except precious) manufacturing	\$1,474	\$85	\$561	\$31	\$36	\$31	\$2,217
332212	Hand and edge tool manufacturing	\$12,986	\$746	\$4,944	\$269	\$315	\$275	\$19,535

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332213	Saw blade and handsaw manufacturing	\$1,526	\$88	\$581	\$32	\$37	\$32	\$2,296
332214	Kitchen utensil, pot, and pan manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
332323	Ornamental and architectural metal work	\$7,130	\$280	\$1,741	\$101	\$171	\$103	\$9,527
332439	Other metal container manufacturing	\$3,509	\$202	\$1,336	\$73	\$85	\$74	\$5,279
332510	Hardware manufacturing	\$7,886	\$453	\$3,002	\$163	\$191	\$167	\$11,863
332611	Spring (heavy gauge) manufacturing	\$1,281	\$74	\$488	\$27	\$31	\$27	\$1,927
332612	Spring (light gauge) manufacturing	\$3,297	\$189	\$1,255	\$68	\$80	\$70	\$4,960
332618	Other fabricated wire product manufacturing	\$13,259	\$762	\$5,048	\$275	\$321	\$281	\$19,946
332710	Machine shops	\$276,608	\$15,897	\$105,311	\$5,729	\$6,705	\$5,865	\$416,115
332812	Metal coating and allied services	\$459,014	\$18,077	\$112,580	\$6,514	\$11,049	\$6,669	\$613,903

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332911	Industrial valve manufacturing	\$3,913	\$225	\$1,490	\$81	\$95	\$83	\$5,886
332912	Fluid power valve and hose fitting manufacturing	\$2,985	\$172	\$1,137	\$62	\$72	\$63	\$4,491
332913	Plumbing fixture fitting and trim manufacturing	\$1,000	\$57	\$381	\$21	\$24	\$21	\$1,505
332919	Other metal valve and pipe fitting manufacturing	\$1,801	\$104	\$686	\$37	\$44	\$38	\$2,710
332991	Ball and roller bearing manufacturing	\$753	\$43	\$287	\$16	\$18	\$16	\$1,132
332996	Fabricated pipe and pipe fitting manufacturing	\$8,278	\$476	\$3,152	\$171	\$201	\$176	\$12,453
332997	Industrial pattern manufacturing	\$5,928	\$341	\$2,257	\$123	\$144	\$126	\$8,917
332998	Enameled iron and metal sanitary ware manufacturing	\$2,306	\$111	\$729	\$40	\$59	\$41	\$3,287

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332999	All other miscellaneous fabricated metal product manufacturing	\$37,213	\$2,139	\$14,168	\$771	\$902	\$789	\$55,981
333319	Other commercial and service industry machinery manufacturing	\$13,146	\$756	\$5,005	\$272	\$319	\$279	\$19,776
333411	Air purification equipment manufacturing	\$3,154	\$181	\$1,201	\$65	\$76	\$67	\$4,745
333412	Industrial and commercial fan and blower manufacturing	\$1,114	\$64	\$424	\$23	\$27	\$24	\$1,675
333414	Heating equipment (except warm air furnaces) manufacturing	\$4,046	\$233	\$1,541	\$84	\$98	\$86	\$6,087
333511	Industrial mold manufacturing	\$29,075	\$1,671	\$11,069	\$602	\$705	\$616	\$43,738
333512	Machine tool (metal cutting types) manufacturing	\$5,821	\$335	\$2,216	\$121	\$141	\$123	\$8,756

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333513	Machine tool (metal forming types) manufacturing	\$3,102	\$178	\$1,181	\$64	\$75	\$66	\$4,666
333514	Special die and tool, die set, jig, and fixture manufacturing	\$43,784	\$2,516	\$16,670	\$907	\$1,061	\$928	\$65,867
333515	Cutting tool and machine tool accessory manufacturing	\$20,877	\$1,200	\$7,948	\$432	\$506	\$443	\$31,406
333516	Rolling mill machinery and equipment manufacturing	\$904	\$52	\$344	\$19	\$22	\$19	\$1,361
333518	Other metalworking machinery manufacturing	\$4,498	\$258	\$1,712	\$93	\$109	\$95	\$6,766
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$2,206	\$127	\$840	\$46	\$53	\$47	\$3,318
333613	Mechanical power transmission equipment manufacturing	\$2,070	\$119	\$788	\$43	\$50	\$44	\$3,114

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333911	Pump and pumping equipment manufacturing	\$4,792	\$275	\$1,825	\$99	\$116	\$102	\$7,209
333912	Air and gas compressor manufacturing	\$2,810	\$162	\$1,070	\$58	\$68	\$60	\$4,228
333991	Power-driven handtool manufacturing	\$1,471	\$85	\$560	\$30	\$36	\$31	\$2,212
333992	Welding and soldering equipment manufacturing	\$2,549	\$147	\$971	\$53	\$62	\$54	\$3,835
333993	Packaging machinery manufacturing	\$6,476	\$372	\$2,466	\$134	\$157	\$137	\$9,742
333994	Industrial process furnace and oven manufacturing	\$3,743	\$215	\$1,425	\$78	\$91	\$79	\$5,631
333995	Fluid power cylinder and actuator manufacturing	\$2,629	\$151	\$1,001	\$54	\$64	\$56	\$3,955
333996	Fluid power pump and motor manufacturing	\$1,775	\$102	\$676	\$37	\$43	\$38	\$2,670

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333997	Scale and balance (except laboratory) manufacturing	\$1,294	\$74	\$493	\$27	\$31	\$27	\$1,947
333999	All other miscellaneous general purpose machinery manufacturing	\$21,695	\$1,247	\$8,260	\$449	\$526	\$460	\$32,637
334518	Watch, clock, and part manufacturing	\$879	\$51	\$335	\$18	\$21	\$19	\$1,322
335211	Electric housewares and household fans	\$0	\$0	\$0	\$0	\$0	\$0	\$0
335221	Household cooking appliance manufacturing	\$542	\$21	\$131	\$8	\$13	\$8	\$722
335222	Household refrigerator and home freezer manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
335224	Household laundry equipment manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
335228	Other major household appliance manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336111	Automobile manufacturing	\$1,427	\$82	\$543	\$30	\$35	\$30	\$2,147
336112	Light truck and utility vehicle manufacturing	\$529	\$30	\$201	\$11	\$13	\$11	\$795
336120	Heavy duty truck manufacturing	\$627	\$36	\$239	\$13	\$15	\$13	\$943
336211	Motor vehicle body manufacturing	\$8,223	\$473	\$3,131	\$170	\$199	\$174	\$12,371
336212	Truck trailer manufacturing	\$3,422	\$197	\$1,303	\$71	\$83	\$73	\$5,147
336213	Motor home manufacturing	\$793	\$46	\$302	\$16	\$19	\$17	\$1,193
336311	Carburetor, piston, piston ring, and valve manufacturing	\$883	\$51	\$336	\$18	\$21	\$19	\$1,329
336312	Gasoline engine and engine parts manufacturing	\$7,766	\$446	\$2,957	\$161	\$188	\$165	\$11,683
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$5,729	\$329	\$2,181	\$119	\$139	\$121	\$8,618

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$1,912	\$110	\$728	\$40	\$46	\$41	\$2,876
336340	Motor vehicle brake system manufacturing	\$1,586	\$91	\$604	\$33	\$38	\$34	\$2,386
336350	Motor vehicle transmission and power train parts manufacturing	\$4,248	\$244	\$1,617	\$88	\$103	\$90	\$6,390
336370	Motor vehicle metal stamping	\$3,828	\$220	\$1,458	\$79	\$93	\$81	\$5,759
336399	All other motor vehicle parts manufacturing	\$10,650	\$612	\$4,055	\$221	\$258	\$226	\$16,021
336611	Ship building and repair	\$183,860	\$0	\$16,463	\$9,873	\$815	\$1,011	\$212,021
336612	Boat building	\$339,890	\$0	\$30,434	\$18,251	\$1,507	\$1,869	\$391,950
336992	Military armored vehicle, tank, and tank component manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
337215	Showcase, partition, shelving, and locker	\$18,756	\$1,078	\$7,141	\$388	\$455	\$398	\$28,216
339114	manufacturing Dental equipment and supplies manufacturing	\$57,386	\$3,387	\$15,552	\$1,221	\$1,080	\$1,250	\$79,876
339116	Dental laboratories	\$54,168	\$32,781	\$713,319	\$11,813	\$215,937	\$12,094	\$1,040,112
339911	Jewelry (except costume) manufacturing	\$69,637	\$53,636	\$344,913	\$19,328	\$26,051	\$19,789	\$533,353
339913	Jewelers' materials and lapidary work manufacturing	\$11,289	\$8,695	\$55,916	\$3,133	\$4,223	\$3,208	\$86,465
339914	Costume jewelry and novelty manufacturing	\$18,493	\$9,486	\$61,076	\$3,418	\$4,583	\$3,500	\$100,556
339950	Sign manufacturing	\$64,362	\$2,846	\$18,554	\$1,026	\$1,748	\$1,050	\$89,586
423840	Industrial supplies, wholesalers	\$24,943	\$2,303	\$20,462	\$830	\$1,224	\$850	\$50,612
482110	Rail transportation	\$0	\$0	\$0	\$0	\$0	\$0	\$0
621210	Dental offices	\$20,580	\$12,357	\$207,016	\$4,359	\$72,078	\$4,595	\$320,986
Total – C	General Industry	\$8,602,681	\$743,951	\$5,227,203	\$296,124	\$598,074	\$277,393	\$15,745,425

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
236100	Residential Building Construction	\$8,460,143	\$1,364,560	\$1,357,327	\$1,208,711	\$968,449	\$478,104	\$13,837,293
236200	Nonresidential Building Construction	\$4,188,645	\$1,852,253	\$1,503,853	\$1,647,889	\$1,326,678	\$257,953	\$10,777,269
237100	Utility System Construction	\$5,245,137	\$477,085	\$1,150,949	\$431,354	\$1,114,395	\$159,851	\$8,578,771
237200	Land Subdivision	\$315,507	\$27,818	\$75,890	\$24,809	\$91,833	\$10,474	\$546,331
237300	Highway, Street, and Bridge Construction	\$2,223,352	\$351,938	\$721,608	\$315,769	\$820,917	\$84,455	\$4,518,038
237900	Other Heavy and Civil Engineering Construction	\$896,467	\$90,784	\$254,558	\$81,760	\$298,611	\$27,827	\$1,650,007
238100	Foundation, Structure, and Building Exterior Contractors	\$24,000,229	\$21,452,805	\$8,452,674	\$18,909,854	\$6,106,611	\$2,900,376	\$81,822,550
238200	Building Equipment Contractors	\$1,132,607	\$131,075	\$189,986	\$118,128	\$220,160	\$47,631	\$1,839,588
238300	Building Finishing Contractors	\$14,644,589	\$1,215,823	\$1,444,282	\$2,612,725	\$1,533,902	\$433,651	\$21,884,973
238900	Other Specialty Trade Contractors	\$18,822,294	\$1,763,929	\$3,310,559	\$2,194,447	\$3,617,189	\$1,227,660	\$30,936,078
999000	State and Local Governments [a]	N/A	N/A	N/A	N/A	N/A	N/A	N/A

Table V-B-2: Total Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard (2009 dollars) (continued)

NAICS Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
Total - Construction	\$79,928,970	\$28,728,070	\$18,461,685	\$27,545,448	\$16,098,744	\$5,627,982	\$176,390,899

[[]a] Applies to state and local governments in State-Plan States.

APPENDIX V-C

Preliminary Compliance Costs for Entities in General Industry, Maritime, and Construction Affected by the Alternative Permissible Exposure Limit of 100 $\mu\text{g/m}^3$

Table V-C-1: Annualized Compliance Costs for Employers in General Industry, Maritime, and Construction Affected by OSHA's Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars)

Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas or Access Control	Total
General Industry	\$0	\$0	\$20,435,555	\$0	\$2,952,035	\$0	\$23,387,590
Maritime	\$12,797,027	NA	\$479,411	\$0	\$43,865	\$56,281	\$13,376,584
Construction	\$134,040,811	\$2,534,770	\$27,158,378	\$49,666,041	\$47,270,844	\$9,516,996	\$270,187,841
Total	\$146,837,838	\$2,534,770	\$48,073,344	\$49,666,041	\$50,266,744	\$9,573,277	\$306,952,015

Source: U.S. Dept. of Labor, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis, based on ERG (2013).

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
324121	Asphalt paving mixture and block manufacturing	\$58,174	\$37,462	\$8,102
324122	Asphalt shingle and roofing materials	\$366,823	\$101,384	\$13,409
325510	Paint and coating manufacturing	\$103,905	\$53,988	\$14,846
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$258,048	\$36,058	\$5,467
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$404,597	\$328,453	\$153,665
327113	Porcelain electrical supply mfg	\$271,906	\$177,908	\$16,401
327121	Brick and structural clay mfg	\$476,122	\$236,985	\$7,184
327122	Ceramic wall and floor tile mfg	\$262,347	\$169,425	\$35,865
327123	Other structural clay product mfg	\$61,686	\$39,531	\$6,293
327124	Clay refractory manufacturing	\$79,750	\$39,349	\$6,262
327125	Nonclay refractory manufacturing	\$100,510	\$34,964	\$7,143
327211	Flat glass manufacturing	\$30,202	\$30,202	\$686
327212	Other pressed and blown glass and glassware manufacturing	\$115,893	\$25,977	\$13,204
327213	Glass container manufacturing	\$80,871	\$6,175	\$721
327320	Ready-mixed concrete manufacturing	\$6,164,602	\$4,359,595	\$887,536
327331	Concrete block and brick mfg	\$788,578	\$577,826	\$127,277
327332	Concrete pipe mfg	\$488,201	\$290,994	\$27,248
327390	Other concrete product mfg	\$2,292,248	\$1,781,469	\$440,352
327991	Cut stone and stone product manufacturing	\$1,452,462	\$1,530,352	\$612,514
327992	Ground or treated mineral and earth manufacturing	\$205,820	\$105,493	\$22,502
327993	Mineral wool manufacturing	\$125,572	\$33,401	\$7,687
327999	All other misc. nonmetallic mineral product mfg	\$354,007	\$228,116	\$72,834
331111	Iron and steel mills	\$54,965	\$54,965	\$1,755
331112	Electrometallurgical ferroalloy product manufacturing	\$1,110	\$646	\$0

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$11,099	\$11,099	\$320
331221	Rolled steel shape manufacturing	\$5,603	\$5,603	\$303
331222	Steel wire drawing	\$7,557	\$7,557	\$552
331314	Secondary smelting and alloying of aluminum	\$3,736	\$1,985	\$236
331423	Secondary smelting, refining, and alloying of copper	\$652	\$555	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$4,878	\$2,424	\$544
331511	Iron foundries	\$1,989,119	\$850,469	\$62,089
331512	Steel investment foundries	\$560,466	\$271,564	\$8,955
331513	Steel foundries (except investment)	\$605,105	\$403,751	\$30,556
331524	Aluminum foundries (except diecasting)	\$925,292	\$687,302	\$94,034
331525	Copper foundries (except diecasting)	\$233,357	\$254,193	\$69,187
331528	Other nonferrous foundries (except die-casting)	\$161,305	\$98,784	\$30,292
332111	Iron and steel forging	\$14,790	\$7,585	\$768
332112	Nonferrous forging	\$4,883	\$2,090	\$147
332115	Crown and closure manufacturing	\$1,703	\$813	\$186
332116	Metal stamping	\$34,674	\$33,957	\$5,101
332117	Powder metallurgy part manufacturing	\$4,366	\$2,807	\$389
332211	Cutlery and flatware (except precious) manufacturing	\$3,206	\$1,668	\$416
332212	Hand and edge tool manufacturing	\$20,001	\$14,024	\$3,670
332213	Saw blade and handsaw manufacturing	\$3,865	\$1,476	\$431
332214	Kitchen utensil, pot, and pan manufacturing	\$2,188	\$1,677	\$0
332323	Ornamental and architectural metal work	\$4,058	\$3,630	\$1,433

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
332439	Other metal container manufacturing	\$8,421	\$7,021	\$992
332510	Hardware manufacturing	\$25,167	\$12,573	\$2,228
332611	Spring (heavy gauge) manufacturing	\$2,255	\$2,253	\$362
332612	Spring (light gauge) manufacturing	\$8,514	\$5,895	\$932
332618	Other fabricated wire product manufacturing	\$20,215	\$18,187	\$3,747
332710	Machine shops	\$159,359	\$165,292	\$78,163
332812	Metal coating and allied services	\$334,671	\$316,923	\$92,551
332911	Industrial valve manufacturing	\$19,730	\$8,568	\$1,106
332912	Fluid power valve and hose fitting manufacturing	\$18,885	\$6,678	\$844
332913	Plumbing fixture fitting and trim manufacturing	\$6,125	\$3,048	\$283
332919	Other metal valve and pipe fitting manufacturing	\$9,611	\$4,902	\$509
332991	Ball and roller bearing manufacturing	\$14,458	\$1,835	\$213
332996	Fabricated pipe and pipe fitting manufacturing	\$14,441	\$11,948	\$2,339
332997	Industrial pattern manufacturing	\$2,814	\$3,325	\$1,675
332998	Enameled iron and metal sanitary ware manufacturing	\$7,373	\$1,674	\$561
332999	All other miscellaneous fabricated metal product manufacturing	\$40,627	\$36,953	\$10,515
333319	Other commercial and service industry machinery manufacturing	\$28,261	\$19,822	\$3,715
333411	Air purification equipment manufacturing	\$7,634	\$4,326	\$891
333412	Industrial and commercial fan and blower manufacturing	\$5,400	\$4,346	\$315
333414	Heating equipment (except warm air furnaces) manufacturing	\$10,580	\$7,253	\$1,143
333511	Industrial mold manufacturing	\$22,968	\$22,928	\$8,216

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
333512	Machine tool (metal cutting types) manufacturing	\$9,340	\$7,179	\$1,645
333513	Machine tool (metal forming types) manufacturing	\$4,678	\$4,861	\$877
333514	Special die and tool, die set, jig, and fixture manufacturing	\$33,940	\$32,617	\$12,373
333515	Cutting tool and machine tool accessory manufacturing	\$20,068	\$16,700	\$5,899
333516	Rolling mill machinery and equipment manufacturing	\$1,761	\$1,538	\$256
333518	Other metalworking machinery manufacturing	\$7,172	\$6,141	\$1,271
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$6,311	\$4,016	\$623
333613	Mechanical power transmission equipment manufacturing	\$7,971	\$4,191	\$585
333911	Pump and pumping equipment manufacturing	\$16,090	\$6,621	\$1,354
333912	Air and gas compressor manufacturing	\$11,380	\$3,834	\$794
333991	Power-driven handtool manufacturing	\$4,640	\$1,580	\$416
333992	Welding and soldering equipment manufacturing	\$8,263	\$3,705	\$720
333993	Packaging machinery manufacturing	\$11,399	\$8,785	\$1,830
333994	Industrial process furnace and oven manufacturing	\$5,847	\$5,510	\$1,058
333995	Fluid power cylinder and actuator manufacturing	\$10,295	\$5,163	\$743
333996	Fluid power pump and motor manufacturing	\$7,079	\$2,443	\$502
333997	Scale and balance (except laboratory) manufacturing	\$2,042	\$1,942	\$366
333999	All other miscellaneous general purpose machinery manufacturing	\$27,871	\$19,753	\$6,131

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
334518	Watch, clock, and part manufacturing	\$1,212	\$1,064	\$248
335211	Electric housewares and household fans	\$1,396	\$333	\$0
335221	Household cooking appliance manufacturing	\$3,015	\$654	\$108
335222	Household refrigerator and home freezer manufacturing	\$3,219	\$3,219	\$0
335224	Household laundry equipment manufacturing	\$3,059	\$3,059	\$0
335228	Other major household appliance manufacturing	\$2,408	\$242	\$0
336111	Automobile manufacturing	\$37,519	\$37,519	\$403
336112	Light truck and utility vehicle manufacturing	\$51,769	\$51,769	\$149
336120	Heavy duty truck manufacturing	\$16,064	\$16,064	\$177
336211	Motor vehicle body manufacturing	\$24,888	\$24,888	\$2,324
336212	Truck trailer manufacturing	\$16,573	\$8,667	\$967
336213	Motor home manufacturing	\$10,839	\$10,839	\$224
336311	Carburetor, piston, piston ring, and valve manufacturing	\$5,356	\$1,644	\$250
336312	Gasoline engine and engine parts manufacturing	\$33,606	\$8,546	\$2,194
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$31,522	\$9,281	\$1,619
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$19,917	\$3,298	\$540
336340	Motor vehicle brake system manufacturing	\$17,167	\$4,273	\$448
336350	Motor vehicle transmission and power train parts manufacturing	\$42,371	\$6,066	\$1,200
336370	Motor vehicle metal stamping	\$55,868	\$25,480	\$1,082
336399	All other motor vehicle parts manufacturing	r vehicle parts \$75,860 \$22.0		\$3,009
336611	Ship building and repair	\$8,225,316	\$8,225,316	\$197,243

Table V-C-2: Annualized Costs, by Industry, for All General Industry and Maritime Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
336612	Boat building	\$5,151,268	\$2,441,507	\$364,630
336992	Military armored vehicle, tank, and tank component manufacturing	\$3,630	\$3,630	\$0
337215	Showcase, partition, shelving, and locker manufacturing	\$31,885	\$28,304	\$5,300
339114	Dental equipment and supplies manufacturing	\$52,293	\$45,684	\$16,632
339116	Dental laboratories	\$514,417	\$493,136	\$358,601
339911	Jewelry (except costume) manufacturing	\$695,088	\$653,685	\$267,490
339913	Jewelers' materials and lapidary work manufacturing	\$142,941	\$120,817	\$43,364
339914	Costume jewelry and novelty manufacturing	\$97,247	\$105,583	\$47,282
339950	Sign manufacturing	\$35,993	\$36,473	\$14,552
423840	Industrial supplies, wholesalers	\$34,410	\$32,503	\$11,455
482110	Rail transportation	\$1,024,480	\$0	\$0
621210	Dental offices	\$137,617	\$130,871	\$113,481
Total – C	General Industry and	\$36,764,174	\$26,304,485	\$4,502,274

Source: U.S. Dept. of Labor, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis, based on ERG (2013).

Table V-C-3: Annualized Costs, by Industry, for All Construction Entities Affected by the Alternative Silica PEL of $100~\mu g/m^3$ (2009 dollars)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
236100	Residential Building	\$10,741,343	\$8,208,322	\$6,211,939
230100	Construction	φ10,741,343	ψ0,200,322	ψ0,211,939
000000	Nonresidential Building	\$40.700.700	\$44.054.007	ΦE 404 077
236200	Construction	\$18,789,733	\$11,354,627	\$5,124,677
237100	Utility System Construction	\$23,470,434	\$15,209,315	\$4,314,981
237200	Land Subdivision	\$626,145	\$314,066	\$314,066
007000	Highway, Street, and Bridge	Φ45 000 000	ФС 705 44C	Ф0 005 000
237300	Construction	\$15,068,032	\$6,725,116	\$2,265,299
007000	Other Heavy and Civil		\$2,813,548	\$878,318
237900	Engineering Construction	\$3,743,359		
000400	Foundation, Structure, and	\$404.202.740	Ф70 700 044	#40.400.04
238100	Building Exterior Contractors	\$104,393,749	\$73,786,241	\$40,460,844
000000	Building Equipment	#0.400.700	Φ4.670.000	ФО40 7 40
238200	Contractors	\$2,428,769	\$1,670,868	\$918,743
238300	Building Finishing Contractors	\$39,527,187	\$27,017,780	\$16,080,277
000000	Other Specialty Trade	\$00.775.540	# 00.040.705	**
238900	Contractors	\$39,775,549	\$30,843,795	\$18,041,684
999000	State and local governments [d]	\$11,623,542	\$1,494,283	\$0
			_	_
Total (Construction	\$270,187,841	\$179,437,961	\$94,610,827

Source: U.S. Dept. of Labor, OSHA, Directorate of Standards and Guidance, Office of Regulatory Analysis, based on ERG (2013).

APPENDIX V-D

Preliminary Compliance Costs at the Alternative Discount Rates of 3 Percent and 0 Percent for Entities in General Industry, Maritime, and Construction Affected by the Proposed Silica Standard

Table V-D-1: Annualized Compliance Costs for Employers in General Industry, Maritime, and Construction Affected by OSHA's Proposed Silica Standard (3% discount rate; 2009 dollars)

Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas or Access Control	Total
General Industry	\$84,804,435	\$6,902,081	\$28,915,118	\$2,325,230	\$2,787,182	\$2,571,785	\$128,305,832
Maritime	\$12,797,027	N/A	\$664,265	\$624,090	\$41,359	\$70,108	\$14,196,849
Construction	\$232,392,606	\$83,671,367	\$42,925,615	\$73,284,611	\$45,950,892	\$16,601,607	\$494,826,699
Total	\$329,994,068	\$90,573,449	\$72,504,999	\$76,233,932	\$48,779,433	\$19,243,500	\$637,329,380

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
324121	Asphalt paving mixture and block manufacturing	\$229,983	\$133,424	\$26,434
324122	Asphalt shingle and roofing materials	\$3,068,544	\$848,095	\$83,029
325510	Paint and coating manufacturing	\$141,382	\$70,331	\$18,561
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,586,219	\$221,648	\$25,529
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,487,054	\$1,775,692	\$717,619
327113	Porcelain electrical supply mfg	\$1,671,403	\$961,809	\$76,592
327121	Brick and structural clay mfg	\$7,447,031	\$2,912,311	\$73,009
327122	Ceramic wall and floor tile mfg	\$3,926,593	\$2,082,067	\$364,465
327123	Other structural clay product mfg	\$890,238	\$485,796	\$63,947
327124	Clay refractory manufacturing	\$463,437	\$204,896	\$28,788
327125	Nonclay refractory manufacturing	\$584,070	\$203,182	\$32,837
327211	Flat glass manufacturing	\$264,391	\$264,391	\$4,283
327212	Other pressed and blown glass and glassware manufacturing	\$1,041,861	\$233,528	\$84,554
327213	Glass container manufacturing	\$726,990	\$55,514	\$4,616
327320	Ready-mixed concrete manufacturing	\$16,209,472	\$10,304,023	\$1,864,583
327331	Concrete block and brick mfg	\$4,393,887	\$2,834,276	\$539,480
327332	Concrete pipe mfg	\$2,720,211	\$1,427,346	\$115,494
327390	Other concrete product mfg	\$12,772,198	\$8,738,235	\$1,866,485
327991	Cut stone and stone product manufacturing	\$8,387,200	\$7,833,752	\$2,688,478
327992	Ground or treated mineral and earth manufacturing	\$4,444,557	\$2,041,188	\$377,716
327993	Mineral wool manufacturing	\$1,051,414	\$279,670	\$46,734
327999	All other misc. nonmetallic mineral product mfg	\$1,946,523	\$1,118,926	\$308,715
331111	Iron and steel mills	\$406,888	\$406,888	\$8,982
331112	Electrometallurgical ferroalloy product manufacturing	\$8,220	\$4,780	\$0
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$81,019	\$81,019	\$1,640
331221	Rolled steel shape manufacturing	\$40,896	\$40,896	\$1,550

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
331222	Steel wire drawing	\$55,162	\$55,162	\$2,826
331314	Secondary smelting and alloying of aluminum	\$27,560	\$14,640	\$1,205
331423	Secondary smelting, refining, and alloying of copper	\$4,735	\$4,031	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$35,411	\$17,594	\$2,786
331511	Iron foundries	\$14,673,210	\$5,099,768	\$317,824
331512	Steel investment foundries	\$4,104,782	\$1,636,991	\$46,055
331513	Steel foundries (except investment)	\$4,405,767	\$2,421,061	\$156,410
331524	Aluminum foundries (except diecasting)	\$6,685,283	\$4,143,066	\$483,633
331525	Copper foundries (except die-casting)	\$1,569,326	\$1,532,279	\$355,841
331528	Other nonferrous foundries (except diecasting)	\$1,181,376	\$595,469	\$155,796
332111	Iron and steel forging	\$101,595	\$45,480	\$3,932
332112	Nonferrous forging	\$33,543	\$12,533	\$754
332115	Crown and closure manufacturing	\$12,192	\$4,876	\$954
332116	Metal stamping	\$245,246	\$203,621	\$26,109
332117	Powder metallurgy part manufacturing	\$31,464	\$16,835	\$1,993
332211	Cutlery and flatware (except precious) manufacturing	\$22,025	\$10,002	\$2,131
332212	Hand and edge tool manufacturing	\$139,234	\$84,093	\$18,784
332213	Saw blade and handsaw manufacturing	\$27,656	\$8,852	\$2,207
332214	Kitchen utensil, pot, and pan manufacturing	\$15,033	\$10,055	\$0
332323	Ornamental and architectural metal work	\$33,518	\$27,210	\$9,075
332439	Other metal container manufacturing	\$57,847	\$42,102	\$5,075
332510	Hardware manufacturing	\$172,873	\$75,395	\$11,407
332611	Spring (heavy gauge) manufacturing	\$15,493	\$13,508	\$1,853
332612	Spring (light gauge) manufacturing	\$58,483	\$35,352	\$4,769
332618	Other fabricated wire product manufacturing	\$138,860	\$109,056	\$19,178
332710	Machine shops	\$1,033,894	\$991,161	\$400,103

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
332812	Metal coating and allied services	\$2,887,294	\$2,370,609	\$584,819
332911	Industrial valve manufacturing	\$144,010	\$51,378	\$5,659
332912	Fluid power valve and hose fitting manufacturing	\$134,408	\$40,043	\$4,318
332913	Plumbing fixture fitting and trim manufacturing	\$43,590	\$18,275	\$1,447
332919	Other metal valve and pipe fitting manufacturing	\$68,400	\$29,393	\$2,606
332991	Ball and roller bearing manufacturing	\$102,894	\$13,060	\$1,089
332996	Fabricated pipe and pipe fitting manufacturing	\$102,780	\$71,646	\$11,974
332997	Industrial pattern manufacturing	\$20,026	\$19,936	\$8,574
332998	Enameled iron and metal sanitary ware manufacturing	\$57,872	\$13,140	\$3,145
332999	All other miscellaneous fabricated metal product manufacturing	\$276,259	\$221,587	\$53,827
333319	Other commercial and service industry machinery manufacturing	\$200,609	\$118,860	\$19,015
333411	Air purification equipment manufacturing	\$55,843	\$25,939	\$4,563
333412	Industrial and commercial fan and blower manufacturing	\$39,499	\$26,063	\$1,611
333414	Heating equipment (except warm air furnaces) manufacturing	\$77,396	\$43,495	\$5,853
333511	Industrial mold manufacturing	\$153,575	\$137,484	\$42,055
333512	Machine tool (metal cutting types) manufacturing	\$65,338	\$43,050	\$8,419
333513	Machine tool (metal forming types) manufacturing	\$32,539	\$29,150	\$4,487
333514	Special die and tool, die set, jig, and fixture manufacturing	\$222,527	\$195,588	\$63,333
333515	Cutting tool and machine tool accessory manufacturing	\$134,187	\$100,138	\$30,197
333516	Rolling mill machinery and equipment manufacturing	\$11,776	\$9,220	\$1,308
333518	Other metalworking machinery manufacturing	\$47,954	\$36,824	\$6,506

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$46,437	\$24,083	\$3,191
333613	Mechanical power transmission equipment manufacturing	\$58,651	\$25,134	\$2,994
333911	Pump and pumping equipment manufacturing	\$116,060	\$39,705	\$6,932
333912	Air and gas compressor manufacturing	\$81,019	\$22,989	\$4,065
333991	Power-driven handtool manufacturing	\$33,032	\$9,472	\$2,127
333992	Welding and soldering equipment manufacturing	\$59,812	\$22,218	\$3,688
333993	Packaging machinery manufacturing	\$80,254	\$52,676	\$9,368
333994	Industrial process furnace and oven manufacturing	\$40,768	\$33,041	\$5,414
333995	Fluid power cylinder and actuator manufacturing	\$74,814	\$30,959	\$3,803
333996	Fluid power pump and motor manufacturing	\$51,310	\$14,647	\$2,567
333997	Scale and balance (except laboratory) manufacturing	\$14,210	\$11,644	\$1,872
333999	All other miscellaneous general purpose machinery manufacturing	\$198,435	\$118,446	\$31,381
334518	Watch, clock, and part manufacturing	\$8,379	\$6,380	\$1,271
335211	Electric housewares and household fans	\$13,225	\$3,158	\$0
335221	Household cooking appliance manufacturing	\$28,559	\$6,192	\$688
335222	Household refrigerator and home freezer manufacturing	\$30,497	\$30,497	\$0
335224	Household laundry equipment manufacturing	\$28,980	\$28,980	\$0
335228	Other major household appliance manufacturing	\$22,811	\$1,823	\$0
336111	Automobile manufacturing	\$281,138	\$281,138	\$2,064
336112	Light truck and utility vehicle manufacturing	\$387,918	\$387,918	\$764
336120	Heavy duty truck manufacturing	\$119,966	\$119,966	\$907

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
336212	Truck trailer manufacturing	\$121,251	\$51,970	\$4,949
336213	Motor home manufacturing	\$80,573	\$80,573	\$1,147
336311	Carburetor, piston, piston ring, and valve manufacturing	\$39,503	\$9,858	\$1,277
336312	Gasoline engine and engine parts manufacturing	\$247,860	\$63,030	\$11,233
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$232,489	\$68,450	\$8,287
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$147,550	\$24,431	\$2,766
336340	Motor vehicle brake system manufacturing	\$126,615	\$31,517	\$2,294
336350	Motor vehicle transmission and power train parts manufacturing	\$313,751	\$44,918	\$6,144
336370	Motor vehicle metal stamping	\$413,986	\$152,787	\$5,538
336399	All other motor vehicle parts manufacturing	\$559,504	\$162,351	\$15,405
336611	Ship building and repair	\$8,729,700	\$8,729,700	\$211,450
336612	Boat building	\$5,467,149	\$2,605,542	\$390,894
336992	Military armored vehicle, tank, and tank component manufacturing	\$26,099	\$26,099	\$0
337215	Showcase, partition, shelving, and locker manufacturing	\$224,062	\$169,724	\$27,130
339114	Dental equipment and supplies manufacturing	\$336,863	\$250,436	\$76,629
339116	Dental laboratories	\$1,399,608	\$1,361,661	\$1,015,772
339911	Jewelry (except costume) manufacturing	\$1,528,488	\$1,364,756	\$523,511
339913	Jewelers' materials and lapidary work manufacturing	\$314,326	\$252,239	\$84,870
339914	Costume jewelry and novelty manufacturing	\$231,425	\$236,873	\$98,499
339950	Sign manufacturing	\$280,583	\$252,203	\$85,465
423840	Industrial supplies, wholesalers	\$172,217	\$139,755	\$49,252
482110	Rail transportation	\$2,422,222	N/A	N/A
		\$379,189	\$445,062	\$385,923

Table V-D-2: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (3% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
Total – General Industry and Maritime		General Industry and Maritime \$142,502,681		\$15,423,052
236100	Residential Building Construction	\$22,765,847	\$24,902,719	\$18,442,077
236200	Nonresidential Building Construction	\$38,521,866	\$30,318,568	\$13,232,635
237100	Utility System Construction	\$44,446,699	\$34,960,192	\$9,699,193
237200	Land Subdivision	\$1,029,351	\$615,429	\$615,429
237300	Highway, Street, and Bridge Construction	\$28,811,046	\$15,727,142	\$5,124,322
237900	Other Heavy and Civil Engineering Construction	\$6,652,584	\$6,019,608	\$1,818,622
238100	Foundation, Structure, and Building Exterior Contractors	\$211,905,643	\$194,092,044	\$103,445,878
238200	Building Equipment Contractors	\$4,627,413	\$4,186,291	\$2,248,482
238300	Building Finishing Contractors	\$49,756,684	\$42,793,132	\$25,359,297
238900	Other Specialty Trade Contractors	\$64,516,874	\$61,124,025	\$35,198,471
999000	State and local governments [d]	\$21,792,693	\$3,229,625	\$0
 Гotal Co	nstruction	\$494,826,699	\$417,968,775	\$215,184,405

Table V-D-3: Annualized Compliance Costs for Employers in General Industry, Maritime, and Construction Affected by OSHA's Proposed Silica Standard (0% discount rate; 2009 dollars)

Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Assessment	Medical Surveillance	Training	Regulated Areas or Access Control	Total
General Industry	\$82,310,208	\$6,893,761	\$28,721,542	\$2,269,161	\$2,674,227	\$2,565,657	\$125,434,555
Maritime	\$12,797,027	N/A	\$659,530	\$609,104	\$39,642	\$69,941	\$14,175,243
Construction	\$225,360,925	\$83,443,096	\$41,810,581	\$71,468,453	\$45,046,471	\$16,502,901	\$483,632,427
Total	\$320,468,159	\$90,336,857	\$71,191,652	\$74,346,717	\$47,760,340	\$19,138,499	\$623,242,225

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
324121	Asphalt paving mixture and block manufacturing	\$221,701	\$128,709	\$25,519
324122	Asphalt shingle and roofing materials	\$3,007,795	\$831,305	\$81,506
325510	Paint and coating manufacturing	\$139,404	\$69,384	\$18,322
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,536,242	\$214,664	\$24,791
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,408,693	\$1,721,739	\$696,880
327113	Porcelain electrical supply mfg	\$1,618,742	\$932,585	\$74,378
327121	Brick and structural clay mfg	\$7,179,158	\$2,809,577	\$70,483
327122	Ceramic wall and floor tile mfg	\$3,785,802	\$2,008,621	\$351,856
327123	Other structural clay product mfg	\$858,409	\$468,660	\$61,734
327124	Clay refractory manufacturing	\$450,424	\$199,370	\$28,053
327125	Nonclay refractory manufacturing	\$567,671	\$197,477	\$31,998
327211	Flat glass manufacturing	\$257,017	\$257,017	\$4,168
327212	Other pressed and blown glass and glassware manufacturing	\$1,012,515	\$226,951	\$82,266
327213	Glass container manufacturing	\$706,512	\$53,951	\$4,491
327320	Ready-mixed concrete manufacturing	\$16,003,229	\$10,176,459	\$1,842,324
327331	Concrete block and brick mfg	\$4,363,652	\$2,814,626	\$535,710
327332	Concrete pipe mfg	\$2,701,493	\$1,417,450	\$114,687
327390	Other concrete product mfg	\$12,684,312	\$8,677,653	\$1,853,441
327991	Cut stone and stone product manufacturing	\$8,240,763	\$7,699,981	\$2,644,112
327992	Ground or treated mineral and earth manufacturing	\$4,341,486	\$1,994,971	\$369,476
327993	Mineral wool manufacturing	\$1,021,868	\$271,811	\$45,473
327999	All other misc. nonmetallic mineral product mfg	\$1,933,120	\$1,111,169	\$306,557
331111	Iron and steel mills	\$394,786	\$394,786	\$8,736
331112	Electrometallurgical ferroalloy product manufacturing	\$7,976	\$4,637	\$0
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$78,610	\$78,610	\$1,595
331221	Rolled steel shape manufacturing	\$39,680	\$39,680	\$1,508

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
331222	Steel wire drawing	\$53,522	\$53,522	\$2,749
331314	Secondary smelting and alloying of aluminum	\$26,739	\$14,205	\$1,172
331423	Secondary smelting, refining, and alloying of copper	\$4,594	\$3,911	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$34,360	\$17,072	\$2,709
331511	Iron foundries	\$14,236,481	\$4,954,137	\$309,112
331512	Steel investment foundries	\$3,982,618	\$1,590,153	\$44,790
331513	Steel foundries (except investment)	\$4,274,894	\$2,351,925	\$152,123
331524	Aluminum foundries (except die-casting)	\$6,486,741	\$4,024,524	\$470,349
331525	Copper foundries (except die-casting)	\$1,523,341	\$1,488,438	\$346,067
331528	Other nonferrous foundries (except diecasting)	\$1,146,217	\$578,431	\$151,516
332111	Iron and steel forging	\$98,609	\$44,182	\$3,824
332112	Nonferrous forging	\$32,557	\$12,175	\$733
332115	Crown and closure manufacturing	\$11,831	\$4,737	\$928
332116	Metal stamping	\$237,995	\$197,806	\$25,394
332117	Powder metallurgy part manufacturing	\$30,531	\$16,354	\$1,938
332211	Cutlery and flatware (except precious) manufacturing	\$21,378	\$9,716	\$2,073
332212	Hand and edge tool manufacturing	\$135,131	\$81,692	\$18,269
332213	Saw blade and handsaw manufacturing	\$26,838	\$8,599	\$2,147
332214	Kitchen utensil, pot, and pan manufacturing	\$14,591	\$9,768	\$0
332323	Ornamental and architectural metal work	\$32,319	\$26,252	\$8,766
332439	Other metal container manufacturing	\$56,147	\$40,900	\$4,936
332510	Hardware manufacturing	\$167,792	\$73,242	\$11,094
332611	Spring (heavy gauge) manufacturing	\$15,037	\$13,122	\$1,802
332612	Spring (light gauge) manufacturing	\$56,764	\$34,342	\$4,638
332618	Other fabricated wire product manufacturing	\$134,778	\$105,942	\$18,653
332710	Machine shops	\$1,003,849	\$962,857	\$389,136
332812	Metal coating and allied services	\$2,783,421	\$2,287,212	\$564,897

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
332911	Industrial valve manufacturing	\$139,729	\$49,911	\$5,504
332912	Fluid power valve and hose fitting manufacturing	\$130,431	\$38,899	\$4,200
332913	Plumbing fixture fitting and trim manufacturing	\$42,300	\$17,753	\$1,407
332919	Other metal valve and pipe fitting manufacturing	\$66,377	\$28,553	\$2,534
332991	Ball and roller bearing manufacturing	\$99,850	\$12,674	\$1,059
332996	Fabricated pipe and pipe fitting manufacturing	\$99,739	\$69,600	\$11,645
332997	Industrial pattern manufacturing	\$19,433	\$19,367	\$8,339
332998	Enameled iron and metal sanitary ware manufacturing	\$55,945	\$12,703	\$3,047
332999	All other miscellaneous fabricated metal product manufacturing	\$268,154	\$215,259	\$52,351
333319	Other commercial and service industry machinery manufacturing	\$194,675	\$115,466	\$18,493
333411	Air purification equipment manufacturing	\$54,183	\$25,199	\$4,438
333412	Industrial and commercial fan and blower manufacturing	\$38,325	\$25,319	\$1,567
333414	Heating equipment (except warm air furnaces) manufacturing	\$75,096	\$42,252	\$5,693
333511	Industrial mold manufacturing	\$149,085	\$133,558	\$40,902
333512	Machine tool (metal cutting types) manufacturing	\$63,412	\$41,820	\$8,188
333513	Machine tool (metal forming types) manufacturing	\$31,580	\$28,317	\$4,364
333514	Special die and tool, die set, jig, and fixture manufacturing	\$216,047	\$190,003	\$61,596
333515	Cutting tool and machine tool accessory manufacturing	\$130,264	\$97,279	\$29,370
333516	Rolling mill machinery and equipment manufacturing	\$11,432	\$8,957	\$1,272
333518	Other metalworking machinery manufacturing	\$46,552	\$35,772	\$6,327
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$45,056	\$23,395	\$3,103

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars) (continued)

NAICS		All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
333613	Mechanical power transmission equipment manufacturing	\$56,908	\$24,416	\$2,912
333911	Pump and pumping equipment manufacturing	\$112,617	\$38,571	\$6,742
333912	Air and gas compressor manufacturing	\$78,622	\$22,333	\$3,953
333991	Power-driven handtool manufacturing	\$32,055	\$9,201	\$2,069
333992	Welding and soldering equipment manufacturing	\$58,039	\$21,583	\$3,586
333993	Packaging machinery manufacturing	\$77,884	\$51,172	\$9,111
333994	Industrial process furnace and oven manufacturing	\$39,566	\$32,097	\$5,266
333995	Fluid power cylinder and actuator manufacturing	\$72,593	\$30,075	\$3,699
333996	Fluid power pump and motor manufacturing	\$49,787	\$14,229	\$2,497
333997	Scale and balance (except laboratory) manufacturing	\$13,791	\$11,311	\$1,821
333999	All other miscellaneous general purpose machinery manufacturing	\$192,565	\$115,063	\$30,521
334518	Watch, clock, and part manufacturing	\$8,133	\$6,198	\$1,237
335211	Electric housewares and household fans	\$12,744	\$3,043	\$0
335221	Household cooking appliance manufacturing	\$27,519	\$5,966	\$665
335222	Household refrigerator and home freezer manufacturing	\$29,387	\$29,387	\$0
335224	Household laundry equipment manufacturing	\$27,925	\$27,925	\$0
335228	Other major household appliance manufacturing	\$21,980	\$1,759	\$0
336111	Automobile manufacturing	\$272,768	\$272,768	\$2,008
336112	Light truck and utility vehicle manufacturing	\$376,369	\$376,369	\$744
336120	Heavy duty truck manufacturing	\$116,395	\$116,395	\$882
336211	Motor vehicle body manufacturing	\$174,051	\$174,051	\$11,569
336212	Truck trailer manufacturing	\$117,647	\$50,486	\$4,814
336213	Motor home manufacturing	\$78,175	\$78,175	\$1,116

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
336311	Carburetor, piston, piston ring, and valve manufacturing	\$38,328	\$9,577	\$1,242
336312	Gasoline engine and engine parts manufacturing	\$240,487	\$61,155	\$10,925
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$225,573	\$66,414	\$8,059
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$143,159	\$23,704	\$2,690
336340	Motor vehicle brake system manufacturing	\$122,848	\$30,579	\$2,231
336350	Motor vehicle transmission and power train parts manufacturing	\$304,417	\$43,582	\$5,976
336370	Motor vehicle metal stamping	\$401,658	\$148,424	\$5,386
336399	All other motor vehicle parts manufacturing	\$542,860	\$157,521	\$14,982
336611	Ship building and repair	\$8,716,414	\$8,716,414	\$211,067
336612	Boat building	\$5,458,828	\$2,601,166	\$390,186
336992	Military armored vehicle, tank, and tank component manufacturing	\$25,327	\$25,327	\$0
337215	Showcase, partition, shelving, and locker manufacturing	\$217,446	\$164,877	\$26,387
339114	Dental equipment and supplies manufacturing	\$326,527	\$242,932	\$74,405
339116	Dental laboratories	\$1,372,634	\$1,337,279	\$999,105
339911	Jewelry (except costume) manufacturing	\$1,506,718	\$1,346,104	\$516,785
339913	Jewelers' materials and lapidary work manufacturing	\$309,849	\$248,792	\$83,779
339914	Costume jewelry and novelty manufacturing	\$227,737	\$233,260	\$97,093
339950	Sign manufacturing	\$270,763	\$243,567	\$82,642
423840	Industrial supplies, wholesalers	\$168,737	\$137,113	\$48,321
482110	Rail transportation	\$2,401,869	N/A	N/A
621210	Dental offices	\$372,297	\$437,759	\$379,590
Total – Ge	eneral Industry and Maritime	\$139,609,798	\$82,827,234	\$15,151,345

Table V-D-4: Annualized Costs, by Industry, for All General Industry, Maritime, and Construction Entities Affected by the Proposed Silica Standard (0% discount rate; 2009 dollars) (continued)

NAICS	Industry	All Establishments	Small Firms (SBA-defined)	Very Small Establishments (<20 Employees)
236100	Residential Building Construction	\$22,403,463	\$24,590,721	\$18,207,159
236200	Nonresidential Building Construction	\$37,738,001	\$29,809,995	\$13,008,234
237100	Utility System Construction	\$42,887,782	\$33,937,369	\$9,419,726
237200	Land Subdivision	\$973,501	\$588,621	\$588,621
237300	Highway, Street, and Bridge Construction	\$27,441,259	\$15,120,845	\$4,932,117
237900	Other Heavy and Civil Engineering Construction	\$6,301,839	\$5,755,929	\$1,741,321
238100	Foundation, Structure, and Building Exterior Contractors	\$209,175,716	\$191,939,862	\$102,252,677
238200	Building Equipment Contractors	\$4,439,081	\$4,054,757	\$2,178,654
238300	Building Finishing Contractors	\$49,412,982	\$42,495,544	\$25,174,853
238900	Other Specialty Trade Contractors	\$62,124,921	\$59,207,894	\$34,110,215
999000	State and local governments [d]	\$20,733,881	\$3,092,867	\$0
Total Construction		\$483,632,427	\$410,594,402	\$211,613,577

CHAPTER VI: ECONOMIC FEASIBILITY ANALYSIS AND REGULATORY FLEXIBILITY DETERMINATION

In this chapter OSHA investigates the economic impacts of its proposed silica rule on affected employers in general industry, maritime, and construction. This impact investigation has two overriding objectives: (1) to establish whether the proposed rule is economically feasible for all affected industries, and (2) to determine if the Agency can certify that the proposed rule will not have a significant economic impact on a substantial number of small entities.

In the discussion below, OSHA first presents its approach for achieving these objectives. OSHA next applies this approach to industries with affected employers in general industry and maritime and then to industries with affected employers in construction. Finally, OSHA directed Inforum—a not-for-profit corporation (based at the University of Maryland) specializing in the design and application of macroeconomic models of the United States (and other countries)—to estimate the industry and aggregate employment effects of the proposed silica rule. The Agency invites comment on any aspect of the methods and data used in this chapter and on any of the economic impact and economic feasibility findings presented in this chapter.

ANALYTIC APPROACH

Economic Feasibility

Section 6(b)(5) of the OSH Act states:

The Secretary . . . shall set the standard which most adequately assures, *to the extent feasible*, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity ¹ [emphasis added]

OSHA interpreted the phrase "to the extent feasible" to encompass economic feasibility and was supported in this view by the U.S. Court of Appeals for the D.C. Circuit in its 1974 asbestos decision.² The court noted that "Congress does not appear to have intended to protect employees by putting their employers out of business . . ." and then proceeded to define the concept of economic feasibility and to indicate its boundaries:

Standards may be economically feasible even though, from the standpoint of employers, they are financially burdensome and affect profit margins adversely.

¹ 29 U.S.C. 655(b)(5).

² Indus Union Dep't v. Hodgson, 499 F.2d 467 (D.C. Cir. 1974).

³ *Id.* at 478.

Nor does the concept of economic feasibility necessarily guarantee the continued existence of individual employers. It would appear to be consistent with the purposes of the Act to envisage the economic demise of an employer who has lagged behind the rest of the industry in protecting the health and safety of employees and is consequently financially unable to comply with new standards as quickly as other employers. As the effect becomes more widespread within an industry, the problem of economic feasibility becomes more pressing.⁴

Thus, according to the court, OSHA standards would satisfy the economic feasibility criterion even if they imposed significant costs on regulated industries and forced some marginal firms out of business, so long as they did not cause massive economic dislocations within a particular industry or imperil the existence of the industry.⁵

The implication, for analysis of economic impacts, is that OSHA is required to determine whether its standards will eliminate or alter the competitive structure of an industry, not to determine whether any individual plants will close, or whether some marginal plants may close earlier than they otherwise might have. OSHA thus has an obligation to examine industries, and to consider industry definitions carefully. However, OSHA does not have an obligation to conduct a facility-by-facility analysis of the thousands of facilities in the dozens of industries covered by a major standard.

In practice, the economic burden of an OSHA standard on an industry—and whether the standard is economically feasible for that industry—depends on the magnitude of compliance costs incurred by establishments in that industry and the extent to which they are able to pass those costs on to their customers. That, in turn, depends, to a significant degree, on the price elasticity of demand for the products sold by establishments in that industry.

The price elasticity of demand refers to the relationship between the price charged for a product and the demand for that product: the more elastic the relationship, the less an establishment's compliance costs can be passed through to customers in the form of a price increase and the more it has to absorb compliance costs in the form of reduced profits. When demand is inelastic, establishments can recover most of the costs of compliance by raising the prices they charge; under this scenario, profit rates are largely unchanged and the industry remains largely unaffected. Any impacts are primarily on those customers using the relevant product. On the other hand, when demand is elastic, establishments cannot recover all compliance costs simply by passing the cost increase through in the form of a price increase; instead, they must absorb some of the increase from their profits. Commonly, this will mean reductions both in the quantity of goods and services produced and in total profits, though the profit rate may remain unchanged. In general, "[w]hen an industry is subjected to a higher cost, it does not simply swallow it; it raises its price and reduces its output, and in this way shifts a part of the cost to its

⁴ *Id*.

⁵ Id.; see also Am. Iron and Steel Inst. v. OSHA, 939 F.2d 975, 980 (D.C. Cir. 1991); United Steelworkers of Am., AFL-CIO-CLC v. Marshall, 647 F.2d 1189, 1265 (D.C. Cir. 1980)

consumers and a part to its suppliers," in the words of the court in Am. Dental Ass'n v. Sec'y of Labor (984 F.2d 823, 829 (7th Cir. 1993)).

The court's summary is in accord with microeconomic theory. In the long run, firms can remain in business only if their profits are adequate to provide a return on investment that ensures that investment in the industry will continue. Over time, because of rising real incomes and productivity increases, firms in most industries are able to ensure an adequate profit. As technology and costs change, however, the long-run demand for some products naturally increases and the long-run demand for other products naturally decreases. In the face of additional compliance costs (or other external costs), firms that otherwise have a profitable line of business may have to increase prices to stay viable. Increases in prices typically result in reduced quantity demanded, but rarely eliminate all demand for the product. Whether this decrease in the total production of goods and services results in smaller output for each establishment within the industry or the closure of some plants within the industry, or a combination of the two, is dependent on the cost and profit structure of individual firms within the industry.

If demand is perfectly inelastic (i.e., the price elasticity of demand is zero), then the impact of compliance costs that are 1 percent of revenues for each firm in the industry would result in a 1 percent increase in the price of the product, with no decline in quantity demanded. Such a situation represents an extreme case, but might be observed in situations in which there were few if any substitutes for the product in question, or if the products of the affected sector account for only a very small portion of the revenue or income of its customers.

If the demand is perfectly elastic (i.e., the price elasticity of demand is infinitely large), then no increase in price is possible and before-tax profits would be reduced by an amount equal to the costs of compliance (net of any cost savings—such as reduced workers' compensation insurance premiums—resulting from the proposed standard) if the industry attempted to maintain production at the same level as previously. Under this scenario, if the costs of compliance are such a large percentage of profits that some or all plants in the industry could no longer operate in the industry with hope of an adequate return on investment, then some or all of the firms in the industry would close. This scenario is highly unlikely to occur, however, because it can only arise when there are other products—unaffected by the proposed rule—that are, in the eyes of their customers, perfect substitutes for the products the affected establishments make.

A commonly-discussed intermediate case would be a price elasticity of demand of one. ⁶ In this situation, if the costs of compliance amount to 1 percent of revenues, then production would decline by 1 percent and prices would rise by 1 percent. As a result, industry revenues would remain the same, with somewhat lower production, but with similar profit rates (in most situations where the marginal costs of production net of regulatory costs would fall as well). Customers would, however, receive less of the product for their (same) expenditures, and firms would have lower total profits; this, as the court described in *Am. Dental Ass'n v. Sec'y of Labor*, is the more typical case.

⁶ Here and throughout this chapter, the price elasticity of demand is reported as an absolute value.

A decline in output as a result of an increase in price may occur in a variety of ways: individual establishments could each reduce their levels of production; some marginal plants could close; or, in the case of an expanding industry, new entry may be delayed until demand equals supply. In many cases it will be a combination of all three kinds of reductions in output. Which possibility is most likely depends on the form that the costs of the regulation take. If the costs are variable costs (i.e., costs that vary with the level of production at a facility), then economic theory suggests that any reductions in output will take the form of reductions in output at each affected facility, with few if any plant closures. If, on the other hand, the costs of a regulation primarily take the form of fixed costs (i.e., costs that do not vary with the level of production at a facility), then reductions in output are more likely to take the form of plant closures or delays in new entry.

Most of the costs of this regulation, as estimated in Chapter V of this PEA, are variable costs. Almost all of the major costs of program elements, such as medical surveillance and training, will vary in proportion to the number of employees (which is a rough proxy for the amount of production). Exposure monitoring costs will vary with the number of employees, but do have some economies of scale to the extent that a larger firm need only conduct representative sampling rather than sample every employee. The costs of engineering controls in construction also vary by level of production because almost all necessary equipment can readily be rented and the productivity costs of using some of these controls vary proportionally to the level of production. Finally, the costs of operating engineering controls in general industry (the majority of the annualized costs of engineering controls in general industry) vary by the number of hours the establishment works, and thus vary by the level of production and are not fixed costs in the strictest sense.

This leaves two kinds of costs that are, in some sense, fixed costs—capital costs of engineering controls in general industry and certain initial costs that new entries to the industry will not have to bear.

Capital costs of engineering controls in general industry due to this standard are relatively small as compared to the total costs, representing less than 8 percent of total annualized costs and approximately \$362 per year per affected establishment in general industry.

Some initial costs are fixed in the sense that they will only be borne by firms in the industry today—these include initial costs for general training not currently required and initial costs of medical surveillance. Both of these costs will disappear after the initial year of the standard and thus would be difficult to pass on. These costs, however, represent less than 4 percent of total costs and less than \$55 per affected establishment.

As a result of these considerations, OSHA expects it is somewhat more likely that reductions in industry output will be met by reductions in output at each affected facility rather than as a result of plant closures. However, closures of some marginal plants or poorly performing facilities are always possible.

To determine whether a rule is economically feasible, OSHA begins with two screening tests to consider minimum threshold effects of the rule under two extreme cases: (1) all costs are passed

through to customers in the form of higher prices (consistent with a price elasticity of demand of zero), and (2) all costs are absorbed by the firm in the form of reduced profits (consistent with an infinite price elasticity of demand).

In the former case, the immediate impact of the rule would be observed in increased industry revenues. While there is no hard and fast rule, in the absence of evidence to the contrary, OSHA generally considers a standard to be economically feasible for an industry when the annualized costs of compliance are less than a threshold level of one percent of annual revenues. Retrospective studies of previous OSHA regulations have shown that potential impacts of such a small magnitude are unlikely to eliminate an industry or significantly alter its competitive structure, particularly since most industries have at least some ability to raise prices to reflect increased costs and normal price variations for products typically exceed three percent a year. Of course, OSHA recognizes that even when costs are within this range, there could be unusual circumstances requiring further analysis.

In the latter case, the immediate impact of the rule would be observed in reduced industry profits. OSHA uses the ratio of annualized costs to annual profits as a second check on economic feasibility. Again, while there is no hard and fast rule, in the absence of evidence to the contrary, OSHA generally considers a standard to be economically feasible for an industry when the annualized costs of compliance are less than a threshold level of ten percent of annual profits. In the context of economic feasibility, the Agency believes this threshold level to be fairly modest, given that normal year-to-year variations in profit rates in an industry can exceed 40 percent or more. OSHA's choice of a threshold level of ten percent of annual profits is low enough that even if, in a hypothetical worst case, all compliance costs were upfront costs, then upfront costs would still equal seventy-one percent of profits and thus would be affordable from profits without resort to credit markets. If the threshold level were *first-year* costs of ten percent of annual profits, firms could even more easily expect to cover first-year costs at the threshold level out of current profits without having to access capital markets and otherwise being threatened with short-term insolvency.

In general, because it is usually the case that firms would be able to pass on to their customers, in the form of higher prices, some or all of the costs of the proposed rule, OSHA will tend to give much more weight to the ratio of industry costs to industry revenues than to the ratio of industry costs to industry profits. However, if costs exceed either the threshold percentage of revenue or the threshold percentage of profits for an industry, or if there is other evidence of a threat to the viability of an industry because of the standard, OSHA will examine the effect of the rule on that industry more closely. Such an examination would include market factors specific to the industry, such as normal variations in prices and profits, international trade and foreign competition, and any special circumstances, such as close domestic substitutes of equal cost, which might make the industry particularly vulnerable to a regulatory cost increase.

⁷ See OSHA's web page, http://www.osha.gov/dea/lookback.html#Completed, for a link to all completed OSHA lookback reviews.

⁸ See, for example, Table VI-3 and the accompanying text presented later in this chapter.

⁹ See, for example, Table VI-5 and the accompanying text presented later in this chapter.

The preceding discussion focused on the economic viability of the affected industries in their entirety. However, even if OSHA found that a proposed standard did not threaten the survival of affected industries, there is still the question of whether the industries' competitive structure would be significantly altered. For example, if the annualized costs of an OSHA standard were equal to 10 percent of an industry's annual profits, and the price elasticity of demand for the products in that industry were equal to one, then OSHA would not expect the industry to go out of business. However, if the increase in costs were such that most or all small firms in that industry would have to close, it could reasonably be concluded that the competitive structure of the industry had been altered. For this reason, OSHA also examines the differential costs by size of firm.

Regulatory Flexibility Screening Analysis

The Regulatory Flexibility Act (RFA), Pub. L. No. 96-354, 94 Stat. 1164 (codified at 5 U.S.C. 601), requires Federal agencies to consider the economic impact that a proposed rulemaking will have on small entities. The RFA states that whenever a Federal agency is required to publish general notice of proposed rulemaking for any proposed rule, the agency must prepare and make available for public comment an initial regulatory flexibility analysis (IRFA). 5 U.S.C. 603(a). Pursuant to section 605(b), in lieu of an IRFA, the head of an agency may certify that the proposed rule will not have a significant economic impact on a substantial number of small entities. A certification must be supported by a factual basis. If the head of an agency makes a certification, the agency shall publish such certification in the Federal Register at the time of publication of general notice of proposed rulemaking or at the time of publication of the final rule. 5 U.S.C. 605(b).

To determine if the Assistant Secretary of Labor for OSHA can certify that the proposed silica rule will not have a significant economic impact on a substantial number of small entities, the Agency has developed screening tests to consider minimum threshold effects of the proposed rule on small entities. These screening tests are similar in concept to those OSHA developed above to identify minimum threshold effects for purposes of demonstrating economic feasibility.

There are, however, two differences. First, for each affected industry, the screening tests are applied, not to all establishments, but to small entities (defined as "small business concerns" by SBA) and also to very small entities (as defined by OSHA as small businesses with fewer than 20 employees). Second, although OSHA's regulatory flexibility screening test for revenues also uses a minimum threshold level of annualized costs equal to one percent of annual revenues, OSHA has established a minimum threshold level of annualized costs equal to five percent of annual profits for the average small entity or very small entity. The Agency has chosen a lower minimum threshold level for the profitability screening analysis and has applied its screening tests to both small entities and very small entities in order to ensure that certification will be made, and an IRFA will not be prepared, only if OSHA can be highly confident that a proposed rule will not have a significant economic impact on a substantial number of small entities or very small entities in any affected industry. OSHA has prepared separate regulatory flexibility screening tests for general industry and maritime and for construction.

Furthermore, certification will not be made, and an IRFA will be prepared, even if the minimum threshold levels are not exceeded for revenues or profitability for small entities or very small entities in all affected industries, if OSHA believes the proposed rule might otherwise have a significant economic impact on a substantial number of small entities.

IMPACTS IN GENERAL INDUSTRY AND MARITIME

In this section, OSHA plans to determine whether (1) the proposed rule is economically feasible for all affected industries in general industry and maritime, and (2) the Agency can certify that the proposed rule will not have a significant economic impact on a substantial number of small entities in general industry and maritime.

Economic Feasibility

Economic Feasibility Screening Analysis: All Establishments

Earlier chapters of this PEA identified the general industry and maritime sectors potentially affected by the proposed rule; presented summary profile data for affected industries, including the number of affected entities and establishments, the number of at-risk workers, and the average revenue for affected entities and establishments; and developed estimates, by affected industry, of the costs of the proposed rule. Obviously, the economic impacts of the proposed rule on general industry and maritime are driven, in part, by the costs of additional dust control measures, respirators, and silica program activities needed to comply with the proposed rule.

To determine whether the proposed rule's projected costs of compliance would threaten the economic viability of affected industries, OSHA first compared, for each affected industry, annualized compliance costs to annual revenues and profits per (average) affected establishment. The results for all affected establishments in all affected industries in general industry and maritime are presented in Table VI-1, using annualized costs per establishment for the proposed $50 \,\mu\text{g/m}^3$ PEL. Shown in the table for each affected industry are total annualized costs, the total number of affected establishments, annualized costs per affected establishment, annual revenues per establishment, the profit rate, annual profits per establishment, annualized compliance costs as a percentage of annual revenues, and annualized compliance costs as a percentage of annual profits.

The annualized costs per affected establishment for each affected industry were calculated by distributing the industry-level (incremental) annualized compliance costs among all affected establishments in the industry, where annualized compliance costs reflect a 7 percent discount rate. ¹⁰ The annualized cost of the proposed rule for the average establishment in all of general

¹⁰ Tables VI-A-1 and VI-A-2 in Appendix VI-A show per-establishment annualized costs and ratios of annualized cost to annual revenue and annualized costs to annual profit using discount rates of 3 percent and 0 percent, respectively, to annualize costs. As can be seen, the effects of the lower discount rates on these ratios are quite modest in absolute terms—although, of course, the ratios are in all cases lower or the same as when costs were annualized using a 7 percent discount rate.

industry and maritime is estimated at \$2,571 in 2009 dollars.¹¹ It is clear from Table VI-1 that the estimates of the annualized costs per affected establishment in general industry and maritime vary widely from industry to industry. These estimates range from \$40,468 for NAICS 327111 (Vitreous china plumbing fixtures & bathroom accessories manufacturing) and \$38,422 for NAICS 327121 (Brick and structural clay manufacturing) to \$107 for NAICS 325510 (Paint and coating manufacturing) and \$49 for NAICS 621210 (Dental offices).

ERG (2011) estimated revenues on a six-digit NAICS basis by applying revenue data from the Census Bureau's *Statistics of U.S. Businesses* for 2006 (U.S. Census Bureau, 2010). Although that data source from the Census Bureau provides annual industry-specific estimates of employment, establishments, firms, and payroll, revenue data are published only for years that coincide with the Economic Census (most recently in 2002). ERG, however, estimated 2006 revenues by extrapolating the 2002 revenue data based on the assumption that the ratio of revenues to payroll for each industry would be unchanged between the two years. Revenues were then inflated to 2009 dollars and distributed among size categories (small entities, very small entities) in accordance with the proportion of total payroll found in those categories within each industry. For further details on ERG's methodology for estimating per-entity revenue by size class, see ERG (2007b).

Additionally, ERG estimated before-tax profit rates using corporate balance sheet data from the Internal Revenue Service's *Corporation Source Book* (IRS, 2007). For each of the years 2000 through 2006, ERG calculated profit rates as the ratio of total receipts to net income by NAICS group and averaged profit rates across the seven-year (2000-2006) period. Since some data provided by the IRS were not available at disaggregated levels for all industries and profit rates, data at more highly aggregated levels were used as proxy for such industries—that is, where data were not available for each six-digit NAICS code, corresponding 4- and 5-digit NAICS codes were used as appropriate.

As previously discussed, OSHA has established a minimum threshold level of annualized costs equal to one percent of annual revenues—and, secondarily, annualized costs equal to ten percent of annual profits—below which the Agency has concluded that costs are unlikely to threaten the economic viability of an affected industry. Table VI-1 shows that there are no industries in which the annualized costs of the proposed rule exceed 1 percent of annual revenues or 10 percent of annual profits. NAICS 327123 (Other structural clay product manufacturing) has both the highest cost impact as a percentage of revenues, of 0.39 percent, and the highest cost impact as a percentage of profits, of 8.78 percent. Based on these results, even if the costs of the proposed rule were 50 percent higher than OSHA has estimated, the highest cost impact as a percentage of revenues in any affected industry in general industry or maritime would be less

¹¹ This estimate excludes NAICS 482110 (Railroad transportation) because the number of railroad establishments was not provided in the Census data.

¹²Revenue data specific to individual NAICS codes from the 2007 Census were not available when ERG prepared their economic spreadsheets in support of this PEA.

¹³ Revenues were adjusted from 2006 price levels to 2009 price levels using an inflation factor of 1.062988, calculated as the ratio of the average annual GDP Implicit Price Deflator for 2009 and for 2006.

than 0.6 percent. Furthermore, the costs of the proposed rule would have to be more than 150 percent higher than OSHA has estimated for the cost impact as a percentage of revenues to equal 1 percent in any affected industry. For all affected establishments in general industry and maritime, the estimated annualized cost of the proposed rule is, on average, equal to 0.02 percent of annual revenue and 0.5 percent of annual profit.

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualize d Costs	Number of Affected Establish -ments	Annualize d Costs per Affected Establish- ment	Revenues per Establish- ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits
324121	Asphalt paving mixture and block manufacturing	\$242,070	1,431	\$169	\$6,617,887	7.50%	\$496,420	0.00%	0.03%
324122	Asphalt shingle and roofing materials	\$3,157,257	224	\$14,095	\$34,018,43 7	7.50%	\$2,551,788	0.04%	0.55%
325510	Paint and coating manufacturing	\$144,281	1,344	\$107	\$19,071,85 0	5.38%	\$1,026,902	0.00%	0.01%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,659,194	41	\$40,468	\$21,226,70 9	4.41%	\$937,141	0.19%	4.32%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,601,471	731	\$3,559	\$1,203,017	4.41%	\$53,112	0.30%	6.70%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

Affected by Golf A 3 1 Toposed Giffica Gtandard (Continued)											
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits		
327113	Porcelain electrical supply mfg	\$1,748,297	125	\$13,986	\$8,091,258	4.41%	\$357,222	0.17%	3.92%		
327121	Brick and structural clay mfg	\$7,838,050	204	\$38,422	\$11,440,887	4.41%	\$505,105	0.34%	7.61%		
327122	Ceramic wall and floor tile mfg	\$4,132,107	193	\$21,410	\$6,706,175	4.41%	\$296,072	0.32%	7.23%		
327123	Other structural clay product mfg	\$936,699	49	\$19,116	\$4,933,258	4.41%	\$217,799	0.39%	8.78%		
327124	Clay refractory manufacturing	\$482,438	129	\$3,740	\$7,872,516	4.41%	\$347,565	0.05%	1.08%		
327125	Nonclay refractory manufacturing	\$608,017	105	\$5,791	\$14,718,533	4.41%	\$649,810	0.04%	0.89%		
327211	Flat glass manufacturing	\$275,155	83	\$3,315	\$43,821,692	3.42%	\$1,499,102	0.01%	0.22%		
327212	Other pressed and blown glass and glassware manufacturing	\$1,084,706	499	\$2,174	\$7,233,509	3.42%	\$247,452	0.03%	0.88%		
327213	Glass container manufacturing	\$756,888	72	\$10,512	\$64,453,615	3.42%	\$2,204,903	0.02%	0.48%		
327320	Ready-mixed concrete manufacturing	\$16,511,080	6,064	\$2,723	\$4,891,554	6.64%	\$324,706	0.06%	0.84%		
327331	Concrete block and brick mfg	\$4,437,939		\$4,667	\$5,731,328	6.64%	\$380,451	0.08%	1.23%		
327332	Concrete pipe mfg	\$2,747,484	385	\$7,136	\$7,899,352	6.64%	\$524,366	0.09%	1.36%		
4											

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

			, , , , , , , , , , , , , , , , , , ,			(
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327390	Other concrete product mfg	\$12,900,251	2,281	\$5,656	\$4,816,851	6.64%	\$319,747	0.12%	1.77%
327991	Cut stone and stone product manufacturing	\$8,600,298	1,943	\$4,426	\$1,918,745	5.49%	\$105,320	0.23%	4.20%
327992	Ground or treated mineral and earth manufacturing	\$4,595,006	271	\$16,956	\$8,652,610	5.49%	\$474,944	0.20%	3.57%
327993	Mineral wool manufacturing	\$1,094,552	321	\$3,410	\$18,988,835	5.49%	\$1,042,303	0.02%	0.33%
327999	All other misc. nonmetallic mineral product mfg	\$1,966,052	465		\$5,803,139	5.49%	\$318,536		1.33%
331111	Iron and steel mills	\$424,557	614	\$692	\$70,641,523	4.49%	\$3,173,209	0.00%	0.02%
331112	Electrometallurgical ferroalloy product manufacturing	\$8,577	12	\$692	\$49,659,392	4.49%	\$2,230,694	0.00%	0.03%
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$84,537	122	\$694	\$31,069,797	4.49%	\$1,395,652	0.00%	0.05%
331221	Rolled steel shape manufacturing	\$42,672	61	\$694	\$28,102,003	4.49%	\$1,262,339	0.00%	0.05%
331222	Steel wire drawing	\$57,557	83	\$694	\$12,904,028	4.49%	\$579,647	0.01%	0.12%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331314	Secondary smelting and alloying of aluminum	\$28,757	42	\$692	\$29,333,260	4.46%	\$1,309,709	0.00%	0.05%
331423	Secondary smelting, refining, and alloying of copper	\$4,940	7	\$695	\$26,238,546	4.42%	\$1,158,438	0.00%	0.06%
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$36,946	53	\$695	\$14,759,299	4.42%	\$651,626	0.00%	0.11%
331511	Iron foundries	\$15,310,815	527	\$29,053	\$19,672,534	4.11%	\$809,290	0.15%	3.59%
331512	Steel investment foundries	\$4,283,138	132	\$32,448	\$18,445,040	4.11%	\$758,794	0.18%	4.28%
331513	Steel foundries (except investment)	\$4,596,837	222	\$20,706	\$17,431,292	4.11%	\$717,090	0.12%	2.89%
331524	Aluminum foundries (except die-casting)	\$6,975,150	466	\$14,968	\$8,244,396	4.11%	\$339,159	0.18%	4.41%
331525	Copper foundries (except die-casting)	\$1,636,463	256	\$6,392	\$3,103,580	4.11%	\$127,675	0.21%	5.01%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment		Profits per Establish- ment	of	Costs as a Percentage of Profits
331528	Other nonferrous foundries (except die-casting)	\$1,232,708	124	\$9,941	\$7,040,818	4.11%	\$289,646	0.14%	3.43%
332111	Iron and steel forging	\$105,955	150	\$705	\$15,231,376	4.71%	\$716,646	0.00%	0.10%
332112	Nonferrous forging	\$34,982	50	\$705	\$28,714,500	4.71%	\$1,351,035	0.00%	0.05%
332115	Crown and closure manufacturing	\$12,720	18	\$697	\$16,308,872	4.71%	\$767,343	0.00%	0.09%
332116	Metal stamping	\$255,832	366	\$700	\$6,748,606	4.71%	\$317,526	0.01%	0.22%
332117	Powder metallurgy part manufacturing	\$32,828	47	\$696	\$9,712,731	4.71%	\$456,990	0.01%	0.15%
332211	Cutlery and flatware (except precious) manufacturing	\$22,970	33	\$705	\$9,036,720	5.22%	\$472,045	0.01%	0.15%
332212	Hand and edge tool manufacturing	\$145,223	207	\$702	\$5,874,133	5.22%	\$306,843	0.01%	0.23%
332213	Saw blade and handsaw manufacturing	\$28,851	41	\$698	\$11,339,439	5.22%	\$592,331	0.01%	0.12%
332214	Kitchen utensil, pot, and pan manufacturing	\$15,678	22	\$705	\$18,620,983	5.22%	\$972,693	0.00%	0.07%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish-	Annualized Costs per Affected Establish-	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
	Ornamental and		ments	ment					
332323	architectural metal work	\$35,267	54	\$654	\$2,777,899	4.70%	\$130,669	0.02%	0.50%
332439	Other metal container manufacturing	\$60,330	86	\$705	\$7,467,745	3.58%	\$267,613	0.01%	0.26%
332510	Hardware manufacturing	\$180,292	256	\$705	\$11,899,309	5.22%	\$621,577	0.01%	0.11%
332611	Spring (heavy gauge) manufacturing	\$16,158	23	\$705	\$7,764,934	5.22%	\$405,612	0.01%	0.17%
332612	Spring (light gauge) manufacturing	\$60,992	87	\$705	\$8,185,896	5.22%	\$427,602	0.01%	0.16%
332618	Other fabricated wire product manufacturing	\$144,819	205	\$705	\$5,120,358	5.22%	\$267,469	0.01%	0.26%
332710	Machine shops	\$1,077,759	1,506	\$716	\$1,624,814	5.80%	\$94,209	0.04%	0.76%
332812	Metal coating and allied services	\$3,038,935	2,599	\$1,169	\$4,503,334	4.85%	\$218,618	0.03%	0.53%
332911	Industrial valve manufacturing	\$150,261	216	\$694	\$18,399,215	6.81%	\$1,252,418	0.00%	0.06%
332912	Fluid power valve and hose fitting manufacturing	\$140,213	201	\$698	\$22,442,750	6.81%	\$1,527,658	0.00%	0.05%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish-	Annualized Costs per Affected Establish-	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
			ments	ment				Revenues	
332913	Plumbing fixture fitting and trim manufacturing	\$45,472	65	\$698	\$24,186,039	6.81%	\$1,646,322	0.00%	0.04%
332919	Other metal valve and pipe fitting manufacturing	\$71,354	102	\$698	\$15,023,143	6.81%	\$1,022,612	0.00%	0.07%
332991	Ball and roller bearing manufacturing	\$107,338	154	\$698	\$36,607,380	6.81%	\$2,491,832	0.00%	0.03%
332996	Fabricated pipe and pipe fitting manufacturing	\$107,219	154	\$698	\$6,779,536	6.81%	\$461,477	0.01%	0.15%
332997	Industrial pattern manufacturing	\$20,891	30	\$698	\$1,122,819	6.81%	\$76,429	0.06%	0.91%
332998	Enameled iron and metal sanitary ware manufacturing	\$60,684	76	\$798	\$14,497,312	6.81%	\$986,819	0.01%	0.08%
332999	All other miscellaneous fabricated metal product manufacturing	\$288,093	408	\$707	\$4,405,921	6.81%	\$299,907	0.02%	0.24%
333319	Other commercial and service industry machinery manufacturing	\$209,273	299	\$699	\$10,042,625	4.86%	\$487,919	0.01%	0.14%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
333411	Air purification equipment manufacturing	\$58,265	84	\$694	\$7,353,577	4.55%	\$334,804	0.01%	0.21%
333412	Industrial and commercial fan and blower manufacturing	\$41,212	59	\$694	\$12,795,249	4.55%	\$582,559	0.01%	0.12%
333414	Heating equipment (except warm air furnaces) manufacturing	\$80,754	116	\$694	\$11,143,189	4.55%	\$507,342	0.01%	0.14%
333511	Industrial mold manufacturing	\$160,131	226	\$710	\$2,481,931	5.29%	\$131,278	0.03%	0.54%
333512	Machine tool (metal cutting types) manufacturing	\$68,151	97	\$702	\$7,371,252	5.29%	\$389,890	0.01%	0.18%
333513	Machine tool (metal forming types) manufacturing	\$33,940	48	\$702	\$5,217,940	5.29%	\$275,994	0.01%	0.25%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$231,988	325	\$714	\$2,378,801	5.29%	\$125,823	0.03%	0.57%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

ı———					a Omoa Otanaara	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 			
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
333515	Cutting tool and machine tool accessory manufacturing	\$139,916	197	\$710	\$3,384,805	5.29%	\$179,034	0.02%	0.40%
333516	Rolling mill machinery and equipment manufacturing	\$12,279	17	\$710	\$9,496,141	5.29%	\$502,283	0.01%	0.14%
333518	Other metalworking machinery manufacturing	\$50,002	70	\$710	\$7,231,602	5.29%	\$382,504	0.01%	0.19%
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$48,452	70	\$693	\$10,727,834	2.63%	\$281,813	0.01%	0.25%
333613	Mechanical power transmission equipment manufacturing	\$61,197	88	\$693	\$14,983,120	2.63%	\$393,597	0.00%	0.18%
333911	Pump and pumping equipment manufacturing	\$121,086	174	\$696	\$17,078,357	4.58%	\$781,566	0.00%	0.09%
333912	Air and gas compressor manufacturing	\$84,518	121	\$698	\$21,079,073	4.58%	\$964,653	0.00%	0.07%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333991	Power-driven handtool manufacturing	\$34,459	49	\$698	\$22,078,371	4.58%	\$1,010,384	0.00%	0.07%
333992	Welding and soldering equipment manufacturing	\$62,401	90	\$696	\$16,457,683	4.58%	\$753,162	0.00%	0.09%
333993	Packaging machinery manufacturing	\$83,714	120	\$700	\$7,374,940	4.58%	\$337,503	0.01%	0.21%
333994	Industrial process furnace and oven manufacturing	\$42,523	61	\$702	\$5,584,460	4.58%	\$255,565	0.01%	0.27%
333995	Fluid power cylinder and actuator manufacturing	\$78,057	112	\$695	\$13,301,790	4.58%	\$608,737	0.01%	0.11%
333996	Fluid power pump and motor manufacturing	\$53,535	77	\$695	\$18,030,122	4.58%	\$825,122	0.00%	0.08%
333997	Scale and balance (except laboratory) manufacturing	\$14,822	21	\$702	\$7,236,854	4.58%	\$331,184	0.01%	0.21%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

		Alle			u Silica Stalluaru	(continued)			
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333999	All other miscellaneous general purpose machinery manufacturing	\$207,006	296	\$698	\$6,033,776	4.58%	\$276,127	0.01%	0.25%
334518	Watch, clock, and part manufacturing	\$8,740	12	\$703	\$4,924,986	5.94%	\$292,667	0.01%	0.24%
335211	Electric housewares and household fans	\$13,928	22	\$643	\$22,023,076	4.21%	\$927,874	0.00%	0.07%
335221	Household cooking appliance manufacturing	\$30,077	47	\$643	\$37,936,003	4.21%	\$1,598,316	0.00%	0.04%
335222	Household refrigerator and home freezer manufacturing	\$32,118	26	\$1,235	\$188,132,355	4.21%	\$7,926,376	0.00%	0.02%
335224	Household laundry equipment manufacturing	\$30,521	23	\$1,327	\$221,491,837	4.21%	\$9,331,875	0.00%	0.01%
335228	Other major household appliance manufacturing	\$24,023	37	\$643	\$107,476,620	4.21%	\$4,528,196	0.00%	0.01%
336111	Automobile manufacturing	\$293,357	181	\$1,621	\$512,748,675	2.04%	\$10,462,470	0.00%	0.02%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	⊢etaniien-	of	Costs as a Percentage of Profits
336112	Light truck and utility vehicle manufacturing	\$404,778	94	\$4,306	\$1,581,224,101	2.04%	\$32,264,364	0.00%	0.01%
336120	Heavy duty truck manufacturing	\$125,181	95	\$1,318	\$194,549,998	2.04%	\$3,969,729	0.00%	0.03%
336211	Motor vehicle body manufacturing	\$187,131	269	\$696	\$15,012,805	2.04%	\$306,331	0.00%	0.23%
336212	Truck trailer manufacturing	\$126,512	182	\$694	\$17,032,455	2.04%	\$347,542	0.00%	0.20%
336213	Motor home manufacturing	\$84,073	91	\$924	\$65,421,325	2.04%	\$1,334,901	0.00%	0.07%
336311	Carburetor, piston, piston ring, and valve manufacturing	\$41,219	60	\$693	\$21,325,990	2.04%	\$435,150	0.00%	0.16%
336312	Gasoline engine and engine parts manufacturing	\$258,625	373	\$693	\$36,938,061	2.04%	\$753,709	0.00%	0.09%
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$242,586	350	\$693	\$33,890,776	2.04%	\$691,530	0.00%	0.10%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

		Allet	-	•	J Silica Stalluaru	(continued)			
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$153,960	223	\$692	\$42,374,501	2.04%	\$864,638	0.00%	0.08%
336340	Motor vehicle brake system manufacturing	\$132,114	191	\$693	\$51,498,927	2.04%	\$1,050,819	0.00%	0.07%
336350	Motor vehicle transmission and power train parts manufacturing	\$327,377	473	\$692	\$63,004,961	2.04%	\$1,285,596	0.00%	0.05%
336370	Motor vehicle metal stamping	\$431,985	624	\$692	\$33,294,026	2.04%	\$679,354	0.00%	0.10%
336399	All other motor vehicle parts manufacturing	\$583,803	843	\$693	\$31,304,202	2.04%	\$638,752	0.00%	0.11%
336611	Ship building and repair	\$8,749,619	635	\$13,779	\$24,524,381	5.86%	\$1,437,564	0.06%	0.96%
336612	Boat building	\$5,479,624	1,129	\$4,854	\$9,474,540	5.86%	\$555,376	0.05%	0.87%
336992	Military armored vehicle, tank, and tank component manufacturing	\$27,227	39	\$697	\$44,887,321	6.31%	\$2,832,073	0.00%	0.02%

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

					d Omou Otanaara	<u> </u>			
NAICS	Industry	Total Annualized Costs	Number of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
337215	Showcase, partition, shelving, and locker manufacturing	\$233,720	334	\$701	\$4,943,560	4.54%	\$224,593	0.01%	0.31%
339114	Dental equipment and supplies manufacturing	\$351,955	411	\$856	\$4,732,949	10.77%	\$509,695	0.02%	0.17%
339116	Dental laboratories	\$1,439,004	7,261	\$198	\$563,964	10.77%	\$60,734	0.04%	0.33%
339911	Jewelry (except costume) manufacturing	\$1,560,353	1,777	\$878	\$3,685,009	5.80%	\$213,566		0.41%
339913	Jewelers' materials and lapidary work manufacturing	\$320,878	264	\$1,215	\$3,762,284	5.80%	\$218,045	0.03%	0.56%
339914	Costume jewelry and novelty manufacturing	\$236,821	590	\$401	\$1,353,403	5.80%	\$78,437	0.03%	0.51%
339950	Sign manufacturing	\$294,919	496	\$594	\$1,872,356	5.80%	\$108,513	0.03%	0.55%
423840	Industrial supplies, wholesalers	\$177,299	383	\$463	\$1,913,371	3.44%	\$65,736	0.02%	0.70%
482110	Rail transportation	\$2,452,073	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$389,256	7,980	\$49	\$755,073	7.34%	\$55,429	0.01%	0.09%
	Total	\$146,726,595	56,121	\$2,571					

[[]a] Profit rates were calculated by ERG (2011) as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the

Table VI-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Affe Costs Estab		Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
		m	nents ment	t			itevenues	

Internal Revenue Service's Corporation Source Book (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Normal Year-to-Year Variations in Prices and Profit Rates

The United States has a dynamic and constantly changing economy in which an annual percentage increase in industry revenues or prices of one percent or more are common. Examples of year-to-year changes in an industry that could cause such an increase in revenues or prices include increases in fuel, material, real estate, or other costs; tax increases; and shifts in demand.

To demonstrate the normal year-to-year variation in prices for all the manufacturers in general industry and maritime affected by the proposed rule, OSHA developed Table VI-2 and Table VI-3, which show, respectively, year-to-year producer price indices and year-to-year percentage changes in producer prices, by industry, for the years 1998 - 2009. For the combined affected manufacturing industries in general industry and maritime over the 12-year period, Table VI-3 shows an average change in producer prices of 3.8 percent a year. For the industries in general industry and maritime with the largest estimated potential annual cost impact as a percentage of revenue—NAICS 327123, 0.39 percent; NAICS 327121, 0.34 percent; and NAICS 327122, 0.32 percent—the average annual changes in producer prices in these industries over the 12-year period were, respectively, 4.1 percent, 3.5 percent, and 2.9 percent.

Based on these data, it is clear that the potential price impacts of the proposed rule in general industry and maritime are all well within normal year-to-year variations in prices in those industries. The maximum cost impact of the proposed rule as a percentage of revenue in any affected industry is 0.39 percent, while the average annual change in producer prices for affected industries was 3.8 percent for the period 1998 - 2009. Furthermore, even a casual examination of Table VI-3 reveals that annual changes in producer prices in excess of 5 percent or even 10 percent are possible without threatening an industry's economic viability. Thus, OSHA preliminarily concludes that the potential price impacts of the proposed would not threaten the economic viability of any industries in general industry and maritime.

Changes in profit rates are also subject to the dynamics of the U.S. economy. A recession, a downturn in a particular industry, foreign competition, or the increased competitiveness of producers of close domestic substitutes are all easily capable of causing a decline in profit rates in an industry of well in excess of ten percent in one year or for several years in succession.

To demonstrate the normal year-to-year variation in profit rates for all the manufacturers in general industry and maritime affected by the proposed rule, OSHA developed Table VI-4 and Table VI-5, which show, respectively, year-to-year profit rates and year-to-year percentage changes in profit rates, by industry, for the years 2000 - 2006. For the combined affected manufacturing industries in general industry and maritime over the 7-year period, OSHA calculated an average change in profit rates of 38.8 percent a year (average for all industries calculated from the per-NAICS averages shown in Table VI-5). For the industries in general industry and maritime with the largest estimated potential annual cost impacts as a percentage of profit—NAICS 327123, 9 percent; NAICS 327121, 8 percent; NAICS 327122, 7 percent; NAICS 327112, 7 percent; NAICS 331525, 5 percent; NAICS 331524, 4 percent; and NAICS 327111, 4 percent—the average annual changes in profit rates in these industries over the 7-year

period were, respectively, 32 percent, 32 percent, 32 percent, 32 percent, 43 percent, 43 percent, and 32 percent.

One complicating factor is that the annualized costs of the proposed rule, if absorbed in lost profits, would involve not a temporary loss of profits but a longer-term negative effect on profits relative to the baseline. To address this issue, the Agency compared the effect of a longer-term reduction in profits to much larger reductions in profits but over shorter periods. For example, using a 7 percent discount rate, the following reductions in profit rates relative to the baseline are approximately equivalent to a 10 percent annual decline in profit rates relative to the baseline over a seven-year period: ¹⁴

- a 70 percent decline in profit rates for one year;
- a 35 percent decline in profit rates for two years; or
- a 23 percent decline in profit rates for three years.

An examination of Table VI-5, for the seven-year period from 2000 to 2006, clearly shows that short-run changes in average industry profit rates of the above magnitudes have occurred on numerous occasions in general industry and maritime, presumably without threatening the economic viability of the affected industries. For this reason, OSHA feels confident that potential profit rate impacts of 10 percent or less as a result of the proposed rule would not threaten the economic viability of the affected industries in general industry and maritime.

A longer-term loss of profits in excess of 10 percent a year could be more problematic for some affected industries and might conceivably, under sufficiently adverse circumstances, threaten an industry's economic viability. In OSHA's view, however, affected industries would generally be able to pass on most or all of the costs of the proposed rule in the form of higher prices rather than to bear the costs of the proposed rule in reduced profits. (In other words, OSHA believes that the demand for the goods and services produced by affected industries in general industry and maritime is not perfectly elastic or close to it.) After all, it defies common sense to suggest that the demanded quantities of brick and structural clay, vitreous china, ceramic wall and floor tile, other structural clay products (such as clay sewer pipe), and the various other products manufactured by affected industries would significantly contract in response to a 0.4 percent (or lower) price increase for these products. It is of course possible that such price changes will result in some reduction in output, and the reduction in output might be met through the closure of a small percentage of the plants in the industry. However, the only realistic circumstance such that an entire industry would be significantly affected by small potential price increases would be the availability in the market of a very close or perfect substitute product not subject to OSHA regulation. The classic example, in theory, would be foreign competition. In the following discussion, OSHA examines the threat of foreign competition for affected U.S. establishments in general industry and maritime.

¹⁴ Note that the reduction in profits rates over time, as a result of the proposed rule, is being measured here relative to the baseline. If the reduction in profit rates were made relative to the previous year, as is done in Table VI-5 below, then there would be only a one-time reduction in the profit rate in Year 1 as a result of the proposed rule, after which the profit rate would reach a new (lower) level but would not change from year to year.

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
324121	Asphalt paving mixture & block mfg.	114.0	116.0	134.8	138.6	141.0	147.1	149.9	162.3	203.7	221.6	269.1	271.2
324122	Asphalt shingle and coating materials mfg	103.6	103.4	108.0	111.4	114.9	120.3	121.6	133.9	147.5	149.2	185.4	219.2
325510	Paint and coating manufacturing	154.9	157.3	160.5	163.9	165.8	169.1	174.7	187.2	200.8	209.0	223.2	236.8
327111	Vitreous china plumbing fixture manufacturing	118.8	121.4	121.7	127.1	127.0	127.6	127.3	129.6	133.5	136.2	131.8	136.4
327112	Vitreous china and earthenware articles mfg	N/A	N/A	N/A	N/A	N/A	N/A	100.9	102.6	104.9	107.1	108.4	109.8
327113	Porcelain electrical supply manufacturing	132.0	140.3	138.9	160.5	158.4	158.7	161.6	163.1	172.7	177.2	183.8	189.8
327121	Brick and structural clay tile manufacturing	133.7	138.9	148.0	156.6	160.0	161.5	164.6	175.3	190.3	193.0	192.8	192.4

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

114100	in General						- 31 10po			_ `		0000	0000
NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
327122	Ceramic wall and floor tile manufacturing	112.7	112.7	110.1	101.0	88.7	87.7	87.7	89.6	91.5	91.2	93.9	93.1
327123	Other structural clay product manufacturing	125.6	127.7	132.8	142.4	148.3	154.0	157.0	167.8	181.9	186.2	191.0	195.8
327124	Clay refractory manufacturing	130.1	131.2	132.9	145.7	150.1	154.9	167.1	179.8	192.2	202.6	224.5	243.4
327125	Nonclay refractory manufacturing	125.1	125.9	127.8	132.4	134.1	135.4	138.5	143.6	150.2	156.1	163.9	174.1
327211	Flat glass manufacturing	99.5	95.9	97.3	97.6	95.2	95.7	93.9	96.3	96.7	96.2	98.6	94.8
327212	Other pressed and blown glass and glassware	130.0	128.3	130.0	132.0	131.5	130.4	127.4	128.1	127.6	128.5	130.7	132.7
327213	Glass container manufacturing	123.8	123.8	125.3	130.6	133.4	137.8	142.0	143.9	150.2	159.3	169.5	176.7
327320	Ready-mix concrete manufacturing	142.3	145.6	150.2	153.4	153.0	153.9	162.1	181.9	202.5	210.3	216.7	222.1
327331	Concrete block and brick manufacturing	147.8	151.8	156.3	160.0	162.7	167.3	173.4	186.6	200.0	208.6	213.7	217.6
327332	Concrete pipe manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	103.0	108.3	115.3	118.4	131.3	129.2
327390	Other concrete product manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	104.7	111.3	121.0	126.6	132.2	131.4

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
327991	Cut stone and stone product manufacturing	141.7	143.3	144.8	147.9	149.3	149.7	149.5	151.6	153.9	154.3	155.7	154.5
327992	Ground or treated minerals and earths mfg	128.8	130.2	133.1	136.3	137.5	139.3	141.9	149.6	162.1	168.5	179.6	204.0
327993	Mineral wool manufacturing	123.6	135.4	132.1	131.1	131.5	131.8	140.8	146.7	154.7	150.0	144.8	145.8
327999	Miscellaneous nonmetallic mineral products	N/A	N/A	N/A	N/A	N/A	N/A	102.2	107.3	115.5	123.0	126.5	128.2
331111	Iron and steel mills	111.3	102.0	104.1	96.9	100.1	103.8	136.4	145.9	161.5	172.0	202.5	147.8
331112	Ferroalloy and related product manufacturing	170.2	149.3	143.9	141.6	135.9	152.3	212.5	276.8	238.2	265.8	330.7	NA
331210	Iron, steel pipe & tube from purchased steel	132.7	127.1	132.1	129.4	132.9	141.3	211.1	228.9	234.6	240.1	295.2	235.5
331221	Rolled steel shape manufacturing	114.5	110.3	113.6	107.5	114.5	118.0	148.8	168.6	168.9	171.7	222.0	183.7
331222	Steel wire drawing	125.3	122.4	121.8	119.8	119.8	122.0	153.8	164.8	167.3	169.8	215.9	190.1
331314	Secondary smelting and alloying of aluminum	N/A	N/A	N/A	N/A	N/A	N/A	108.9	112.2	137.2	144.1	148.5	108.6

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
331423	Secondary processing of copper	N/A	N/A	N/A	N/A	N/A	N/A	121.9	140.7	224.5	245.8	262.8	201.9
331492	Secondary processing of other nonferrous	N/A	N/A	N/A	N/A	N/A	N/A	109.5	123.2	155.7	188.4	194.8	178.3
331511	Iron foundries	143.4	144.5	147.1	148.0	148.6	149.7	158.7	173.4	181.2	188.5	218.6	210.9
331512	Steel investment foundries	201.8	202.3	203.8	205.0	205.6	199.8	197.7	204.8	216.0	235.4	235.4	235.4
331513	Steel foundries, except investment	137.4	137.5	137.3	136.7	135.3	137.5	146.2	160.1	170.5	183.7	193.4	191.4
331524	Aluminum foundries, except die-casting	112.1	111.8	114.0	114.8	115.7	116.5	119.9	124.3	133.1	140.8	150.5	152.2
331525	Copper foundries, except die-casting	148.1	148.4	150.3	152.0	155.6	156.9	168.3	186.9	244.6	271.7	288.4	276.9
331528	Other nonferrous foundries, except die-casting	143.8	140.9	142.8	144.2	145.5	146.1	157.0	157.7	175.7	197.6	208.6	204.8
332111	Iron and steel forging	117.7	115.7	115.8	114.7	112.9	112.8	117.5	128.1	133.9	140.4	150.9	148.6
332112	Nonferrous forging	146.3	147.3	146.8	147.5	148.1	145.4	145.8	149.3	158.1	163.0	165.7	164.2
332115	Crown and closure manufacturing	137.1	137.9	141.0	142.1	142.8	143.0	154.5	164.7	171.4	182.1	NA	NA
332116	Metal stamping	128.9	128.6	128.7	129.9	130.6	131.4	142.0	149.2	154.2	162.9	175.9	172.6

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
332117	Powder metallurgy part manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	100.6	101.8	104.4	106.2	110.8	NA
332211	Cutlery and flatware, except precious, mfg	153.2	155.5	160.8	162.3	164.4	168.1	168.4	174.4	178.4	181.0	184.2	192.0
332212	Hand and edge tool manufacturing	156.8	157.7	158.4	162.5	164.7	165.1	168.8	177.0	183.7	188.9	197.0	203.1
332213	Saw blade & handsaw manufacturing	139.8	139.3	139.4	139.9	142.0	142.9	142.9	146.0	150.2	152.8	158.1	165.1
332214	Kitchen utensil, pot & pan manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	100.8	104.9	106.4	112.2	116.0	118.1
332323	Ornamental and architectural metal work mfg	138.7	139.4	143.4	145.5	147.7	150.5	173.3	185.1	191.9	199.6	224.4	230.8
332439	Other metal container manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	111.7	120.2	127.0	128.1	145.1	138.8
332510	Hardware manufacturing	126.0	127.4	129.7	132.0	133.2	133.8	138.7	143.8	148.5	154.7	164.2	167.8
332611	Spring, heavy gauge, manufacturing	118.7	118.4	118.3	119.0	119.1	119.9	127.5	139.0	144.0	143.1	155.7	161.9
332612	Spring, light gauge, manufacturing	123.8	122.8	123.1	123.5	123.4	124.5	136.7	144.0	144.1	144.8	156.5	160.7

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

_	III General												
NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
332618	Other fabricated wire product manufacturing	132.5	133.3	133.5	134.0	134.8	135.1	148.2	154.7	161.4	167.1	197.1	199.5
332710	Machine shops	127.0	127.6	129.8	132.2	132.6	132.2	136.1	142.8	146.1	149.5	158.9	163.2
332812	Metal coating and nonprecious engraving	119.1	118.8	119.1	122.5	122.7	122.8	126.7	129.5	140.7	149.0	151.9	145.9
332911	Industrial valve manufacturing	119.8	122.4	123.9	126.4	128.0	129.8	135.5	145.1	158.2	172.8	182.9	187.2
332912	Fluid power valve and hose fitting mfg	123.1	125.6	127.6	129.5	131.1	132.9	136.7	146.1	154.9	162.3	168.7	175.7
332913	Plumbing fixture fitting & trim mfg	181.6	183.6	187.9	186.3	186.6	188.2	192.4	200.0	209.6	225.2	234.7	236.3
332919	Other metal valve and pipe fitting mfg	152.8	154.6	156.8	163.0	164.8	168.0	173.6	187.6	205.4	216.5	225.9	235.9
332991	Ball and roller bearing manufacturing	164.0	165.8	168.1	169.5	170.7	172.7	177.3	186.9	194.4	202.2	214.0	225.3
332996	Fabricated pipe and pipe fitting mfg	150.3	146.2	151.3	152.9	153.7	155.9	187.4	206.1	217.3	214.3	230.5	242.5
332997	Industrial pattern manufacturing	127.4	127.3	127.6	128.3	131.0	131.0	132.2	133.6	139.5	144.3	150.3	153.3
332998	Enameled iron and metal sanitary ware mfg	163.0	163.7	163.9	161.4	165.3	167.8	178.2	197.4	210.0	226.8	241.1	243.6

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
332999	Miscellaneous fabricated metal product mfg	N/A	N/A	N/A	N/A	N/A	N/A	102.5	106.1	111.1	114.0	118.8	123.4
333319	Other commercial & service machinery mfg	161.8	164.0	165.9	168.5	171.3	174.2	178.6	185.3	191.3	197.6	203.9	210.6
333411	Air purification equipment manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	102.7	109.8	113.1	115.9	118.7	115.4
333412	Industrial and commercial fan and blower mfg	N/A	N/A	N/A	N/A	N/A	N/A	103.1	109.2	112.9	117.6	125.2	130.0
333414	Heating equipment, except warm air furnaces	187.8	191.0	192.8	195.0	196.3	199.8	206.2	215.4	222.3	231.2	245.7	255.3
333511	Industrial mold manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	99.3	101.6	103.5	103.3	103.2	102.4
333512	Metal cutting machine tool manufacturing	155.6	156.6	158.1	156.6	151.7	150.4	152.7	157.9	166.2	169.0	175.1	176.3
333513	Metal forming machine tool manufacturing	167.6	169.9	172.0	175.3	177.2	178.1	182.4	190.0	194.7	196.8	205.2	210.6
333514	Special die and tool, die set, jig, and fixture mfg	N/A	N/A	N/A	N/A	N/A	N/A	100.4	100.2	100.6	101.2	103.0	102.5

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

	III Gellerai					-						1	1
NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
333515	Cutting tool and machine tool accessory mfg	135.9	136.8	139.4	142.0	142.4	142.9	144.5	150.5	156.9	158.9	161.6	164.9
333516	Rolling mill machinery and equipment mfg	160.0	159.1	159.4	161.7	164.8	165.3	173.9	199.2	205.5	213.1	233.2	228.4
333518	Other metalworking machinery manufacturing	159.7	162.8	167.3	171.9	172.4	174.5	180.5	183.1	185.5	188.7	193.1	194.8
333612	Speed changers, drive, and gear manufacturing	158.9	162.3	166.3	170.2	172.2	175.6	182.6	193.3	201.1	211.2	225.8	233.6
333613	Mechanical power transmission equipment mfg	147.0	150.9	152.2	155.0	157.8	159.9	168.4	177.9	185.8	192.6	206.4	222.4
333911	Pump and pumping equipment manufacturing	153.4	156.2	158.6	162.4	167.1	174.6	179.5	190.1	199.5	210.7	219.8	224.6
333912	Air and gas compressor manufacturing	137.9	140.0	141.4	144.5	146.3	147.5	151.2	161.0	165.8	171.7	181.0	188.3
333991	Power-driven handtool manufacturing	168.3	168.0	169.1	172.0	172.8	173.2	174.5	176.1	175.2	176.3	179.0	180.0

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

2005 **NAICS** 1999 Industry 1998 2000 2001 2002 2003 2004 2006 2007 2008 2009 Welding and soldering 333992 151.8 153.4 156.3 158.7 160.5 161.7 171.2 182.7 191.5 203.6 217.5 222.4 equipment manufacturing Packaging 333993 machinery 127.9 130.5 133.8 135.7 137.1 138.8 141.6 145.0 147.9 150.1 162.4 172.5 manufacturing Industrial process 333994 furnace and oven 160.8 162.5 164.7 166.4 167.3 168.7 170.5 174.6 180.2 185.8 194.6 197.6 mfa Fluid power 333995 cylinder and 128.9 129.7 130.9 131.5 134.4 142.8 151.5 158.4 163.9 173.9 177.9 127.5 actuator mfg Fluid power pump and motor 125.1 125.1 127.3 133.9 140.3 145.1 155.2 161.4 333996 121.8 128.4 130.1 130.8 manufacturing Scale & balance. 333997 119.4 120.7 122.2 123.3 125.3 125.9 129.0 130.1 131.9 136.0 140.7 except 126.9 laboratory, mfg All other miscellaneous 333999 151.3 153.8 156.8 162.2 173.5 178.6 159.1 161.4 165.5 169.0 187.3 195.5 general purpose machinery mfg Watch, clock, 334518 N/A N/A N/A N/A N/A 102.9 105.0 105.8 109.1 111.7 and part N/A 104.7 manufacturing Electric housewares and 335211 117.3 110.6 110.5 109.6 110.3 110.4 110.0 110.3 114.8 122.2 122.8 127.8 household fan mfg

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
335221	Household cooking appliance manufacturing	110.2	111.4	111.4	109.9	110.8	108.1	105.7	108.5	111.1	112.4	115.9	122.7
335222	Household refrigerator and home freezer mfg	110.5	107.9	105.5	102.0	99.6	97.1	96.6	99.1	99.8	101.1	105.1	109.4
335224	Household laundry equipment manufacturing	131.4	132.0	130.7	127.7	131.1	129.1	129.2	130.0	128.8	126.7	127.4	130.0
335228	Other major household appliance mfg	140.3	139.9	139.9	139.4	139.2	144.4	150.2	163.4	169.0	174.5	187.3	201.6
336120	Heavy duty truck manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	102.2	106.4	110.4	115.5	118.9	124.4
336211	Motor vehicle body manufacturing	155.3	157.0	160.3	163.3	165.6	167.5	176.7	190.3	200.0	205.0	212.0	216.4
336212	Truck trailer manufacturing	152.2	153.6	156.6	156.1	155.6	157.0	166.2	176.2	184.5	190.2	199.1	200.9
336213	Motor home manufacturing	145.0	147.6	149.4	151.8	154.8	157.8	163.8	169.3	166.6	171.1	174.6	170.7
336311	Carburetor, piston, piston, ring and valve mfg	127.0	126.5	127.8	128.5	129.1	128.7	129.8	131.7	137.4	141.9	147.0	147.1
336312	Gasoline engine and engine parts mfg	N/A	N/A	N/A	N/A	N/A	N/A	101.4	102.5	111.5	113.1	116.0	103.7

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
336322	Other motor vehicle electrical equipment mfg	N/A	N/A	N/A	N/A	N/A	N/A	99.8	101.7	102.5	103.7	102.9	102.9
336330	Motor vehicle steering and suspension parts	N/A	N/A	N/A	N/A	N/A	N/A	101.7	104.9	106.1	104.8	106.3	105.1
336340	Motor vehicle brake system manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	99.6	100.3	101.2	101.6	103.4	104.5
336350	Motor vehicle power train components mfg	N/A	N/A	N/A	N/A	N/A	N/A	100.9	101.2	103.2	105.9	108.1	112.7
336370	Motor vehicle metal stamping	111.9	110.4	110.6	110.1	110.3	113.0	118.5	120.4	120.9	124.2	128.1	131.3
336399	All other motor vehicle parts manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	100.6	101.9	102.5	104.4	108.4	109.5
336611	Ship building and repairing	134.8	135.4	137.6	140.1	144.1	151.7	159.8	163.9	169.9	177.0	181.6	187.4
336612	Boat building	168.6	172.7	179.4	186.3	190.5	194.2	198.0	206.7	214.1	220.9	228.4	233.4
337215	Showcases, partitions, shelving, and lockers	N/A	N/A	N/A	N/A	N/A	N/A	110.7	118.8	119.4	120.9	126.0	128.7
339114	Dental equipment and supplies manufacturing	155.7	166.5	181.8	189.2	191.1	198.7	203.2	212.0	229.8	238.0	248.9	253.4
339911	Jewelry, except costume, manufacturing	125.3	124.1	124.4	125.6	127.2	128.8	132.7	136.5	144.7	149.2	157.5	161.6

Table VI-2: Time Series of Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009
339913	Jewelers' material and lapidary work mfg	117.3	118.0	119.4	118.6	119.9	124.0	127.9	132.0	145.4	153.5	172.1	179.9
339914	Costume jewelry and novelty manufacturing	125.6	126.2	127.5	129.5	129.7	130.3	132.6	137.1	137.7	139.8	142.6	142.2
339950	Sign manufacturing	136.4	139.1	140.7	145.0	146.1	145.7	146.7	152.1	155.4	158.6	161.7	162.2

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011) with data obtained from BLS (2010).

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
324121	Asphalt paving mixture & block mfg.	1.8%	16.2%	2.8%	1.7%	4.3%	1.9%	8.3%	25.5%	8.8%	21.4%	0.8%	8.5%
324122	Asphalt shingle and coating materials mfg	-0.2%	4.4%	3.1%	3.1%	4.7%	1.1%	10.1%	10.2%	1.2%	24.3%	18.2%	7.3%
325510	Paint and coating manufacturing	1.5%	2.0%	2.1%	1.2%	2.0%	3.3%	7.2%	7.3%	4.1%	6.8%	6.1%	4.0%
327111	Vitreous china plumbing fixture manufacturing	2.2%	0.2%	4.4%	-0.1%	0.5%	-0.2%	1.8%	3.0%	2.0%	-3.2%	3.5%	1.9%
327112	Vitreous china and earthenware articles mfg	NA	NA	NA	NA	NA	NA	1.7%	2.2%	2.1%	1.2%	1.3%	1.7%
327113	Porcelain electrical supply manufacturing	6.3%	-1.0%	15.6%	-1.3%	0.2%	1.8%	0.9%	5.9%	2.6%	3.7%	3.3%	3.9%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
327121	Brick and structural clay tile manufacturing	3.9%	6.6%	5.8%	2.2%	0.9%	1.9%	6.5%	8.6%	1.4%	-0.1%	-0.2%	3.5%
327122	Ceramic wall and floor tile manufacturing	0.0%	-2.3%	-8.3%	- 12.2%	-1.1%	0.0%	2.2%	2.1%	-0.3%	3.0%	-0.9%	2.9%
327123	Other structural clay product manufacturing	1.7%	4.0%	7.2%	4.1%	3.8%	1.9%	6.9%	8.4%	2.4%	2.6%	2.5%	4.1%
327124	Clay refractory manufacturing	0.8%	1.3%	9.6%	3.0%	3.2%	7.9%	7.6%	6.9%	5.4%	10.8%	8.4%	5.9%
327125	Nonclay refractory manufacturing	0.6%	1.5%	3.6%	1.3%	1.0%	2.3%	3.7%	4.6%	3.9%	5.0%	6.2%	3.1%
327211	Flat glass manufacturing	-3.6%	1.5%	0.3%	-2.5%	0.5%	-1.9%	2.6%	0.4%	-0.5%	2.5%	-3.9%	1.8%
327212	Other pressed and blown glass and glassware	-1.3%	1.3%	1.5%	-0.4%	-0.8%	-2.3%	0.5%	-0.4%	0.7%	1.7%	1.5%	1.1%
327213	Glass container manufacturing	0.0%	1.2%	4.2%	2.1%	3.3%	3.0%	1.3%	4.4%	6.1%	6.4%	4.2%	3.3%
327320	Ready-mix concrete manufacturing	2.3%	3.2%	2.1%	-0.3%	0.6%	5.3%	12.2%	11.3%	3.9%	3.0%	2.5%	4.2%
327331	Concrete block and brick manufacturing	2.7%	3.0%	2.4%	1.7%	2.8%	3.6%	7.6%	7.2%	4.3%	2.4%	1.8%	3.6%
327332	Concrete pipe manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	5.1%	6.5%	2.7%	10.9%	-1.6%	5.4%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
327390	Other concrete product manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	6.3%	8.7%	4.6%	4.4%	-0.6%	4.9%
327991	Cut stone and stone product manufacturing	1.1%	1.0%	2.1%	0.9%	0.3%	-0.1%	1.4%	1.5%	0.3%	0.9%	-0.8%	1.0%
327992	Ground or treated minerals and earths mfg	1.1%	2.2%	2.4%	0.9%	1.3%	1.9%	5.4%	8.4%	3.9%	6.6%	13.6%	4.3%
327993	Mineral wool manufacturing	9.5%	-2.4%	-0.8%	0.3%	0.2%	6.8%	4.2%	5.5%	-3.0%	-3.5%	0.7%	3.4%
327999	Miscellaneous nonmetallic mineral products	N/A	N/A	N/A	N/A	N/A	N/A	5.0%	7.6%	6.5%	2.8%	1.3%	4.7%
331111	Iron and steel mills	-8.4%	2.1%	-6.9%	3.3%	3.7%	31.4%	7.0%	10.7%	6.5%	17.7%	- 27.0%	11.3%
331112	Ferroalloy and related product manufacturing	- 12.3%	-3.6%	-1.6%	-4.0%	12.1%	39.5%	30.3%	- 13.9%	11.6%	24.4%	NA	15.3%
331210	Iron, steel pipe & tube from purchased steel	-4.2%	3.9%	-2.0%	2.7%	6.3%	49.4%	8.4%	2.5%	2.3%	22.9%	- 20.2%	11.4%
331221	Rolled steel shape manufacturing	-3.7%	3.0%	-5.4%	6.5%	3.1%	26.1%	13.3%	0.2%	1.7%	29.3%	- 17.3%	9.9%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
331222	Steel wire drawing	-2.3%	-0.5%	-1.6%	0.0%	1.8%	26.1%	7.2%	1.5%	1.5%	27.1%	- 11.9%	7.4%
331314	Secondary smelting and alloying of aluminum	N/A	N/A	N/A	N/A	N/A	N/A	3.0%	22.3%	5.0%	3.1%	- 26.9%	12.1%
331423	Secondary processing of copper	N/A	N/A	N/A	N/A	N/A	N/A	15.4%	59.6%	9.5%	6.9%	- 23.2%	22.9%
331492	Secondary processing of other nonferrous	N/A	N/A	N/A	N/A	N/A	N/A	12.5%	26.4%	21.0%	3.4%	-8.5%	14.4%
331511	Iron foundries	0.8%	1.8%	0.6%	0.4%	0.7%	6.0%	9.3%	4.5%	4.0%	16.0%	-3.5%	4.3%
331512	Steel investment foundries	0.2%	0.7%	0.6%	0.3%	-2.8%	-1.1%	3.6%	5.5%	9.0%	0.0%	0.0%	2.2%
331513	Steel foundries, except investment	0.1%	-0.1%	-0.4%	-1.0%	1.6%	6.3%	9.5%	6.5%	7.7%	5.3%	-1.0%	3.6%
331524	Aluminum foundries, except die-casting	-0.3%	2.0%	0.7%	0.8%	0.7%	2.9%	3.7%	7.1%	5.8%	6.9%	1.1%	2.9%
331525	Copper foundries, except die-casting	0.2%	1.3%	1.1%	2.4%	0.8%	7.3%	11.1%	30.9%	11.1%	6.1%	-4.0%	6.9%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

			J. C 4. J 4				JOHA 3 I				100		
NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
331528	Other nonferrous foundries, except die-casting	-2.0%	1.3%	1.0%	0.9%	0.4%	7.5%	0.4%	11.4%	12.5%	5.6%	-1.8%	4.1%
332111	Iron and steel forging	-1.7%	0.1%	-0.9%	-1.6%	-0.1%	4.2%	9.0%	4.5%	4.9%	7.5%	-1.5%	3.3%
332112	Nonferrous forging	0.7%	-0.3%	0.5%	0.4%	-1.8%	0.3%	2.4%	5.9%	3.1%	1.7%	-0.9%	1.6%
332115	Crown and closure manufacturing	0.6%	2.2%	0.8%	0.5%	0.1%	8.0%	6.6%	4.1%	6.2%	N/A	N/A	3.2%
332116	Metal stamping	-0.2%	0.1%	0.9%	0.5%	0.6%	8.1%	5.1%	3.4%	5.6%	8.0%	-1.9%	3.1%
332117	Powder metallurgy part manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	1.2%	2.6%	1.7%	4.3%	N/A	2.5%
332211	Cutlery and flatware, except precious, mfg	1.5%	3.4%	0.9%	1.3%	2.3%	0.2%	3.6%	2.3%	1.5%	1.8%	4.2%	2.1%
332212	Hand and edge tool manufacturing	0.6%	0.4%	2.6%	1.4%	0.2%	2.2%	4.9%	3.8%	2.8%	4.3%	3.1%	2.4%
332213	Saw blade & handsaw manufacturing	-0.4%	0.1%	0.4%	1.5%	0.6%	0.0%	2.2%	2.9%	1.7%	3.5%	4.4%	1.6%
332214	Kitchen utensil, pot & pan manufacturing	NA	NA	NA	NA	NA	NA	4.1%	1.4%	5.5%	3.4%	1.8%	3.2%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
332323	Ornamental and architectural metal work mfg	0.5%	2.9%	1.5%	1.5%	1.9%	15.1%	6.8%	3.7%	4.0%	12.4%	2.9%	4.8%
332439	Other metal container manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	7.6%	5.7%	0.9%	13.3%	-4.3%	6.3%
332510	Hardware manufacturing	1.1%	1.8%	1.8%	0.9%	0.5%	3.7%	3.7%	3.3%	4.2%	6.1%	2.2%	2.7%
332611	Spring, heavy gauge, manufacturing	-0.3%	-0.1%	0.6%	0.1%	0.7%	6.3%	9.0%	3.6%	-0.6%	8.8%	4.0%	3.1%
332612	Spring, light gauge, manufacturing	-0.8%	0.2%	0.3%	-0.1%	0.9%	9.8%	5.3%	0.1%	0.5%	8.1%	2.7%	2.6%
332618	Other fabricated wire product manufacturing	0.6%	0.2%	0.4%	0.6%	0.2%	9.7%	4.4%	4.3%	3.5%	18.0%	1.2%	3.9%
332710	Machine shops	0.5%	1.7%	1.8%	0.3%	-0.3%	3.0%	4.9%	2.3%	2.3%	6.3%	2.7%	2.4%
332812	Metal coating and nonprecious engraving	-0.3%	0.3%	2.9%	0.2%	0.1%	3.2%	2.2%	8.6%	5.9%	1.9%	-3.9%	2.7%
332911	Industrial valve manufacturing	2.2%	1.2%	2.0%	1.3%	1.4%	4.4%	7.1%	9.0%	9.2%	5.8%	2.4%	4.2%
332912	Fluid power valve and hose fitting mfg	2.0%	1.6%	1.5%	1.2%	1.4%	2.9%	6.9%	6.0%	4.8%	3.9%	4.1%	3.3%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
332913	Plumbing fixture fitting & trim mfg	1.1%	2.3%	-0.9%	0.2%	0.9%	2.2%	4.0%	4.8%	7.4%	4.2%	0.7%	2.6%
332919	Other metal valve and pipe fitting mfg	1.2%	1.4%	4.0%	1.1%	1.9%	3.3%	8.1%	9.5%	5.4%	4.3%	4.4%	4.1%
332991	Ball and roller bearing manufacturing	1.1%	1.4%	0.8%	0.7%	1.2%	2.7%	5.4%	4.0%	4.0%	5.8%	5.3%	2.9%
332996	Fabricated pipe and pipe fitting mfg	-2.7%	3.5%	1.1%	0.5%	1.4%	20.2%	10.0%	5.4%	-1.4%	7.6%	5.2%	5.4%
332997	Industrial pattern manufacturing	-0.1%	0.2%	0.5%	2.1%	0.0%	0.9%	1.1%	4.4%	3.4%	4.2%	2.0%	1.7%
332998	Enameled iron and metal sanitary ware mfg	0.4%	0.1%	-1.5%	2.4%	1.5%	6.2%	10.8%	6.4%	8.0%	6.3%	1.0%	4.1%
332999	Miscellaneous fabricated metal product mfg	N/A	N/A	N/A	N/A	N/A	N/A	3.5%	4.7%	2.6%	4.2%	3.9%	3.8%
333319	Other commercial & service machinery mfg	1.4%	1.2%	1.6%	1.7%	1.7%	2.5%	3.8%	3.2%	3.3%	3.2%	3.3%	2.4%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
333411	Air purification equipment manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	6.9%	3.0%	2.5%	2.4%	-2.8%	3.5%
333412	Industrial and commercial fan and blower mfg	N/A	N/A	N/A	N/A	N/A	N/A	5.9%	3.4%	4.2%	6.5%	3.8%	4.8%
333414	Heating equipment, except warm air furnaces	1.7%	0.9%	1.1%	0.7%	1.8%	3.2%	4.5%	3.2%	4.0%	6.3%	3.9%	2.8%
333511	Industrial mold manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	2.3%	1.9%	-0.2%	-0.1%	-0.8%	1.1%
333512	Metal cutting machine tool manufacturing	0.6%	1.0%	-0.9%	-3.1%	-0.9%	1.5%	3.4%	5.3%	1.7%	3.6%	0.7%	2.1%
333513	Metal forming machine tool manufacturing	1.4%	1.2%	1.9%	1.1%	0.5%	2.4%	4.2%	2.5%	1.1%	4.3%	2.6%	2.1%
333514	Special die and tool, die set, jig, and fixture mfg	N/A	N/A	N/A	N/A	N/A	N/A	-0.2%	0.4%	0.6%	1.8%	-0.5%	0.7%
333515	Cutting tool and machine tool accessory mfg	0.7%	1.9%	1.9%	0.3%	0.4%	1.1%	4.2%	4.3%	1.3%	1.7%	2.0%	1.8%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
333516	Rolling mill machinery and equipment mfg	-0.6%	0.2%	1.4%	1.9%	0.3%	5.2%	14.5%	3.2%	3.7%	9.4%	-2.1%	3.9%
333518	Other metalworking machinery manufacturing	1.9%	2.8%	2.7%	0.3%	1.2%	3.4%	1.4%	1.3%	1.7%	2.3%	0.9%	1.8%
333612	Speed changers, drive, and gear manufacturing	2.1%	2.5%	2.3%	1.2%	2.0%	4.0%	5.9%	4.0%	5.0%	6.9%	3.5%	3.6%
333613	Mechanical power transmission equipment mfg	2.7%	0.9%	1.8%	1.8%	1.3%	5.3%	5.6%	4.4%	3.7%	7.2%	7.8%	3.9%
333911	Pump and pumping equipment manufacturing	1.8%	1.5%	2.4%	2.9%	4.5%	2.8%	5.9%	4.9%	5.6%	4.3%	2.2%	3.5%
333912	Air and gas compressor manufacturing	1.5%	1.0%	2.2%	1.2%	0.8%	2.5%	6.5%	3.0%	3.6%	5.4%	4.0%	2.9%
333991	Power-driven handtool manufacturing	-0.2%	0.7%	1.7%	0.5%	0.2%	0.8%	0.9%	-0.5%	0.6%	1.5%	0.6%	0.7%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
333992	Welding and soldering equipment manufacturing	1.1%	1.9%	1.5%	1.1%	0.7%	5.9%	6.7%	4.8%	6.3%	6.8%	2.3%	3.6%
333993	Packaging machinery manufacturing	2.0%	2.5%	1.4%	1.0%	1.2%	2.0%	2.4%	2.0%	1.5%	8.2%	6.2%	2.8%
333994	Industrial process furnace and oven mfg	1.1%	1.4%	1.0%	0.5%	0.8%	1.1%	2.4%	3.2%	3.1%	4.7%	1.5%	1.9%
333995	Fluid power cylinder and actuator mfg	1.1%	0.6%	0.9%	0.5%	2.2%	6.3%	6.1%	4.6%	3.5%	6.1%	2.3%	3.1%
333996	Fluid power pump and motor manufacturing	2.7%	0.0%	1.8%	0.9%	1.3%	0.5%	2.4%	4.8%	3.4%	7.0%	4.0%	2.6%
333997	Scale & balance, except laboratory, mfg	1.1%	1.2%	0.9%	1.6%	0.5%	0.8%	1.7%	0.9%	1.4%	3.1%	3.5%	1.5%
333999	All other miscellaneous general purpose machinery mfg	1.7%	2.0%	1.5%	1.4%	0.5%	2.0%	2.1%	2.7%	2.9%	4.9%	4.4%	2.4%
334518	Watch, clock, and part manufacturing	NA	NA	NA	NA	NA	NA	1.7%	0.3%	0.8%	3.1%	2.4%	1.7%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
335211	Electric housewares and household fan mfg	-0.1%	-0.8%	0.6%	0.1%	-0.4%	0.3%	4.1%	2.2%	4.2%	0.5%	4.1%	1.6%
335221	Household cooking appliance manufacturing	1.1%	0.0%	-1.3%	0.8%	-2.4%	-2.2%	2.6%	2.4%	1.2%	3.1%	5.9%	2.1%
335222	Household refrigerator and home freezer mfg	-2.4%	-2.2%	-3.3%	-2.4%	-2.5%	-0.5%	2.6%	0.7%	1.3%	4.0%	4.1%	2.4%
335224	Household laundry equipment manufacturing	0.5%	-1.0%	-2.3%	2.7%	-1.5%	0.1%	0.6%	-0.9%	-1.6%	0.6%	2.0%	1.3%
335228	Other major household appliance mfg	-0.3%	0.0%	-0.4%	-0.1%	3.7%	4.0%	8.8%	3.4%	3.3%	7.3%	7.6%	3.5%
336120	Heavy duty truck manufacturing	NA	NA	NA	NA	NA	NA	4.1%	3.8%	4.6%	2.9%	4.6%	4.0%
336211	Motor vehicle body manufacturing	1.1%	2.1%	1.9%	1.4%	1.1%	5.5%	7.7%	5.1%	2.5%	3.4%	2.1%	3.1%
336212	Truck trailer manufacturing	0.9%	2.0%	-0.3%	-0.3%	0.9%	5.9%	6.0%	4.7%	3.1%	4.7%	0.9%	2.7%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
336213	Motor home manufacturing	1.8%	1.2%	1.6%	2.0%	1.9%	3.8%	3.4%	-1.6%	2.7%	2.0%	-2.2%	2.2%
336311	Carburetor, piston, piston, ring and valve mfg	-0.4%	1.0%	0.5%	0.5%	-0.3%	0.9%	1.5%	4.3%	3.3%	3.6%	0.1%	1.5%
336312	Gasoline engine and engine parts mfg	N/A	N/A	N/A	N/A	N/A	N/A	1.1%	8.8%	1.4%	2.6%	- 10.6%	4.9%
336322	Other motor vehicle electrical equipment mfg	N/A	N/A	N/A	N/A	N/A	N/A	1.9%	0.8%	1.2%	-0.8%	0.0%	0.9%
336330	Motor vehicle steering and suspension parts	N/A	N/A	N/A	N/A	N/A	N/A	3.1%	1.1%	-1.2%	1.4%	-1.1%	1.6%
336340	Motor vehicle brake system manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	0.7%	0.9%	0.4%	1.8%	1.1%	1.0%
336350	Motor vehicle power train components mfg	N/A	N/A	N/A	N/A	N/A	N/A	0.3%	2.0%	2.6%	2.1%	4.3%	2.2%
336370	Motor vehicle metal stamping	-1.3%	0.2%	-0.5%	0.2%	2.4%	4.9%	1.6%	0.4%	2.7%	3.1%	2.5%	1.8%
336399	All other motor vehicle parts manufacturing	N/A	N/A	N/A	N/A	N/A	N/A	1.3%	0.6%	1.9%	3.8%	1.0%	1.7%

Table VI-3: Annual Percentage Change in Producer Prices for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	1998- 1999	1999- 2000	2000- 2001	2001- 2002	2002- 2003	2003- 2004	2004- 2005	2005- 2006	2006- 2007	2007- 2008	2008- 2009	Average Annual Change (Absolute Values)
336611	Ship building and repairing	0.4%	1.6%	1.8%	2.9%	5.3%	5.3%	2.6%	3.7%	4.2%	2.6%	3.2%	3.1%
336612	Boat building	2.4%	3.9%	3.8%	2.3%	1.9%	2.0%	4.4%	3.6%	3.2%	3.4%	2.2%	3.0%
337215	Showcases, partitions, shelving, and lockers	N/A	N/A	N/A	N/A	N/A	N/A	7.3%	0.5%	1.3%	4.2%	2.1%	3.1%
339114	Dental equipment and supplies manufacturing	6.9%	9.2%	4.1%	1.0%	4.0%	2.3%	4.3%	8.4%	3.6%	4.6%	1.8%	4.6%
339911	Jewelry, except costume, manufacturing	-1.0%	0.2%	1.0%	1.3%	1.3%	3.0%	2.9%	6.0%	3.1%	5.6%	2.6%	2.5%
339913	Jewelers' material and lapidary work mfg	0.6%	1.2%	-0.7%	1.1%	3.4%	3.1%	3.2%	10.2%	5.6%	12.1%	4.5%	4.2%
339914	Costume jewelry and novelty manufacturing	0.5%	1.0%	1.6%	0.2%	0.5%	1.8%	3.4%	0.4%	1.5%	2.0%	-0.3%	1.2%
339950	Sign manufacturing	2.0%	1.2%	3.1%	0.8%	-0.3%	0.7%	3.7%	2.2%	2.1%	2.0%	0.3%	1.6%

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011) with data obtained from BLS (2010).

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
324121	Asphalt Paving Mixture and Block Manufacturing	7.97%	8.55%	8.13%	6.74%	4.25%	8.06%	8.82%	7.50%
324122	Asphalt Shingle and Coating Materials Manufacturing	7.97%	8.55%	8.13%	6.74%	4.25%	8.06%	8.82%	7.50%
325510	Paint and Coating Manufacturing	6.23%	6.08%	5.83%	5.16%	4.70%	4.94%	4.75%	5.38%
327111	Vitreous China Plumbing Fixture and China and Earthenware Bathroom Accessories Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327112	Vitreous China, Fine Earthenware, and Other Pottery Product Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327113	Porcelain Electrical Supply Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327121	Brick and Structural Clay Tile Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327122	Ceramic Wall and Floor Tile Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
327123	Other Structural Clay Product Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327124	Clay Refractory Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327125	Nonclay Refractory Manufacturing	5.70%	7.13%	4.55%	2.64%	2.68%	3.98%	4.23%	4.41%
327211	Flat Glass Manufacturing	4.86%	3.32%	2.96%	2.84%	2.87%	3.96%	3.15%	3.42%
327212	Other Pressed and Blown Glass and Glassware Manufacturing	4.86%	3.32%	2.96%	2.84%	2.87%	3.96%	3.15%	3.42%
327213	Glass Container Manufacturing	4.86%	3.32%	2.96%	2.84%	2.87%	3.96%	3.15%	3.42%
327320	Ready-Mix Concrete Manufacturing	8.89%	10.78%	5.95%	4.46%	4.22%	4.90%	7.27%	6.64%
327331	Concrete Block and Brick Manufacturing	8.89%	10.78%	5.95%	4.46%	4.22%	4.90%	7.27%	6.64%
327332	Concrete Pipe Manufacturing	8.89%	10.78%	5.95%	4.46%	4.22%	4.90%	7.27%	6.64%
327390	Other Concrete Product Manufacturing	8.89%	10.78%	5.95%	4.46%	4.22%	4.90%	7.27%	6.64%
327991	Cut Stone and Stone Product Manufacturing	7.53%	8.63%	5.02%	3.75%	3.58%	4.45%	5.46%	5.49%
327992	Ground or Treated Mineral and Earth Manufacturing	7.53%	8.63%	5.02%	3.75%	3.58%	4.45%	5.46%	5.49%
327993	Mineral Wool Manufacturing	7.53%	8.63%	5.02%	3.75%	3.58%	4.45%	5.46%	5.49%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
327999	All Other Miscellaneous Nonmetallic Mineral Product Manufacturing	7.53%	8.63%	5.02%	3.75%	3.58%	4.45%	5.46%	5.49%
331111	Iron and Steel Mills	9.25%	8.05%	7.87%	1.13%	2.12%	1.06%	1.98%	4.49%
331112	Electrometallurgical Ferroalloy Product Manufacturing	9.25%	8.05%	7.87%	1.13%	2.12%	1.06%	1.98%	4.49%
331210	Iron and Steel Pipe and Tube Manufacturing from Purchased Steel	9.25%	8.05%	7.87%	1.13%	2.12%	1.06%	1.98%	4.49%
331221	Rolled Steel Shape Manufacturing	9.25%	8.05%	7.87%	1.13%	2.12%	1.06%	1.98%	4.49%
331222	Steel Wire Drawing	9.25%	8.05%	7.87%	1.13%	2.12%	1.06%	1.98%	4.49%
331314	Secondary Smelting and Alloying of Aluminum	8.23%	6.87%	6.42%	2.11%	2.40%	2.23%	2.98%	4.46%
331423	Secondary Smelting, Refining, and Alloying of Copper	7.32%	5.42%	4.88%	3.83%	2.68%	3.12%	3.66%	4.42%
331492	Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and Aluminum)	7.32%	5.42%	4.88%	3.83%	2.68%	3.12%	3.66%	4.42%
331511	Iron Foundries	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%
331512	Steel Investment Foundries	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%
331513	Steel Foundries (except Investment)	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
331524	Aluminum Foundries (except Die-Casting)	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%
331525	Copper Foundries (except Die-Casting)	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%
331528	Other Nonferrous Foundries (except Die- Casting)	6.65%	5.71%	3.24%	1.80%	2.74%	3.79%	4.86%	4.11%
332111	Iron and Steel Forging	6.07%	5.38%	4.45%	3.79%	4.67%	3.84%	4.75%	4.71%
332112	Nonferrous Forging	6.07%	5.38%	4.45%	3.79%	4.67%	3.84%	4.75%	4.71%
332115	Crown and Closure Manufacturing	6.07%	5.38%	4.45%	3.79%	4.67%	3.84%	4.75%	4.71%
332116	Metal Stamping	6.07%	5.38%	4.45%	3.79%	4.67%	3.84%	4.75%	4.71%
332117	Powder Metallurgy Part Manufacturing	6.07%	5.38%	4.45%	3.79%	4.67%	3.84%	4.75%	4.71%
332211	Cutlery and Flatware (except Precious) Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332212	Hand and Edge Tool Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332213	Saw Blade and Handsaw Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332214	Kitchen Utensil, Pot, and Pan Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332323	Ornamental and Architectural Metal Work Manufacturing	6.02%	5.57%	4.26%	3.21%	3.69%	4.88%	5.30%	4.70%
332439	Other Metal Container Manufacturing	4.43%	6.51%	3.75%	2.20%	4.22%	1.91%	2.05%	3.58%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
332510	Hardware Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332611	Spring (Heavy Gauge) Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332612	Spring (Light Gauge) Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332618	Other Fabricated Wire Product Manufacturing	6.89%	6.83%	5.94%	3.58%	3.98%	3.74%	5.61%	5.22%
332710	Machine Shops	6.67%	7.99%	6.17%	4.41%	4.80%	4.46%	6.09%	5.80%
332812	Metal Coating, Engraving (except Jewelry and Silverware), and Allied Services to Manufacturers	5.94%	4.95%	5.80%	2.61%	4.12%	4.23%	6.34%	4.85%
332911	Industrial Valve Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332912	Fluid Power Valve and Hose Fitting Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332913	Plumbing Fixture Fitting and Trim Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332919	Other Metal Valve and Pipe Fitting Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332991	Ball and Roller Bearing Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
332996	Fabricated Pipe and Pipe Fitting Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332997	Industrial Pattern Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332998	Enameled Iron and Metal Sanitary Ware Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
332999	All Other Miscellaneous Fabricated Metal Product Manufacturing	7.37%	10.00%	7.23%	5.42%	5.52%	5.02%	7.09%	6.81%
333319	Other Commercial and Service Industry Machinery Manufacturing	7.59%	7.20%	2.88%	2.58%	3.46%	3.78%	6.53%	4.86%
333411	Air Purification Equipment Manufacturing	5.86%	6.22%	3.84%	3.90%	4.00%	3.49%	4.57%	4.55%
333412	Industrial and Commercial Fan and Blower Manufacturing	5.86%	6.22%	3.84%	3.90%	4.00%	3.49%	4.57%	4.55%
333414	Heating Equipment (except Warm Air Furnaces) Manufacturing	5.86%	6.22%	3.84%	3.90%	4.00%	3.49%	4.57%	4.55%
333511	Industrial Mold Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
333512	Machine Tool (Metal Cutting Types) Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333513	Machine Tool (Metal Forming Types) Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333514	Special Die and Tool, Die Set, Jig, and Fixture Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333515	Cutting Tool and Machine Tool Accessory Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333516	Rolling Mill Machinery and Equipment Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333518	Other Metalworking Machinery Manufacturing	6.87%	12.36%	4.06%	3.49%	2.40%	2.70%	5.14%	5.29%
333612	Speed Changer, Industrial High-Speed Drive, and Gear Manufacturing	3.97%	4.39%	2.47%	1.76%	2.82%	1.04%	1.95%	2.63%
333613	Mechanical Power Transmission Equipment Manufacturing	3.97%	4.39%	2.47%	1.76%	2.82%	1.04%	1.95%	2.63%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

	ili General ilidusti	and marien	o / inociou b	00.17.40.1	Topocou Om	oa otamaana ((oonanaaa)		
NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
333911	Pump and Pumping Equipment Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333912	Air and Gas Compressor Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333991	Power-Driven Handtool Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333992	Welding and Soldering Equipment Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333993	Packaging Machinery Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333994	Industrial Process Furnace and Oven Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333995	Fluid Power Cylinder and Actuator Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333996	Fluid Power Pump and Motor Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333997	Scale and Balance Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
333999	All Other Miscellaneous General Purpose Machinery Manufacturing	5.52%	6.75%	4.53%	2.91%	3.31%	4.10%	4.91%	4.58%
334518	Watch, Clock, and Part Manufacturing	9.10%	12.08%	4.23%	3.70%	3.67%	3.85%	4.96%	5.94%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

	iii Ocherai iliaasti	arra marian	io / iiiootoa b	, 00:17:01	Topocoa Omi	oa otamaana	(oonanaaa)		
NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
335211	Electric Housewares and Household Fan Manufacturing	3.64%	4.10%	5.88%	3.45%	3.28%	3.96%	5.17%	4.21%
335221	Household Cooking Appliance Manufacturing	3.64%	4.10%	5.88%	3.45%	3.28%	3.96%	5.17%	4.21%
335222	Household Refrigerator and Home Freezer Manufacturing	3.64%	4.10%	5.88%	3.45%	3.28%	3.96%	5.17%	4.21%
335224	Household Laundry Equipment Manufacturing	3.64%	4.10%	5.88%	3.45%	3.28%	3.96%	5.17%	4.21%
335228	Other Major Household Appliance Manufacturing	3.64%	4.10%	5.88%	3.45%	3.28%	3.96%	5.17%	4.21%
336111	Automobile Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336112	Light Truck and Utility Vehicle Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336120	Heavy Duty Truck Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336211	Motor Vehicle Body Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336212	Truck Trailer Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336213	Motor Home Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
336311	Carburetor, Piston, Piston Ring, and Valve Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336312	Gasoline Engine and Engine Parts Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336322	Other Motor Vehicle Electrical and Electronic Equipment Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336330	Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336340	Motor Vehicle Brake System Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336350	Motor Vehicle Transmission and Power Train Parts Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336370	Motor Vehicle Metal Stamping	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336399	All Other Motor Vehicle Parts Manufacturing	1.77%	4.62%	1.38%	1.18%	1.91%	1.33%	2.09%	2.04%
336611	Ship Building and Repairing	8.11%	6.48%	5.73%	4.69%	5.84%	5.54%	4.65%	5.86%
336612	Boat Building	8.11%	6.48%	5.73%	4.69%	5.84%	5.54%	4.65%	5.86%

Table VI-4: Time Series of Annual Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
336992	Military Armored Vehicle, Tank, and Tank Component Manufacturing	8.90%	6.54%	6.13%	7.24%	5.48%	5.20%	4.68%	6.31%
337215	Showcase, Partition, Shelving, and Locker Manufacturing	5.70%	5.72%	4.08%	3.80%	4.13%	3.54%	4.82%	4.54%
339114	Dental Equipment and Supplies Manufacturing	13.52%	17.80%	8.88%	7.70%	9.15%	8.67%	9.66%	10.77%
339116	Dental Laboratories	13.52%	17.80%	8.88%	7.70%	9.15%	8.67%	9.66%	10.77%
339911	Jewelry (except Costume) Manufacturing	7.31%	7.07%	5.37%	5.32%	5.30%	4.76%	5.44%	5.80%
339913	Jewelers' Material and Lapidary Work Manufacturing	7.31%	7.07%	5.37%	5.32%	5.30%	4.76%	5.44%	5.80%
339914	Costume Jewelry and Novelty Manufacturing	7.31%	7.07%	5.37%	5.32%	5.30%	4.76%	5.44%	5.80%
339950	Sign Manufacturing	7.31%	7.07%	5.37%	5.32%	5.30%	4.76%	5.44%	5.80%
423840	Industrial Supplies Merchant Wholesalers	4.77%	4.74%	3.80%	3.02%	2.89%	2.24%	2.59%	3.44%
621210	Offices of Dentists	8.11%	8.29%	8.30%	6.73%	6.81%	7.07%	6.07%	7.34%

Source: ERG, 2011, based on Internal Revenue Service, Corporation Source Book, 2007.

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
324121	Asphalt Paving Mixture and Block Manufacturing	-6.71%	5.11%	20.69%	58.56%	-47.27%	-8.63%	24.49%
324122	Asphalt Shingle and Coating Materials Manufacturing	-6.71%	5.11%	20.69%	58.56%	-47.27%	-8.63%	24.49%
325510	Paint and Coating Manufacturing	2.55%	4.26%	12.91%	9.80%	-4.74%	4.00%	6.38%
327111	Vitreous China Plumbing Fixture and China and Earthenware Bathroom Accessories Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327112	Vitreous China, Fine Earthenware, and Other Pottery Product Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327113	Porcelain Electrical Supply Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327121	Brick and Structural Clay Tile Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327122	Ceramic Wall and Floor Tile Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327123	Other Structural Clay Product Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327124	Clay Refractory Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%
327125	Nonclay Refractory Manufacturing	-20.08%	56.52%	72.46%	-1.34%	-32.78%	-5.81%	31.50%

327211	Flat Glass Manufacturing	46.28%	12.37%	4.15%	-1.03%	-27.58%	25.75%	19.53%
~ —·—··	1 101 0 10100 111011 10101 1011 1119		, .		,	,		

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
327212	Other Pressed and Blown Glass and Glassware Manufacturing	46.28%	12.37%	4.15%	-1.03%	-27.58%	25.75%	19.53%
327213	Glass Container Manufacturing	46.28%	12.37%	4.15%	-1.03%	-27.58%	25.75%	19.53%
327320	Ready-Mix Concrete Manufacturing	-17.49%	81.24%	33.42%	5.68%	-13.93%	-32.60%	30.73%
327331	Concrete Block and Brick Manufacturing	-17.49%	81.24%	33.42%	5.68%	-13.93%	-32.60%	30.73%
327332	Concrete Pipe Manufacturing	-17.49%	81.24%	33.42%	5.68%	-13.93%	-32.60%	30.73%
327390	Other Concrete Product Manufacturing	-17.49%	81.24%	33.42%	5.68%	-13.93%	-32.60%	30.73%
327991	Cut Stone and Stone Product Manufacturing	-12.77%	71.93%	34.03%	4.68%	-19.59%	-18.40%	26.90%
327992	Ground or Treated Mineral and Earth Manufacturing	-12.77%	71.93%	34.03%	4.68%	-19.59%	-18.40%	26.90%
327993	Mineral Wool Manufacturing	-12.77%	71.93%	34.03%	4.68%	-19.59%	-18.40%	26.90%
327999	All Other Miscellaneous Nonmetallic Mineral Product Manufacturing	-12.77%	71.93%	34.03%	4.68%	-19.59%	-18.40%	26.90%
331111	Iron and Steel Mills	14.89%	2.33%	593.91%	-46.46%	100.48%	-46.55%	134.10%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
331112	Electrometallurgical Ferroalloy Product Manufacturing	14.89%	2.33%	593.91%	-46.46%	100.48%	-46.55%	134.10%
331210	Iron and Steel Pipe and Tube Manufacturing from Purchased Steel	14.89%	2.33%	593.91%	-46.46%	100.48%	-46.55%	134.10%
331221	Rolled Steel Shape Manufacturing	14.89%	2.33%	593.91%	-46.46%	100.48%	-46.55%	134.10%
331222	Steel Wire Drawing	14.89%	2.33%	593.91%	-46.46%	100.48%	-46.55%	134.10%
331314	Secondary Smelting and Alloying of Aluminum	19.79%	7.05%	203.64%	-12.00%	7.55%	-24.92%	45.82%
331423	Secondary Smelting, Refining, and Alloying of Copper	35.14%	10.93%	27.34%	43.31%	-14.23%	-14.70%	24.28%
331492	Secondary Smelting, Refining, and Alloying of Nonferrous Metal (except Copper and Aluminum)	35.14%	10.93%	27.34%	43.31%	-14.23%	-14.70%	24.28%
331511	Iron Foundries	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%
331512	Steel Investment Foundries	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%
331513	Steel Foundries (except Investment)	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%
331524	Aluminum Foundries (except Die-Casting)	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%
331525	Copper Foundries (except Die-Casting)	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
331528	Other Nonferrous Foundries (except Die-Casting)	16.31%	76.08%	80.29%	-34.42%	-27.56%	-22.07%	42.79%
332111	Iron and Steel Forging	12.84%	20.86%	17.48%	-18.85%	21.44%	-19.06%	18.42%
332112	Nonferrous Forging	12.84%	20.86%	17.48%	-18.85%	21.44%	-19.06%	18.42%
332115	Crown and Closure Manufacturing	12.84%	20.86%	17.48%	-18.85%	21.44%	-19.06%	18.42%
332116	Metal Stamping	12.84%	20.86%	17.48%	-18.85%	21.44%	-19.06%	18.42%
332117	Powder Metallurgy Part Manufacturing	12.84%	20.86%	17.48%	-18.85%	21.44%	-19.06%	18.42%
332211	Cutlery and Flatware (except Precious) Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332212	Hand and Edge Tool Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332213	Saw Blade and Handsaw Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332214	Kitchen Utensil, Pot, and Pan Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332323	Ornamental and Architectural Metal Work Manufacturing	8.01%	30.93%	32.77%	-13.16%	-24.35%	-7.84%	19.51%
332439	Other Metal Container Manufacturing	-32.01%	73.48%	70.27%	-47.78%	120.67%	-6.74%	58.49%
332510	Hardware Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332611	Spring (Heavy Gauge) Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
332612	Spring (Light Gauge) Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332618	Other Fabricated Wire Product Manufacturing	0.92%	14.92%	65.82%	-9.95%	6.33%	-33.25%	21.87%
332710	Machine Shops	-16.46%	29.56%	39.84%	-8.07%	7.46%	-26.73%	21.35%
332812	Metal Coating, Engraving (except Jewelry and Silverware), and Allied Services to Manufacturers	19.95%	-14.69%	121.93%	-36.54%	-2.52%	-33.33%	38.16%
332911	Industrial Valve Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332912	Fluid Power Valve and Hose Fitting Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332913	Plumbing Fixture Fitting and Trim Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332919	Other Metal Valve and Pipe Fitting Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332991	Ball and Roller Bearing Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332996	Fabricated Pipe and Pipe Fitting Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332997	Industrial Pattern Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
332998	Enameled Iron and Metal Sanitary Ware Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
332999	All Other Miscellaneous Fabricated Metal Product Manufacturing	-26.33%	38.32%	33.53%	-1.95%	10.09%	-29.25%	23.24%
333319	Other Commercial and Service Industry Machinery Manufacturing	5.42%	150.10%	11.66%	-25.52%	-8.50%	-42.10%	40.55%
333411	Air Purification Equipment Manufacturing	-5.70%	62.02%	-1.52%	-2.64%	14.59%	-23.53%	18.33%
333412	Industrial and Commercial Fan and Blower Manufacturing	-5.70%	62.02%	-1.52%	-2.64%	14.59%	-23.53%	18.33%
333414	Heating Equipment (except Warm Air Furnaces) Manufacturing	-5.70%	62.02%	-1.52%	-2.64%	14.59%	-23.53%	18.33%
333511	Industrial Mold Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333512	Machine Tool (Metal Cutting Types) Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333513	Machine Tool (Metal Forming Types) Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333514	Special Die and Tool, Die Set, Jig, and Fixture Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
333515	Cutting Tool and Machine Tool Accessory Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333516	Rolling Mill Machinery and Equipment Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333518	Other Metalworking Machinery Manufacturing	-44.44%	204.37%	16.25%	45.26%	-10.97%	-47.43%	61.45%
333612	Speed Changer, Industrial High-Speed Drive, and Gear Manufacturing	-9.41%	77.93%	40.26%	-37.60%	171.73%	-46.94%	63.98%
333613	Mechanical Power Transmission Equipment Manufacturing	-9.41%	77.93%	40.26%	-37.60%	171.73%	-46.94%	63.98%
333911	Pump and Pumping Equipment Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333912	Air and Gas Compressor Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333991	Power-Driven Handtool Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333992	Welding and Soldering Equipment Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333993	Packaging Machinery Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333994	Industrial Process Furnace and Oven Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
333995	Fluid Power Cylinder and Actuator Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333996	Fluid Power Pump and Motor Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333997	Scale and Balance Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
333999	All Other Miscellaneous General Purpose Machinery Manufacturing	-18.22%	49.21%	55.37%	-11.88%	-19.44%	-16.52%	28.44%
334518	Watch, Clock, and Part Manufacturing	-24.67%	185.44%	14.40%	0.76%	-4.77%	-22.33%	42.06%
335211	Electric Housewares and Household Fan Manufacturing	-11.16%	-30.32%	70.42%	5.38%	-17.25%	-23.48%	26.33%
335221	Household Cooking Appliance Manufacturing	-11.16%	-30.32%	70.42%	5.38%	-17.25%	-23.48%	26.33%
335222	Household Refrigerator and Home Freezer Manufacturing	-11.16%	-30.32%	70.42%	5.38%	-17.25%	-23.48%	26.33%
335224	Household Laundry Equipment Manufacturing	-11.16%	-30.32%	70.42%	5.38%	-17.25%	-23.48%	26.33%
335228	Other Major Household Appliance Manufacturing	-11.16%	-30.32%	70.42%	5.38%	-17.25%	-23.48%	26.33%
336111	Automobile Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336112	Light Truck and Utility Vehicle Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
336120	Heavy Duty Truck Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336211	Motor Vehicle Body Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336212	Truck Trailer Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336213	Motor Home Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336311	Carburetor, Piston, Piston Ring, and Valve Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336312	Gasoline Engine and Engine Parts Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336322	Other Motor Vehicle Electrical and Electronic Equipment Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336330	Motor Vehicle Steering and Suspension Components (except Spring) Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336340	Motor Vehicle Brake System Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336350	Motor Vehicle Transmission and Power Train Parts Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336370	Motor Vehicle Metal Stamping	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%

Table VI-5: Annual Percentage Change in Profit Rates for Industries in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
336399	All Other Motor Vehicle Parts Manufacturing	-61.61%	234.79%	16.97%	-38.06%	43.79%	-36.72%	71.99%
336611	Ship Building and Repairing	25.15%	12.94%	22.20%	-19.61%	5.44%	19.09%	17.41%
336612	Boat Building	25.15%	12.94%	22.20%	-19.61%	5.44%	19.09%	17.41%
336992	Military Armored Vehicle, Tank, and Tank Component Manufacturing	36.16%	6.55%	-15.25%	32.09%	5.38%	11.19%	17.77%
337215	Showcase, Partition, Shelving, and Locker Manufacturing	-0.40%	40.18%	7.43%	-8.00%	16.70%	-26.59%	16.55%
339114	Dental Equipment and Supplies Manufacturing	-24.01%	100.33%	15.34%	-15.83%	5.59%	-10.24%	28.56%
339116	Dental Laboratories	-24.01%	100.33%	15.34%	-15.83%	5.59%	-10.24%	28.56%
339911	Jewelry (except Costume) Manufacturing	3.42%	31.64%	0.92%	0.44%	11.27%	-12.48%	10.03%
339913	Jewelers' Material and Lapidary Work Manufacturing	3.42%	31.64%	0.92%	0.44%	11.27%	-12.48%	10.03%
339914	Costume Jewelry and Novelty Manufacturing	3.42%	31.64%	0.92%	0.44%	11.27%	-12.48%	10.03%
339950	Sign Manufacturing	3.42%	31.64%	0.92%	0.44%	11.27%	-12.48%	10.03%
423840	Industrial Supplies Merchant Wholesalers	0.77%	24.78%	25.53%	4.45%	29.39%	-13.62%	16.42%
621210	Offices of Dentists	-2.18%	-0.18%	23.40%	-1.19%	-3.73%	16.61%	7.88%

Source: ERG (2011), based on Internal Revenue Service, Corporation Source Book (2007).

International Trade Effects

The magnitude and strength of foreign competition is a critical factor in determining the ability of firms in the U.S. to pass on (part or all of) the costs of the proposed rule in the form of higher prices for their products. If firms are unable to do so, they must absorb the costs of the proposed rule out of profits, possibly resulting in the business failure of individual firms or even, if the cost impacts are sufficiently large and pervasive, causing significant dislocations within an affected industry.

Below, OSHA examines how likely such an outcome is. The discussion will begin with some theoretical background and then proceed with empirical evidence and estimated impacts. Throughout, the Agency will be drawing on ERG (2007c), which was prepared specifically to help analyze the international trade impacts of OSHA's proposed silica rule.

Theoretical Background

Despite the long history of international economics, there are relatively few tools that are directly applicable to analyze the projected impacts of a domestic regulation on the international trade of affected industries. Ideally, such impacts would be evaluated using trade elasticities: econometric estimates of the percentage change in a country's imports and exports in response to a given percentage change in price caused by the regulation. Academic international trade economists tend to focus their attentions on patterns of trade and factor flows, trade policy, and the implications of exchange rate regimes.¹⁵ The vast amount of theoretical and econometric work performed on these topics tends to be at too high a level of aggregation to be of use in the narrow context of projecting the potential trade impacts on a specific industry.

A second reason trade elasticity estimates tend to be relatively rare in the literature might be attributable to the difficulty of estimating them. Data—including prices and quantities of imports, exports, domestic and foreign consumption and supply, and the myriad of other factors that affect consumption of these products—are often not available at a useful level of detail. For example, data tend to be either too aggregated to be informative or so granular that generating consistent indices of products of interest over several years is costly and difficult. In addition, because trade is rarely bilateral, the elasticity of the change in Japanese demand for U.S. products, for example, will not only depend on the U.S. price change, but also the supply of the same product from Japan's other trading partners.

Because of the difficulty in obtaining useful, reliable trade elasticities, economists sometimes use "synthetic" elasticities to analyze trade impacts. These elasticities are not econometrically estimated, but instead are calculated from available data using relationships derived from the theoretical literature. Thus, a synthetic trade elasticity might be calculated as a function of the domestic price elasticity, transportation costs, and trade shares. ERG examined two approaches to estimating trade elasticities using a synthetic approach: (1) one country's traded product is a perfect substitute for its trade partner's product, and (2) one country's traded product is an imperfect substitute for its trade partner's product (Goldstein and Kahn, 1985).

¹⁵ See, for example, Deardorff (1984) and Goldstein and Kahn (1985).

When traded products are perfect substitutes, there are no distinct import demand or export supply functions. Conceptually, trade is a residual in the perfect substitutes case; that is, a country's imports result from the excess demand for the domestic product. Similarly, exports are a residual resulting from excess supply remaining from domestic consumption. Thus, in the perfect substitutes model, trade can be estimated as the difference between domestic demand and domestic supply.

To simplify the model, the world can be divided into trade between the U.S. and the rest of the world (ROW). The relationship between the ROW price and the U.S. price is a function of the exchange rate and transportation costs. The elasticity of U.S. imports with respect to a change in the U.S. domestic price has trade shares and transportation costs as key parameters and relies on the identity that U.S. imports equals ROW exports.

While this approach to modeling trade elasticities makes intuitive sense, there is a significant methodological inconsistency in applying it to countries that both import and export a specific product. In the perfect substitutes framework, trade is a residual: the difference between domestic demand and supply. And U.S. exports for the same product are also determined as a residual: the difference between domestic supply and demand. Clearly both conditions cannot be true at the same time. Either domestic production exceeds demand and the country exports, or domestic demand exceeds domestic production and the country imports, but not both. This inconsistency suggests that the perfect substitutes framework is unsatisfactory for developing estimates of trade elasticities when a country both imports and exports the same product.

If consumers perceive foreign and domestically produced goods to be close, but not perfect, substitutes—that is, if consumers differentiate foreign from domestically produced goods—then a country may both import and export that class of products simultaneously. This description better matches U.S. trade patterns for many products, including those produced by industries projected to be highly impacted by OSHA's proposed silica rule.

One of the earliest and most frequently used methods for dealing with international trade in differentiated products is the synthetic elasticity model developed by Armington (1969a and 1969b). Armington models make two basic assumptions in order to differentiate internationally traded products. First, traded goods can be thought of as "weakly separable." Second, there exists a constant elasticity of substitution (CES) between all products in each broad category of goods the country imports.

The first assumption implies that consumption may be modeled using a two-stage decision-making process. In the first stage, consumers allocate their income across the spectrum of broad goods categories that they purchase; in the second stage, consumers allocate that share of income earmarked for a particular goods category among the differentiated products that comprise the

¹⁶ The Armington framework has become ubiquitous for incorporating trade flows in computable general equilibrium models (CGE). Significant CGE models such as those used by the U.S. International Trade Commission, the World Trade Organization, Australia's Productivity Commission, Trade Canada, and the Global Trade Analysis Project based at Purdue University all use Armington-type specifications to model trade flows. In addition, ERG developed a synthetic method for EPA to estimate trade elasticities for iron and steel products based on the Armington framework (EPA, 2002). This approach was revised and further developed to model the potential effects of EPA effluent guideline on trade in the meat and poultry product industries (EPA, 2004).

category (Armington, 1969a). Thus, in the first stage, the Armington specification models consumers as choosing how to allocate their income across broad categories of goods—such as food, clothing, transportation, housing, etc.—given their income and the relative prices of each good. In the second stage, consumers allocate that share of income devoted to vitreous china, fine earthenware, and other pottery, for example, among china and pottery products from the U.S., China, Great Britain, and other countries. This second division of income among the differentiated products depends only on the relative price of those products and the consumer's perceived elasticity of substitutability between those products. The second decision is "separable" from the first decision.

The second assumption—identical and constant elasticities of substitution between pairs of different countries' products—allows the Armington model to be estimated with less data and fewer computing requirements than if the demand for each country's product needed to be individually estimated. Although this second assumption is not literally true for all quantities of imports consumed in each country, it is a reasonable assumption for a country at its market equilibrium and for small changes from that equilibrium.

Armington (1969a) showed that trade in differentiated products—whether imports or exports—can be expressed as a function of (1) total demand for that product class regardless of source, (2) foreign and domestic market shares, and (3) the willingness of consumers to substitute foreign made for domestically made products (the elasticity of substitution, often referred to as the Armington elasticity). Armington (1969a, 1969b) derived relationships between certain important elasticities implied by his model, including the partial elasticity of demand in the ith country for the jth country's product; that is, the import price elasticity of demand for the ith country with respect to a change in the jth country's price. These relationships can be further simplified by looking at only two "countries," the U.S. and the rest of the world (ROW).

Empirical Evidence and Estimated Impacts

ERG (2007c) reviewed Gallaway, McDaniel, and Rivera (2000) for estimates of the elasticity of substitution for products from eight of the industries likely to be most affected by the proposed silica rule and for which import and export data are available. These eight industries are listed with their NAICS code in Table VI-6, as well as with their estimated short-run Armington elasticity. These elasticity estimates range from 0.359 (iron foundries, NAICS 331511) to 1.073 (ground or treated mineral and earth manufacturing, NAICS 327992).

Relying on a variant of the imperfect substitutes model developed by Armington as a function of the elasticity of substitution, ERG combined econometric estimates of the elasticity of substitution between foreign and domestic products, Annual Survey of Manufactures data, and assumptions concerning the values for key parameters, such as the ROW consumption, to estimate the effect of a range of hypothetical price increases on total domestic production of a product. In particular, ERG estimated the domestic production that would be replaced by imported products and the decrease in exported products that would result from a 1 percent increase in prices—under the assumption that firms would attempt to pass on all of a 1 percent increase in costs arising from the proposed rule. The sum of the increase in imports and decrease in exports represents the total loss to industry attributable to the rule. These projected losses are

presented as a percentage of baseline domestic production to provide some context for evaluating the relative size of these impacts.

The effect of a 1 percent increase in the price of a domestic product is derived from the baseline level of U.S. domestic production and the baseline level of imports. Table VI-6 shows the baseline ratio of import value to domestic production for the eight affected industries. The ratios range from 0.04 for iron foundries to 0.547 for ceramic wall and floor tile manufacturing—that is, baseline imports range from 4 percent to more than 50 percent of domestic production in these eight industries. Table VI-6 also shows ERG's estimates of the percentage reduction in U.S. production for the eight affected industries due to increased domestic imports.¹⁷ The estimated percentage reductions in U.S. production due to increased domestic imports (arising from a 1 percent increase in the price of domestic products) range from 0.013 percent for iron foundries to 0.237 percent for cut stone and stone product manufacturing.

The method to project impacts on U.S. exports closely parallels the method used to project the increase in U.S. imports. Under the simplified construction of bilateral trade between the U.S. and the ROW, U.S. exports are identical to ROW imports. Thus, ERG could estimate the change in ROW imports in a manner identical to that used to estimate the change in U.S. imports. However, there is one important difference between projecting the change in U.S. imports and projecting the change in U.S. exports. Projecting the change in U.S. exports (i.e., ROW imports) requires estimating the U.S. export share of ROW consumption. ERG was unable to find any data on ROW consumption for industries affected by the silica rule and instead assumed that ROW consumption of these products was ten times larger than U.S. domestic consumption of these products.¹⁸

Table VI-6 shows the estimated baseline ratio of ROW imports to ROW consumption for the eight affected industries. The ratios range from 0.001 for other concrete manufacturing to 0.035 percent for nonclay refractory manufacturing. Table VI-6 also shows ERG's estimates of the percentage decrease in U.S. exports relative to total U.S. production for the eight affected industries. The estimated percentage reductions in U.S. production due to reduced U.S. exports (arising from a 1 percent increase in the price of domestic products) range from 0.014 percent for ceramic wall and floor tile manufacturing to 0.201 percent for nonclay refractory manufacturing.

¹⁷ For more details about the derivation of these estimates, see ERG (2007c).

¹⁸ ERG (2007c) performed a sensitivity analysis on the assumption concerning the size of ROW domestic consumption relative to U.S. domestic consumption. Varying the ROW domestic consumption from 2 to 20 times the size of U.S. domestic consumption had only a small effect on the projected changes in U.S. exports. This is because the U.S. export share of ROW consumption is relatively minor even when, for example, ROW consumption is assumed to be only twice as large as U.S. consumption rather than 10 times larger.

¹⁹ For more details about the derivation of these estimates, see ERG (2007c).

Table VI-6: Projected Total Trade Impacts for Selected Industries from a 1 Percent Price Increase in Response to Silica Proposed Rule

NAICS	Industry	Armington Elasticity ^a	Estimated Ratio of Imports to Total U.S. Consumption ^b	Estimated Ratio of ROW Imports to ROW Consumption ^c	Percentage Change in U.S. Production Due to Increased Domestic Imports	Change in U.S. Exports Relative to Total U.S. Production ^e	Total Percentage Change in U.S. Production ^f
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	0.784	0.252	0.007	-0.126%	-0.046%	-0.173%
327113	Porcelain electrical supply manufacturing	0.949	0.200	0.020	-0.136%	-0.163%	-0.299%
327122	Ceramic wall and floor tile manufacturing	0.529	0.547	0.003	-0.167%	-0.014%	-0.181%
327125	Nonclay refractory manufacturing	0.797	0.166	0.035	-0.085%	-0.201%	-0.286%
327390	Other concrete product manufacturing	1.027	0.094	0.001	-0.075%	-0.010%	-0.085%
327991	Cut stone and stone product manufacturing	0.874	0.469	0.002	-0.237%	-0.015%	-0.253%
327992	Ground or treated mineral and earth manufacturing	1.073	0.083	0.009	-0.071%	-0.086%	-0.157%
331511	Iron Foundries	0.359	0.040	0.005	-0.013%	-0.015%	-0.028%

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2007).

^a Source: ERG (2007c), Table 4-1.
^b Source: ERG (2007c), Table 4-1. Calculated as a 5-year average.
^c Source: ERG (2007c), Table 4-2. ROW is an acronym for the Rest of the World (other than the United States).
^d Source: ERG (2007c), Table 4-1.
^e Source: ERG (2007c), Table 4-2.
^f Source: ERG (2007c), Table 4-3. Calculated from sum of change in U.S. imports plus the change in U.S. exports to ROW.

The last column of Table VI-6 shows ERG's estimates of the total percentage change in U.S. production for the eight affected industries. Total impacts are calculated as the sum of the two previous columns, resulting from increased imports and from a loss of exports. The total percentage reduction in U.S. production arising from a 1 percent increase in the price of domestic products range from a low of 0.085 percent for other concrete product manufacturing to a high of 0.299 percent for porcelain electrical supply manufacturing.

These estimates suggest that the proposed rule would have modest international trade effects. It was previously hypothesized that if price increases resulted in a substantial loss of revenue to foreign competition, then the increased costs of the proposed rule would have to come out of profits. That possibility has been contradicted by the results reported in this section. The maximum loss to foreign competition in any affected industry due to a 1 percent price increase has been estimated at approximately 0.3 percent of industry revenue. Because, as reported earlier in this chapter, the maximum cost impact of the proposed rule for any affected industry would be 0.39 percent of revenue, this means that the maximum loss to foreign competition in any affected industry as a result of the proposed rule would be 0.12 percent of industry revenue—which would hardly qualify as a substantial loss to foreign competition. This analysis cannot tell us whether the resulting change in revenues will lead to a small decline in the number of establishments in the industry or slightly less revenue for each establishment. However it can reasonably be concluded that revenue changes of this magnitude will not lead to the elimination of industries or significantly alter their competitive structure.

Based on the Agency's preceding analysis of economic impacts on revenues, profits, and international trade, OSHA preliminarily concludes that the annualized costs of the proposed rule are below the threshold level that could threaten the economic viability of any industry in general industry or maritime. OSHA further notes that while there would be additional costs (not attributable to the proposed rule) for some employers in general industry and maritime to come into compliance with the *current* silica standard, these costs would not affect the Agency's preliminary determination of the economic feasibility of the proposed rule.

Economic Feasibility Screening Analysis: Small and Very Small Businesses

The preceding discussion focused on the economic viability of the affected industries in their entirety. Even though OSHA found that the proposed standard did not threaten the survival of these industries, there is still the possibility that the competitive structure of these industries could be significantly altered.

To address this possibility, OSHA examined the annualized costs per affected small entity and very small entity for each affected industry in general industry and maritime. Again, OSHA used a minimum threshold level of annualized costs equal to one percent of annual revenues—and, secondarily, annualized costs equal to ten percent of annual profits—below which the Agency has concluded that the costs are unlikely to threaten the survival of small entities or very small entities or, consequently, to alter the competitive structure of the affected industries.

Compliance costs for entities with fewer than 20 employees were estimated using a derived compliance cost per employee figure. Assuming costs to be equally distributed among all employees, OSHA estimated the compliance cost per employee by dividing total costs for each NAICS by the number of employees. OSHA then multiplied the compliance cost per employee with the ratio of the average number of employees per entity with fewer than 20 employees. Similarly, compliance costs per small entity were estimated from the product of compliance costs per employee and the average number of employees in entities within the SBA classification.

Table VI-7 shows that the annualized cost of the proposed rule for the average small entity in general industry and maritime is estimated at \$2,103 in 2009 dollars. Table VI-8 shows that the annualized cost of the proposed rule for the average very small entity in general industry and maritime is estimated at \$616 in 2009 dollars. These tables also show that there are no industries in general industry and maritime in which the annualized costs of the proposed rule for small entities or very small entities exceed one percent of annual revenues. NAICS 327111 (Vitreous china plumbing fixtures & bathroom accessories manufacturing) has the highest potential cost impact as a percentage of revenues, of 0.61 percent, for small entities, and NAICS 327112 (Vitreous china, fine earthenware, & other pottery product manufacturing) has the highest potential cost impact as a percentage of revenues, of 0.75 percent, for very small entities.

Small entities in two industries in general industry and maritime—NAICS 327111 and NAICS 327123 (Other structural clay product mfg.)—have annualized costs in excess of 10 percent of annual profits (13.91 percent and 10.63 percent, respectively). NAICS 327112 is the only industry in general industry and maritime in which the annualized costs of the proposed rule for very small entities exceed ten percent of annual profits (16.92 percent).

In general, cost impacts for affected small entities or very small entities will tend to be somewhat higher, on average, than the cost impacts for the average business in those affected industries. That is to be expected. After all, smaller businesses typically suffer from diseconomies of scale in many aspects of their business, leading to less revenue per dollar of cost and higher unit costs. Small businesses are able to overcome these obstacles by providing specialized products and services, offering local service and better service, or otherwise creating a market niche for themselves. The higher cost impacts for smaller businesses estimated for this rule generally fall within the range observed in other OSHA regulations and, as verified by OSHA's lookback reviews, have not been of such a magnitude to lead to their economic failure.

As a point of clarification, OSHA would like to draw attention to industries with captive foundries. There are three industries with captive foundries whose annualized costs for very small entities approach five percent of annual profits: NAICS 336311 (Carburetor, piston ring, and valve manufacturing); NAICS 336312 (Gasoline engine and engine parts manufacturing); and NAICS 336350 (Motor vehicle transmission and power train parts manufacturing). For very small entities in all three of these industries, the annualized costs as a percentage of annual profits are approximately 4.4 percent. OSHA believes, however, that very small entities in industries with captive foundries are unlikely to actually have captive foundries and that the captive foundries allocated to very small entities in fact belong in larger entities. This would have the result that the costs as percentage of profits for these larger entities would be lower than the 4.4 percent reported above.

In allocating the share of costs to very small entities, OSHA, following ERG (2007b), did not have direct information about how many very small entities were engaged in silica-related activities. Instead, OSHA assumed that the affected employees would be distributed among entities of different size according to each entity size class's share of total employment. In other words, if 15 percent of employees in an industry worked in very small entities (those with fewer than 20 employees), then OSHA assumed that 15 percent of affected employees in the industry would work in very small entities. However, in reality, OSHA anticipates that in industries with foundries, none of the entities with fewer than 20 employees have foundries or, if they do, that the impacts are much smaller than estimated here. OSHA invites comment about whether and to what extent very small entities have captive foundries (in industries with captive foundries).

Regardless of whether the cost estimates have been inflated for very small entities in the three industries with captive foundries listed above, there are two reasons why OSHA is confident that the competitive structure of these industries would not be threatened by adverse competitive conditions for very small entities. First, as shown in Table VI-B-1 in Appendix VI-B, very small entities in NAICS 336311, NAICS 336312, and NAICS 336350 account for 3 percent, 2 percent, and 3 percent, respectively, of the total number of entities in the industry. Although it is possible that some of these very small entities could exit the industry in response to the proposed rule, courts interpreting the OSH Act have historically taken the view that losing at most 3 percent of the firms in an industry is unlikely to alter the competitive structure of that industry. Second, very small entities in industries with captive foundries, when confronted with higher foundry costs as a result of the proposed rule, have the option of dropping foundry activities, purchasing foundry products and services from businesses directly in the foundry industry, and focusing on the main goods and services produced in the industry. This, after all, is precisely what the rest of the establishments in these industries do.

²⁰ In fact, ERG was only able to identify industries with captive foundries because foundry occupations appeared in non-foundry industries.

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	No. of Affecte d Small Entities	Annualize d Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits
324121	Asphalt paving mixture and block manufacturing	\$140,305	431	\$326	\$10,428,583	7.50%	\$782,268	0.00%	0.04%
324122	Asphalt shingle and roofing materials	\$872,614	106	\$8,232	\$14,067,491	7.50%	\$1,055,22 9	0.06%	0.78%
325510	Paint and coating manufacturing	\$71,718	1,042	\$69	\$6,392,803	5.38%	\$344,213	0.00%	0.02%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$231,845	25	\$9,274	\$1,509,677	4.41%	\$66,651	0.61%	13.91%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$1,854,472	717	\$2,586	\$693,637	4.41%	\$30,623	0.37%	8.45%
327113	Porcelain electrical supply mfg	\$1,004,480	97	\$10,355	\$4,574,464	4.41%	\$201,959	0.23%	5.13%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

Amound by Convict reposed Smod Standard (Continuou)											
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits		
327121	Brick and structural clay mfg	\$3,062,272	93	\$32,928	\$9,265,846	4.41%	\$409,079	0.36%	8.05%		
327122	Ceramic wall and floor tile mfg	\$2,189,278	173	\$12,655	\$3,236,635	4.41%	\$142,895	0.39%	8.86%		
327123	Other structural clay product mfg	\$510,811	42	\$12,162	\$2,592,114	4.41%	\$114,440	0.47%	10.63%		
327124	Clay refractory manufacturing	\$212,965	96	\$2,218	\$6,026,297	4.41%	\$266,056	0.04%	0.83%		
327125	Nonclay refractory manufacturing	\$211,512	68	\$3,110	\$7,346,739	4.41%	\$324,352	0.04%	0.96%		
327211	Flat glass manufacturing	\$275,155	56	\$4,913	\$64,950,007	3.42%	\$2,221,884	0.01%	0.22%		
327212	Other pressed and blown glass and glassware manufacturing	\$243,132	228	\$1,068	\$935,353	3.42%	\$31,998	0.11%	3.34%		
327213	Glass container manufacturing	\$57,797	24	\$2,408	\$10,181,980	3.42%	\$348,317	0.02%	0.69%		
327320	Ready-mixed concrete manufacturing	\$10,490,561	2,401	\$4,369	\$7,245,974	6.64%	\$480,994	0.06%	0.91%		
327331	Concrete block and brick mfg	\$2,862,910	567	\$5,049	\$6,318,185	6.64%	\$419,407	0.08%	1.20%		
327332	Concrete pipe mfg	\$1,441,766	181	\$7,966	\$7,852,099	6.64%	\$521,229	0.10%	1.53%		
327390	Other concrete product mfg	\$8,826,516	1,876	\$4,705	\$3,521,965	6.64%	\$233,791	0.13%	2.01%		

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

	-					`			
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Cost per Affected	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327991	Cut stone and stone product manufacturing	\$8,028,431	1,874	\$4,284	\$1,730,741	5.49%	\$95,001	0.25%	4.51%
327992	Ground or treated mineral and earth manufacturing	\$2,108,649	132	\$15,975	\$6,288,188	5.49%	\$345,160	0.25%	4.63%
327993	Mineral wool manufacturing	\$291,145	175	\$1,664	\$6,181,590	5.49%	\$339,309	0.03%	0.49%
327999	All other misc. nonmetallic mineral product mfg	\$1,130,230	326	\$3,467	\$4,299,551	5.49%	\$236,004	0.08%	1.47%
331111	Iron and steel mills	\$424,557	523	\$812	\$82,895,665	4.49%	\$3,723,664	0.00%	0.02%
331112	Electrometallurgical ferroalloy product manufacturing		7	\$692	\$24,121,503	4.49%	\$1,083,535	0.00%	0.06%
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$84,537	94	\$896	\$40,090,061	4.49%	\$1,800,841	0.00%	0.05%
331221	Rolled steel shape manufacturing	\$42,672	54	\$787	\$31,848,937	4.49%	\$1,430,651	0.00%	0.05%
331222	Steel wire drawing	\$57,557	67	\$862	\$16,018,794	4.49%	\$719,562	0.01%	0.12%
331314	Secondary smelting and alloying of aluminum	\$15,277	20	\$777	\$18,496,524	4.46%	\$825,857	0.00%	0.09%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331423	Secondary smelting, refining, and alloying of copper	\$4,206	6	\$722	\$20,561,614	4.42%	\$907,800	0.00%	0.08%
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$18,357	25	\$741	\$9,513,728	4.42%	\$420,033	0.01%	0.18%
331511	Iron foundries	\$5,312,382	408	\$13,021	\$5,865,357	4.11%	\$241,290	0.22%	5.40%
331512	Steel investment foundries	\$1,705,373	101	\$16,885	\$8,489,826	4.11%	\$349,255	0.20%	4.83%
331513	Steel foundries (except investment)	\$2,521,998	192	\$13,135	\$11,977,647	4.11%	\$492,738	0.11%	2.67%
331524	Aluminum foundries (except die-casting)	\$4,316,135	412	\$10,476	\$4,039,244	4.11%	\$166,167	0.26%	6.30%
331525	Copper foundries (except die-casting)	\$1,596,288	246	\$6,489	\$2,847,376	4.11%	\$117,136	0.23%	5.54%
331528	Other nonferrous foundries (except die-casting)	\$620,344	112	\$5,539	\$2,640,180	4.11%	\$108,612	0.21%	5.10%
332111	Iron and steel forging	\$47,376	63	\$756	\$8,310,925	4.71%	\$391,034	0.01%	0.19%
332112	Nonferrous forging	\$13,056	17	\$760	\$21,892,338	4.71%	\$1,030,048	0.00%	0.07%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

	Affected by ConA 3 i Toposed Ginca Ctandard (Continued)										
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Cost per Affected	Revenues per Entity	Profit Rate [a]	Profits per Entity	_	of Profits		
332115	Crown and closure manufacturing	\$5,080	7	\$732	\$6,697,995	4.71%	\$315,145	0.01%	0.23%		
332116	Metal stamping	\$212,110	279	\$759	\$5,360,428	4.71%	\$252,211	0.01%	0.30%		
332117	Powder metallurgy part manufacturing	\$17,537	23	\$762	\$6,328,522	4.71%	\$297,761	0.01%	0.26%		
332211	Cutlery and flatware (except precious) manufacturing	\$10,419	14	\$738	\$2,852,835	5.22%	\$149,022	0.03%	0.50%		
332212	Hand and edge tool manufacturing	\$87,599	113	\$772	\$3,399,782	5.22%	\$177,592	0.02%	0.43%		
332213	Saw blade and handsaw manufacturing	\$9,221	12	\$752	\$5,385,465	5.22%	\$281,317	0.01%	0.27%		
332214	Kitchen utensil, pot, and pan manufacturing	\$10,475	13	\$798	\$10,355,293	5.22%	\$540,923	0.01%	0.15%		
332323	Ornamental and architectural metal work	\$28,608	42	\$673	\$2,069,492	4.70%	\$97,346	0.03%	0.69%		
332439	Other metal container manufacturing	\$43,857	56	\$784	\$5,260,693	3.58%	\$188,521	0.01%	0.42%		
332510	Hardware manufacturing	\$78,538	104	\$756	\$4,442,699	5.22%	\$232,070	0.02%	0.33%		

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

			··· ·· , · · · ·			(00011011010101)			
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332611	Spring (heavy gauge) manufacturing	\$14,071	19	\$754	\$6,621,896	5.22%	\$345,904	0.01%	0.22%
332612	Spring (light gauge) manufacturing	\$36,826	44	\$834	\$4,500,760	5.22%	\$235,103	0.02%	0.35%
332618	Other fabricated wire product manufacturing	\$113,603	148	\$765	\$3,440,489	5.22%	\$179,719	0.02%	0.43%
332710	Machine shops	\$1,032,483	1,399	\$738	\$1,464,380	5.80%	\$84,907	0.05%	0.87%
332812	Metal coating and allied services	\$2,492,357	2,301	\$1,083	\$2,904,851	4.85%	\$141,018	0.04%	0.77%
332911	Industrial valve manufacturing	\$53,520	71	\$752	\$5,841,019	6.81%	\$397,593	0.01%	0.19%
332912	Fluid power valve and hose fitting manufacturing	\$41,712	55	\$757	\$6,486,405	6.81%	\$441,524	0.01%	0.17%
332913	Plumbing fixture fitting and trim manufacturing	\$19,037	25	\$752	\$9,183,477	6.81%	\$625,111	0.01%	0.12%
332919	Other metal valve and pipe fitting manufacturing	\$30,618	40	\$764	\$9,432,914	6.81%	\$642,090	0.01%	0.12%
332991	Ball and roller bearing manufacturing	\$13,624	18	\$741	\$5,892,239	6.81%	\$401,079	0.01%	0.18%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

									
NAICS	Industry	Total Annualized Costs	Affected	Cost per Affected	Revenues per Entity	Profit Rate [a]	Profits per Entity	•	Percentage
332996	Fabricated pipe and pipe fitting manufacturing	\$74,633	99	\$754	\$4,377,576	6.81%	\$297,978	0.02%	0.25%
332997	Industrial pattern manufacturing	\$20,767	28	\$736	\$1,127,301	6.81%	\$76,734	0.07%	0.96%
332998	Enameled iron and metal sanitary ware manufacturing	\$13,779	22	\$630	\$3,195,173	6.81%	\$217,493	0.02%	0.29%
332999	All other miscellaneous fabricated metal product manufacturing	\$230,825	311	\$742	\$2,904,500	6.81%	\$197,707	0.03%	0.38%
333319	Other commercial and service industry machinery manufacturing	\$123,816	165	\$750	\$4,960,861	4.86%	\$241,023	0.02%	0.31%
333411	Air purification equipment manufacturing	\$27,021	36	\$748	\$4,449,669	4.55%	\$202,591	0.02%	0.37%
333412	Industrial and commercial fan and blower manufacturing	\$27,149	34	\$791	\$7,928,953	4.55%	\$361,000	0.01%	0.22%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

		711100		•	d Offica Otaridard	(continuou)			
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333414	Heating equipment (except warm air furnaces) manufacturing	\$45,308	61	\$741	\$5,667,272	4.55%	\$258,027	0.01%	0.29%
333511	Industrial mold manufacturing	\$143,216	193	\$743	\$2,121,298	5.29%	\$112,203	0.04%	0.66%
333512	Machine tool (metal cutting types) manufacturing	\$44,845	60	\$746	\$4,136,962	5.29%	\$218,818	0.02%	0.34%
333513	Machine tool (metal forming types) manufacturing	\$30,365	40	\$758	\$4,358,035	5.29%	\$230,511	0.02%	0.33%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$203,742	274	\$743	\$2,083,166	5.29%	\$110,186	0.04%	0.67%
333515	Cutting tool and machine tool accessory manufacturing	\$104,313	140	\$746	\$2,082,357	5.29%	\$110,143	0.04%	0.68%
333516	Rolling mill machinery and equipment manufacturing	\$9,604	13	\$744	\$8,330,543	5.29%	\$440,630	0.01%	0.17%
333518	Other metalworking machinery manufacturing	\$38,359	50	\$765	\$5,680,062	5.29%	\$300,438	0.01%	0.25%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

		71170		•	d Offica Staffdard	(commisse)			
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	_	Costs as a Percentage of Profits
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$25,087	32	\$777	\$6,028,137	2.63%	\$158,355	0.01%	0.49%
333613	Mechanical power transmission equipment manufacturing	\$26,182	35	\$754	\$9,094,798	2.63%	\$238,915	0.01%	0.32%
333911	Pump and pumping equipment manufacturing	\$41,360	54	\$762	\$6,220,799	4.58%	\$284,686	0.01%	0.27%
333912	Air and gas compressor manufacturing	\$23,948	32	\$758	\$6,290,845	4.58%	\$287,891	0.01%	0.26%
333991	Power-driven handtool manufacturing	\$9,867	13	\$732	\$3,816,319	4.58%	\$174,648	0.02%	0.42%
333992	Welding and soldering equipment manufacturing	\$23,144	31	\$745	\$5,635,771	4.58%	\$257,913	0.01%	0.29%
333993	Packaging machinery manufacturing	\$54,872	74	\$742	\$4,240,165	4.58%	\$194,045	0.02%	0.38%
333994	Industrial process furnace and oven manufacturing	\$34,418	45	\$757	\$4,470,378	4.58%	\$204,580	0.02%	0.37%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

Amound by Common China China China Chinach (Comminded)									
NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333995	Fluid power cylinder and actuator manufacturing	\$32,249	43	\$756	\$5,830,077	4.58%	\$266,805	0.01%	0.28%
333996	Fluid power pump and motor manufacturing	\$15,258	20	\$772	\$4,401,836	4.58%	\$201,444	0.02%	0.38%
333997	Scale and balance (except laboratory) manufacturing	\$12,129	16	\$764	\$4,987,858	4.58%	\$228,262	0.02%	0.33%
333999	All other miscellaneous general purpose machinery manufacturing	\$123,384	166	\$745	\$3,262,128	4.58%	\$149,287	0.02%	0.50%
334518	Watch, clock, and part manufacturing	\$6,646	9	\$732	\$2,878,581	5.94%	\$171,059	0.03%	0.43%
335211	Electric housewares and household fans	\$3,326	5	\$643	\$6,088,365	4.21%	\$256,514	0.01%	0.25%
335221	Household cooking appliance manufacturing	\$6,521	10	\$649	\$10,460,359	4.21%	\$440,715	0.01%	0.15%
335222	Household refrigerator and home freezer manufacturing	\$32,118	18	\$1,784	\$271,746,735	4.21%	\$11,449,210	0.00%	0.02%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Affected	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity		Locte ac a l
335224	Household laundry equipment manufacturing	\$30,521	17	\$1,795	\$299,665,426	4.21%	\$12,625,478	0.00%	0.01%
335228	Other major household appliance manufacturing	\$1,917	3	\$671	\$8,269,046	4.21%	\$348,391	0.01%	0.19%
336111	Automobile manufacturing	\$293,357	167	\$1,757	\$555,733,594	2.04%	\$11,339,563	0.00%	0.02%
336112	Light truck and utility vehicle manufacturing	\$404,778	63	\$6,425	\$2,359,286,755	2.04%	\$48,140,479	0.00%	0.01%
336120	Heavy duty truck manufacturing	\$125,181	77	\$1,626	\$240,029,218	2.04%	\$4,897,718	0.00%	0.03%
336211	Motor vehicle body manufacturing	\$187,131	239	\$784	\$16,910,028	2.04%	\$345,044	0.00%	0.23%
336212	Truck trailer manufacturing	\$54,137	72	\$748	\$9,018,164	2.04%	\$184,013	0.01%	0.41%
336213	Motor home manufacturing	\$84,073	79	\$1,064	\$75,358,742	2.04%	\$1,537,671	0.00%	0.07%
336311	Carburetor, piston, piston ring, and valve manufacturing	\$10,269	14	\$748	\$2,242,044	2.04%	\$45,748	0.03%	1.64%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
336312	Gasoline engine and engine parts manufacturing	\$65,767	94	\$703	\$4,245,230	2.04%	\$86,623	0.02%	0.81%
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$71,423	101	\$706	\$6,746,386	2.04%	\$137,658	0.01%	0.51%
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$25,492	36	\$708	\$7,742,773	2.04%	\$157,989	0.01%	0.45%
336340	Motor vehicle brake system manufacturing	\$32,886	46	\$710	\$6,554,128	2.04%	\$133,735	0.01%	0.53%
336350	Motor vehicle transmission and power train parts manufacturing	\$46,869	66	\$710	\$6,058,947	2.04%	\$123,631	0.01%	0.57%
336370	Motor vehicle metal stamping	\$159,156	201	\$792	\$11,477,248	2.04%	\$234,190	0.01%	0.34%
336399	All other motor vehicle parts manufacturing	\$169,401	235	\$721	\$6,985,145	2.04%	\$142,530	0.01%	0.51%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Attected	Cost per Affected	Revenues per Entity	Profit Rate [a]	Profits per Entity	_	of Profits
336611	Ship building and repair	\$8,749,619	575	\$15,217	\$27,083,446	5.86%	\$1,587,570	0.06%	0.96%
336612	Boat building	\$2,612,088	814	\$3,209	\$5,304,212	5.86%	\$310,921	0.06%	1.03%
336992	Military armored vehicle, tank, and tank component manufacturing	\$27,227	32	\$845	\$54,437,815	6.31%	\$3,434,642	0.00%	0.02%
337215	Showcase, partition, shelving, and locker manufacturing	\$176,800	235	\$751	\$3,637,716	4.54%	\$165,266	0.02%	0.45%
339114	Dental equipment and supplies manufacturing	\$261,393	292	\$895	\$2,619,222	10.77%	\$282,066	0.03%	0.32%
339116	Dental laboratories	\$1,397,271	7,011	\$199	\$532,828	10.77%	\$57,381	0.04%	0.35%
339911	Jewelry (except costume) manufacturing	\$1,392,054	1,751	\$795	\$2,615,940	5.80%	\$151,608	0.03%	0.52%
339913	Jewelers' materials and lapidary work manufacturing	\$257,285	258	\$997	\$2,775,717	5.80%	\$160,868	0.04%	0.62%
339914	Costume jewelry and novelty manufacturing	\$242,158	588	\$412	\$971,681	5.80%	\$56,314	0.04%	0.73%
339950	Sign manufacturing	\$264,810	428	\$618	\$1,642,826	5.80%	\$95,211	0.04%	0.65%

Table VI-7: Screening Analysis for Small Entities in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Small Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
423840	Industrial supplies, wholesalers	\$143,614	226	\$636	\$5,001,467	3.44%	\$171,830	0.01%	0.37%
482110	Rail transportation	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$370,174	7,423	\$50	\$663,948	7.34%	\$48,739	0.01%	0.10%
	Total	\$86,520,059	41,136	\$2,103					

[[]a] Profit rates were calculated by ERG, 2011, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entities	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
324121	Asphalt paving mixture and block manufacturing	\$27,770	260	\$107	\$4,335,678	7.50%	\$325,227	0.00%	0.03%
324122	Asphalt shingle and roofing materials	\$85,253	57	\$1,496	\$4,013,780	7.50%	\$301,081	0.04%	0.50%

325510	Paint and coating manufacturing	\$18,910	324	\$58	\$1,871,296	5.38%	\$100,758	0.00%	0.06%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$26,606	19	\$1,400	\$327,368	4.41%	\$14,453	0.43%	9.69%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$747,902	645	\$1,160	\$155,258	4.41%	\$6,855	0.75%	16.92%
327113	Porcelain electrical supply mfg	\$79,824	57	\$1,400	\$601,316	4.41%	\$26,548	0.23%	5.28%
327121	Brick and structural clay mfg	\$76,696	31	\$2,474	\$715,098	4.41%	\$31,571	0.35%	7.84%
327122	Ceramic wall and floor tile mfg	\$382,871	136	\$2,815	\$807,291	4.41%	\$35,641	0.35%	7.90%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327123	Other structural clay product mfg	\$67,176	25	\$2,687	\$782,505	4.41%	\$34,547	0.34%	7.78%
327124	Clay refractory manufacturing	\$29,861	55	\$543	\$1,521,469	4.41%	\$67,172	0.04%	0.81%
327125	Nonclay refractory manufacturing	\$34,061	40	\$852	\$1,506,151	4.41%	\$66,495	0.06%	1.28%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327211	Flat glass manufacturing	\$4,450	4	\$1,075	\$905,562	3.42%	\$30,978	0.12%	3.47%
327212	Other pressed and blown glass and glassware manufacturing	\$87,895	79	\$1,107	\$370,782	3.42%	\$12,684	0.30%	8.73%
327213	Glass container manufacturing	\$4,798	4	\$1,107	\$2,690,032	3.42%	\$92,024	0.04%	1.20%
327320	Ready-mixed concrete manufacturing	\$1,897,131	1,429	\$1,328	\$1,922,659	6.64%	\$127,628	0.07%	1.04%
327331	Concrete block and brick mfg	\$544,975	339	\$1,608	\$1,995,833	6.64%	\$132,485	0.08%	1.21%
327332	Concrete pipe mfg	\$116,670	67	\$1,741	\$2,375,117	6.64%	\$157,662	0.07%	1.10%
327390	Other concrete product mfg	\$1,885,496	1,326	\$1,422	\$974,563	6.64%	\$64,692	0.15%	2.20%
327991	Cut stone and stone product manufacturing	\$2,753,051	1,471	\$1,872	\$946,566	5.49%	\$51,957	0.20%	3.60%
327992	Ground or treated mineral and earth manufacturing	\$389,745	78	\$4,997	\$1,635,092	5.49%	\$89,751	0.31%	5.57%
327993	Mineral wool manufacturing	\$48,575	46	\$1,061	\$1,398,274	5.49%	\$76,752	0.08%	1.38%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327999	All other misc. nonmetallic mineral product mfg	\$311,859	235	\$1,327	\$1,457,181	5.49%	\$79,985	0.09%	1.66%
331111	Iron and steel mills	\$9,342	12	\$777	\$4,177,841	4.49%	\$187,668	0.02%	0.41%
331112	Electrometallurgical ferroalloy product manufacturing	\$0	0	N/A	\$1,202,610	4.49%	\$54,021	N/A	N/A
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$1,706	2	\$774	\$2,113,379	4.49%	\$94,933	0.04%	0.82%
331221	Rolled steel shape manufacturing	\$1,612	2	\$774	\$2,108,498	4.49%	\$94,713	0.04%	0.82%
331222	Steel wire drawing	\$2,939	4	\$774	\$835,444	4.49%	\$37,528	0.09%	2.06%
331314	Secondary smelting and alloying of aluminum	\$1,254	2	\$774	\$2,039,338	4.46%	\$91,055	0.04%	0.85%
331423	Secondary smelting, refining, and alloying of copper	\$0	0	N/A	\$2,729,146	4.42%	\$120,492	N/A	N/A

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$2,897	4	\$774	\$1,546,332	4.42%	\$68,271	0.05%	1.13%
331511	Iron foundries	\$330,543	201	\$1,644	\$1,031,210	4.11%	\$42,422	0.16%	3.88%
331512	Steel investment foundries	\$47,902	27	\$1,774	\$1,831,394	4.11%	\$75,340	0.10%	2.35%
331513	Steel foundries (except investment)	\$162,670	102	\$1,595	\$1,577,667	4.11%	\$64,902	0.10%	2.46%
331524	Aluminum foundries (except die-casting)	\$503,027	235	\$2,141	\$874,058	4.11%	\$35,957	0.24%	5.95%
331525	Copper foundries (except die-casting)	\$370,110	164	\$2,257	\$814,575	4.11%	\$33,510	0.28%	6.73%
331528	Other nonferrous foundries (except die-casting)	\$162,043	77	\$2,104	\$837,457	4.11%	\$34,451	0.25%	6.11%
332111	Iron and steel forging	\$4,089	5	\$774	\$1,175,666	4.71%	\$55,316	0.07%	1.40%
332112	Nonferrous forging	\$784	1	\$774	\$1,431,874	4.71%	\$67,371	0.05%	1.15%
332115	Crown and closure manufacturing	\$992	1	\$774	\$1,715,882	4.71%	\$80,733	0.05%	0.96%
332116	Metal stamping	\$27,154	35	\$775	\$1,146,408	4.71%	\$53,939	0.07%	1.44%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332117	Powder metallurgy part manufacturing	\$2,072	3	\$774	\$1,580,975	4.71%	\$74,386	0.05%	1.04%
332211	Cutlery and flatware (except precious) manufacturing	\$2,217	3	\$774	\$391,981	5.22%	\$20,476	0.20%	3.78%
332212	Hand and edge tool manufacturing	\$19,535	25	\$774	\$770,858	5.22%	\$40,267	0.10%	1.92%
332213	Saw blade and handsaw manufacturing	\$2,296	3	\$774	\$975,698	5.22%	\$50,967	0.08%	1.52%
332214	Kitchen utensil, pot, and pan manufacturing	\$0	0	N/A	\$826,410	5.22%	\$43,169	N/A	N/A
332323	Ornamental and architectural metal work	\$9,527	14	\$694	\$695,970	4.70%	\$32,737	0.10%	2.12%
332439	Other metal container manufacturing	\$5,279	7	\$788	\$1,027,511	3.58%	\$36,822	0.08%	2.14%
332510	Hardware manufacturing	\$11,863	15	\$777	\$776,986	5.22%	\$40,587	0.10%	1.92%
332611	Spring (heavy gauge) manufacturing	\$1,927	2	\$786	\$1,774,584	5.22%	\$92,698	0.04%	0.85%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332612	Spring (light gauge) manufacturing	\$4,960	6	\$774	\$1,085,302	5.22%	\$56,692	0.07%	1.36%
332618	Other fabricated wire product manufacturing	\$19,946	26	\$774	\$778,870	5.22%	\$40,685	0.10%	1.90%
332710	Machine shops	\$416,115	537	\$774	\$649,804	5.80%	\$37,677	0.12%	2.06%
332812	Metal coating and allied services	\$613,903	885	\$694	\$602,598	4.85%	\$29,254	0.12%	2.37%
332911	Industrial valve manufacturing	\$5,886	8	\$774	\$1,294,943	6.81%	\$88,146	0.06%	0.88%
332912	Fluid power valve and hose fitting manufacturing	\$4,491	6	\$774	\$1,350,501	6.81%	\$91,927	0.06%	0.84%
332913	Plumbing fixture fitting and trim manufacturing	\$1,505	2	\$774	\$811,318	6.81%	\$55,226	0.10%	1.40%
332919	Other metal valve and pipe fitting manufacturing	\$2,710	3	\$781	\$2,164,960	6.81%	\$147,367	0.04%	0.53%
332991	Ball and roller bearing manufacturing	\$1,132	1	\$774	\$1,808,246	6.81%	\$123,086	0.04%	0.63%
332996	Fabricated pipe and pipe fitting manufacturing	\$12,453	16	\$774	\$1,237,265	6.81%	\$84,220	0.06%	0.92%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332997	Industrial pattern manufacturing	\$8,917	12	\$774	\$503,294	6.81%	\$34,259	0.15%	2.26%
332998	Enameled iron and metal sanitary ware manufacturing	\$3,287	5	\$690	\$725,491	6.81%	\$49,384	0.10%	1.40%
332999	All other miscellaneous fabricated metal product manufacturing	\$55,981	72	\$774	\$933,734	6.81%	\$63,558	0.08%	1.22%
333319	Other commercial and service industry machinery manufacturing	\$19,776	26	\$774	\$1,127,993	4.86%	\$54,803	0.07%	1.41%
333411	Air purification equipment manufacturing	\$4,745	6	\$774	\$1,152,661	4.55%	\$52,480	0.07%	1.47%
333412	Industrial and commercial fan and blower manufacturing	\$1,675	2	\$774	\$1,454,305	4.55%	\$66,214	0.05%	1.17%
333414	Heating equipment (except warm air furnaces) manufacturing	\$6,087	8	\$777	\$901,560	4.55%	\$41,047	0.09%	1.89%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333511	Industrial mold manufacturing	\$43,738	56	\$774	\$716,506	5.29%	\$37,898	0.11%	2.04%
333512	Machine tool (metal cutting types) manufacturing	\$8,756	11	\$776	\$911,891	5.29%	\$48,233	0.09%	1.61%
333513	Machine tool (metal forming types) manufacturing	\$4,666	6	\$774	\$1,308,768	5.29%	\$69,225	0.06%	1.12%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$65,867	85	\$774	\$816,990	5.29%	\$43,213	0.09%	1.79%
333515	Cutting tool and machine tool accessory manufacturing	\$31,406	41	\$775	\$771,162	5.29%	\$40,789	0.10%	1.90%
333516	Rolling mill machinery and equipment manufacturing	\$1,361	2	\$774	\$2,243,812	5.29%	\$118,683	0.03%	0.65%
333518	Other metalworking machinery manufacturing	\$6,766	9	\$774	\$965,694	5.29%	\$51,079	0.08%	1.51%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$3,318	4	\$774	\$1,393,898	2.63%	\$36,617	0.06%	2.11%
333613	Mechanical power transmission equipment manufacturing	\$3,114	4	\$774	\$2,113,156	2.63%	\$55,511	0.04%	1.39%
333911	Pump and pumping equipment manufacturing	\$7,209	9	\$774	\$1,343,868	4.58%	\$61,500	0.06%	1.26%
333912	Air and gas compressor manufacturing	\$4,228	5	\$774	\$1,644,664	4.58%	\$75,266	0.05%	1.03%
333991	Power-driven handtool manufacturing	\$2,212	3	\$774	\$2,158,268	4.58%	\$98,770	0.04%	0.78%
333992	Welding and soldering equipment manufacturing	\$3,835	5	\$774	\$1,331,521	4.58%	\$60,935	0.06%	1.27%
333993	Packaging machinery manufacturing	\$9,742	13	\$774	\$809,474	4.58%	\$37,044	0.10%	2.09%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333994	Industrial process furnace and oven manufacturing	\$5,631	7	\$774	\$1,324,790	4.58%	\$60,627	0.06%	1.28%
333995	Fluid power cylinder and actuator manufacturing	\$3,955	5	\$774	\$916,613	4.58%	\$41,947	0.08%	1.84%
333996	Fluid power pump and motor manufacturing	\$2,670	3	\$774	\$1,417,549	4.58%	\$64,872	0.05%	1.19%
333997	Scale and balance (except laboratory) manufacturing	\$1,947	3	\$774	\$1,527,651	4.58%	\$69,911	0.05%	1.11%
333999	All other miscellaneous general purpose machinery manufacturing	\$32,637	42	\$774	\$871,700	4.58%	\$39,892	0.09%	1.94%
334518	Watch, clock, and part manufacturing	\$1,322	2	\$774	\$586,350	5.94%	\$34,844	0.13%	2.22%
335211	Electric housewares and household fans	\$0	0	N/A	\$847,408	4.21%	\$35,703	N/A	N/A
335221	Household cooking appliance manufacturing	\$722	1	\$698	\$2,228,319	4.21%	\$93,883	0.03%	0.74%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
335222	Household refrigerator and home freezer manufacturing	\$0	0	N/A	\$4,917,513	4.21%	\$207,184	N/A	N/A
335224	Household laundry equipment manufacturing	\$0	0	N/A	\$1,767,776	4.21%	\$74,480	N/A	N/A
335228	Other major household appliance manufacturing	\$0	0	N/A	\$1,706,991	4.21%	\$71,919	N/A	N/A
336111	Automobile manufacturing	\$2,147	3	\$774	\$1,507,110	2.04%	\$30,752	0.05%	2.52%
336112	Light truck and utility vehicle manufacturing	\$795	1	\$774	\$1,089,801	2.04%	\$22,237	0.07%	3.48%
336120	Heavy duty truck manufacturing	\$943	1	\$774	\$4,371,350	2.04%	\$89,196	0.02%	0.87%
336211	Motor vehicle body manufacturing	\$12,371	16	\$774	\$1,720,545	2.04%	\$35,107	0.04%	2.20%
336212	Truck trailer manufacturing	\$5,147	7	\$774	\$2,706,375	2.04%	\$55,223	0.03%	1.40%
336213	Motor home manufacturing	\$1,193	2	\$774	\$2,184,388	2.04%	\$44,572	0.04%	1.74%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
336311	Carburetor, piston, piston ring, and valve manufacturing	\$1,329	2	\$774	\$870,496	2.04%	\$17,762	0.09%	4.36%
336312	Gasoline engine and engine parts manufacturing	\$11,683	15	\$774	\$867,703	2.04%	\$17,705	0.09%	4.37%
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$8,618	11	\$774	\$1,383,831	2.04%	\$28,237	0.06%	2.74%
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$2,876	4	\$774	\$1,543,436	2.04%	\$31,493	0.05%	2.46%
336340	Motor vehicle brake system manufacturing	\$2,386	3	\$774	\$1,378,684	2.04%	\$28,132	0.06%	2.75%
336350	Motor vehicle transmission and power train parts manufacturing	\$6,390	8	\$774	\$864,746	2.04%	\$17,645	0.09%	4.38%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
336370	Motor vehicle metal stamping	\$5,759	7	\$778	\$1,519,875	2.04%	\$31,013	0.05%	2.51%
336399	All other motor vehicle parts manufacturing	\$16,021	21	\$774	\$1,369,097	2.04%	\$27,936	0.06%	2.77%
336611	Ship building and repair	\$212,021	65	\$3,252	\$770,896	5.86%	\$45,188	0.42%	7.20%
336612	Boat building	\$391,950	121	\$3,247	\$1,101,324	5.86%	\$64,557	0.29%	5.03%
336992	Military armored vehicle, tank, and tank component manufacturing	\$0	0	N/A	\$1,145,870	6.31%	\$72,296	N/A	N/A
337215	Showcase, partition, shelving, and locker manufacturing	\$28,216	36	\$774	\$866,964	4.54%	\$39,387	0.09%	1.96%
339114	Dental equipment and supplies manufacturing	\$79,876	87	\$922	\$657,192	10.77%	\$70,773	0.14%	1.30%
339116	Dental laboratories	\$1,040,112	6,664	\$156	\$326,740	10.77%	\$35,187	0.05%	0.44%
339911	Jewelry (except costume) manufacturing	\$533,353	1,532	\$348	\$673,857	5.80%	\$39,054	0.05%	0.89%

Table VI-8: Screening Analysis for Very Small Entities (fewer than 20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Entities with <20 Employees	Annualized Costs per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
339913	Jewelers' materials and lapidary work manufacturing	\$86,465	218	\$397	\$919,422	5.80%	\$53,285	0.04%	0.74%
339914	Costume jewelry and novelty manufacturing	\$100,556	368	\$274	\$454,292	5.80%	\$26,329	0.06%	1.04%
339950	Sign manufacturing	\$89,586	140	\$639	\$521,518	5.80%	\$30,225	0.12%	2.12%
423840	Industrial supplies, wholesalers	\$50,612	95	\$531	\$2,432,392	3.44%	\$83,567	0.02%	0.64%
482110	Rail transportation	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$320,986	6,506	\$49	\$562,983	7.34%	\$41,328	0.01%	0.12%
	Total	\$15,745,425	25,544	\$616					

[[]a] Profit rates were calculated by ERG, 2011, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Regulatory Flexibility Screening Analysis

To determine if the Assistant Secretary of Labor for OSHA can certify that the proposed silica standard for general industry and maritime will not have a significant economic impact on a substantial number of small entities, the Agency has developed screening tests to consider minimum threshold effects of the proposed standard on small entities. The minimum threshold effects for this purpose are annualized costs equal to one percent of annual revenues and annualized costs equal to five percent of annual profits applied to each affected industry. OSHA has applied these screening tests both to small entities and to very small entities. For purposes of certification, the threshold level cannot be exceeded for affected small entities or very small entities in any affected industry.

Tables VI-7 and Table VI-8 show that, in general industry and maritime, the annualized costs of the proposed standard do not exceed one percent of annual revenues for small entities or for very small entities in any industry. These tables also show that the annualized costs of the proposed standard exceed five percent of annual profits for small entities in 10 industries and for very small entities in 13 industries. OSHA is therefore unable to certify that the proposed standard will not have a significant economic impact on a substantial number of small entities in general industry and maritime and must prepare an Initial Regulatory Flexibility Analysis (IRFA). The IRFA is presented in Chapter IX of this PEA.

²¹ Although none of these are industries with captive foundries, the annualized costs as a percentage of profits for very small entities in three industries with captive foundries are approximately 4.4 percent. As previously discussed, OSHA believes that annualized costs as a percentage of annual profits for very small entities in industries with captive foundries is an artificially created impact, derived from how ERG allocated costs to very small entities based on the percentage of affected employees working in very small entities. The very same methodological problem arises in the screening test of five percent of profits for very small entities in industries with captive foundries. In reality, OSHA anticipates that there may be no entities with fewer than 20 employees with foundries in these industries or, if there are, that the impacts are not actually as large as estimated here.

IMPACTS IN CONSTRUCTION

In this section, OSHA plans (1) to establish whether the proposed rule is economically feasible for all affected industries in construction, and (2) to determine if the Agency can certify that the proposed rule will not have a significant economic impact on a substantial number of small entities in construction.

Economic Feasibility

Economic Feasibility Screening Analysis: All Establishments

To determine whether the proposed rule's projected costs of compliance would threaten the economic viability of affected construction industries, OSHA used the same data sources and methodological approach that were used earlier in this chapter for general industry and maritime. OSHA first compared, for each affected industry, annualized compliance costs to annual revenues and profits per (average) affected establishment. The results for all affected establishments in all affected construction industries are presented in Table VI-9, using annualized costs per establishment for the proposed $50 \,\mu\text{g/m}^3$ PEL. Shown in the table for each affected industry are total annualized costs, annualized costs per affected establishment, annual revenues per establishment, the profit rate, annual profits per establishment, annualized compliance costs as a percentage of annual revenues, and annualized compliance costs as a percentage of annual profits.

The annualized costs per affected establishment for each affected construction industry were calculated by distributing the industry-level (incremental) annualized compliance costs among all affected establishments in the industry, where annualized compliance costs reflect a 7 percent discount rate. The annualized cost of the proposed rule for the average establishment in construction, encompassing all construction industries, is estimated at \$1,022 in 2009 dollars. It is clear from Table VI-9 that the estimates of the annualized costs per affected establishment in the 10 construction industries vary widely. These estimates range from \$2,598 for NAICS 237300 (Highway, street, and bridge construction) and \$2,200 for NAICS 237100 (Utility system construction) to \$241 for NAICS 238200 (Building finishing contractors) and \$171 for NAICS 237200 (Land subdivision).

As previously discussed, OSHA has established a minimum threshold level of annualized costs equal to one percent of annual revenues—and, secondarily, annualized costs equal to ten percent of annual profits—below which the Agency has concluded that costs are unlikely to threaten the

²² Tables VI-A-3 and VI-A-4 in Appendix VI-A show per-establishment annualized costs and ratios of annualized cost to annual revenue and annualized costs to annual profit using discount rates of 3 percent and 0 percent, respectively, to annualize costs. As can be seen, the effects of the lower discount rates on these ratios are quite modest in absolute terms—although, of course, the ratios are in all cases lower or the same as when costs were annualized using a 7 percent discount rate.

²³ The costs for establishments engaged in highway, street, and bridge construction are relatively high due to the large amount of heavy equipment operation, rock drilling, concrete drilling, and materials handling in those types of projects.

economic viability of an affected industry. Table VI-9 shows that in no construction industry do the annualized costs of the proposed rule exceed one percent of annual revenues or ten percent of annual profits. NAICS 238100 (Foundation, structure, and building exterior contractors) has both the highest cost impact as a percentage of revenues, of 0.13 percent, and the highest cost impact as a percentage of profits, of 2.97 percent. Based on these results, even if the costs of the proposed rule were 50 percent higher than OSHA has estimated, the highest cost impact as a percentage of revenues in any affected construction industry would be less than 0.2 percent. Furthermore, the costs of the proposed rule would have to be more than 650 percent higher than OSHA has estimated for the cost impact as a percentage of revenues to equal 1 percent in any affected construction industry. For all affected establishments in construction, the estimated annualized cost of the proposed rule is, on average, equal to 0.05 percent of annual revenue and 1.0 percent of annual profit.

Therefore, even though the annualized costs of the proposed rule incurred by the construction industry as a whole are almost four times the combined annualized costs incurred by general industry and maritime, OSHA preliminarily concludes, based on its screening analysis, that the annualized costs as a percentage of annual revenues and as a percentage of annual profits are below the threshold level that could threaten the economic viability of any of the construction industries. OSHA further notes that while there would be additional costs (not attributable to the proposed rule) for some employers in construction industries to come into compliance with the *current* silica standard, these costs would not affect the Agency's preliminary determination of the economic feasibility of the proposed rule.

Below, OSHA provides additional information to further support the Agency's conclusion that the proposed rule would not threaten the economic viability of any construction industry.

Normal Year-to-Year Variations in Profit Rates

As previously noted, the United States has a dynamic and constantly changing economy in which large year-to-year changes in industry profit rates are commonplace.²⁴ A recession, a downturn in a particular industry, foreign competition, or the increased competitiveness of producers of close domestic substitutes are all easily capable of causing a decline in profit rates in an industry of well in excess of ten percent in one year or for several years in succession.

To demonstrate the normal year-to-year variation in profit rates for all the manufacturers in construction affected by the proposed rule, OSHA developed Table VI-10 and Table VI-11, which show, respectively, year-to-year profit rates and year-to-year percentage changes in profit rates, by industry, for the years 2000 - 2006. For the combined affected manufacturing industries in construction over the 7-year period, Table VI-11 shows an average change in profit rates of 15.4 percent a year.

²⁴ OSHA expects that large year-to-year variations in revenues and prices in construction industries are also commonplace. However, OSHA does not have price data for construction industries comparable to the producer price indices available for manufacturing industries.

²⁵ The IRS profit data for construction industries were available only at the 3-digit NAICS level in 2000 and 2001. Therefore, the reported profit data were the same for each construction industry in those years.

What these data indicate is that, even if the annualized costs of the proposed rule for the most significantly affected construction industries were completely absorbed in reduced annual profits, the magnitude of reduced annual profit rates are well within normal year-to-year variations in profit rates in those industries and do not threaten their economic viability. Of course, a permanent loss of profits would present a greater problem than a temporary loss, but it is unlikely that all costs of the proposed rule would be absorbed in lost profits. Given that the overall price elasticity of demand for the outputs of the construction industry is fairly low²⁶ and that almost all of the costs estimated in chapter V are variable costs, there is a reasonable chance that most firms will see small declines in output rather than that any but the most extremely marginal firms would close.

²⁶ See, for example, Durlauf and Blume (2008), p. 547, which concludes that recent estimates of the after-tax price elasticity of housing demand cluster around -0.5. The article by Hanusheck and Quigley (1980) reaches similar findings. For office and hotel construction, see Wheaton, Torto, and Evans (1997) and Wheaton and Rosoff (1998), whose empirical results suggest a price elasticity of demand for office and hotel construction of -0.4.

Table VI-9: Screening Analysis for Establishments in Construction Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish- ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
236100	Residential Building Construction	\$23,288,881	55,338	\$421	\$2,002,532	4.87%	\$97,456	0.02%	0.43%
236200	Nonresidential Building Construction	\$39,664,913	44,702	\$887	\$7,457,045	4.87%	\$362,908	0.01%	0.24%
237100	Utility System Construction	\$46,718,162	21,232	\$2,200	\$4,912,884	5.36%	\$263,227	0.04%	0.84%
237200	Land Subdivision	\$1,110,789	6,511	\$171	\$2,084,334	11.04%	\$230,214	0.01%	0.07%
237300	Highway, Street, and Bridge Construction	\$30,807,861	11,860	\$2,598	\$8,663,019	5.36%	\$464,156	0.03%	0.56%
237900	Other Heavy and Civil Engineering Construction	\$7,164,210	5,561	\$1,288	\$3,719,070	5.36%	\$199,264	0.03%	0.65%
238100	Foundation, Structure, and Building Exterior Contractors	\$215,907,211	117,456	\$1,838	\$1,425,510	4.34%	\$61,832	0.13%	2.97%
238200	Building Equipment Contractors	\$4,902,138	20,358	\$241	\$1,559,425	4.34%	\$67,640	0.02%	0.36%
238300	Building Finishing Contractors	\$50,259,239	120,012	\$419	\$892,888	4.34%	\$38,729	0.05%	1.08%
238900	Other Specialty Trade Contractors	\$68,003,978	74,446	\$913	\$1,202,048	4.48%	\$53,826	0.08%	1.70%
999000	State and local governments [d]	\$23,338,234	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	\$511,165,616	477,476	\$1,022					

[a] Profit rates were calculated by ERG, 2011, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-10: Time Series of Profit Rates for Construction Industries Affected by OSHA's Proposed Silica Standard

NAICS	Industry	2006	2005	2004	2003	2002	2001	2000	Average
236100	Residential Building Construction	5.17%	6.52%	5.29%	4.61%	4.13%	4.19%	4.16%	4.87%
236200	Nonresidential Building Construction	5.17%	6.52%	5.29%	4.61%	4.13%	4.19%	4.16%	4.87%
237100	Utility System Construction	6.62%	7.57%	5.78%	4.53%	4.65%	4.19%	4.16%	5.36%
237200	Land Subdivision	11.03%	17.26%	14.86%	12.73%	13.09%	4.19%	4.16%	11.04%
237300	Highway, Street, and Bridge Construction	6.62%	7.57%	5.78%	4.53%	4.65%	4.19%	4.16%	5.36%
237900	Other Heavy and Civil Engineering Construction	6.62%	7.57%	5.78%	4.53%	4.65%	4.19%	4.16%	5.36%
238100	Foundation, Structure, and Building Exterior Contractors	5.50%	4.91%	4.10%	3.61%	3.90%	4.19%	4.16%	4.34%
238200	Building Equipment Contractors	5.50%	4.91%	4.10%	3.61%	3.90%	4.19%	4.16%	4.34%
238300	Building Finishing Contractors	5.50%	4.91%	4.10%	3.61%	3.90%	4.19%	4.16%	4.34%
238900	Other Specialty Trade Contractors	5.77%	5.16%	4.25%	3.76%	4.06%	4.19%	4.16%	4.48%

Source: ERG, 2011, based on Internal Revenue Service, Corporation Source Book, 2007.

Table VI-11: Percentage Change in Profit Rates for Construction Industries Affected by OSHA's Proposed Silica Standard

NAICS	Industry	2005-2006	2004-2005	2003- 2004	2002-2003	2001-2002	2000- 2001	Average Change (Absolute Values)
236100	Residential Building Construction	-20.68%	23.26%	14.61%	11.77%	-1.43%	0.63%	12.06%
236200	Nonresidential Building Construction	-20.68%	23.26%	14.61%	11.77%	-1.43%	0.63%	12.06%
237100	Utility System Construction	-12.55%	31.09%	27.39%	-2.45%	11.01%	0.63%	14.19%
237200	Land Subdivision	-36.08%	16.09%	16.78%	-2.74%	212.49%	0.63%	47.47%
237300	Highway, Street, and Bridge Construction	-12.55%	31.09%	27.39%	-2.45%	11.01%	0.63%	14.19%
237900	Other Heavy and Civil Engineering Construction	-12.55%	31.09%	27.39%	-2.45%	11.01%	0.63%	14.19%
238100	Foundation, Structure, and Building Exterior Contractors	12.05%	19.56%	13.75%	-7.41%	-6.95%	0.63%	10.06%
238200	Building Equipment Contractors	12.05%	19.56%	13.75%	-7.41%	-6.95%	0.63%	10.06%
238300	Building Finishing Contractors	12.05%	19.56%	13.75%	-7.41%	-6.95%	0.63%	10.06%
238900	Other Specialty Trade Contractors	11.80%	21.25%	13.21%	-7.43%	-3.07%	0.63%	9.56%

Source: ERG, 2011, based on Internal Revenue Service, Corporation Source Book, 2007.

Market Structure and Market Impacts in the Construction Industry

At a conceptual level, the market-determined output of the construction industry depends on the intersection of demand and supply curves. Incremental compliance costs of the rule (which are almost entirely variable costs) shift the construction supply curve upward. The net effect is an increase in the price for construction activities and a reduction in the level of activity (with the magnitude of this effect depending on the price elasticity of demand). Lower levels of activity mean less construction work, a reduction in the number of construction establishments, and a concomitant reduction in construction employment. The greater the price elasticity of demand and the greater the increase in marginal costs, the larger will be the reduction in equilibrium output. In terms of prices, the greater the price elasticity of demand, the smaller will be the increase in prices for a given increment to marginal costs, and the larger the reduction in output.

Increasing the cost of construction project activities that generate silica exposures has two effects on the demand for these activities. First, increasing the cost of silica-related jobs relative to the costs of other construction inputs might result in substitution away from this type of work. Architects, building designers, and contractors might be more likely to choose building methods and materials that eliminate or reduce the need to perform silica-related jobs. For example, precast concrete structures that require a relatively high level of concrete finishing work would become more expensive relative to other building technologies. Contractors and others would reduce the cost impact of the standard by switching to other building methods unaffected by the proposed rule. The magnitude of these impacts will depend on the feasibility, characteristics, and relative expense of alternative technologies.

Second, some of the rule-induced increase in the cost of silica-generating activities will increase the marginal cost of construction output and cause the construction supply curve to shift upward. As argued above, depending on the construction demand relationship, this shift in the supply curve will result in a higher price and a lower level of construction activity. The magnitude of the impact of the cost increases due to the silica rule on the supply relationship will depend on the size of the cost increases and the importance of silica-generating activities in the overall cost of construction projects.

In practice, if one considers the costs of the proposed rule relative to the size of construction activity in the United States, it is clear that the price and profit impacts of the proposed rule on construction industries must be quite limited. Based on ERG (2007a), on an annual basis, the cost of the proposed rule would be equal to approximately 2 percent of the value of affected, silica-generating construction activity, and silica-generating construction activity accounts for approximately 4.8 percent of all construction spending in the U.S. Thus, the annualized cost of the proposed rule would be equal to approximately 0.1 percent of the value of annual construction activity in the U.S. On top of that, construction activity in the U.S. is not subject to any meaningful foreign competition, and any foreign firms performing construction activities in the United States would be subject to OSHA regulations.

Impacts by Type of Construction Demand

The demand for construction services originates in three independent sectors: residential building construction, nonresidential building construction, and nonbuilding construction.

Residential Building Construction

Residential housing demand is derived from the household demand for housing services. These services are provided by the stock of single and multi-unit residential housing units. Residential housing construction represents changes to the housing stock and includes construction of new units and modifications, renovations, and repairs to existing units. A number of studies have examined the price sensitivity of the demand for housing services. Depending on the data source and estimation methodologies, these studies have estimated the demand for housing services at price elasticity values ranging from -0.40 to -1.0, with the smaller (in absolute value) less elastic values estimated for short-run periods (Glennon, 1989; Mayo, 1981). In the long run, it is reasonable to expect the demand for the stock of housing to reflect similar levels of price sensitivity. Since housing investments include changes in the existing stock (renovations, depreciation, etc.) as well as new construction, it is likely that the price elasticity of demand for new residential construction will be lower than that for residential construction as a whole.

OSHA judges that many of the silica-generating construction activities affected by the proposed rule are not widely used in single-family construction. This assessment is consistent with the cost estimates that show relatively low impacts for residential building contractors. Multi-family residential construction might have more substantial impacts, but, based on census data, this type of construction represents a relatively small share of net investment in residential buildings.

Nonresidential Building Construction

Nonresidential building construction consists of industrial, commercial, and other nonresidential structures. As such, construction demand is derived from the demand for the output of the industries that use the buildings. For example, the demand for commercial office space is derived from the demand for the output produced by the users of the office space. The price elasticity of demand for this construction category will depend, among other things, on the price elasticity of demand for the final products produced, the importance of the costs of construction in the total cost of the final product, and the elasticity of substitution of other inputs that could substitute for nonresidential building construction. ERG found no studies that attempted to quantify these relationships. But given the costs of the proposed rule relative to the size of construction spending in the United States, the resultant price or revenue effects are likely to be quite small as well.

Nonbuilding Construction

Nonbuilding construction includes roads, bridges, and other infrastructure projects. Utility construction (power lines, sewers, water mains, etc.) and a variety of other construction types are also included. A large share of this construction (63.8 percent) is publicly financed (ERG, 2007a). For this reason, a large percentage of the decisions regarding the appropriate level of

such investments is not made in a private market setting. The relationship between the costs and price of such investments and the level of demand might depend more on political considerations than the factors that determine the demand for privately produced goods and services.

While a number of studies have examined the factors that determine the demand for publicly financed construction projects, these studies have focused on the ability to finance such projects (e.g., tax receipts) and socio-demographic factors (e.g., population growth) to the exclusion of cost or price factors. In the absence of budgetary constraints, OSHA believes, therefore, that the price elasticity of demand for public investment is probably quite low. On the other hand, budget-imposed limits might constrain public construction spending. If the dollar value of public investments were fixed, a price elasticity of demand of 1 would be implied. Any percentage increase in construction costs would be offset with an equal percentage reduction in investment (measured in physical units), keeping public construction expenditures constant.

Public utility construction comprises the remainder of nonbuilding construction. This type of construction is subject to the same derived-demand considerations discussed for nonresidential building construction, and for the same reasons, OSHA expects the price and profit impacts to be quite small.

SBREFA Comments on Impacts on the Entire Construction Industry

In this section OSHA reviews comments addressing economic impacts in construction that were submitted during the SBREFA process.

Several SERs commented on the ubiquitous nature of silica in construction, suggesting that as a result the standard could have a potentially large economic impact on their segment of the construction industry. For example, one SER noted:

Because of the widespread natural occurrence of silica and the wide uses of the materials and products containing it, there is just no substitute for many products containing silica. If proposed, this standard could lead to the elimination of various types of construction methods and materials and would burden not only the small businesses in residential construction, but have [a] massive negative impact on the entire industry. (OSHA, 2003, p. 60)

In response, OSHA believes that, for some segments of industry, compliance with the standard may require substantial capital investment in control equipment modification and expenditures to satisfy programmatic requirements, but that such costs are not likely to burden employers to the extent that there will be a need to substitute away from silica.

A SBREFA commenter questioned why ERG used average profit rates for 1999, 2000, and 2001 when year 2000 estimates are used for establishments, entities, employees, payroll, and revenue. The commenter also asserted that it would be more appropriate to use a weighted average over the years, where the weights are based on the number of financial statements available in a given

year.²⁷ For this PEA, ERG averaged profit rates over seven years (2000-2006) because of the weakness of the profitability data (e.g., missing data points) and the desire to average out short-term profit swings over a full business cycle. In averaging the data, ERG used an unweighted average. OSHA believes that, given the size of the IRS database, there is no reason to be concerned that the data for individual years would be statistically unreliable.

One SER believed that OSHA had ignored the range of profitability among businesses, and thus did not adequately recognize that the average percentage reduction in profits could mean bankruptcy for those firms struggling to stay afloat. The Agency's approach to economic feasibility is designed to address the overall health of industries, and OSHA may find a regulation economically feasible even though it may close some marginal firms. In most years, 10 percent or more of construction firms exit the industry. The slight acceleration of the closure of such firms is not the kind of economic impact that would make a regulation economically infeasible. The SER also asserted that OSHA ignored the cost of credit and that this also varies across businesses. OSHA believes that the cost of credit is not an important issue in this case because upfront costs can usually be met from cash flow. Finally, the SER implied that many jobs may be lost as a result of compliance with this rule. OSHA has examined the effect of this regulation on jobs in the construction industry and found the effect to be negligible—albeit slightly positive.

Another SER asserted that the impact of the regulation would be "catastrophic" for the concrete cutting industry. One SER maintained that the rule would be both economically and technologically infeasible for the specialty trade concrete cutting industry. The Small Business Advocacy Review (SBAR) Panel recommended that OSHA thoroughly review the economic impacts, and develop a more detailed economic feasibility analysis for certain industries. (OSHA, 2003, p. 69). OSHA believes that the analyses in this chapter and in Chapter IX of this PEA address the SER comments and satisfy the SBAR Panel recommendation.

Some SERs generally believed that OSHA had underestimated the costs of the draft proposed standard. The SBAR Panel recommended that OSHA revise its economic and regulatory flexibility analyses as appropriate to reflect SER comments on underestimation of costs and that the Agency compare OSHA's revised estimates to alternative estimates provided and methodologies suggested by the SERs. For those SER estimates and methodological suggestions that OSHA did not adopt, the Panel recommended that OSHA explain its reasons for preferring an alternative estimate and solicit comment on the issue. (OSHA, 2003, pp. 64-65) In Chapter IX of this PEA, OSHA presents an Initial Regulatory Flexibility Analysis (IRFA) that satisfies the Panel recommendation.

Economic Feasibility Screening Analysis: Small and Very Small Businesses

The preceding discussion focused on the economic viability of the affected construction industries in their entirety. However, even though OSHA found that the proposed standard did not threaten the survival of these construction industries, there is still the possibility that the industries' competitive structure could be significantly altered.

²⁷ Reform OSHA Coalition, p.23.

To address this possibility, OSHA examined the annualized costs per affected small entity and very small entity for each affected construction industry. Again, OSHA used a minimum threshold level of annualized costs equal to one percent of annual revenues—and, secondarily, annualized costs equal to ten percent of annual profits—below which the Agency has concluded that the costs are unlikely to threaten the survival of small entities or very small entities or, consequently, to alter the competitive structure of the affected construction industries.

Compliance costs were distributed across entities using the method described in the general industry screening analysis, above. Table VI-12 and Table VI-13 show that in no construction industries do the annualized costs of the proposed rule exceed one percent of annual revenues or ten percent of annual profits either for small entities or for very small entities. Therefore, OSHA preliminarily concludes, based on its screening analysis, that the annualized costs as a percentage of annual revenues and as a percentage of annual profits are below the threshold level that could threaten the competitive structure of any of the construction industries.

Table VI-12: Screening Analysis for Small Entities in Construction Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	Affecte d Small Entities	Annualize d Costs per Affected Entities	Revenues per Entities	Profit Rate [a]	Profits per Entities	Costs as a Percentag e of Revenues	Costs as a Percentage of Profits
236100	Residential Building Construction	\$18,527,934	44,212	\$419	\$1,303,262	4.87%	\$67,420	0.03%	0.62%
236200	Nonresidential Building Construction	\$24,443,185	42,536	\$575	\$4,117,755	4.87%	\$200,396	0.01%	0.29%
237100	Utility System Construction	\$30,733,201	20,069	\$1,531	\$3,248,053	5.36%	\$174,027	0.05%	0.88%
237200	Land Subdivision	\$546,331	3,036	\$180	\$1,215,688	11.04%	\$134,272	0.01%	0.13%
237300	Highway, Street, and Bridge Construction	\$13,756,992	10,350	\$1,329	\$3,851,971	5.36%	\$206,385	0.03%	0.64%
237900	Other Heavy and Civil Engineering Construction	\$5,427,484	5,260	\$1,032	\$2,585,858	5.36%	\$138,548	0.04%	0.74%
238100	Foundation, Structure, and Building Exterior Contractors	\$152,160,15 9	115,345	\$1,319	\$991,258	4.34%	\$42,996	0.13%	3.07%
238200	Building Equipment Contractors	\$3,399,252	13,933	\$244	\$1,092,405	4.34%	\$47,383	0.02%	0.51%
238300	Building Finishing Contractors	\$36,777,673	87,362	\$421	\$737,930	4.34%	\$32,008	0.06%	1.32%
238900	Other Specialty Trade Contractors	\$53,432,213	73,291	\$729	\$1,006,640	4.48%	\$45,076	0.07%	1.62%
999000	State and local	\$2,995,955	13,482	\$222	N/A	N/A	N/A	N/A	N/A

governments [d]				
Total	\$342,200,381	428,876	\$798	

[[]a] Profit rates were calculated by ERG, 2011, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-13: Screening Analysis for Very Small Entities (fewer than 20 employees) in Construction Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	Affected Entities with <20 Employee s	Annualize d Costs per Affected Entities	Revenues per Entities	Profit Rate [a]	Profits per Entities	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits			
23610 0	Residential Building Construction	\$13,837,293	32,042	\$432	\$922,275	4.87%	\$44,884	0.05%	0.96%			
23620 0	Nonresidential Building Construction	\$10,777,269	35,746	\$301	\$1,902,892	4.87%	\$92,607	0.02%	0.33%			
23710 0	Utility System Construction	\$8,578,771	16,113	\$532	\$991,776	5.36%	\$53,138	0.05%	1.00%			
23720 0	Land Subdivision	\$546,331	3,036	\$180	\$1,215,688	11.04 %	\$134,272	0.01%	0.13%			
23730 0	Highway, Street, and Bridge Construction	\$4,518,038	8,080	\$559	\$1,649,324	5.36%	\$88,369	0.03%	0.63%			
23790 0	Other Heavy and Civil Engineering Construction	\$1,650,007	4,436	\$372	\$834,051	5.36%	\$44,688	0.04%	0.83%			
23810 0	Foundation, Structure, and Building Exterior Contractors	\$81,822,550	105,227	\$778	\$596,296	4.34%	\$25,864	0.13%	3.01%			
23820 0	Building Equipment Contractors	\$1,839,588	7,283	\$253	\$579,724	4.34%	\$25,146	0.04%	1.00%			
23830 0	Building Finishing Contractors	\$21,884,973	50,749	\$431	\$429,154	4.34%	\$18,615	0.10%	2.32%			
23890 0	Other Specialty Trade Contractors	\$30,936,078	68,075	\$454	\$600,658	4.48%	\$26,897	0.08%	1.69%			

99900 0	State and local governments [d]	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
	Total	\$176,390,899	330,786	\$533					

[[]a] Profit rates were calculated by ERG, 2011, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Differential Impacts on Small Entities and Very Small Entities

Below, OSHA provides some additional information about differential compliance costs for small entities and very small entities that might influence the magnitude of differential impacts for these smaller businesses.

The distribution of impacts by size of business is affected by the characteristics of the compliance measures. For silica controls in construction, the dust control measures consist primarily of equipment modifications and additions made to individual tools, rather than large, discrete investments, such as might be applied in a manufacturing setting. As a result, compliance advantages for large firms through economies of scale are limited. It is possible that some large construction firms might derive purchasing power by buying dust control measures in bulk. Given the simplicity of many control measures, however, such as the use of wet methods on machines already manufactured to accommodate them, such differential purchasing power appears to be of limited consequence.

The greater capital resources of large firms will give them some advantage in making the relatively large investments for some control measures. For example, cab enclosures on heavy construction equipment or foam-based dust control systems on rock crushers might be particularly expensive for some small entities with an unusual number of heavy equipment pieces. Nevertheless, where differential investment capabilities might exist, small construction firms might also have the capability to achieve compliance with lower-cost measures, such as by modifying work practices. In the case of rock crushing, for example, simple water spray systems can be arranged without large-scale investments in the best commercially available systems.

In the program area, large firms might have a slight advantage in the delivery of training or in arranging for health screenings. Given the likelihood that small firms can, under most circumstances, call upon independent training specialists at competitive prices, and the widespread availability of medical services for health screenings, the advantage for large firms is, again, expected to be fairly modest.

Regulatory Flexibility Screening Analysis

To determine if the Assistant Secretary of Labor for OSHA can certify that the proposed silica standard for construction will not have a significant economic impact on a substantial number of small entities, the Agency has developed screening tests to consider minimum threshold effects of the proposed standard on small entities. The minimum threshold effects for this purpose are annualized costs equal to one percent of annual revenues and annualized costs equal to five percent of annual profits applied to each affected industry. OSHA has applied these screening tests both to small entities and to very small entities. For purposes of certification, the threshold levels cannot be exceeded for affected small entities or very small entities in any affected industry.

Tables VI-12 and Table VI-13 show that in no construction industries do the annualized costs of the proposed rule exceed one percent of annual revenues or five percent of annual profits either for small entities or for very small entities. However, as previously noted in this chapter, OSHA

is unable to certify that the proposed standard will not have a significant economic impact on a substantial number of small entities in general industry and maritime and must prepare an Initial Regulatory Flexibility Analysis (IRFA). The IRFA is presented in Chapter IX of this PEA.

EMPLOYMENT IMPACTS ON THE U.S. ECONOMY

In October 2011, OSHA directed Inforum—a not-for-profit Maryland corporation (based at the University of Maryland)—to run its macroeconomic model to estimate the employment impacts of the costs of the proposed silica rule.²⁸ The specific model of the U.S. economy that Inforum used—called the LIFT model—is particularly suitable for this work because it combines the industry detail of a pure input-output model (which shows, in matrix form, how the output of each industry serves as inputs in other industries) with macroeconomic modeling of demand, investment, and other macroeconomic parameters.²⁹ The Inforum model can thus both trace changes in particular industries through their effect on other industries and also examine the effects of these changes on aggregate demand, imports, exports, and investment, and in turn determine net changes to Gross Domestic Product (GDP), employment, prices, etc.

In order to estimate the macroeconomic impacts of the proposed rule, Inforum had to run its model twice: once to establish a baseline and then again with changes in industry expenditures to reflect the year-by-year costs of the proposed silica rule as estimated by OSHA in its Preliminary Economic Analysis (PEA).³⁰ The difference in employment, GDP, etc. between the two runs of the model revealed the estimated economic impacts of the proposed rule.³¹

OSHA selected 2014 as the starting year for running the Inforum model under the assumption that that would be the earliest that a final silica rule could take effect. Inforum ran the model

²⁸ Inforum has over 40 years of experience designing and using macroeconomic models of the United States (and other countries).

²⁹ LIFT stands for Long-Term Interindustry Forecasting Tool. This model combines a dynamic inputoutput core for 97 productive sectors with a full macroeconomic model with more than 800 macroeconomic variables. LIFT employs a "bottoms-up" regression approach to macroeconomic modeling (so that aggregate investment, employment, and exports, for example, are the sum of investment and employment by industry and exports by commodity). Unlike some simpler forecasting models, price effects are embedded in the model and the results are time-dependent (that is, they are not static or steady-state, but present year-by-year estimates of impacts consistent with economic conditions at the time).

³⁰ OSHA worked with Inforum to disaggregate compliance costs into categories that mapped into specific LIFT production sectors. Inforum also established a mapping between OSHA's NAICS-based industries and the LIFT production sectors. OSHA's compliance cost estimates were based on production and employment levels in affected industries in 2006 (although the costs were then inflated to 2009 dollars). Therefore, Inforum benchmarked compliance cost estimates in future years to production and employment conditions in 2006 (that is, compliance costs in a future year were proportionately adjusted to production and employment changes from 2006 to that future year). See Inforum (2011) for a discussion of these and other transformations of OSHA's cost estimates to conform to the specifications of the LIFT model.

³¹ Because OSHA's analysis of the hydraulic fracturing industry for the proposed silica rule was not conducted until after the draft PEA had been completed, OSHA's estimates of the compliance costs for this industry were not included in Inforum's analysis of the rule's employment and other macroeconomic impacts on the U.S. economy. It should be noted that, according to the Agency's estimates, compliance costs for the hydraulic fracturing industry represent only about 4 percent of the total compliance costs for all affected industries.

through the year 2023 and reported its annual and cumulative results for the ten-year period 2014 -2023.

The most important Inforum result is that the proposed silica rule cumulatively generates an additional 8,625 job-years over the period 2014 - 2023, or an additional 862.5 job-years annually, on average, over the period (Inforum, 2011).³² It should be noted, however, that these results vary significantly from year to year. For example, in 2014, the first year in which the silica final rule would (hypothetically) be in effect and when most capital costs for control equipment would be incurred, an additional 5,830 job-years would be generated as a result of the silica rule. Then, from 2015 - 2023, the change in job-years relative to the baseline ranges from a high of 1,920 (in 2023) to a low of -1,030 (in 2018).³³ Inforum emphasized that all of these estimated job-year impacts of the silica rule, both positive and negative, should be viewed as negligible—relative to total U.S. employment of between 150 and 162 million workers during the time period under consideration (or relative to 300,000 to 400,000 current new jobless claims weekly) and not statistically different from an estimate of 0 job-years (that is, that the silica rule would have no job impact).

The employment impacts of the silica rule would also vary significantly from industry to industry and sector to sector. For example, for the period 2014 - 2023, the construction industry would, on average, gain 2,386 job-years annually while the rest of the U.S. economy would, on average, lose 1,524 job-years annually. Again, relative to total employment in the construction sector of about 13 million workers and employment in the rest of the U.S. economy of about 135 million workers, these employment impacts should be considered negligible.

One obvious question is why the employment impacts of the silica rule would be positive in construction and negative elsewhere. There seem to be two major reasons. One is that there is little foreign competition in U.S. construction and the price elasticity of demand in construction is extremely low relative to demand for products in most other industries. Hence, output and employment would be expected to decline minimally in response to any price increase if employers in construction pass on the costs of the silica rule. Second, compliance with many of the provisions in the silica rule is relatively labor-intensive, often requiring the application of additional labor in the regulated firms themselves. Examples would include time spent for training, medical surveillance, and activities to meet the PEL (such as setting up and using control equipment and performing housekeeping tasks). The increased labor required to produce a unit of output in regulated firms would tend to increase employment in those industries (holding output constant). This is particularly true in construction, where compliance with the

³² A "job-year" is the term of art used to reflect the fact that an additional person is employed for a year, not that a new job has necessarily been permanently created.

 $^{^{33}}$ The fluctuations in employment from year to year as a result of the proposed rule reflect how the Inforum model works. The model has large short-term multipliers (from the initial increase in compliance expenditures) but long-term stabilizers to return to an equilibrium output and employment level. Hence, the short-term multipliers may cause output and employment to overshoot in one year and adjust in the other direction in the next year or two as the model (and the real-world economy) equilibrates. This helps explain why the Inforum results for the silica rule show annual employment gains for 2014 - 2016, annual employment losses for 2017 - 2020, and annual employment gains for 2021 – 2023.

PEL would be much more labor-intensive—both because engineering controls in construction are typically mobile and require more worker activity and because housekeeping and other worker actions are expected to play a larger role in achieving compliance with the PEL. By comparison, engineering control equipment in general industry/maritime is usually in a fixed location (eliminating the need for workers to move the equipment) and worker actions would play a smaller role in achieving compliance with the PEL.

There is one *non-employment* Inforum result that should also be mentioned. The Inforum model estimates that, for the period 2014 - 2023, the costs of the silica rule will cause a reduction in GDP—that is, national output—of, on average, about \$602 million a year, or about 0.004 percent of GDP.

However, this GDP impact is an incomplete, and therefore misleading, measure of the economic effects of the silica rule. To see why, consider the logic of what the silica rule does to GDP. As OSHA estimated in Chapter V of this PEA, regulated industries must spend \$658 million a year (in annualized 2009 dollars) to comply with the rule, but their measured output does not increase. In effect, the \$658 million a year spent to achieve compliance with the silica rule could otherwise have been spent to create approximately an equivalent amount of final goods and services recognized in GDP. That is why the annual loss of GDP is so close in value to the annualized cost of the rule.³⁴ The problem is that GDP is only capturing *measured* output. What is missing (unmeasured) in GDP statistics are the \$5.3 billion in health benefits—that is, the monetized value of the prevented fatalities and cases of silicosis—that result from the silica rule.³⁵ When these are properly included, the annual contribution of the silica rule to the U.S. economy is \$5.3 billion in benefits minus the \$650 million in costs (arguably plus the net stimulus effects of the rule on the economy), or approximately \$4.6 billion annually.

For a fuller discussion of the employment and other macroeconomic impacts of the silica rule, see Inforum (2011).

³⁴ More accurately, the Agency would expect the annual loss in GDP to be approximately equal to the annualized cost of the rule net of the annual stimulus effect of the rule on GDP (which could be negative).

³⁵ This estimate of monetized health benefits is presented in Chapter VII of this PEA.

REFERENCES

- Armington, P. S., 1969a. A theory of demand for products distinguished by place of production. International Monetary Fund Staff Papers, 16(1):159-177. **OSHA-2010-0034-0533**
- Armington, P. S., 1969b. The geographic pattern of trade and the effects of price changes. International Monetary Fund Staff Papers, 16(2):179-199. **OSHA-2010-0034-0534**
- Bureau of Labor Statistics (BLS, 2010). Producer Price Indexes, Industry Data. http://bls.gov/ppi/, Accessed by ERG, November 7, 2010.
- Deardorff, A.V., 1984. Testing trade theories and predicting trade flows. Handbook of International Economics, Vol. I (R. W. Jones and P. B. Kenen, eds.). Amsterdam: Elsevier Science Publishers. **OSHA-2010-0034-0617**
- Durlauf, S.N., and L.E. Blume (eds.), 2008. The New Palgrave Dictionary of Economics, 2nd Edition. Palgrave Macmillan. **OSHA-2010-0034-1613**
- Eastern Research Group (ERG, 2007a). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for Construction. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007.
- Eastern Research Group (ERG, 2007b). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Updated Cost and Impact Analysis of the Draft Crystalline Silica Standard for General Industry. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. DOLJ049F10022. April 20, 2007. **OSHA-2010-0034-1608**
- Eastern Research Group (ERG, 2007c). Rulemaking Support for Supplemental Economic Feasibility Data for a Preliminary Economic Impact Analysis of a Proposed Crystalline Silica Standard; Assessment of Foreign Trade Impacts on Affected Industries. Task Report. Submitted to Occupational Safety And Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis under Task Order 11, Contract No. OLJ049F10022. April 20, 2007.
- Glennon, D., 1989. Estimating the Income, Price, and Interest Elasticities of Housing Demand. Journal of Urban Economics, 25:219-229. **OSHA-2010-0034-0707**
- Gallaway, M. P., C. A. McDaniel, and S. A. Rivera., 2000. Industry-Level Estimates of U.S. Armington Elasticities. Office of Economics Working Paper. Washington, D.C.: U.S. International Trade Commission. September. **OSHA-2010-0034-0694**

- Goldstein, M. and M. S. Khan, 1985. Income and Price Effects in Foreign Trade. In Handbook of International Economics, Vol. II (R. W. Jones and P. B. Kenen, eds.). Amsterdam: Elsevier Science Publishers. **OSHA-2010-0034-0709**
- Hanushek, E.A., and J.M. Quigley, 1980. What is the Price Elasticity of Housing Demand? Review of Economics and Statistics, 62(3): 449-454. **OSHA-2010-0034-1616**
- Inforum, Inc. (Jeffrey F. Werling, Inforum) Preliminary Economic Analysis for OSHA's Proposed Crystalline Silica Rule: Industry and Macroeconomic Impacts. Final Report for the Occupational Safety and Health Administration (including accompanying spreadsheet workbook). 11/30/2011. **OSHA-2010-0034-1668/OSHA-2010-0034-1701**
- Mayo, S. K., 1981. Theory and Estimation in the Economics of Housing Demand. Journal of Urban Economics. 10:95-116. **OSHA-2010-0034-0794**
- Occupational Safety and Health Administration (OSHA, 2003). Report of the Small Business Advocacy Review Panel on the Draft OSHA Standards for Silica. Docket H006A, Ex. 8-1. December 19, 2003. **OSHA-2010-0034-0937**
- The Reform OSHA Coalition (Reform OSHA Coalition, 2003). SBREFA Panel Comments by the Reform OSHA Coalition on the Draft Standards for Crystalline Silica. Docket H006A, Ex. 9-2-1. November 21, 2003. **OSHA-2010-0034-0968**
- U.S. Environmental Protection Agency. 2002. Economic Analysis of the Final Effluent Limitations Guidelines and Standards for the Iron and Steel Manufacturing Source Point Category. U.S. Environmental Protection Agency, Office of Water. EPA-821-R-02-006. April. **OSHA-2010-0034-0656**
- U.S. Environmental Protection Agency. 2004. Economic and Environmental Benefits Analysis of the Final Meat and Poultry Products Rule. U.S. Environmental Protection Agency, Office of Water. EPA-821-R-04-010. February. **OSHA-2010-0034-0659**
- U.S. Internal Revenue Service (IRS, 2007). Corporation Source Book, 2006. http://www.irs.gov/taxstats/bustaxstats/article/0,,id=149687,00.html, Accessed by ERG, 2009.
- Wheaton, W., and L. Rosoff, 1998. The Cyclic Behavior of the Lodging Industry, Real Estate Economics, 26(1): 67-82. **OSHA-2010-0034-1615**
- Wheaton, W., R.G. Torto, and P. Evans, 1997. The Cyclic Behavior of the Office Market, Journal of Real Estate Finance and Economics, 15(1): 77-92. **OSHA-2010-0034-1614**

Appendix VI-A

Screening Analysis for Establishments in General Industry, Maritime, and Construction Affected by the Proposed Silica Standard (Applying Alternative Discount Rates of 3% and 0%)

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate)

NAICS	Industry	Total Annualize d Costs	No. of Affected Establish -ments	Annualize d Costs per Affected Establish- ment	Revenues per Establish- ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits
324121	Asphalt paving mixture and block manufacturing	\$229,983	1,431	\$161	\$6,617,887	7.50%	\$496,420	0.00%	0.03%
324122	Asphalt shingle and roofing materials	\$3,068,544	224	\$13,699	\$34,018,43 7	7.50%	\$2,551,788	0.04%	0.54%
325510	Paint and coating manufacturing	\$141,382	1,344	\$105	\$19,071,85 0	5.38%	\$1,026,902	0.00%	0.01%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,586,219	41	\$38,688	\$21,226,70 9	4.41%	\$937,141	0.18%	4.13%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,487,054	731	\$3,402	\$1,203,017	4.41%	\$53,112	0.28%	6.41%
327113	Porcelain electrical supply mfg	\$1,671,403	125	\$13,371	\$8,091,258	4.41%	\$357,222	0.17%	3.74%
327121	Brick and structural clay mfg	\$7,447,031	204	\$36,505	\$11,440,88 7	4.41%	\$505,105	0.32%	7.23%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
327122	Ceramic wall and floor tile mfg	\$3,926,593	193	\$20,345	\$6,706,175	4.41%	\$296,072	0.30%	6.87%
327123	Other structural clay product mfg	\$890,238	49	\$18,168	\$4,933,258	4.41%	\$217,799	0.37%	8.34%
327124	Clay refractory manufacturing	\$463,437	129	\$3,593	\$7,872,516	4.41%	\$347,565	0.05%	1.03%
327125	Nonclay refractory manufacturing	\$584,070	105	\$5,563	\$14,718,533	4.41%	\$649,810	0.04%	0.86%
327211	Flat glass manufacturing	\$264,391	83	\$3,185	\$43,821,692	3.42%	\$1,499,102	0.01%	0.21%
327212	Other pressed and blown glass and glassware manufacturing	\$1,041,861	499	\$2,088	\$7,233,509	3.42%	\$247,452	0.03%	0.84%
327213	Glass container manufacturing	\$726,990	72	\$10,097	\$64,453,615	3.42%	\$2,204,903	0.02%	0.46%
327320	Ready-mixed concrete manufacturing	\$16,209,472	6,064	\$2,673	\$4,891,554	6.64%	\$324,706	0.05%	0.82%
327331	Concrete block and brick mfg	\$4,393,887	951	\$4,620	\$5,731,328	6.64%	\$380,451	0.08%	1.21%
327332	Concrete pipe mfg	\$2,720,211	385	\$7,065	\$7,899,352	6.64%	\$524,366	0.09%	1.35%
327390	Other concrete product mfg	\$12,772,198	2,281	\$5,599	\$4,816,851	6.64%	\$319,747	0.12%	1.75%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per	Profit Rate [a]	Profits per Establish- ment	Parrantana	Costs as a Percentage of Profits
327991	Cut stone and stone product manufacturing	\$8,387,200	1,943	\$4,317	\$1,918,745	5.49%	\$105,320	0.22%	4.10%
327992	Ground or treated mineral and earth manufacturing	\$4,444,557	271	\$16,401	\$8,652,610	5.49%	\$474,944	0.19%	3.45%
327993	Mineral wool manufacturing	\$1,051,414	321	\$3,275	\$18,988,835	5.49%	\$1,042,303	0.02%	0.31%
327999	All other misc. nonmetallic mineral product mfg	\$1,946,523	465	\$4,186	\$5,803,139	5.49%	\$318,536	0.07%	1.31%
331111	Iron and steel mills	\$406,888	614	\$663	\$70,641,523	4.49%	\$3,173,209	0.00%	0.02%
331112	Electrometallurgical ferroalloy product manufacturing	\$8,220	12	\$663	\$49,659,392	4.49%	\$2,230,694	0.00%	0.03%
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$81,019	122	\$665	\$31,069,797	4.49%	\$1,395,652	0.00%	0.05%
331221	Rolled steel shape manufacturing	\$40,896	61	\$665	\$28,102,003	4.49%	\$1,262,339	0.00%	
331222	Steel wire drawing	\$55,162	83	\$665	\$12,904,028	4.49%	\$579,647	0.01%	0.11%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment		Costs as a Percentage of Profits
331314	Secondary smelting and alloying of aluminum	\$27,560	42	\$664	\$29,333,260	4.46%	\$1,309,709	0.00%	0.05%
331423	Secondary smelting, refining, and alloying of copper	\$4,735	7	\$666	\$26,238,546	4.42%	\$1,158,438	0.00%	0.06%
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$35,411	53	\$666	\$14,759,299	4.42%	\$651,626	0.00%	0.10%
331511	Iron foundries	\$14,673,210	527	\$27,843	\$19,672,534	4.11%	\$809,290	0.14%	3.44%
331512	Steel investment foundries	\$4,104,782	132	\$31,097	\$18,445,040	4.11%	\$758,794	0.17%	4.10%
331513	Steel foundries (except investment)	\$4,405,767	222	\$19,846	\$17,431,292	4.11%	\$717,090	0.11%	2.77%
331524	Aluminum foundries (except die-casting)	\$6,685,283	466	\$14,346	\$8,244,396	4.11%	\$339,159	0.17%	4.23%
331525	Copper foundries (except die-casting)	\$1,569,326	256	\$6,130	\$3,103,580	4.11%	\$127,675	0.20%	4.80%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331528	Other nonferrous foundries (except die-casting)	\$1,181,376	124	\$9,527	\$7,040,818	4.11%	\$289,646	0.14%	3.29%
332111	Iron and steel forging	\$101,595	150	\$676	\$15,231,376	4.71%	\$716,646	0.00%	0.09%
332112	Nonferrous forging	\$33,543	50	\$676	\$28,714,500	4.71%	\$1,351,035	0.00%	0.05%
332115	Crown and closure manufacturing	\$12,192	18	\$668	\$16,308,872	4.71%	\$767,343	0.00%	0.09%
332116	Metal stamping	\$245,246	366	\$671	\$6,748,606	4.71%	\$317,526	0.01%	0.21%
332117	Powder metallurgy part manufacturing	\$31,464	47	\$667	\$9,712,731	4.71%	\$456,990	0.01%	0.15%
332211	Cutlery and flatware (except precious) manufacturing	\$22,025	33	\$676	\$9,036,720	5.22%	\$472,045	0.01%	0.14%
332212	Hand and edge tool manufacturing	\$139,234	207	\$673	\$5,874,133	5.22%	\$306,843	0.01%	0.22%
332213	Saw blade and handsaw manufacturing	\$27,656	41	\$669	\$11,339,439	5.22%	\$592,331	0.01%	0.11%
332214	Kitchen utensil, pot, and pan manufacturing	\$15,033	22	\$676	\$18,620,983	5.22%	\$972,693	0.00%	0.07%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Affected Establish	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
332323	Ornamental and architectural metal work	\$33,518	54	\$622	\$2,777,899	4.70%	\$130,669	0.02%	0.48%
332439	Other metal container manufacturing	\$57,847	86	\$676	\$7,467,745	3.58%	\$267,613	0.01%	0.25%
332510	Hardware manufacturing	\$172,873	256	\$676	\$11,899,309	5.22%	\$621,577	0.01%	0.11%
332611	Spring (heavy gauge) manufacturing	\$15,493	23	\$676	\$7,764,934	5.22%	\$405,612	0.01%	0.17%
332612	Spring (light gauge) manufacturing	\$58,483	87	\$676	\$8,185,896	5.22%	\$427,602	0.01%	0.16%
332618	Other fabricated wire product manufacturing	\$138,860	205	\$676	\$5,120,358	5.22%	\$267,469	0.01%	0.25%
332710	Machine shops	\$1,033,894	1,506	\$687	\$1,624,814	5.80%	\$94,209	0.04%	0.73%
332812	Metal coating and allied services	\$2,887,294	2,599	\$1,111	\$4,503,334	4.85%	\$218,618	0.02%	0.51%
332911	Industrial valve manufacturing	\$144,010	216	\$665	\$18,399,215	6.81%	\$1,252,418	0.00%	0.05%
332912	Fluid power valve and hose fitting manufacturing	\$134,408	201	\$670	\$22,442,750	6.81%	\$1,527,658	0.00%	0.04%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332913	Plumbing fixture fitting and trim manufacturing	\$43,590	65	\$670	\$24,186,039	6.81%	\$1,646,322	0.00%	0.04%
332919	Other metal valve and pipe fitting manufacturing	\$68,400	102	\$670	\$15,023,143	6.81%	\$1,022,612	0.00%	0.07%
332991	Ball and roller bearing manufacturing	\$102,894	154	\$670	\$36,607,380	6.81%	\$2,491,832	0.00%	0.03%
332996	Fabricated pipe and pipe fitting manufacturing	\$102,780	154	\$670	\$6,779,536	6.81%	\$461,477	0.01%	0.15%
332997	Industrial pattern manufacturing	\$20,026	30	\$670	\$1,122,819	6.81%	\$76,429	0.06%	0.88%
332998	Enameled iron and metal sanitary ware manufacturing	\$57,872	76	\$761	\$14,497,312	6.81%	\$986,819	0.01%	0.08%
332999	All other miscellaneous fabricated metal product manufacturing	\$276,259	408	\$678	\$4,405,921	6.81%	\$299,907	0.02%	0.23%
333319	Other commercial and service industry machinery manufacturing	\$200,609	299	\$670	\$10,042,625	4.86%	\$487,919	0.01%	0.14%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333411	Air purification equipment manufacturing	\$55,843	84	\$665	\$7,353,577	4.55%	\$334,804	0.01%	0.20%
333412	Industrial and commercial fan and blower manufacturing	\$39,499	59	\$665	\$12,795,249	4.55%	\$582,559	0.01%	0.11%
333414	Heating equipment (except warm air furnaces) manufacturing	\$77,396	116	\$665	\$11,143,189	4.55%	\$507,342	0.01%	0.13%
333511	Industrial mold manufacturing	\$153,575	226	\$681	\$2,481,931	5.29%	\$131,278	0.03%	0.52%
333512	Machine tool (metal cutting types) manufacturing	\$65,338	97	\$673	\$7,371,252	5.29%	\$389,890	0.01%	0.17%
333513	Machine tool (metal forming types) manufacturing	\$32,539	48	\$673	\$5,217,940	5.29%	\$275,994	0.01%	0.24%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$222,527	325	\$684	\$2,378,801	5.29%	\$125,823	0.03%	0.54%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
333515	Cutting tool and machine tool accessory manufacturing	\$134,187	197	\$681	\$3,384,805	5.29%	\$179,034	0.02%	0.38%
333516	Rolling mill machinery and equipment manufacturing	\$11,776	17	\$681	\$9,496,141	5.29%	\$502,283	0.01%	0.14%
333518	Other metalworking machinery manufacturing	\$47,954	70	\$681	\$7,231,602	5.29%	\$382,504	0.01%	0.18%
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$46,437	70	\$664	\$10,727,834	2.63%	\$281,813	0.01%	0.24%
333613	Mechanical power transmission equipment manufacturing	\$58,651	88	\$664	\$14,983,120	2.63%	\$393,597	0.00%	0.17%
333911	Pump and pumping equipment manufacturing	\$116,060	174	\$667	\$17,078,357	4.58%	\$781,566	0.00%	0.09%
333912	Air and gas compressor manufacturing	\$81,019	121	\$669	\$21,079,073	4.58%	\$964,653	0.00%	0.07%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
333991	Power-driven handtool manufacturing	\$33,032	49	\$669	\$22,078,371	4.58%	\$1,010,384	0.00%	0.07%
333992	Welding and soldering equipment manufacturing	\$59,812	90	\$667	\$16,457,683	4.58%	\$753,162	0.00%	0.09%
333993	Packaging machinery manufacturing	\$80,254	120	\$671	\$7,374,940	4.58%	\$337,503	0.01%	0.20%
333994	Industrial process furnace and oven manufacturing	\$40,768	61	\$673	\$5,584,460	4.58%	\$255,565	0.01%	0.26%
333995	Fluid power cylinder and actuator manufacturing	\$74,814	112	\$666	\$13,301,790	4.58%	\$608,737	0.01%	0.11%
333996	Fluid power pump and motor manufacturing	\$51,310	77	\$666	\$18,030,122	4.58%	\$825,122	0.00%	0.08%
333997	Scale and balance (except laboratory) manufacturing	\$14,210	21	\$673	\$7,236,854	4.58%	\$331,184	0.01%	0.20%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	⊨staniisn-	Revenues per Establishment		Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
333999	All other miscellaneous general purpose machinery manufacturing	\$198,435	296	\$669	\$6,033,776	4.58%	\$276,127	0.01%	0.24%
334518	Watch, clock, and part manufacturing	\$8,379	12	\$675	\$4,924,986	5.94%	\$292,667	0.01%	0.23%
335211	Electric housewares and household fans	\$13,225	22	\$611	\$22,023,076	4.21%	\$927,874	0.00%	0.07%
335221	Household cooking appliance manufacturing	\$28,559	47	\$611	\$37,936,003	4.21%	\$1,598,316	0.00%	0.04%
335222	Household refrigerator and home freezer manufacturing	\$30,497	26	\$1,173	\$188,132,355	4.21%	\$7,926,376	0.00%	0.01%
335224	Household laundry equipment manufacturing	\$28,980	23	\$1,260	\$221,491,837	4.21%	\$9,331,875	0.00%	0.01%
335228	Other major household appliance manufacturing	\$22,811	37	\$611	\$107,476,620	4.21%	\$4,528,196	0.00%	0.01%
336111	Automobile manufacturing	\$281,138	181	\$1,553	\$512,748,675	2.04%	\$10,462,470	0.00%	0.01%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues ner	Profit Rate [a]	⊨etahlieh-	of	Costs as a Percentage of Profits
336112	Light truck and utility vehicle manufacturing	\$387,918	94	\$4,127	\$1,581,224,101	2.04%	\$32,264,364	0.00%	0.01%
336120	Heavy duty truck manufacturing	\$119,966	95	\$1,263	\$194,549,998	2.04%	\$3,969,729	0.00%	0.03%
336211	Motor vehicle body manufacturing	\$179,368	269	\$667	\$15,012,805	2.04%	\$306,331	0.00%	0.22%
336212	Truck trailer manufacturing	\$121,251	182	\$665	\$17,032,455	2.04%	\$347,542	0.00%	0.19%
336213	Motor home manufacturing	\$80,573	91	\$885	\$65,421,325	2.04%	\$1,334,901	0.00%	0.07%
336311	Carburetor, piston, piston ring, and valve manufacturing	\$39,503	60	\$664	\$21,325,990	2.04%	\$435,150	0.00%	0.15%
336312	Gasoline engine and engine parts manufacturing	\$247,860	373	\$664	\$36,938,061	2.04%	\$753,709	0.00%	0.09%
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$232,489	350	\$664	\$33,890,776	2.04%	\$691,530	0.00%	0.10%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$147,550	223	\$663	\$42,374,501	2.04%	\$864,638	0.00%	0.08%
336340	Motor vehicle brake system manufacturing	\$126,615	191	\$664	\$51,498,927	2.04%	\$1,050,819	0.00%	0.06%
336350	Motor vehicle transmission and power train parts manufacturing	\$313,751	473	\$663	\$63,004,961	2.04%	\$1,285,596	0.00%	0.05%
336370	Motor vehicle metal stamping	\$413,986	624	\$663	\$33,294,026	2.04%	\$679,354	0.00%	0.10%
336399	All other motor vehicle parts manufacturing	\$559,504	843	\$664	\$31,304,202	2.04%	\$638,752	0.00%	0.10%
336611	Ship building and repair	\$8,729,700	635	\$13,748	\$24,524,381	5.86%	\$1,437,564	0.06%	0.96%
336612	Boat building	\$5,467,149	1,129	\$4,842	\$9,474,540	5.86%	\$555,376	0.05%	0.87%
336992	Military armored vehicle, tank, and tank component manufacturing	\$26,099	39	\$668	\$44,887,321	6.31%	\$2,832,073	0.00%	0.02%

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
337215	Showcase, partition, shelving, and locker manufacturing	\$224,062	334	\$672	\$4,943,560	4.54%	\$224,593	0.01%	0.30%
339114	Dental equipment and supplies manufacturing	\$336,863	411	\$820	\$4,732,949	10.77%	\$509,695	0.02%	0.16%
339116	Dental laboratories	\$1,399,608	7,261	\$193	\$563,964	10.77%	\$60,734	0.03%	0.32%
339911	Jewelry (except costume) manufacturing	\$1,528,488	1,777	\$860	\$3,685,009	5.80%	\$213,566	0.02%	0.40%
339913	Jewelers' materials and lapidary work manufacturing	\$314,326	264	\$1,191	\$3,762,284	5.80%	\$218,045	0.03%	0.55%
339914	Costume jewelry and novelty manufacturing	\$231,425	590	\$392	\$1,353,403	5.80%	\$78,437	0.03%	0.50%
339950	Sign manufacturing	\$280,583	496	\$565	\$1,872,356	5.80%	\$108,513	0.03%	0.52%
423840	Industrial supplies, wholesalers	\$172,217	383	\$450	\$1,913,371	3.44%	\$65,736	0.02%	0.68%
482110	Rail transportation	\$2,422,222	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$379,189	7,980	\$48	\$755,073	7.34%	\$55,429	0.01%	0.09%
	Total	\$142,502,681	56,121	\$2,496					

[[]a] Profit rates were calculated by ERG (2010) as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the

Table VI-A-1: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (3% discount rate) (continued)

NAICS	Industry	Annualized	No. of Affected stablish- ments	Annualized Costs per Affected Establishment	Revenues per Establishment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
-------	----------	------------	--	---	-------------------------------	--------------------	-----------------------------------	--	--

Internal Revenue Service's Corporation Source Book (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-A-2: Screening Analysis for Establishments in Construction Affected by OSHA's Proposed Silica Standard (3% discount rate)

NAICS	Industry	Total Annualized Costs	Affected Establish- ments	Annualized Costs per Affected Establish- ments	Revenues per Establish- ments	Profit Rate [a]	Profits per Entities	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
236100	Residential Building Construction	\$22,765,847	55,338	\$411	\$2,002,532	4.87%	\$97,456	0.02%	0.42%
236200	Nonresidential Building Construction	\$38,521,866	44,702	\$862	\$7,457,045	4.87%	\$362,908	0.01%	0.24%

	Total	\$494,826,699	477,476	\$991					
999000	State and local governments [d]	\$21,792,693	N/A	N/A	N/A	N/A	N/A	N/A	N/A
238900	Other Specialty Trade Contractors	\$64,516,874	74,446	\$867	\$1,202,048	4.48%	\$53,826	0.07%	1.61%
238300	Building Finishing Contractors	\$49,756,684	120,012	\$415	\$892,888	4.34%	\$38,729	0.05%	1.07%
238200	Building Equipment Contractors	\$4,627,413	20,358	\$227	\$1,559,425	4.34%	\$67,640	0.01%	0.34%
238100	Foundation, Structure, and Building Exterior Contractors	\$211,905,643	117,456	\$1,804	\$1,425,510	4.34%	\$61,832	0.13%	2.92%
237900	Other Heavy and Civil Engineering Construction	\$6,652,584	5,561	\$1,196	\$3,719,070	5.36%	\$199,264	0.03%	0.60%
237300	Highway, Street, and Bridge Construction	\$28,811,046	11,860	\$2,429	\$8,663,019	5.36%	\$464,156	0.03%	0.52%
237200	Land Subdivision	\$1,029,351	6,511	\$158	\$2,084,334	11.04%	\$230,214	0.01%	0.07%
237100	Utility System Construction	\$44,446,699	21,232	\$2,093	\$4,912,884	5.36%	\$263,227	0.04%	0.80%

[[]a] Profit rates were calculated by ERG, 2010, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's Corporation Source Book (IRS, 2007). Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate)

NAICS	Industry	Total Annualize d Costs	No. of Affected Establish -ments	Annualize d Costs per Affected Establish- ment	Revenues per Establish- ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits
324121	Asphalt paving mixture and block manufacturing	\$221,701	1,431	\$155	\$6,617,887	7.50%	\$496,420	0.00%	0.03%
324122	Asphalt shingle and roofing materials	\$3,007,795	224	\$13,428	\$34,018,437	7.50%	\$2,551,788	0.04%	0.53%
325510	Paint and coating manufacturing	\$139,404	1,344	\$104	\$19,071,850	5.38%	\$1,026,902	0.00%	0.01%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$1,536,242	41	\$37,469	\$21,226,709	4.41%	\$937,141	0.18%	4.00%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$2,408,693	731	\$3,295	\$1,203,017	4.41%	\$53,112	0.27%	6.20%
327113	Porcelain electrical supply mfg	\$1,618,742	125	\$12,950	\$8,091,258	4.41%	\$357,222	0.16%	3.63%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
Brick and structural clay mfg	\$7,179,158	204	\$35,192	\$11,440,887	4.41%	\$505,105	0.31%	6.97%
Ceramic wall and floor tile mfg	\$3,785,802	193	\$19,616	\$6,706,175	4.41%	\$296,072	0.29%	6.63%
Other structural clay product mfg	\$858,409	49	\$17,519	\$4,933,258	4.41%	\$217,799	0.36%	8.04%
Clay refractory manufacturing	\$450,424	129	\$3,492	\$7,872,516	4.41%	\$347,565	0.04%	1.00%
Nonclay refractory manufacturing	\$567,671	105	\$5,406	\$14,718,533	4.41%	\$649,810	0.04%	0.83%
Flat glass manufacturing	\$257,017	83	\$3,097	\$43,821,692	3.42%	\$1,499,102	0.01%	0.21%
Other pressed and blown glass and glassware manufacturing	\$1,012,515	499	\$2,029	\$7,233,509	3.42%	\$247,452	0.03%	0.82%
Glass container manufacturing	\$706,512	72	\$9,813	\$64,453,615	3.42%	\$2,204,903	0.02%	0.45%
Ready-mixed concrete manufacturing	\$16,003,229	6,064	\$2,639	\$4,891,554	6.64%	\$324,706	0.05%	0.81%
Concrete block and brick mfg	\$4,363,652	951	\$4,588	\$5,731,328	6.64%	\$380,451	0.08%	1.21%
Concrete pipe mfg	\$2,701,493	385	\$7,017	\$7,899,352	6.64%	\$524,366	0.09%	1.34%
Other concrete product mfg	\$12,684,312	2,281	\$5,561	\$4,816,851	6.64%	\$319,747	0.12%	1.74%
	Brick and structural clay mfg Ceramic wall and floor tile mfg Other structural clay product mfg Clay refractory manufacturing Nonclay refractory manufacturing Flat glass manufacturing Other pressed and blown glass and glassware manufacturing Glass container manufacturing Ready-mixed concrete manufacturing Concrete block and brick mfg Concrete pipe mfg Other concrete	Brick and structural clay mfg Ceramic wall and floor tile mfg Other structural clay product mfg Clay refractory manufacturing Nonclay refractory manufacturing Flat glass manufacturing Other pressed and blown glass and glassware manufacturing Glass container manufacturing Ready-mixed concrete manufacturing Concrete block and brick mfg Concrete pipe mfg Other concrete S7,179,158 \$3,785,802 \$450,424 \$450,424 \$567,671 \$567,671 \$1,012,515 \$1,012,515 \$16,003,229 \$4,363,652	IndustryAffected CostsAffected EstablishmentsBrick and structural clay mfg\$7,179,158204Ceramic wall and floor tile mfg\$3,785,802193Other structural clay product mfg\$858,40949Clay refractory manufacturing\$450,424129Nonclay refractory manufacturing\$567,671105Flat glass manufacturing\$257,01783Other pressed and blown glass and glassware manufacturing\$1,012,515499Glass container manufacturing\$706,51272Ready-mixed concrete manufacturing\$16,003,2296,064Concrete block and brick mfg\$4,363,652951Concrete pipe mfg\$2,701,493385Other concrete\$12,684,3122,281	Industry Annualized Costs No. of Affected Establishments Costs per Affected Establishments Brick and structural clay mfg \$7,179,158 204 \$35,192 Ceramic wall and floor tile mfg \$3,785,802 193 \$19,616 Other structural clay product mfg \$858,409 49 \$17,519 Clay refractory manufacturing \$450,424 129 \$3,492 Nonclay refractory manufacturing \$567,671 105 \$5,406 Flat glass manufacturing \$257,017 83 \$3,097 Other pressed and blown glass and glassware manufacturing \$1,012,515 499 \$2,029 Glass container manufacturing \$706,512 72 \$9,813 Ready-mixed concrete manufacturing \$4,363,652 951 \$4,588 Concrete block and brick mfg \$2,701,493 385 \$7,017 Other concrete \$12,684,312 2,281 \$5,561	Industry Total Annualized Costs Affected Establish- Ments Costs Per Affected Establish- Ments Revenues per Establish Establish- Ment Brick and structural clay mfg \$7,179,158 204 \$35,192 \$11,440,887 Ceramic wall and floor tile mfg \$3,785,802 193 \$19,616 \$6,706,175 Other structural clay product mfg \$858,409 49 \$17,519 \$4,933,258 Clay refractory manufacturing \$450,424 129 \$3,492 \$7,872,516 Nonclay refractory manufacturing \$567,671 105 \$5,406 \$14,718,533 Flat glass manufacturing \$1,012,515 499 \$2,029 \$7,233,509 Other pressed and blown glass and glassware manufacturing \$1,012,515 499 \$2,029 \$7,233,509 Ready-mixed concrete manufacturing \$706,512 72 \$9,813 \$64,453,615 Ready-mixed concrete block and brick mfg \$4,363,652 951 \$4,588 \$5,731,328 Concrete pipe mfg \$2,701,493 385 \$7,017 \$7,899,352 Other concrete \$12,684,312 2,281	Industry Annualized Costs Affected Establish and Industry Costs per Affected Establish and Industry Revenues per Establish and Industry Profit Rate [a] Brick and structural clay mfg \$7,179,158 204 \$35,192 \$11,440,887 4.41% Ceramic wall and floor tile mfg \$3,785,802 193 \$19,616 \$6,706,175 4.41% Other structural clay product mfg \$858,409 49 \$17,519 \$4,933,258 4.41% Clay refractory manufacturing \$450,424 129 \$3,492 \$7,872,516 4.41% Nonclay refractory manufacturing \$567,671 105 \$5,406 \$14,718,533 4.41% Flat glass manufacturing \$257,017 83 \$3,097 \$43,821,692 3.42% Other pressed and blown glass and glass ware manufacturing \$1,012,515 499 \$2,029 \$7,233,509 3.42% Ready-mixed concrete manufacturing \$16,003,229 6,064 \$2,639 \$4,891,554 6.64% Concrete block and brick mfg \$4,363,652 951 \$4,588 \$5,731,328 6.64% Othe	Industry Annualized Costs Affected Establishments Costs per Affected Establishments Revenues per Establishment Profit Rate [a] Profits per Establishment Brick and structural clay mfg \$7,179,158 204 \$35,192 \$11,440,887 4.41% \$505,105 Ceramic wall and floor tile mfg \$3,785,802 193 \$19,616 \$6,706,175 4.41% \$296,072 Other structural clay product mfg \$858,409 49 \$17,519 \$4,933,258 4.41% \$217,799 Clay refractory manufacturing \$450,424 129 \$3,492 \$7,872,516 4.41% \$347,655 Nonclay refractory manufacturing \$567,671 105 \$5,406 \$14,718,533 4.41% \$649,810 Flat glass manufacturing \$257,017 83 \$3,097 \$43,821,692 3.42% \$1,499,102 Other pressed and blown glass and glassware manufacturing \$1,012,515 499 \$2,029 \$7,233,509 3.42% \$2,204,903 Ready-mixed concrete manufacturing \$16,003,229 6,064 \$2,839 \$4,891,554 6,64% \$324,706<	Industry

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
327991	Cut stone and stone product manufacturing	\$8,240,763	1,943	\$4,241	\$1,918,745	5.49%	\$105,320	0.22%	4.03%
327992	Ground or treated mineral and earth manufacturing	\$4,341,486	271	\$16,020	\$8,652,610	5.49%	\$474,944	0.19%	3.37%
327993	Mineral wool manufacturing	\$1,021,868	321	\$3,183	\$18,988,835	5.49%	\$1,042,303	0.02%	0.31%
327999	All other misc. nonmetallic mineral product mfg	\$1,933,120	465	\$4,157	\$5,803,139	5.49%	\$318,536	0.07%	1.31%
331111	Iron and steel mills	\$394,786	614	\$643	\$70,641,523	4.49%	\$3,173,209	0.00%	0.02%
331112	Electrometallurgical ferroalloy product manufacturing	\$7,976	12	\$643	\$49,659,392	4.49%	\$2,230,694	0.00%	0.03%
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$78,610	122	\$645	\$31,069,797	4.49%	\$1,395,652	0.00%	0.05%
331221	Rolled steel shape manufacturing	\$39,680	61	\$645	\$28,102,003	4.49%	\$1,262,339	0.00%	0.05%
331222	Steel wire drawing	\$53,522	83	\$645	\$12,904,028	4.49%	\$579,647	0.01%	0.11%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331314	Secondary smelting and alloying of aluminum	\$26,739	42	\$644	\$29,333,260	4.46%	\$1,309,709	0.00%	0.05%
331423	Secondary smelting, refining, and alloying of copper	\$4,594	7	\$646	\$26,238,546	4.42%	\$1,158,438	0.00%	0.06%
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$34,360	53	\$646	\$14,759,299	4.42%	\$651,626	0.00%	0.10%
331511	Iron foundries	\$14,236,481	527	\$27,014	\$19,672,534	4.11%	\$809,290	0.14%	3.34%
331512	Steel investment foundries	\$3,982,618	132	\$30,171	\$18,445,040	4.11%	\$758,794	0.16%	3.98%
331513	Steel foundries (except investment)	\$4,274,894	222	\$19,256	\$17,431,292	4.11%	\$717,090	0.11%	2.69%
331524	Aluminum foundries (except die-casting)	\$6,486,741	466	\$13,920	\$8,244,396	4.11%	\$339,159	0.17%	4.10%
331525	Copper foundries (except die-casting)	\$1,523,341	256	\$5,951	\$3,103,580	4.11%	\$127,675	0.19%	4.66%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
331528	Other nonferrous foundries (except die-casting)	\$1,146,217	124	\$9,244	\$7,040,818	4.11%	\$289,646	0.13%	3.19%
332111	Iron and steel forging	\$98,609	150	\$656	\$15,231,376	4.71%	\$716,646	0.00%	0.09%
332112	Nonferrous forging	\$32,557	50	\$656	\$28,714,500	4.71%	\$1,351,035	0.00%	0.05%
332115	Crown and closure manufacturing	\$11,831	18	\$649	\$16,308,872	4.71%	\$767,343	0.00%	0.08%
332116	Metal stamping	\$237,995	366	\$651	\$6,748,606	4.71%	\$317,526	0.01%	0.20%
332117	Powder metallurgy part manufacturing	\$30,531	47	\$648	\$9,712,731	4.71%	\$456,990	0.01%	0.14%
332211	Cutlery and flatware (except precious) manufacturing	\$21,378	33	\$656	\$9,036,720	5.22%	\$472,045	0.01%	0.14%
332212	Hand and edge tool manufacturing	\$135,131	207	\$654	\$5,874,133	5.22%	\$306,843	0.01%	0.21%
332213	Saw blade and handsaw manufacturing	\$26,838	41	\$649	\$11,339,439	5.22%	\$592,331	0.01%	0.11%
332214	Kitchen utensil, pot, and pan manufacturing	\$14,591	22	\$656	\$18,620,983	5.22%	\$972,693	0.00%	0.07%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Affected Establish	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
332323	Ornamental and architectural metal work	\$32,319	54	\$600	\$2,777,899	4.70%	\$130,669	0.02%	0.46%
332439	Other metal container manufacturing	\$56,147	86	\$656	\$7,467,745	3.58%	\$267,613	0.01%	0.25%
332510	Hardware manufacturing	\$167,792	256	\$656	\$11,899,309	5.22%	\$621,577	0.01%	0.11%
332611	Spring (heavy gauge) manufacturing	\$15,037	23	\$656	\$7,764,934	5.22%	\$405,612	0.01%	0.16%
332612	Spring (light gauge) manufacturing	\$56,764	87	\$656	\$8,185,896	5.22%	\$427,602	0.01%	0.15%
332618	Other fabricated wire product manufacturing	\$134,778	205	\$656	\$5,120,358	5.22%	\$267,469	0.01%	0.25%
332710	Machine shops	\$1,003,849	1,506	\$667	\$1,624,814	5.80%	\$94,209	0.04%	0.71%
332812	Metal coating and allied services	\$2,783,421	2,599	\$1,071	\$4,503,334	4.85%	\$218,618	0.02%	0.49%
332911	Industrial valve manufacturing	\$139,729	216	\$645	\$18,399,215	6.81%	\$1,252,418	0.00%	0.05%
332912	Fluid power valve and hose fitting manufacturing	\$130,431	201	\$650	\$22,442,750	6.81%	\$1,527,658	0.00%	0.04%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
332913	Plumbing fixture fitting and trim manufacturing	\$42,300	65	\$650	\$24,186,039	6.81%	\$1,646,322	0.00%	0.04%
332919	Other metal valve and pipe fitting manufacturing	\$66,377	102	\$650	\$15,023,143	6.81%	\$1,022,612	0.00%	0.06%
332991	Ball and roller bearing manufacturing	\$99,850	154	\$650	\$36,607,380	6.81%	\$2,491,832	0.00%	0.03%
332996	Fabricated pipe and pipe fitting manufacturing	\$99,739	154	\$650	\$6,779,536	6.81%	\$461,477	0.01%	0.14%
332997	Industrial pattern manufacturing	\$19,433	30	\$650	\$1,122,819	6.81%	\$76,429	0.06%	0.85%
332998	Enameled iron and metal sanitary ware manufacturing	\$55,945	76	\$736	\$14,497,312	6.81%	\$986,819	0.01%	0.07%
332999	All other miscellaneous fabricated metal product manufacturing	\$268,154	408	\$658	\$4,405,921	6.81%	\$299,907	0.01%	0.22%
333319	Other commercial and service industry machinery manufacturing	\$194,675	299	\$650	\$10,042,625	4.86%	\$487,919	0.01%	0.13%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333411	Air purification equipment manufacturing	\$54,183	84	\$645	\$7,353,577	4.55%	\$334,804	0.01%	0.19%
333412	Industrial and commercial fan and blower manufacturing	\$38,325	59	\$645	\$12,795,249	4.55%	\$582,559	0.01%	0.11%
333414	Heating equipment (except warm air furnaces) manufacturing	\$75,096	116	\$645	\$11,143,189	4.55%	\$507,342	0.01%	0.13%
333511	Industrial mold manufacturing	\$149,085	226	\$661	\$2,481,931	5.29%	\$131,278	0.03%	0.50%
333512	Machine tool (metal cutting types) manufacturing	\$63,412	97	\$653	\$7,371,252	5.29%	\$389,890	0.01%	0.17%
333513	Machine tool (metal forming types) manufacturing	\$31,580	48	\$654	\$5,217,940	5.29%	\$275,994	0.01%	0.24%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$216,047	325	\$665	\$2,378,801	5.29%	\$125,823	0.03%	0.53%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
333515	Cutting tool and machine tool accessory manufacturing	\$130,264	197	\$661	\$3,384,805	5.29%	\$179,034	0.02%	0.37%
333516	Rolling mill machinery and equipment manufacturing	\$11,432	17	\$661	\$9,496,141	5.29%	\$502,283	0.01%	0.13%
333518	Other metalworking machinery manufacturing	\$46,552	70	\$661	\$7,231,602	5.29%	\$382,504	0.01%	0.17%
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$45,056	70	\$644	\$10,727,834	2.63%	\$281,813	0.01%	0.23%
333613	Mechanical power transmission equipment manufacturing	\$56,908	88	\$644	\$14,983,120	2.63%	\$393,597	0.00%	0.16%
333911	Pump and pumping equipment manufacturing	\$112,617	174	\$647	\$17,078,357	4.58%	\$781,566	0.00%	0.08%
333912	Air and gas compressor manufacturing	\$78,622	121	\$650	\$21,079,073	4.58%	\$964,653	0.00%	0.07%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
333991	Power-driven handtool manufacturing	\$32,055	49	\$650	\$22,078,371	4.58%	\$1,010,384	0.00%	0.06%
333992	Welding and soldering equipment manufacturing	\$58,039	90	\$647	\$16,457,683	4.58%	\$753,162	0.00%	0.09%
333993	Packaging machinery manufacturing	\$77,884	120	\$652	\$7,374,940	4.58%	\$337,503	0.01%	0.19%
333994	Industrial process furnace and oven manufacturing	\$39,566	61	\$653	\$5,584,460	4.58%	\$255,565	0.01%	0.26%
333995	Fluid power cylinder and actuator manufacturing	\$72,593	112	\$646	\$13,301,790	4.58%	\$608,737	0.00%	0.11%
333996	Fluid power pump and motor manufacturing	\$49,787	77	\$647	\$18,030,122	4.58%	\$825,122	0.00%	0.08%
333997	Scale and balance (except laboratory) manufacturing	\$13,791	21	\$654	\$7,236,854	4.58%	\$331,184	0.01%	0.20%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	⊨staniisn-	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
333999	All other miscellaneous general purpose machinery manufacturing	\$192,565	296	\$650	\$6,033,776	4.58%	\$276,127	0.01%	0.24%
334518	Watch, clock, and part manufacturing	\$8,133	12	\$655	\$4,924,986	5.94%	\$292,667	0.01%	0.22%
335211	Electric housewares and household fans	\$12,744	22	\$589	\$22,023,076	4.21%	\$927,874	0.00%	0.06%
335221	Household cooking appliance manufacturing	\$27,519	47	\$589	\$37,936,003	4.21%	\$1,598,316	0.00%	0.04%
335222	Household refrigerator and home freezer manufacturing	\$29,387	26	\$1,130	\$188,132,355	4.21%	\$7,926,376	0.00%	0.01%
335224	Household laundry equipment manufacturing	\$27,925	23	\$1,214	\$221,491,837	4.21%	\$9,331,875	0.00%	0.01%
335228	Other major household appliance manufacturing	\$21,980	37	\$589	\$107,476,620	4.21%	\$4,528,196	0.00%	0.01%
336111	Automobile manufacturing	\$272,768	181	\$1,507	\$512,748,675	2.04%	\$10,462,470	0.00%	0.01%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Percentage	Costs as a Percentage of Profits
336112	Light truck and utility vehicle manufacturing	\$376,369	94	\$4,004	\$1,581,224,101	2.04%	\$32,264,364	0.00%	0.01%
336120	Heavy duty truck manufacturing	\$116,395	95	\$1,225	\$194,549,998	2.04%	\$3,969,729	0.00%	0.03%
336211	Motor vehicle body manufacturing	\$174,051	269	\$648	\$15,012,805	2.04%	\$306,331	0.00%	0.21%
336212	Truck trailer manufacturing	\$117,647	182	\$645	\$17,032,455	2.04%	\$347,542	0.00%	0.19%
336213	Motor home manufacturing	\$78,175	91	\$859	\$65,421,325	2.04%	\$1,334,901	0.00%	0.06%
336311	Carburetor, piston, piston ring, and valve manufacturing	\$38,328	60	\$644	\$21,325,990	2.04%	\$435,150	0.00%	0.15%
336312	Gasoline engine and engine parts manufacturing	\$240,487	373	\$644	\$36,938,061	2.04%	\$753,709	0.00%	0.09%
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$225,573	350	\$644	\$33,890,776	2.04%	\$691,530	0.00%	0.09%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	of	Costs as a Percentage of Profits
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$143,159	223	\$643	\$42,374,501	2.04%	\$864,638	0.00%	0.07%
336340	Motor vehicle brake system manufacturing	\$122,848	191	\$644	\$51,498,927	2.04%	\$1,050,819	0.00%	0.06%
336350	Motor vehicle transmission and power train parts manufacturing	\$304,417	473	\$643	\$63,004,961	2.04%	\$1,285,596	0.00%	0.05%
336370	Motor vehicle metal stamping	\$401,658	624	\$643	\$33,294,026	2.04%	\$679,354	0.00%	0.09%
336399	All other motor vehicle parts manufacturing	\$542,860	843	\$644	\$31,304,202	2.04%	\$638,752	0.00%	0.10%
336611	Ship building and repair	\$8,716,414	635	\$13,727	\$24,524,381	5.86%	\$1,437,564	0.06%	0.95%
336612	Boat building	\$5,458,828	1,129	\$4,835	\$9,474,540	5.86%	\$555,376	0.05%	0.87%
336992	Military armored vehicle, tank, and tank component manufacturing	\$25,327	39	\$648	\$44,887,321	6.31%	\$2,832,073	0.00%	0.02%

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
337215	Showcase, partition, shelving, and locker manufacturing	\$217,446	334	\$652	\$4,943,560	4.54%	\$224,593	0.01%	0.29%
339114	Dental equipment and supplies manufacturing	\$326,527	411	\$795	\$4,732,949	10.77%	\$509,695	0.02%	0.16%
339116	Dental laboratories	\$1,372,634	7,261	\$189	\$563,964	10.77%	\$60,734	0.03%	0.31%
339911	Jewelry (except costume) manufacturing	\$1,506,718	1,777	\$848	\$3,685,009	5.80%	\$213,566	0.02%	0.40%
339913	Jewelers' materials and lapidary work manufacturing	\$309,849	264	\$1,174	\$3,762,284	5.80%	\$218,045	0.03%	0.54%
339914	Costume jewelry and novelty manufacturing	\$227,737	590	\$386	\$1,353,403	5.80%	\$78,437	0.03%	0.49%
339950	Sign manufacturing	\$270,763	496	\$545	\$1,872,356	5.80%	\$108,513	0.03%	0.50%
423840	Industrial supplies, wholesalers	\$168,737	383	\$441	\$1,913,371	3.44%	\$65,736	0.02%	0.67%
482110	Rail transportation	\$2,401,869	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$372,297	7,980	\$47	\$755,073	7.34%	\$55,429	0.01%	0.08%
	Total	\$139,609,798	56,121	\$2,445					

[[]a] Profit rates were calculated by ERG (2010) as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the

Table VI-A-3: Screening Analysis for Establishments in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (0% discount rate) (continued)

NAICS	Industry	Total Annualized Costs	No. of Affected Establish- ments	Annualized Costs per Affected Establish- ment	Revenues per Establish -ment	Profit Rate [a]	Profits per Establish- ment	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
-------	----------	------------------------------	---	---	------------------------------------	--------------------	-----------------------------------	--	--

Internal Revenue Service's Corporation Source Book (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Table VI-A-4: Screening Analysis for Establishments in Construction Affected by OSHA's Proposed Silica Standard (0% discount rate)

NAIC S	Industry	Total Annualized Costs	Affected Establish -ments	Annualize d Costs per Affected Establish- ments	Revenues per Establish- ments	Profit Rate [a]	Profits per Establish- ments	Costs as a Percentag e of Revenues	Costs as a Percentag e of Profits
236100	Residential Building Construction	\$22,403,463	55,338	\$405	\$2,002,532	4.87%	\$97,456	0.02%	0.42%
236200	Nonresidential Building	\$37,738,001	44,702	\$844	\$7,457,045	4.87%	\$362,908	0.01%	0.23%

	Total	\$483,632,427	647,544	\$715					
999000	State and local governments [d]	\$20,733,881	170,068	N/A	N/A	N/A	N/A	N/A	N/A
238900	Other Specialty Trade Contractors	\$62,124,921	74,446	\$834	\$1,202,048	4.48%	\$53,826	0.07%	1.55%
238300	Building Finishing Contractors	\$49,412,982	120,012	\$412	\$892,888	4.34%	\$38,729	0.05%	1.06%
238200	Building Equipment Contractors	\$4,439,081	20,358	\$218	\$1,559,425	4.34%	\$67,640	0.01%	0.32%
238100	Foundation, Structure, and Building Exterior Contractors	\$209,175,716	117,456	\$1,781	\$1,425,510	4.34%	\$61,832	0.12%	2.88%
237900	Other Heavy and Civil Engineering Construction	\$6,301,839	5,561	\$1,133	\$3,719,070	5.36%	\$199,264	0.03%	0.57%
237300	Highway, Street, and Bridge Construction	\$27,441,259	11,860	\$2,314	\$8,663,019	5.36%	\$464,156	0.03%	0.50%
237200	Land Subdivision	\$973,501	6,511	\$150	\$2,084,334	11.04%	\$230,214	0.01%	0.06%
237100	Utility System Construction	\$42,887,782	21,232	\$2,020	\$4,912,884	5.36%	\$263,227	0.04%	0.77%
	Construction								

[[]a] Profit rates were calculated by ERG, 2010, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2011).

Appendix VI-B

Expanded Screening Test for Very Small Entities (fewer than twenty employees) in General Industry and Maritime Affected by the Proposed Silica Standard

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entities	Revenues per Entities	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
324121	Asphalt paving mixture and block manufacturing	\$27,770	260	260	100%	\$107	\$4,335,678	7.50%	\$325,227	0.00%	0.03%
324122	Asphalt shingle and roofing materials	\$85,253	57	57	100%	\$1,496	\$4,013,780	7.50%	\$301,081	0.04%	0.50%
325510	Paint and coating manufacturing	\$18,910	740	324	44%	\$58	\$1,871,296	5.38%	\$100,758	0.00%	0.06%
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$26,606	19	19	100%	\$1,400	\$327,368	4.41%	\$14,453	0.43%	9.69%
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$747,902	645	645	100%	\$1,160	\$155,258	4.41%	\$6,855	0.75%	16.92%
327113	Porcelain electrical supply mfg	\$79,824	57	57	100%	\$1,400	\$601,316	4.41%	\$26,548	0.23%	5.28%
327121	Brick and structural clay mfg	\$76,696	31	31	100%	\$2,474	\$715,098	4.41%	\$31,571	0.35%	7.84%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
327122	Ceramic wall and floor tile mfg	\$382,871	136	136	100%	\$2,815	\$807,291	4.41%	\$35,641	0.35%	7.90%
327123	Other structural clay product mfg	\$67,176	25	25	100%	\$2,687	\$782,505	4.41%	\$34,547	0.34%	7.78%
327124	Clay refractory manufacturing	\$29,861	55	55	100%	\$543	\$1,521,469	4.41%	\$67,172	0.04%	0.81%
327125	Nonclay refractory manufacturing	\$34,061	40	40	100%	\$852	\$1,506,151	4.41%	\$66,495	0.06%	1.28%
327211	Flat glass manufacturing	\$4,450	37	4	11%	\$1,075	\$905,562	3.42%	\$30,978	0.12%	3.47%
327212	Other pressed and blown glass and glassware manufacturing	\$87,895	373	79	21%	\$1,107	\$370,782	3.42%	\$12,684	0.30%	8.73%
327213	Glass container manufacturing	\$4,798	19	4	23%	\$1,107	\$2,690,032	3.42%	\$92,024	0.04%	1.20%
327320	Ready-mixed concrete manufacturing	\$1,897,131	1,429	1,429	100%	\$1,328	\$1,922,659	6.64%	\$127,628	0.07%	1.04%
327331	Concrete block and brick mfg	\$544,975	339	339	100%	\$1,608	\$1,995,833	6.64%	\$132,485	0.08%	1.21%
327332	Concrete pipe mfg	\$116,670	67	67	100%	\$1,741	\$2,375,117	6.64%	\$157,662	0.07%	1.10%
327390	Other concrete product mfg	\$1,885,496	1,326	1,326	100%	\$1,422	\$974,563	6.64%	\$64,692	0.15%	2.20%
327991	Cut stone and stone product manufacturing	\$2,753,051	1,471	1,471	100%	\$1,872	\$946,566	5.49%	\$51,957	0.20%	3.60%
327992	Ground or treated mineral and earth manufacturing	\$389,745	78	78	100%	\$4,997	\$1,635,092	5.49%	\$89,751	0.31%	5.57%
327993	Mineral wool manufacturing	\$48,575	118	46	39%	\$1,061	\$1,398,274	5.49%	\$76,752	0.08%	1.38%
327999	All other misc. nonmetallic mineral product mfg	\$311,859	235	235	100%	\$1,327	\$1,457,181	5.49%	\$79,985	0.09%	1.66%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

Salitical Property of State State	0.02% N/A 0.04%	0.41% N/A 0.82%
331112 ferroalloy product so 6 0 0% N/A \$1,202,610 4.49% \$54,021 manufacturing Iron and steel pipe and tube manufacturing from purchased steel	0.04%	0.82%
331210 and tube manufacturing from purchased steel 331221 Rolled steel shape manufacturing \$1,706 72 2 3% \$774 \$2,113,379 4.49% \$94,933 \$31221 8774 \$2,108,498 4.49% \$94,713	0.04%	
manufacturing 51,612 72 2 3% \$774 \$2,106,496 4.49% \$94,713		0.82%
331222 Steel wire drawing \$2,939 128 4 3% \$774 \$835,444 4.49% \$37,528	0.000′	
	0.09%	2.06%
Secondary smelting 331314 and alloying of \$1,254 51 2 3% \$774 \$2,039,338 4.46% \$91,055 aluminum	0.04%	0.85%
Secondary smelting, 331423 refining, and alloying \$0 10 0 0% N/A \$2,729,146 4.42% \$120,492 of copper	N/A	N/A
Secondary smelting, refining, and alloying \$2,897 103 4 4% \$774 \$1,546,332 4.42% \$68,271 (except cu & al)	0.05%	1.13%
331511 Iron foundries \$330,543 201 201 100% \$1,644 \$1,031,210 4.11% \$42,422	0.16%	3.88%
331512 Steel investment foundries \$47,902 27 27 100% \$1,774 \$1,831,394 4.11% \$75,340	0.10%	2.35%
331513 Steel foundries (except investment) \$162,670 102 102 100% \$1,595 \$1,577,667 4.11% \$64,902	0.10%	2.46%
331524 Aluminum foundries \$503,027 235 235 100% \$2,141 \$874,058 4.11% \$35,957 (except die-casting)	0.24%	5.95%
331525 Copper foundries \$370,110 164 164 100% \$2,257 \$814,575 4.11% \$33,510	0.28%	6.73%
Other nonferrous 331528 foundries (except die- \$162,043 77 77 100% \$2,104 \$837,457 4.11% \$34,451 casting)	0.25%	6.11%
332111 Iron and steel forging \$4,089 197 5 3% \$774 \$1,175,666 4.71% \$55,316	0.07%	1.40%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332112	Nonferrous forging	\$784	26	1	4%	\$774	\$1,431,874	4.71%	\$67,371	0.05%	1.15%
332115	Crown and closure manufacturing	\$992	29	1	4%	\$774	\$1,715,882	4.71%	\$80,733	0.05%	0.96%
332116	Metal stamping	\$27,154	814	35	4%	\$775	\$1,146,408	4.71%	\$53,939	0.07%	1.44%
332117	Powder metallurgy part manufacturing	\$2,072	50	3	5%	\$774	\$1,580,975	4.71%	\$74,386	0.05%	1.04%
332211	Cutlery and flatware (except precious) manufacturing	\$2,217	101	3	3%	\$774	\$391,981	5.22%	\$20,476	0.20%	3.78%
332212	Hand and edge tool manufacturing	\$19,535	758	25	3%	\$774	\$770,858	5.22%	\$40,267	0.10%	1.92%
332213	Saw blade and handsaw manufacturing	\$2,296	84	3	4%	\$774	\$975,698	5.22%	\$50,967	0.08%	1.52%
332214	Kitchen utensil, pot, and pan manufacturing	\$0	30	0	0%	N/A	\$826,410	5.22%	\$43,169	N/A	N/A
332323	Ornamental and architectural metal work	\$9,527	1,946	14	1%	\$694	\$695,970	4.70%	\$32,737	0.10%	2.12%
332439	Other metal container manufacturing	\$5,279	213	7	3%	\$788	\$1,027,511	3.58%	\$36,822	0.08%	2.14%
332510	Hardware manufacturing	\$11,863	438	15	3%	\$777	\$776,986	5.22%	\$40,587	0.10%	1.92%
332611	Spring (heavy gauge) manufacturing	\$1,927	61	2	4%	\$786	\$1,774,584	5.22%	\$92,698	0.04%	0.85%
332612	Spring (light gauge) manufacturing	\$4,960	148	6	4%	\$774	\$1,085,302	5.22%	\$56,692	0.07%	1.36%
332618	Other fabricated wire product manufacturing	\$19,946	714	26	4%	\$774	\$778,870	5.22%	\$40,685	0.10%	1.90%
332710	Machine shops	\$416,115	17,619	537	3%	\$774	\$649,804	5.80%	\$37,677	0.12%	2.06%
332812	Metal coating and allied services	\$613,903	1,652	885	54%	\$694	\$602,598	4.85%	\$29,254	0.12%	2.37%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
332911	Industrial valve manufacturing	\$5,886	202	8	4%	\$774	\$1,294,943	6.81%	\$88,146	0.06%	0.88%
332912	Fluid power valve and hose fitting manufacturing	\$4,491	151	6	4%	\$774	\$1,350,501	6.81%	\$91,927	0.06%	0.84%
332913	Plumbing fixture fitting and trim manufacturing	\$1,505	67	2	3%	\$774	\$811,318	6.81%	\$55,226	0.10%	1.40%
332919	Other metal valve and pipe fitting manufacturing	\$2,710	112	3	3%	\$781	\$2,164,960	6.81%	\$147,367	0.04%	0.53%
332991	Ball and roller bearing manufacturing	\$1,132	44	1	3%	\$774	\$1,808,246	6.81%	\$123,086	0.04%	0.63%
332996	Fabricated pipe and pipe fitting manufacturing	\$12,453	437	16	4%	\$774	\$1,237,265	6.81%	\$84,220	0.06%	0.92%
332997	Industrial pattern manufacturing	\$8,917	386	12	3%	\$774	\$503,294	6.81%	\$34,259	0.15%	2.26%
332998	Enameled iron and metal sanitary ware manufacturing	\$3,287	47	5	10%	\$690	\$725,491	6.81%	\$49,384	0.10%	1.40%
332999	All other miscellaneous fabricated metal product manufacturing	\$55,981	2,149	72	3%	\$774	\$933,734	6.81%	\$63,558	0.08%	1.22%
333319	Other commercial and service industry machinery manufacturing	\$19,776	804	26	3%	\$774	\$1,127,993	4.86%	\$54,803	0.07%	1.41%
333411	Air purification equipment manufacturing	\$4,745	180	6	3%	\$774	\$1,152,661	4.55%	\$52,480	0.07%	1.47%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333412	Industrial and commercial fan and blower manufacturing	\$1,675	55	2	4%	\$774	\$1,454,305	4.55%	\$66,214	0.05%	1.17%
333414	Heating equipment (except warm air furnaces) manufacturing	\$6,087	227	8	3%	\$777	\$901,560	4.55%	\$41,047	0.09%	1.89%
333511	Industrial mold manufacturing	\$43,738	1,538	56	4%	\$774	\$716,506	5.29%	\$37,898	0.11%	2.04%
333512	Machine tool (metal cutting types) manufacturing	\$8,756	326	11	3%	\$776	\$911,891	5.29%	\$48,233	0.09%	1.61%
333513	Machine tool (metal forming types) manufacturing	\$4,666	164	6	4%	\$774	\$1,308,768	5.29%	\$69,225	0.06%	1.12%
333514	Special die and tool, die set, jig, and fixture manufacturing	\$65,867	2,425	85	4%	\$774	\$816,990	5.29%	\$43,213	0.09%	1.79%
333515	Cutting tool and machine tool accessory manufacturing	\$31,406	1,107	41	4%	\$775	\$771,162	5.29%	\$40,789	0.10%	1.90%
333516	Rolling mill machinery and equipment manufacturing	\$1,361	35	2	5%	\$774	\$2,243,812	5.29%	\$118,683	0.03%	0.65%
333518	Other metalworking machinery manufacturing	\$6,766	207	9	4%	\$774	\$965,694	5.29%	\$51,079	0.08%	1.51%
333612	Speed changer, industrial high-speed drive, and gear manufacturing	\$3,318	100	4	4%	\$774	\$1,393,898	2.63%	\$36,617	0.06%	2.11%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
333613	Mechanical power transmission equipment manufacturing	\$3,114	96	4	4%	\$774	\$2,113,156	2.63%	\$55,511	0.04%	1.39%
333911	Pump and pumping equipment manufacturing	\$7,209	235	9	4%	\$774	\$1,343,868	4.58%	\$61,500	0.06%	1.26%
333912	Air and gas compressor manufacturing	\$4,228	154	5	4%	\$774	\$1,644,664	4.58%	\$75,266	0.05%	1.03%
333991	Power-driven handtool manufacturing	\$2,212	89	3	3%	\$774	\$2,158,268	4.58%	\$98,770	0.04%	0.78%
333992	Welding and soldering equipment manufacturing	\$3,835	156	5	3%	\$774	\$1,331,521	4.58%	\$60,935	0.06%	1.27%
333993	Packaging machinery manufacturing	\$9,742	365	13	3%	\$774	\$809,474	4.58%	\$37,044	0.10%	2.09%
333994	Industrial process furnace and oven manufacturing	\$5,631	186	7	4%	\$774	\$1,324,790	4.58%	\$60,627	0.06%	1.28%
333995	Fluid power cylinder and actuator manufacturing	\$3,955	148	5	3%	\$774	\$916,613	4.58%	\$41,947	0.08%	1.84%
333996	Fluid power pump and motor manufacturing	\$2,670	91	3	4%	\$774	\$1,417,549	4.58%	\$64,872	0.05%	1.19%
333997	Scale and balance (except laboratory) manufacturing	\$1,947	63	3	4%	\$774	\$1,527,651	4.58%	\$69,911	0.05%	1.11%
333999	All other miscellaneous general purpose machinery manufacturing	\$32,637	1,141	42	4%	\$774	\$871,700	4.58%	\$39,892	0.09%	1.94%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
334518	Watch, clock, and part manufacturing	\$1,322	71	2	2%	\$774	\$586,350	5.94%	\$34,844	0.13%	2.22%
335211	Electric housewares and household fans	\$0	66	0	0%	N/A	\$847,408	4.21%	\$35,703	N/A	N/A
335221	Household cooking appliance manufacturing	\$722	74	1	1%	\$698	\$2,228,319	4.21%	\$93,883	0.03%	0.74%
335222	Household refrigerator and home freezer manufacturing	\$0	7	0	0%	N/A	\$4,917,513	4.21%	\$207,184	N/A	N/A
335224	Household laundry equipment manufacturing	\$0	8	0	0%	N/A	\$1,767,776	4.21%	\$74,480	N/A	N/A
335228	Other major household appliance manufacturing	\$0	13	0	0%	N/A	\$1,706,991	4.21%	\$71,919	N/A	N/A
336111	Automobile manufacturing	\$2,147	108	3	3%	\$774	\$1,507,110	2.04%	\$30,752	0.05%	2.52%
336112	Light truck and utility vehicle manufacturing	\$795	40	1	3%	\$774	\$1,089,801	2.04%	\$22,237	0.07%	3.48%
336120	Heavy duty truck manufacturing	\$943	33	1	4%	\$774	\$4,371,350	2.04%	\$89,196	0.02%	0.87%
336211	Motor vehicle body manufacturing	\$12,371	394	16	4%	\$774	\$1,720,545	2.04%	\$35,107	0.04%	2.20%
336212	Truck trailer manufacturing	\$5,147	188	7	4%	\$774	\$2,706,375	2.04%	\$55,223	0.03%	1.40%
336213	Motor home manufacturing	\$1,193	35	2	4%	\$774	\$2,184,388	2.04%	\$44,572	0.04%	1.74%
336311	Carburetor, piston, piston ring, and valve manufacturing	\$1,329	62	2	3%	\$774	\$870,496	2.04%	\$17,762	0.09%	4.36%
336312	Gasoline engine and engine parts manufacturing	\$11,683	612	15	2%	\$774	\$867,703	2.04%	\$17,705	0.09%	4.37%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$8,618	382	11	3%	\$774	\$1,383,831	2.04%	\$28,237	0.06%	2.74%
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$2,876	104	4	4%	\$774	\$1,543,436	2.04%	\$31,493	0.05%	2.46%
336340	Motor vehicle brake system manufacturing	\$2,386	91	3	3%	\$774	\$1,378,684	2.04%	\$28,132	0.06%	2.75%
336350	Motor vehicle transmission and power train parts manufacturing	\$6,390	261	8	3%	\$774	\$864,746	2.04%	\$17,645	0.09%	4.38%
336370	Motor vehicle metal stamping	\$5,759	182	7	4%	\$778	\$1,519,875	2.04%	\$31,013	0.05%	2.51%
336399	All other motor vehicle parts manufacturing	\$16,021	615	21	3%	\$774	\$1,369,097	2.04%	\$27,936	0.06%	2.77%
336611	Ship building and repair	\$212,021	370	65	18%	\$3,252	\$770,896	5.86%	\$45,188	0.42%	7.20%
336612	Boat building	\$391,950	782	121	15%	\$3,247	\$1,101,324	5.86%	\$64,557	0.29%	5.03%
336992	Military armored vehicle, tank, and tank component manufacturing	\$0	20	0	0%	N/A	\$1,145,870	6.31%	\$72,296	N/A	N/A
337215	Showcase, partition, shelving, and locker manufacturing	\$28,216	1,013	36	4%	\$774	\$866,964	4.54%	\$39,387	0.09%	1.96%
339114	Dental equipment and supplies manufacturing	\$79,876	610	87	14%	\$922	\$657,192	10.77%	\$70,773	0.14%	1.30%
339116	Dental laboratories	\$1,040,112	6,664	6,664	100%	\$156	\$326,740	10.77%	\$35,187	0.05%	0.44%

Table VI-B-1: Expanded Screening Test for Very Small Entities (<20 employees) in General Industry and Maritime Affected by OSHA's Proposed Silica Standard (continued)

NAICS	Industry	Total Annualized Costs	Total Number of Entities	Number of Affected Entities	Percent- age of Total Entities	Annualized Cost per Affected Entity	Revenues per Entity	Profit Rate [a]	Profits per Entity	Costs as a Percentage of Revenues	Costs as a Percentage of Profits
339911	Jewelry (except costume) manufacturing	\$533,353	1,532	1,532	100%	\$348	\$673,857	5.80%	\$39,054	0.05%	0.89%
339913	Jewelers' materials and lapidary work manufacturing	\$86,465	218	218	100%	\$397	\$919,422	5.80%	\$53,285	0.04%	0.74%
339914	Costume jewelry and novelty manufacturing	\$100,556	514	368	72%	\$274	\$454,292	5.80%	\$26,329	0.06%	1.04%
339950	Sign manufacturing	\$89,586	5,312	140	3%	\$639	\$521,518	5.80%	\$30,225	0.12%	2.12%
423840	Industrial supplies, wholesalers	\$50,612	5,707	95	2%	\$531	\$2,432,392	3.44%	\$83,567	0.02%	0.64%
482110	Rail transportation	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
621210	Dental offices	\$320,986	115,748	6,506	6%	\$49	\$562,983	7.34%	\$41,328	0.01%	0.12%
	Total	\$15,745,425		25,544		\$616					

[[]a] Profit rates were calculated by ERG, 2010, as the average of profit rates for 2000 through 2006, based on balance sheet data reported in the Internal Revenue Service's *Corporation Source Book* (IRS, 2007).

Source: U.S. Dept. of Labor, OSHA, Office of Regulatory Analysis, based on ERG (2010).

CHAPTER VII: BENEFITS AND NET BENEFITS

INTRODUCTION

In this chapter, OSHA estimates the benefits and net benefits of the proposed silica rule. To develop estimates of the benefits, the Agency will, in the following sections, forecast the number of silica-related diseases prevented as a result of the proposed rule, project the timing of the avoided diseases, monetize their economic value, and discount them. Taking into account the estimated costs of the proposed rule, presented in Chapter V of this PEA, OSHA will then estimate the net benefits and incremental benefits of the proposed rule. Finally, the Agency will present a sensitivity analysis to show how robust the estimates of net benefits are to changes in various cost and benefit parameters. OSHA invites comments on any aspect of the data and methods used in this chapter.

ESTIMATION OF THE NUMBER OF SILICA-RELATED DISEASES AVOIDED

OSHA estimated the benefits associated with the proposed PEL of $50~\mu g/m^3$ and, for economic analysis purposes, with an alternative PEL of $100~\mu g/m^3$ for respirable crystalline silica by applying the dose-response relationships developed in OSHA's quantitative risk assessment (QRA) to exposures at or below the current PELs. OSHA determined exposure levels at or below the current PELs by first developing an exposure profile for industries with workers exposed to respirable crystalline silica, using OSHA inspection and site-visit data, and then applying this exposure profile to the total current worker population. The industry-by-industry exposure profile was previously presented in Chapter III of this PEA.

By applying the dose-response relationships to estimates of exposures at or below the current PELs across industries, it is possible to project the number of cases of the following diseases expected to occur in the worker population given exposures at or below the current PELs (the "baseline"):

- fatal cases of lung cancer,
- fatal cases of non-malignant respiratory disease (including silicosis),
- fatal cases of end-stage renal disease, and
- cases of silicosis morbidity.

In addition, it is possible to project the number of these cases that would be avoided under alternative, lower PELs. As a simplified example, suppose that the risk per worker of a given health endpoint is 2 in 1,000 at $100 \, \mu g/m^3$ and 1 in 1,000 at $50 \, \mu g/m^3$ and that there are 100,000 workers currently exposed at $100 \, \mu g/m^3$. In this example, the proposed PEL would lower exposures to $50 \, \mu g/m^3$, thereby cutting the risk in half and lowering the number of expected cases in the future from $200 \, \text{to} \, 100$.

The estimated benefits for the proposed silica rule represent the additional benefits derived from employers achieving full compliance with the proposed PEL relative to the current PELs. They

VII-1 Silica PEA Chapter VII

¹ OSHA's current gravimetric PEL for respirable quartz in general industry is considered equal to approximately 100 μg/m³. OSHA's current construction and shipyard PELs are based on particle count (millions of

do not include benefits associated with current compliance that has already been achieved with regard to the new requirements or benefits obtained from future compliance with existing silica requirements, to the extent that some employers may currently not be fully complying with applicable regulatory requirements. ²

The technological feasibility analysis, described previously in Chapter IV of this PEA, demonstrated the effectiveness of controls in meeting or exceeding the proposed OSHA PEL. For purposes of estimating the benefit of reducing the PEL, OSHA has made some simplifying assumptions. On the one hand, given the lack of background information on respirator use related to existing exposure data, OSHA used existing personal exposure measurement information, unadjusted for potential respirator use.³ On the other hand, OSHA assumed that compliance with the existing and proposed rule would result in reductions in exposure levels to exactly the existing standard and proposed PEL, respectively. However, in many cases, indivisibilities in the application of respirators, as well as certain types of engineering controls, may cause employers to reduce exposures to some point below the existing standard or the proposed PEL.⁴ This is particularly true in the construction sector for employers who opt to follow Table 1, which specifies particular controls.

In order to examine the effect of simply changing the PEL, OSHA compared the number of various kinds of cases of silica-related disease that would occur if workers were exposed for an entire working life to PELs of $50 \,\mu\text{g/m}^3$ or $100 \,\mu\text{g/m}^3$ to the number of cases that would occur at levels of exposure at or below the current PELs. The number of avoided cases over a hypothetical working life of exposure for the current population at a lower PEL is then equal to the difference between the number of cases at levels of exposure at or below the current PEL for that population minus the number of cases at the lower PEL. This approach represents a steady-

particles per cubic foot, or mppcf), not weight, but the equivalent gravimetric standard would be equal to approximately 250 $\mu g/m^3$. For purposes of this PEA, OSHA assumed an equivalent current gravimetric PEL of 250 $\mu g/m^3$.

² OSHA's PIRFAs (Preliminary Initial Regulatory Flexibility Analyses) for the 2003 SBREFA panel did include the benefits and costs from future compliance with existing silica requirements on the basis that the preliminary proposed rule would help improve compliance with the existing silica rules (OSHA, 2003a and 2003b). While still a judgment call, upon reflection, OSHA believes that a fairer and more accurate measure of the benefits and costs of the proposed rules is to compare them against the baseline of full compliance with existing requirements. The Agency offers three reasons in support. First, the obligation to comply with the current silica rules exists independent of any decision OSHA might make in this rulemaking. The benefits and costs from achieving compliance with the current silica rules are a function of those rules and are simply not part of this rulemaking. The question before the Agency is whether to adopt new rules, and its analysis should focus on the benefits and costs of those new rules. [The agency has other measures it can take, such as enforcement and outreach programs, to affect compliance with the current rules.] Second, the Agency believes it should assume 100% compliance for purposes of estimating the costs and benefits of the new rules, and it would be inconsistent to assume less than full compliance with the existing OSHA rules. Reliance on costs that assume full compliance with both the current and proposed OSHA rules makes it easier to compare the two regulatory schemes. Finally, assuming full compliance with the existing rules is in keeping with standard OSHA practice in measuring the incremental effects of a proposed rule when there is an existing rule in effect that firms are legally obligated to comply with and that is being enforced.

 $^{^3}$ Based on available data, the Agency estimated the weighted average for the relevant exposure groups to match up with the quantitative risk assessment. For the 50-100 $\mu g/m^3$ exposure range, the Agency estimated an average exposure of 62.5 $\mu g/m^3$. For the 100-250 $\mu g/m^3$ range, the Agency estimated an average exposure of 125 $\mu g/m^3$.

⁴ For example, a given respirator or engineering control may reduce exposures by a factor of 10, where a reduction by a factor of 5 might be sufficient to meet the PEL.

state comparison based on what would hypothetically happen to workers who received a specific average level of occupational exposure to silica during an entire working life. Later in this chapter, OSHA modifies this approach by introducing a model that takes into account the timing of benefits before steady state is reached.

The Agency examined the various lung cancer risk models presented in its QRA to estimate the benefits of lowering the PEL. As can be inferred from Table II-2 of the QRA summary, the Steenland et al. (2001) log-linear model emerged as projecting the lowest estimate of lung cancers avoided from lowering the PEL to 50 or $100~\mu\text{g/m}^3$, whereas the Attfield and Costello (2004) model emerged as projecting the highest number of lung cancers avoided. The remainder of the studies indicated an intermediate reduction in risk. Focusing just on the Steenland et al. (log-linear model) and Attfield and Costello studies captures both the high and low ends of the estimated lung cancer reduction range.

Table VII-1 shows the number of avoided fatal lung cancers for PELs of $50 \,\mu\text{g/m}^3$ and $100 \,\mu\text{g/m}^3$. At the proposed PEL of $50 \,\mu\text{g/m}^3$, an estimated 2,404 to 12,173 lung cancers would be prevented over the lifetime of the current worker population, with a midpoint estimate of 7,289 fatal cancers prevented. This is the equivalent of between 53 and 271 cases avoided annually, with a midpoint estimate of 162 cases avoided annually, given a 45-year working life of exposure.

Following Park (2002), as discussed in the Agency's QRA, OSHA also estimates that the proposed PEL of $50~\mu\text{g/m}^3$ would prevent 16,878 fatalities over the lifetime of the current worker population from non-malignant respiratory diseases arising from silica exposure.⁵ This is equivalent to 375 fatal cases prevented annually. Some of these fatalities would be classified as silicosis, but most would be classified as other pneumoconioses and chronic obstructive pulmonary disease (COPD), which includes chronic bronchitis and emphysema.

As also discussed in the Agency's QRA, OSHA finds that workers with large exposures to silica are at elevated risk of end-stage renal disease (ESRD). Based on Steenland, Attfield, and Mannetje (2002), OSHA estimates that the proposed PEL of 50 μ g/m³ would prevent 6,774 cases of end-stage renal disease over the lifetime of the current worker population, or about 151 cases annually.

Combining the three major fatal health endpoints—for lung cancer, non-malignant respiratory diseases, and end-stage renal disease—OSHA estimates that the proposed PEL would prevent between 26,055 and 35,825 premature fatalities over the lifetime of the current worker population, with a midpoint estimate of 30,940 fatalities prevented. This is the equivalent of between 579 and 796 premature fatalities avoided annually, with a midpoint estimate of 688 premature fatalities avoided annually, given a 45-year working life of exposure.

In addition, the rule would prevent a large number of cases of silicosis morbidity. Based on Rosenman et al. (2003), the Agency estimates, in Table VII-2, that between 2,700 and 5,475 new cases of silicosis, at an ILO x-ray rating of 1/0 or higher, occur annually at the present PELs as a result of silica exposure at establishments within OSHA's jurisdiction.

⁵ Park et al. (2002) also found that silica exposure was responsible for a significant number of deaths that had been attributed to diseases other than silicosis.

Table VII-1

Estimated Number of Avoided Fatal & Nonfatal Illnesses Resulting from a Reduction in Crystalline Silica Exposure of At-Risk Workers over a 45-Year Working Life Due to Proposed PEL of 50 μg/m³ and Alternative PEL of 100 μg/m³

		Tot	al Number	of Avoided	Cases			Annı	ual Number	of Avoid	ed Cases	
		50			100			50			100	
	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime
Lung Cancers												
High	12,173	9,537	2,636	6,563	6,277	286	271	212	59	146	139	6
Midpoint	7,289	5,852	1,437	3,719	3,573	146	162	130	32	83	79	3
Low	2,404	2,166	238	875	869	6	53	48	5	19	19	0
Silicosis & Other Non-Malignant Respiratory Diseases	16,878	13,944	2,934	8,490	8,403	87	375	310	65	189	187	2
End Stage Renal Disease	6,774	5,722	1,052	2,684	2,655	29	151	127	23	60	59	1
Total Number of Fatal Illnesses Prevented												
High	35,825	29,203	6,622	17,737	17,335	402	796	649	147	394	385	9
Midpoint	30,940	25,517	5,423	14,893	14,631	262	688	567	121	331	325	6
Low	26,055	21,831	4,224	12,049	11,927	122	579	485	94	268	265	3
Total Number of Silicosis Morbidity Cases Prevented*	71,307	48,617	22,689	42,881	41,375	1,506	1,585	1,080	504	953	919	33

^{*}Assessed at 2/1 or higher X-ray, following ILO criteria

Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis

While the cases of 1/0 silicosis represent the lower bounds of measurable health effects related to crystalline silica exposure, the various estimates of their prevalence, in terms of observable health outcomes currently, track reasonably well with what is predicted by the risk models, given estimated current exposure levels. While the risk estimates vary by cohort (as discussed in OSHA's QRA), together they present a consistent portrait if one considers them as a composite of cohorts. Four of the six 1/0 silicosis models listed in Table VII-2 provide estimates of the benefits of a $50 \,\mu\text{g/m}^3$ standard that are within Rosenman's estimated range of current silicosis incidence; the other two fall below that range. If the various models are considered to be accurate predictions of risk among the various cohorts, some mix of the representative cohorts in the U.S. working population currently can be considered consistent with Rosenman's estimates.

Based on these studies, summarized in OSHA's QRA, OSHA expects that the proposed rule will eliminate the large majority of 1/0, 1/1, and 1/2 silicosis cases. However, the Agency has not included the elimination of these less severe silicosis cases in its estimates of the monetized benefits and net benefits of the proposed rule.

Instead, OSHA separately estimated the number of silicosis cases reaching the more severe levels of 2/1 and above. Based on a study by Buchannan et al. (2003) of a cohort of coal miners (as discussed in the Agency's QRA), OSHA estimates that the proposed PEL of 50 lifetime of the current worker population would prevent 71,307 cases of moderate-to-severe silicosis (registering 2/1 or more, using the ILO method for assessing severity) over a working life, or about 1,585 cases of moderate-to-severe silicosis prevented annually.

Note that the Agency based its estimates of reductions in the number of silica-related diseases over a working life of constant exposure for workers who are employed in a respirable crystalline silica-exposed occupation for their entire working lives, from ages 20 to 65. In other words, workers are assumed not to enter or exit jobs with silica exposure mid-career or to switch to other exposure groups during their working lives. While the Agency is legally obligated to examine the effect of exposures from a working lifetime of exposure, in an alternative analysis purely for informational purposes, the Agency examined, in Table VII-3, the effect of assuming that workers are exposed for

⁶ The results of these risk models are summarized in Table VII-2 in this chapter.

⁷ In construction, the analysis assumes that while workers gain additional exposure annually, they are not necessarily constantly exposed to silica, depending upon the demands of the job.

⁸ Section (6)(b)(5) of the OSH Act states: "The Secretary, in promulgating standards dealing with toxic materials or harmful physical agents under this subsection, shall set the standard which most adequately assures, to the extent feasible, on the basis of the best available evidence, that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life." Given that it is necessary for OSHA to reach a determination of significant risk over a working life, it is a logical extension to estimate what this translates into in terms of estimated benefits for the affected population over the same period.

only 25 working years, as opposed to the 45 years assumed in the main analysis. While all workers are assumed to have less cumulative exposure under the 25-years-of-exposure assumption, the effective exposed population over time is proportionately increased. A comparison of Table VII-3 to Table VII-1, reflecting exposures over 25 working years versus over a 45-year working life, shows variations in the number of estimated prevented cases by health outcome. Estimated prevented cases of fatal end-stage renal disease and silicosis morbidity are lower in the 25-year model, whereas cases of fatal non-malignant respiratory disease are higher. In the case of lung cancer, the effect varies by model, with a lower high-end estimate (Attfield & Costello, 2004) and a higher lowend estimate (Steenland, et. al., 2001 log-linear model). Overall, however, the 45-yearworking-life assumption yields larger estimates of the number of cases of avoided fatalities and illnesses than does the 25-years-of-exposure assumption. For example, the midpoint estimates of the number of avoided fatalities and illnesses under the proposed PEL of 50 µg/m³ would decline from 688 and 1,585, respectively, under the 45-yearworking-life assumption to 683 and 642, respectively, under the 25-year-working-life assumption. Note the effect, in this case, of going from a 45-year-working-life assumption to a 25-year-working-life assumption would be a 1 percent reduction in the number of avoided fatalities and a 59 percent reduction in the number of avoided illnesses. The divergence reflects differences in the mathematical structure of the risk assessment models that are the basis for these estimates.⁹

OSHA believes that 25 years of worker exposure to respirable crystalline silica may be a reasonable alternative estimate for informational purposes. However, to accommodate the possibility that average worker exposure to silica over a working life may be shorter, at least in certain industries (see the following paragraph), the Agency also examined the effect of assuming only 13 years of exposure for the average worker. The results were broadly similar to the 25 years of exposure—annual fatalities prevented were higher (788), but illnesses prevented lower (399), with the lower average cumulative exposure being offset to a substantial degree by a larger exposed population. The same effect is seen if one assumes only 6.6 years of cumulative exposure to silica for the average worker: estimated fatalities rise to 832 cases annually, with 385 cases of silicosis morbidity. In short, the aggregate estimated benefits of the rule appear to be relatively insensitive to implicit assumptions of average occupational tenure.

⁹Technically, this analysis assumes that workers receive 25 years' worth of silica exposure, but that they receive it over 45 working years, as is assumed by the risk models in the QRA. It also accounts for the turnover implied by 25, as opposed to 45, years of work. However, it is possible that an alternate analysis, which accounts for the larger number of post-exposure worker-years implied by workers departing their jobs before the end of their working lifetime, might find larger health effects for workers receiving 25 years' worth of silica exposure.

TABLE VII-2

Estimate of Annual Number of Silicosis Cases Currently and Annual Number of Silicosis Cases Prevented According to Various Risk Models

		Estimated	Number of Cases	Cases Prevented by PEL Option				
ILO ratino	g Study	Baseline	Under Compliance with Current PELs	100 μg/m³	50 μg/m³			
2/0+	Miller (1998) Buchanan (2003)	3,707 3,484	,	867 953	1,457 1,585			
1/0+	Chen (2005) pottery worker Chen (2005) tungsten miner Chen (2005) tin miner Buchanan (2003) Chen (2001) Hnizdo and Sluis-Cremer (1994)	549 1,170 5,076 8,615 5,914 5,983	548 4,612 7,657 5,914	127 108 2,566 3,108 2,486 3,228	218 529 3,761 5,212 3,865 4,803			

		Estimate of Current Cases				
		Low	High			
1/0+	Rosenman	3,600	7,300			
	Rosenman, estimated portion in OSHA jurisdiction*	2,700	5,475			

^{*}excluding 25%, based on portion of death certificates listing mining as occupation

Table VII-3
Estimated Number of Avoided Fatal & Nonfatal Illnesses Resulting from a Reduction in Crystalline Silica Exposure of At-Risk Workers over 25 Working Years

Due to Proposed PEL of 50 µg/m³ and Alternative PEL of 100 50 µg/m³

		Total Avoided Cases						Annual Avoided Cases				
		50			100			50	100			
	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime
Lung Cancers												
High	9,933	7,755	2,178	4,991	4,807	184	221	172	48	111	107	4
Midpoint*	7,101	5,770	1,331	3,349	3,252	98	158	128	30	74	72	2
Low	4,268	3,785	483	1,708	1,696	12	95	84	11	38	38	0
Silicosis & other Non-Malignant Respiratory Diseases End Stage Renal Disease	17,420 6,226	14,256 4,930	3,164 1,296	8,835 2,701	8,645 2,655	190 45	387 138	317 110	70 29	196 60	192 59	4
Total Number of Fatal Illnesses Prevented High Medium	33,579 30,746	26,941 24,956	6,638 5,790	16,527 14,885	16,108 14,552	419 333 247	746 683 620	599 555 510	148 129 110	367 331 294	358 323 289	9 7
Low Total Number of Silicosis Morbidity Cases Prevented*	27,914 28,896	22,971 19,706	4,943 9,190	13,243 17,294	12,996 15,130	2,164	642	438	204	384	336	48

^{*} Assessed at 2/1 or higher X-ray, following ILO criteria

Nonetheless, the Agency is confident that the typical affected worker sustains an extended period of exposure to silica. Even in the construction industry, which has an extremely high rate of job turnover, the mean job tenure with one's current employer is 6.6 years (BLS, 2010a), and the median age of construction workers in the U.S. is 41.6 years (BLS, 2010b). The Bureau of Labor Statistics does not have data on job tenure within an industry, but OSHA would expect job tenure in the construction industry would be at least twice the job tenure with one's current employer. Furthermore, many workers may return to the construction industry after unemployment or work in another industry. Of course, job tenure is longer in the other industries affected by the proposed rule.

The proposed rule also contains specific provisions for diagnosing latent tuberculosis (TB) in the silica-exposed population and thereby reducing the risk of TB being spread to the population at large. The Agency currently lacks good methods for quantifying these benefits. Nor has the Agency attempted to assess benefits directly stemming from enhanced medical surveillance in terms of reducing the severity of symptoms from the illnesses that do result from present or future exposure to silica. However, the Agency welcomes comment on the likely magnitude of these currently non-quantified health benefits arising from the proposed rule and on methods for better measuring these effects.

OSHA's risk estimates are based on application of exposure-response models derived from several individual epidemiological studies as well as the pooled cohort studies of Steenland et al. (2001) and Mannetje et al. (2002). OSHA recognizes that there is uncertainty around any of the point estimates of risk derived from any single study. In its preliminary risk assessment (summarized in Section VI of this preamble), OSHA has made efforts to characterize some of the more important sources of uncertainty to the extent that available data permit. This specifically includes characterizing statistical uncertainty by reporting the confidence intervals around each of the risk estimates; by quantitatively evaluating the impact of uncertainties in underlying exposure data used in the cohort studies; and by exploring the use of alternative exposure-response model forms. OSHA believes that these efforts reflect much, but not necessarily all, of the uncertainties associated with the approaches taken by investigators in their respective risk analyses. However, OSHA believes that characterizing the risks and benefits as a range of estimates derived from the full set of available studies, rather than relying on any single study as the basis for its estimates, better reflects the uncertainties in the estimates and more fairly captures the range of risks likely to exist across a wide range of industries and exposure situations.

Another source of uncertainty involves the degree to which OSHA's risk estimates reflect the risk of disease among workers with widely varying exposure patterns. Some workers are exposed to fairly high concentrations of crystalline silica only intermittently, while others experience more regular and constant exposure. Risk models employed in the quantitative assessment are based on a cumulative exposure metric, which is the product of average daily silica concentration and duration of worker exposure for a specific job. Consequently, these models predict the same risk for a given cumulative exposure

regardless of the pattern of exposure, reflecting a worker's long-term average exposure without regard to intermittencies or other variances in exposure, and are therefore generally applicable to all workers who are exposed to silica in the various industries. Section VI of the preamble provides evidence supporting the use of cumulative exposure as the preferred dose metric. Although the Agency believes that the results of its risk assessment are broadly relevant to all occupational exposure situations involving crystalline silica, OSHA acknowledges that differences exist in the relative toxicity of crystalline silica particles present in different work settings due to factors such as the presence of mineral or metal impurities on quartz particle surfaces, whether the particles have been freshly fractured or are aged, and size distribution of particles. However, in its preliminary risk assessment, OSHA preliminarily concludes that the estimates from the studies and analyses relied upon are fairly representative of a wide range of workplaces reflecting differences in silica polymorphism, surface properties, and impurities.

Thus, OSHA has a high degree of confidence in the risk estimates associated with exposure to the current and proposed PELs. OSHA acknowledges there is greater uncertainty in the risk estimates for the proposed action level of 0.025 mg/m³ than exists at the current (0.1 mg/m³) and proposed (0.05 mg/m³) PELs, particularly given some evidence of a threshold for silicosis between the proposed PEL and action level. Given the Agency's findings that controlling exposures below the proposed PEL would not be technologically feasible for employers, OSHA believes that a precise estimate of the risk for exposures below the proposed action level is not necessary to further inform the Agency's regulatory action. OSHA requests comment on remaining sources of uncertainties in its risk and benefits estimates that have not been specifically characterized by OSHA in its analysis.

ESTIMATING THE STREAM OF BENEFITS OVER TIME

Risk assessments in the occupational environment are generally designed to estimate the risk of an occupationally related illness over the course of an individual worker's lifetime. As demonstrated previously in this chapter, the current occupational exposure profile for a particular substance for the current cohort of workers can be matched up against the expected profile after the proposed standard takes effect, creating a "steady state" estimate of benefits. However, in order to annualize the benefits for the period of time after the silica rule takes effect, it is necessary to create a timeline of benefits for an entire active workforce over that period.

While there are various approaches that could be taken for modeling the workforce, there seem to be two polar extremes. At one extreme, one could assume that none of the benefits occur until after the worker retires, or at least 45 years in the future. In the case of lung cancer, that period would effectively be 60 years, since the 45 years of exposure must be added to a 15-year latency period during which it is assumed that lung cancer does not develop. At the other extreme, one could assume that the benefits occur

¹⁰ This assumption is consistent with the 15-year lag incorporated in the lung cancer risk models used in OSHA's QRA.

immediately, or at least immediately after a designated lag. However, based on the various risk models (as detailed in model life tables in Appendix A to the QRA), which reflect real-world experience with development of disease over an extended period of time, it appears that the actual pattern occurs at some point between these two extremes.

At first glance, the simplest intermediate approach would be to follow the pattern of the risk assessments, which are based in part on life tables, and observe that typically the risk of the illness grows gradually over the course of a working life and into retirement. However, while this is a good working model for an individual exposed over a working life, it is not very descriptive of the effect of lowering exposures for an entire working population. In the latter case, in order to estimate the benefits of the standard over time, one has to consider that workers currently being exposed to silica are going to vary considerably in age. Since the health risks from crystalline silica exposure depend on a worker's cumulative exposure over a working lifetime, the overall benefits of the proposed standard will phase in over several decades, as the cumulative exposure gradually falls for all age groups, until those now entering the workforce reach retirement and the annual stream of silica-related illnesses reaches a new, significantly lowered "steady state." That said, the near-term impact of the proposed rule estimated for those workers with similar current levels of cumulative exposure will be greater for workers who are now middle-aged or older. This conclusion follows from the structure of the relative risk models used in this analysis and the fact that the background mortality rates for diseases such as lung cancer, COPD, and renal disease increase with age.

In order to characterize the magnitude of benefits before the steady state is reached, OSHA created a linear phase-in model to reflect the potential timing of benefits. Specifically, OSHA estimated that, for all non-cancer cases, while the number of cases of silica-related disease would gradually decline as a result of the proposed rule, they would not reach the steady-state level until 45 years had passed. The reduction in cases estimated to occur in any given year in the future was estimated to be equal to the steady-state reduction (the number of cases in the baseline minus the number of cases in the new steady state) times the ratio of the number of years since the standard was implemented and a working life of 45 years. Expressed mathematically:

$$N_t = (C - S) x (t / 45),$$

where N_t is the number of non-malignant silica-related diseases avoided in year t; C is the current annual number of non-malignant silica-related diseases; S is the steady-state annual number of non-malignant silica-related diseases; and t represents the number of years after the proposed standard takes effect, with $t \le 45$.

In the case of lung cancer, the function representing the decline in the number of silicarelated cases as a result of the proposed rule is similar, but there would be a 15-year lag before any reduction in cancer cases would be achieved. Expressed mathematically, for lung cancer:

$$L_t = (C_m - S_m) \times ((t-15) / 45),$$

where $15 \le t \le 60$ and L_t is the number of lung cancer cases avoided in year t as a result of the proposed rule; C_m is the current annual number of silica-related lung cancers; and S_m is the steady-state annual number of silica-related lung cancers.

This model was extended to 60 years for all the health effects previously discussed in order to incorporate the 15 year lag, in the case of lung cancer, and a 45-year working life. (The left-hand columns in the tables in Appendix VII-A provide estimates using this model of the stream of prevented fatalities and illnesses due to the proposed silica rule.) As a practical matter, however, there is no overriding reason for stopping the benefits analysis at 60 years. An internal analysis by OSHA indicated that, both in terms of cases prevented, and even with regard to monetized benefits, particularly when lower discount rates are used, the estimated benefits of the standard are noticeably larger on an annualized basis if the analysis extends further into the future. The Agency welcomes comment on the merit of extending the benefits analysis beyond the 60 years analyzed in the PEA.

In order to compare costs to benefits, OSHA assumes that economic conditions remain constant and that annualized costs—and the underlying costs—will repeat for the entire 60-year time horizon used for the benefits analysis (as discussed in Chapter V of this PEA). OSHA welcomes comments on the assumption for both the benefit and cost analysis that economic conditions remain constant for sixty years. OSHA is particularly interested in what assumptions and time horizon should be used instead and why.

MONETIZING THE BENEFITS OF THE PROPOSED RULE

OSHA has also provided estimates of the monetary value of the benefits associated with the proposed rule. These estimates are for informational purposes only because OSHA cannot use benefit-cost analysis as a basis for determining the PEL for a health standard. The Agency's methodology for monetizing benefits was based on both the relevant academic literature and on the approaches OSHA and other regulatory agencies have taken in the past for similar regulatory actions.

Placing a Monetary Value on Individual Silica-Related Fatalities Avoided

To estimate the monetary value of the reductions in the number of silica-related fatalities, OSHA relied, as OMB recommends, on estimates developed from the willingness of affected individuals to pay to avoid a marginal increase in the risk of fatality. While a willingness-to-pay (WTP) approach clearly has theoretical merit, it should be noted that an *individual's* willingness to pay to reduce the risk of fatality would tend to underestimate the total willingness to pay, which would include the willingness of others—particularly the immediate family—to pay to reduce that individual's risk of fatality. ¹¹

¹¹ See, for example, Thaler and Rosen (1976), pp. 265-266. In addition, see Sunstein (2004), p. 433. "This point demonstrates a general and badly neglected problem for WTP as it is currently used: agencies consider people's WTP to eliminate statistical risks, without taking account of the fact that

For estimates using the willingness-to-pay concept, OSHA relied on existing studies of the imputed value of fatalities avoided based on the theory of compensating wage differentials in the labor market. These studies rely on certain critical assumptions for their accuracy, particularly that workers understand the risks to which they are exposed and that workers have legitimate choices between high- and low-risk jobs. These assumptions are far from obviously met in actual labor markets. 12 A number of academic studies, as summarized in Viscusi & Aldy (2003), have shown a correlation between higher job risk and higher wages, suggesting that employees demand monetary compensation in return for a greater risk of injury or fatality. The estimated trade-off between lower wages and marginal reductions in fatal occupational risk—that is, workers' willingness to pay for marginal reductions in such risk—yields an imputed value of an avoided fatality: the willingness-to-pay amount for a reduction in risk divided by the reduction in risk.¹³ OSHA has used this approach in many recent proposed and final rules. (See, for example, 69 FR 59305 (Oct. 4, 2004) and 71 FR 10099 (Feb. 28, 2006), the preambles for the proposed and final hexavalent chromium rule.) Although this approach has been found to yield results that are less than statistically robust (see, for example, Hintermann, Alberini and Markandya, 2010), OSHA views these estimates as the best available, and will use them for its basic estimates.¹⁴ OSHA welcomes comments on the use of willingness-to-pay measures and estimates based on compensating wage differentials.

Viscusi & Aldy (2003) conducted a meta-analysis of studies in the economics literature that use a willingness-to-pay methodology to estimate the imputed value of life-saving programs and found that each fatality avoided was valued at approximately \$7 million in 2000 dollars. Using the GDP Deflator (U.S. BEA, 2010), this \$7 million base number in 2000 dollars yields an estimate of \$8.7 million in 2009 dollars for each fatality avoided.¹⁵

others—especially family members and close friends—would also be willing to pay something to eliminate those risks."

¹² On the former assumption, see the discussion in Chapter II of this PEA on imperfect information. On the latter, see, for example, the discussion of wage compensation for risk for union versus nonunion workers in Dorman and Hagstrom (1998).

¹³ For example, if workers are willing to pay \$50 each for a 1/100,000 reduction in the probability of dying on the job, then the imputed value of an avoided fatality would be \$50 divided by 1/100,000, or \$5,000,000. Another way to consider this result would be to assume that 100,000 workers made this trade-off. On average, one life would be saved at a cost of \$5,000,000.

¹⁴Note that these estimates do not include an individual's willingness to pay to avoid (a higher risk of) illness prior to fatality, which is separately estimated in the following section.

¹⁵ An alternative approach to valuing an avoided fatality is to monetize, for each year that a life is extended, an estimate from the economics literature of the value of that statistical life-year (VSLY). See, for instance, Aldy and Viscusi (2007) for discussion of VSLY theory and FDA (2003), pp. 41488-9, for an application of VSLY in rulemaking. OSHA has not investigated this approach, but welcomes comment on the issue.

Placing a Monetary Value on Individual Silica-Related Diseases Avoided

In addition to the benefits that are based on the implicit value of fatalities avoided, workers also place an implicit value on occupational injuries or illnesses avoided, which reflect their willingness to pay to avoid monetary costs (for medical expenses and lost wages) and quality-of-life losses as a result of occupational illness. Silicosis, lung cancer, and renal disease can adversely affect individuals for years or even decades in non-fatal cases, or before ultimately proving fatal. Because measures of the benefits of avoiding these illnesses are rare and difficult to find, OSHA has included a range based on a variety of estimation methods.

Consistent with Buchannan et al. (2003), OSHA estimated the total number of moderateto-severe silicosis cases prevented by the proposed rule, as measured by 2/1 or more severe x-rays (based on the ILO rating system). However, while radiological evidence of moderate-to-severe silicosis is evidence of significant material impairment of health, placing a precise monetary value on this condition is difficult, in part because the severity of symptoms may vary significantly among individuals. For that reason, for this preliminary analysis, the Agency employed a broad range of valuation, which should encompass the range of severity these individuals may encounter. Using the willingnessto-pay approach, discussed in the context of the imputed value of fatalities avoided, OSHA has estimated a range in valuations (updated and reported in 2009 dollars) that runs from approximately \$62,000 per case—which reflects estimates developed by Viscusi and Aldy (2003), based on a series of studies primarily describing simple accidents—to upwards of \$5.1 million per case—which reflects work developed by Magat, Viscusi, and Huber (1996) for non-fatal cancer. The latter number is based on an approach that places a willingness-to-pay value to avoid serious illness that is calibrated relative to the value of an avoided fatality. OSHA (2006) previously used this approach in the Final Economic Analysis (FEA) supporting its hexavalent chromium final rule, and EPA (2003) used this approach in its Stage 2 Disinfection and Disinfection Byproducts Rule concerning regulation of primary drinking water. Based on Magat, Viscusi & Huber (1996), EPA used studies on the willingness to pay to avoid nonfatal lymphoma and chronic bronchitis as a basis for valuing a case of nonfatal cancer at 58.3 percent of the value of a fatal cancer. OSHA's estimate of \$5.1 million for an avoided case of nonfatal cancer is based on this 58.3 percent figure.

There are several benchmarks for valuation of health impairment due to silica exposure, using a variety of techniques, which provide a number of mid-range estimates between OSHA's high and low estimates. For example, EPA (2008) recently estimated a cost of approximately \$460,000, in 2008 dollars, per case of chronic bronchitis, which OSHA (2009) used as the basis for comparison with less severe lung impairments from diacetyl exposure. Another approach is to employ a cost-of-injury model. Combining estimates of loss of income, medical cost, and loss of quality-of-life components, Miller (2005), using an enhanced cost-of-injury model, estimated the average silicosis disease cost the equivalent of \$317,000 per case, in 2009 dollars.¹⁶

¹⁶ Miller (2005) estimated the cost of a silicosis case, using an enhanced direct cost approach—including a quality-adjusted-life-years (QALY) component—to be \$265,808 in 2002 dollars.

Miller (2005) also estimated the morbidity costs of several different pneumoconioses other than silicosis and found the other cases to be even more costly to society than silicosis. While the full costs of renal disease are less well known, the medical costs alone of dealing with end-stage renal disease run over \$62,000 annually (Winkelmayer, 2002), suggesting that a more comprehensive analysis of the direct costs of renal disease, as well as for the various lung impairments, would produce an estimate well above the \$62,000 estimate of injuries in Viscusi and Aldy (2003). Moreover, several studies (e.g., Alberini and Krupnick, 2000) have found that the cost of injury approach tends to significantly underestimate the true economic cost of an injury or illness, relative to the willingness to pay approach, which tends to include quality of life impacts and psychic costs as well as medical costs and lost income.

In summary, the various studies presented in this section suggest that the imputed value of avoided morbidity associated with silica exposure, both for cases preceding death and for non-fatal cases, ranges between \$62,000 and \$5.1 million. The Agency believes this range of estimates is descriptive of the value of preventing morbidity associated with moderate-to-severe silicosis, as well as the morbidity preceding mortality due to other causes enumerated here—lung cancer, lung diseases other than cancer, and renal disease. OSHA is therefore applying these values to monetize the benefits of all these cases of avoided silica-related morbidity resulting from the proposed rule.¹⁷

The Agency is interested in public input on the issue of valuing the cost to society of non-fatal cases of moderate-to-severe silicosis, as well as the morbidity associated with other related diseases of the lung, and with renal disease.

¹⁷ For the purpose of simplifying the calculation of the monetized benefits of avoided illness and death, OSHA simply added the monetized benefits of morbidity preceding mortality to the monetized benefits of mortality at the time of death, and both would be discounted at that point. In theory, however, the monetized benefits of morbidity should be recognized (and discounted) at the onset of morbidity, as this is what a worker's willingness to pay is presumed to measure—that is, the risk of *immediate* death or an *immediate* period of illness that a worker is willing to pay to avoid. For this reason, the present value of discounted morbidity benefits is underestimated in this analysis. A parallel underestimate occurs with regard to morbidity not preceding mortality, since it implicitly assumes that the benefits occur at retirement, as per the Buchannan model, but many, if not most, of the 2/0 or higher silicosis cases will have begun years before (with those classifications, in turn, preceded by a 1/0 classification). As a practical matter, however, the Agency lacks sufficient data at this time to refine the analysis in this way.

Summary of Monetized Benefits

Table VII-4 presents the estimated annualized (over 60 years, using a 0 percent discount rate) benefits from each of these components of the valuation, and the range of estimates, based on risk model uncertainty (notably in the case of lung cancer), and the range of uncertainty regarding valuation of morbidity. (Mid-point estimates of the undiscounted benefits for each of the first 60 years are provided in the middle columns of Table VII-A-1 in Appendix VII-A at the end of this chapter. The estimates by year reach a peak of \$11.9 billion in the 60th year.)

As shown, the full range of monetized benefits, undiscounted, for the proposed PEL of $50 \mu g/m^3$ runs from \$3.2 billion annually, in the case of the lowest estimate of lung cancer risk and the lowest valuation for morbidity, up to \$10.9 billion annually, for the highest of both. Note that the value of total benefits is more sensitive to the valuation of morbidity (ranging from \$3.5 billion to \$10.3 billion, given estimates at the midpoint of the lung cancer models) than to the lung cancer model used (ranging from \$6.4 to \$7.4 billion, given estimates at the midpoint of the morbidity valuation). ¹⁸

This comports with the very wide range of valuation for morbidity. At the low end of the valuation range, the total value of benefits is dominated by mortality (\$3.4 billion out of \$3.5 billion at the case frequency midpoint), whereas at the high end the majority of the benefits are related to morbidity (\$6.9 billion out of \$10.3 billion at the case frequency midpoint). Also, the analysis illustrates that most of the morbidity benefits are related to silicosis cases that are not ultimately fatal. At the valuation and case frequency midpoint, \$3.4 billion in benefits are related to mortality, \$1.0 billion are related to morbidity preceding mortality, and \$2.4 billion are related to morbidity not preceding mortality.

¹⁸ As previously indicated, these valuations include all the various estimated health endpoints. In the case of mortality this includes lung cancer, non-malignant respiratory disease and end-stage renal disease. The Agency highlighted lung cancers in this discussion due to the model uncertainty. In calculating the monetized benefits, the Agency is typically referring to the midpoint of the high and low ends of potential valuation—in this case, the undiscounted midpoint of \$3.2 billion and \$10.9 billion..

TABLE VII-4

Estimated Annualized Undiscounted Monetized Benefits of the Silica Proposal for Morbidity and Mortality

PEL		50 μg/m³		100 μg/m³					
		Valuation			Valuation				
	Low	Midpoint	High	Low	Midpoint	High			
Cases									
Fatalities - Total									
Low	\$3,074,165,270	\$3,074,165,270	\$3,074,165,270	\$1,433,022,347	\$1,433,022,347	\$1,433,022,347			
Midpoint	\$3,436,186,835	\$3,436,186,835	\$3,436,186,835	\$1,643,786,936	\$1,643,786,936	\$1,643,786,936			
High	\$3,798,208,401	\$3,798,208,401	\$3,798,208,401	\$1,643,786,936	\$1,643,786,936	\$1,643,786,936			
Morbidity Preceding	g Mortality								
Low	\$21,907,844	\$912,002,363	\$1,802,096,882	\$10,212,343	\$425,129,963	\$840,047,583			
Midpoint	\$24,487,768	\$1,019,402,094	\$2,014,316,421	\$11,714,344	\$487,656,791	\$963,599,238			
High	\$27,067,692	\$1,126,801,826	\$2,226,535,959	\$11,714,344	\$487,656,791	\$963,599,238			
Morbidity Not Prece	eding Mortality								
Total	\$58,844,551	\$2,449,641,696	\$4,840,438,842	\$35,733,901	\$1,487,567,728	\$2,939,401,554			
TOTAL									
Low	\$3,154,917,665	\$6,435,809,329	\$9,716,700,994	\$1,478,968,592	\$3,345,720,038	\$5,212,471,484			
Midpoint	\$3,519,519,154	\$6,905,230,626	\$10,290,942,098	\$1,691,235,181	\$3,619,011,454	\$5,546,787,728			
High	\$3,884,120,643	\$7,374,651,923	\$10,865,183,202	\$1,691,235,181	\$3,619,011,454	\$5,546,787,728			

A Suggested Adjustment to Monetized Benefits

OSHA's estimates of the monetized benefits of the proposed rule are based on the imputed value of each avoided fatality and each avoided silica-related disease. As previously discussed, these, in turn, are derived from a worker's willingness-to-pay to avoid a fatality (with an imputed value per fatality avoided of \$8.7 million in 2009 dollars) and to avoid a silica-related disease (with an imputed value per disease avoided of between \$62,000 and \$5.1 million in 2009 dollars). To this point, these imputed values have been assumed to remain constant over time. However, two related factors suggest that these values will tend to increase over time.

First, economic theory suggests that the value of reducing life-threatening and health-threatening risks—and correspondingly the willingness of individuals to pay to reduce these risks—will increase as real per capita income increases. With increased income, an individual's health and life becomes more valuable relative to other goods because, unlike other goods, they are without close substitutes and in relatively fixed or limited supply. Expressed differently, as income increases, consumption will increase but the marginal utility of consumption will decrease. In contrast, added years of life (in good health) is not subject to the same type of diminishing returns—implying that an effective way to increase lifetime utility is by extending one's life and maintaining one's good health (Hall and Jones, 2007).

Second, real per capita income has broadly been increasing throughout U.S. history, including recent periods.²⁰ For example, for the period 1950 through 2000, real per capita income grew at an average rate of 2.31 percent a year (Hall and Jones, 2007), ²¹ although real per capita income for the recent 25 year period 1983 through 2008 grew at an average rate of only 1.3 percent a year (U.S. Census Bureau, 2010). More important is the fact that real U.S. per capita income is projected to grow significantly in future years. For example, the Annual Energy Outlook (AEO) projections, prepared by the Energy Information Administration (EIA) in the Department of Energy (DOE), show an average annual growth rate of per capita income in the United States of 2.7 percent for the period

¹⁹ Simple modeling can show this directly. For example, Rosen (1988) demonstrates that the value of life can be expressed as the marginal rate of substitution between wealth and the probability of survival. An increase in wealth or income will therefore increase the value of life (except perhaps for persons whose welfare increases directly with increased risk).

²⁰ In addition, as Costa (1998) and Costa and Kahn (2004) point out, elderly health, longevity, and well-being in the United States have historically been improving, which also has the effect of increasing the imputed value of life. Of course, improvements in elderly health, longevity, and well-being are not independent of increases in per capita income over the same period.

²¹ The results are similar if the historical period includes a major economic downturn (such as the United States has recently experienced). From 1929 through 2003, a period in U.S. history that includes the Great Depression, real per capita income still grew at an average rate of 2.22 percent a year (Gomme and Rupert, 2004).

2011-2035.²² The U.S. Environmental Protection Agency prepared its economic analysis of the Clean Air Act using the AEO projections. OSHA believes that it is reasonable to use the same AEO projections employed by DOE and EPA, and correspondingly projects that per capita income in the United States will increase by 2.7 percent a year.

On the basis of the predicted increase in real per capita income in the United States over time and the expected resulting increase in the value of avoided fatalities and diseases, OSHA is considering adjusting its estimates of the benefits of the proposed rule to reflect the anticipated increase in their value over time. This type of adjustment has been recognized by OMB (2003), supported by EPA's Science Advisory Board (EPA, 2000b), and applied by EPA²³. OSHA proposes to accomplish this adjustment by modifying benefits in year i from $[B_i]$ to $[B_i*(1+\eta)^i]$, where " η " is the estimated annual increase in the magnitude of the benefits of the proposed rule.²⁴

What remains is to estimate a value for "n" with which to increase benefits annually in response to annual increases in real per capita income. Probably the most direct evidence of the value of "n" comes from the work of Costa and Kahn (2003, 2004). They estimate repeated labor market compensating wage differentials from cross-sectional hedonic regressions using census and fatality data from the Bureau of Labor Statistics for 1940, 1950, 1960, 1970, and 1980. In addition, with the imputed income elasticity of the value of life on per capita GNP of 1.7 derived from the 1940-1980 data, they then predict the value of an avoided fatality in 1900, 1920, and 2000. Given the change in the value of an avoided fatality over time, it is possible to estimate a value of "\eta" of 3.4 percent a year from 1900-2000; of 4.3 percent a year from 1940-1980; and of 2.5 percent a year from 1980-2000.²⁵ Other, more indirect evidence comes from estimates in the economics literature on the income elasticity of the value of a statistical life. Viscusi and Aldy (2003) performed a meta-analysis on 50 wage-risk studies and concluded that the confidence interval upper bound on the income elasticity did not exceed 1.0 and that the point estimates across a variety of model specifications ranged between 0.5 and 0.6.²⁶ Applied to a long-term increase in per capita income of about 2.7 percent a year, this would suggest a value of "n" of about 1.5 percent a year. More recently, Kniesner, Viscusi, and Ziliak (2010), using panel data quintile regressions, developed an estimate of the overall income elasticity of the value of a statistical life of 1.44. Applied to a long-

²² The EIA used DOE's National Energy Modeling System (NEMS) to produce the Annual Energy Outlook (AEO) projections (EIA, 2011). Future per capita GDP was calculated by dividing the projected real gross domestic product each year by the projected U.S. population for that year.

²³ See, for example, EPA (2003, 2008).

²⁴ This precise methodology was suggested in Ashford and Caldart (1996).

²⁵ These estimates for " η " were not reported in Costa and Kahn (2003, 2004) but were derived by OSHA from the data presented. The changes in the value of " η " for the different time periods mainly reflect different growth rates of per capita income during those periods.

²⁶ These results conflict with the more recent work by Hall and Jones (2007), which concludes that the income elasticity of the value of life should be larger than 1.

term increase in per capita income of about 2.7 percent a year, this would suggest a value of "η" of about 3.9 percent a year.

Based on the preceding discussion of these two approaches for estimating the annual increase in the value of the benefits of the proposed rule and the fact that the projected increase in real per capita income in the United States has flattened in recent years and could flatten in the long run, OSHA suggests a value of "\u03c4" of approximately 2 percent a year. The Agency invites comment on this estimate and on estimates of the income elasticity of the value of a statistical life.

While the Agency believes that the rising value, over time, of health benefits is a real phenomenon that should be taken into account in estimating the annualized benefits of the proposed rule, OSHA is at this time only offering these adjusted monetized benefits as analytic alternatives for consideration. Table VII-5, in the following section, shows estimates of the monetized benefits of the proposed rule (under alternative discount rates) both with and without this suggested increase in monetized benefits over time. The Agency invites comment on this suggested adjustment to monetized benefits.

DISCOUNTING OF MONETIZED BENEFITS

As previously noted, the estimated stream of benefits arising from the proposed silica rule is not constant from year to year, both because of the 45-year delay after the rule takes effect until all active workers obtain reduced silica exposure over their entire working lives and because of, in the case of lung cancer, a 15-year latency period between reduced exposure and a reduction in the probability of disease. An appropriate discount rate is needed to reflect the timing of benefits over the 60-year period after the rule takes effect and to allow conversion to an equivalent steady stream of annualized benefits.

Alternative Discount Rates for Annualizing Benefits

Following OMB (2003) guidelines, OSHA has estimated the annualized benefits of the proposed rule using separate discount rates of 3 percent and 7 percent. Consistent with the Agency's own practices in recent proposed and final rules, ²⁷ OSHA has also estimated, for benchmarking purposes, undiscounted benefits—that is, benefits using a zero percent discount rate.

The question remains, what is the "appropriate" or "preferred" discount rate to use to monetize health benefits? The choice of discount rate is a controversial topic, one that has been the source of scholarly economic debate for several decades.²⁸ However, in

 $^{^{27}}$ See, for example, 69 FR 59305 (Oct. 4, 2004) and 71 FR 10099 (Feb. 28, 2006), the preambles for the proposed and final hexavalent chromium rule.

²⁸ For a more detailed discussion of the major issues, see, for example, Lind (1982a, 1982b, and 1990); EPA (2000a), Chapter 6; and OMB (2003), pp. 31-37.

simplest terms, the basic choices involve a social opportunity cost of capital approach or social rate of time preference approach.^{29, 30}

The social opportunity cost of capital approach reflects the fact that private funds spent to comply with government regulations have an opportunity cost in terms of foregone private investments that could otherwise have been made. The relevant discount rate in this case is the pre-tax rate of return on the foregone investments (Lind, 1982b, pp. 24-32).

The rate of time preference approach is intended to measure the tradeoff between current consumption and future consumption, or in the context of the proposed rule, between current benefits and future benefits. The *individual* rate of time preference is influenced by uncertainty about the availability of the benefits at a future date and whether the individual will be alive to enjoy the delayed benefits. By comparison, the *social* rate of time preference takes a broader view over a longer time horizon—ignoring individual mortality and the riskiness of individual investments (which can be accounted for separately).

The usual method for estimating the social rate of time preference is to calculate the post-tax real rate of return on long-term, risk-free assets, such as U.S. Treasury securities (OMB, 2003, p. 33). A variety of studies have estimated these rates of return over time and reported them to be in the range of approximately 1 - 4 percent.³¹

In accordance with OMB Circular A-4 (2003), OSHA presents benefits and net benefits estimates using discount rates of 3 percent (representing the social rate of time preference) and 7 percent (a rate estimated using the social cost of capital approach). The Agency is interested in any evidence, theoretical or applied, that would inform the application of discount rates to the costs and benefits of a regulation.

Summary of Annualized Benefits under Alternative Discount Rates

²⁹ Ignored here are the various possible methods to adjust or to override the discounting of benefits to address the special problems arising from intergenerational impacts (such as from global climate change or other environmental consequences capable of lasting tens of thousands of years or more). The proposed silica rule, and OSHA regulations in general, do not have intergenerational impacts, as that term is usually understood and used.

³⁰ Other, more complicated approaches—not immediately relevant here—are also possible (see, for example, EPA, 2000a).

³¹ For example, the Congressional Budget Office (CBO, 1988) has estimated the cost of government borrowing to be 2 percent. Farber and Hemmersbaugh (1993) cite rates of return on long-term government securities ranging from approximately 0.5 percent to 3.0 percent. OMB (2003) calculates that the pre-tax yield on 10-year Treasury notes has averaged 3.1 percent in real terms over the 30 years prior to publication of its Circular A-4 in 2003. Newell and Pizer (2003) report real rates of return of nearly 4 percent on 30-year Treasury securities. Nordhaus (2008), page 170, cites a real rate of return of 2.7 percent in 2007 on 20-year Treasury securities.

Table VII-5 presents OSHA's estimates of the sum of the annualized benefits of the proposed rule, using alternative discount rates of 0, 3, and 7 percent, with a breakout between construction and general industry, and including the possible alternative of increasing monetized benefits in response to annual increases in per capita income over time.

Given that the stream of benefits extends out 60 years, the value of future benefits is sensitive to the choice of discount rate. As previously established in Table VII-4, the undiscounted benefits range from \$3.2 billion to \$10.9 billion annually. Using a 7 percent discount rate, the annualized benefits range from \$1.6 billion to \$5.4 billion. As can be seen, going from undiscounted benefits to a 7 percent discount rate has the effect of cutting the annualized benefits of the proposed rule approximately in half. Tables VII-A-1, VII-A-2, VII-A-3, and VII-A-4 in Appendix VII-A demonstrate how annualized benefits are derived (over the 60 years after the silica rule becomes effective), using the midpoint value of annualized benefits for alternate discount rates of 3 and 7 percent (with the annualized undiscounted benefits—using a 0 percent discount rate—derived in the middle columns of each table in Appendix VII-A) and with the possible alternative of increasing monetized benefits in response to increases in per capita income over time.

While the majority of the annualized benefits attributable to the standard come from the construction sector, construction's share is sensitive to whether the estimate is coming from the high or low end of the annualized benefits range. As shown in Table VII-5, for the low-end estimate of annualized benefits—using the 3 percent discount rate, for example—the construction sector accounts for about 83 percent of annualized benefits (\$2.0 billion out of \$2.4 billion), whereas at the high end, the construction sector accounts for about 75 percent of annualized benefits (\$6.1 billion out of \$8.1 billion). As suggested in Tables VII-1 and VII-4, this variation in construction's share is related in part to the range of valuation of morbidity benefits and the fact that morbidity is a relatively larger problem in general industry/maritime than in construction. Or, put differently, silicosis-related diseases in construction appear relatively more likely to be fatal.

Taken as a whole, the Agency's best preliminary estimate of the total annualized benefits of the proposed rule—using a 3 percent discount rate with no adjustment for the increasing value of health benefits over time—is between \$2.4 and \$8.1 billion, with a mid-point value of \$5.3 billion.

As previously mentioned, OSHA has not attempted, at this point, to estimate the monetary value of less severe silicosis cases, measured at 1/0 to 1/2 on the ILO scale. The Agency believes the economic loss to individuals with less severe cases of silicosis could be substantial, insofar as they may be accompanied by a life of medical surveillance and lung damage, and potentially may require a change in career. However, many of these effects can be difficult to isolate and measure in economic terms, particularly in those cases where there is no obvious effect at this stage of disease on

physiological function or performance. issue.	The Agency invites public comment on this

			Table VII-5					
	Total Annual M	anatizad Panafita l	Resulting from a Red	nation in Evnague	o to Cwatallia	no Cilion		
			kesuiting from a Ked of 50 μg/m³ and Alte			le Silica		
	Due	e to Proposed PEL	or 50 μg/m and Aite	rnative PEL of 1	υυ μg/m			
			(\$Billions)					
PEL 50 100								
Discount Rate	Range	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime	
Undiscounted (0%)	Low	\$3.2	\$2.6	\$0.5	\$1.5	\$1.5	\$0.0	
	Midpoint	\$7.0	\$5.4	\$1.6	\$3.7	\$3.6	\$0.1	
	High	\$10.9	\$8.2	\$2.7	\$5.9	\$5.7	\$0.2	
Discounted at 3%, with a	Low	\$2.9	\$2.4	\$0.5	\$1.4	\$1.3	\$0.0	
suggested increased in	Midpoint	\$6.4	\$5.0	\$1.5	\$3.4	\$3.3	\$0.1	
monetized benefits over time	High	\$9.9	\$7.5	\$2.4	\$5.4	\$5.2	\$0.1	
Discounted at 3%	Low	\$2.4	\$2.0	\$0.4	\$1.1	\$1.1	\$0.0	
	Midpoint	\$5.3	\$4.1	\$1.2	\$2.8	\$2.7	\$0.1	
	High	\$8.1	\$6.1	\$2.0	\$4.4	\$4.3	\$0.1	
Discounted at 7%, with a	Low	\$2.0	\$1.6	\$0.3	\$0.9	\$0.9	\$0.0	
suggested increased in	Midpoint	\$4.3	\$3.3	\$1.0	\$2.2	\$2.2	\$0.1	
monetized benefits over time	High	\$6.6	\$5.0	\$1.6	\$3.6	\$3.5	\$0.1	
Discounted at 7%	Low	\$1.6	\$1.3	\$0.3	\$0.8	\$0.8	\$0.0	
	Midpoint	\$3.5	\$2.7	\$0.8	\$1.8	\$1.8	\$0.0	
	High	\$5.4	\$4.1	\$1.3	\$2.9	\$2.8	\$0.1	

NET BENEFITS OF THE PROPOSED RULE

OSHA has estimated, in Table VII-6, the monetized and annualized net benefits of the proposed rule (with a PEL of $50 \mu g/m^3$), based on the benefits and costs previously presented in this chapter and in Chapter V of this PEA. Table VII-6 also provides estimates of annualized net benefits for an alternative PEL of $100 \mu g/m^3$. Both the proposed rule and the alternative rule have the same ancillary provisions and an action level equal to half of the PEL in both cases.

Table VII-6 is being provided for informational purposes only. As previously noted, the OSH Act requires the Agency to set standards based on eliminating significant risk to the extent feasible. An alternative criterion of maximizing net (monetized) benefits may result in very different regulatory outcomes. Thus, this analysis of net benefits has not been used by OSHA as the basis for its decision concerning the choice of a PEL or of other ancillary requirements for the proposed silica rule.

Table VII-6 shows net benefits using alternative discount rates of 0, 3, and 7 percent for benefits and costs and includes a possible adjustment to monetized benefits to reflect increases in real per capita income over time. (An expanded version of Tables VII-6, with a breakout of net benefits between construction and general industry/maritime, is provided in Table VII-B-1 in Appendix B, at the end of this chapter.) OSHA has relied on a uniform discount rate applied to both costs and benefits. The Agency is interested in any evidence, theoretical or applied, that would support or refute the application of differential discount rates to the costs and benefits of a regulation.

As previously noted in this chapter, the choice of discount rate for annualizing benefits has a significant effect on annualized benefits. The same is true for net benefits. For example, the net benefits using a 7 percent discount rate for benefits are considerably smaller than the net benefits using a 0 percent discount rate, declining by more than half under all scenarios. (Conversely, as noted in Chapter V of this PEA, the choice of discount rate for annualizing costs has only a very minor effect on annualized costs.)

Based on the results presented in Table VII-6, OSHA finds:

- While the net benefits of the proposed rule vary considerably—depending on the choice of discount rate used to annualize benefits and on whether the benefits being used are in the high, midpoint, or low range—benefits exceed costs for the proposed 50 µg/m³ PEL in all cases that OSHA considered.
- The Agency's best estimate of the net annualized benefits of the proposed rule—using a uniform discount rate for both benefits and costs of 3 percent—is between \$1.8 billion and \$7.5 billion, with a midpoint value of \$4.6 billion.
- The alternative of a 100 μ g/m³ PEL has lower net benefits under all assumptions, relative to the proposed 50 μ g/m³ PEL. However, for this alternative PEL,

benefits were also found to exceed costs in all cases that OSHA considered.

INCREMENTAL BENEFITS OF THE PROPOSED RULE

Incremental costs and benefits are those that are associated with increasing the stringency of the standard. A comparison of incremental benefits and costs provides an indication of the relative efficiency of the proposed PEL and the alternative PEL. Again, OSHA has conducted these calculations for informational purposes only and has not used these results as the basis for selecting the PEL for the proposed rule.

OSHA provided, in Table VII-6, estimates of the net benefits of an alternative $100 \,\mu\text{g/m}^3$ PEL. The incremental costs, benefits, and net benefits of meeting a $100 \,\mu\text{g/m}^3$ PEL and then going to a $50 \,\mu\text{g/m}^3$ PEL (as well as meeting a $50 \,\mu\text{g/m}^3$ PEL and then going to a $25 \,\mu\text{g/m}^3$ PEL—which the Agency has determined is not feasible), for alternative discount rates of 3 and 7 percent, are presented in Tables VII-7A and VII-7B. Table VII-7A breaks out costs by provision and benefits by type of disease and by morbidity/mortality, while Table VII-7B breaks out costs and benefits by major industry sector. As Table VII-7A shows, at a discount rate of 3 percent, a PEL of $50 \,\mu\text{g/m}^3$, relative to a PEL of $100 \,\mu\text{g/m}^3$, imposes additional costs of \$339 million per year; additional benefits of \$2.5 billion per year, and additional net benefits of \$2.16 billion per year. The proposed PEL of $50 \,\mu\text{g/m}^3$ also has higher net benefits using either a 3 percent or 7 percent discount rate.

Table VII-7B continues this incremental analysis but with breakdowns between construction and general industry/maritime. This table shows that construction provides most of the incremental costs, but the incremental benefits are more evenly divided between the two sectors. Nevertheless, both sectors show strong positive net benefits, which are greater for the proposed PEL of $50 \mu g/m^3$ than the alternative of $100 \mu g/m^3$.

Tables VII-7A and VII-7B demonstrate that, across all discount rates, there are net benefits to be achieved by lowering exposures to $100~\mu g/m^3$ and then, in turn, lowering them further to $50~\mu g/m^3$. However, the majority of the benefits and costs attributable to the proposed rule are from the initial effort to lower exposures to $100~\mu g/m^3$. Consistent with the previous analysis, net benefits decline across all increments as the discount rate for annualizing benefits increases.

In addition to examining alternative PELs, OSHA also examined alternatives to other provisions of the standard. These alternatives are discussed in the Initial Regulatory Flexibility Analysis (IRFA) presented in the following chapter.

Table VII-6

Annual Monetized Net Benefits Resulting from a Reduction in Exposure to Crystalline Silica Due to Proposed PEL of 50 μg/m³ and Alternative PEL of 100 μg/m³

(\$Billions)

PEL		50	100
Discount Data	D		
Discount Rate	Range		
	Low	\$2.5	\$1.2
Undiscounted (0%)	Midpoint	\$6.4	\$3.4
	High	\$10.2	\$5.6
Discounted at 3%, with a	Low	\$2.3	\$1.1
suggested increased in	Midpoint	\$5.8	\$3.1
monetized benefits over time	High	\$9.3	\$5.1
	Low	\$1.8	\$0.8
3%	Midpoint	\$4.6	\$2.5
	High	\$7.5	\$4.1
Discounted at 7%, with a	Low	\$1.3	\$0.6
suggested increased in	Midpoint	\$3.6	\$1.9
monetized benefits over time	High	\$5.9	\$3.3
	Low	\$1.0	\$0.5
7%	Midpoint	\$2.8	\$1.5
	High	\$4.7	\$2.6

Та	ble VII-7A: Anr	nualized Cost	s, Benefits an	d Incremental Ben	efits of OSHA Millions (\$20		Silica Standard o	of 50 µg/m³ ar	nd 100 μg/m³ Alterna	tive			
		25 μg/m	3	Incremental Co	osts/Benefits		50 μg/m³		Incremental C	Costs/Benefits		100 μg/m³	
Discount Rate	_	3%	7%	3%	7%	_	3%	7%	3%	7%	_	3%	7%
Annualized Costs													
Engineering Controls (includes Abrasive Blasting)		\$330	\$344	\$0	\$0		\$330	\$344	\$187	\$197		\$143	\$147
Respirators		\$421	\$422	\$330	\$331		\$91	\$91	\$88	\$88		\$2	\$3
Exposure Assessment		\$203	\$203	\$131	\$129		\$73	\$74	\$26	\$26		\$47	\$48
Medical Surveillance		\$219	\$227	\$143	\$148		\$76	\$79	\$28	\$29		\$48	\$50
Training		\$49	\$50	\$0	\$0		\$49	\$50	\$0	\$0		\$49	\$50
Regulated Area or Access Control		\$85	\$86	\$66	\$66	_	\$19	\$19	\$10_	\$10	_	\$9	\$10
Total Annualized Costs (point estimate)		\$1,308	\$1,332	\$670	\$674		\$637	\$658	\$339	\$351		\$299	\$307
Annual Benefits: Number of Cases Prevented	Cases			Cases		Cases			Cases		Cases		
Fatal Lung Cancers (midpoint estimate)	237			Cases 75		162			79		83		
Fatal Silicosis & other Non-Malignant Respiratory Diseases	527			152		375			186		189		
Fatal Renal Disease	258			108		151			91		60		
Silica-Related Mortality	1,023	\$4,811	\$3,160	335 \$1,543	\$1,028	688	\$3,268	\$2,132	357 \$1,704	\$1,116	331	\$1,565	\$1,016
Silicosis Morbidity	1,770	\$2,219	\$1,523	186 \$233	\$160	1,585	\$1,986	\$1,364	632 \$792	\$544	953	\$1,194	\$820
Monetized Annual Benefits (midpoint estimate)		\$7,030	\$4,684	\$1,776	\$1,188		\$5,254	\$3,495	\$2,495	\$1,659		\$2,759	\$1,836
Net Benefits		\$5,722	\$3,352	\$1,105	\$514		\$4,617	\$2,838	\$2,157	\$1,308		\$2,460	\$1,529

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

Table VII-7B: /	Annualized (Costs, Bene	efits and Incre	emental Ben	efits of OS	HA's Proposed Millions (\$20		dard of 50	ug/m ³ and 100	μg/m³ Alternative, I	by Major Industr	y Sector		
		25 μς	J/m³	Incr	emental Co	sts/Benefits		50 µ	g/m³	Incremental	Costs/Benefits		100 μg/m	3
Discount Rate		3%	7%	.	3%	7%	_	3%	7%	3%	7%	_	3%	7%
Annualized Costs Construction General Industry/Maritime		\$1,043 \$264	\$1,062 \$270		\$548 \$122	\$551 \$123		\$495 \$143	\$511 \$147	\$233 \$106	\$241 \$110		\$262 \$36	\$270 \$37
Total Annualized Costs		\$1,308	\$1,332		\$670	\$674	-	\$637	\$658	\$339	\$351	_	\$299	\$307
Annual Benefits: Number of Cases Prevented	Cases			Cases			Cases			Cases		Cases		
Silica-Related Mortality Construction General Industry/Maritime	802 221	\$3,804 \$1,007	\$2,504 \$657	235 100	\$1,109 \$434	\$746 \$283	567 121	\$2,695 \$573	\$1,758 \$374	242 \$1,158 115 \$545	\$760 \$356	325 6	\$1,537 \$27	\$998 \$18
Total	1,023	\$4,811	\$3,160	335	\$1,543	\$1,028	688	\$3,268	\$2,132	357 \$1,704	\$1,116	331	\$1,565	\$1,016
Silicosis Morbidity Construction General Industry/Maritime	1,157 613	\$1,451 \$768	\$996 \$528	77 109	\$96 \$136	\$66 \$94	1,080 504	\$1,354 \$632	\$930 \$434	161 \$202 471 \$590	\$139 \$405	919 33	\$1,152 \$42	\$791 \$29
Total	1,770	\$2,219	\$1,523	186	\$233	\$160	1,585	\$1,986	\$1,364	632 \$792	\$544	953	\$1,194	\$820
Monetized Annual Benefits (midpoint estimate)														
Construction General Industry/Maritime		\$5,255 \$1,775	\$3,500 \$1,184		\$1,205 \$570	\$812 \$377		\$4,049 \$1,205	\$2,688 \$808	\$1,360 \$1,135	\$898 \$761		\$2,690 \$69	\$1,789 \$47
Total		\$7,030	\$4,684		\$1,776	\$1,188		\$5,254	\$3,495	\$2,495	\$1,659		\$2,759	\$1,836
Net Benefits Construction General Industry/Maritime		\$4,211 \$1,511	\$2,437 \$914		\$657 \$448	\$261 \$254		\$3,555 \$1,062	\$2,177 \$661	\$1,127 \$1,029	\$658 \$651		\$2,427 \$33	\$1,519 \$10
Total		\$5,722	\$3,352		\$1,105	\$514		\$4,617	\$2,838	\$2,157	\$1,308		\$2,460	\$1,529

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

SENSITIVITY ANALYSIS

In this section, OSHA presents the results of two different types of sensitivity analysis to demonstrate how robust the estimates of net benefits are to changes in various cost and benefit parameters. In the first type of sensitivity analysis, OSHA made a series of isolated changes to individual cost and benefit input parameters in order to determine their effects on the Agency's estimates of annualized costs, annualized benefits, and annualized net benefits. In the second type of sensitivity analysis—a so-called "breakeven" analysis—OSHA also investigated isolated changes to individual cost and benefit input parameters, but with the objective of determining how much they would have to change for annualized costs to equal annualized benefits.

Again, the Agency has conducted these calculations for informational purposes only and has not used these results as the basis for selecting the PEL for the proposed rule.

Analysis of Isolated Changes to Inputs

The methodology and calculations underlying the estimation of the costs and benefits associated with this rulemaking are generally linear and additive in nature. Thus, the sensitivity of the results and conclusions of the analysis will generally be proportional to isolated variations in a particular input parameter. For example, if the estimated time that employees need to travel to (and from) medical screenings were doubled, the corresponding labor costs would double as well.

OSHA evaluated a series of such changes in input parameters to test whether and to what extent the general conclusions of the economic analysis held up. OSHA first considered changes to input parameters that affected only costs and then changes to input parameters that affected only benefits. Each of the sensitivity tests on cost parameters had only a very minor effect on total costs or net costs. Much larger effects were observed when the benefits parameters were modified; however, in all cases, net benefits remained significantly positive. On the whole, OSHA found that the conclusions of the analysis are reasonably robust, as changes in any of the cost or benefit input parameters still show significant net benefits for the proposed rule. The results of the individual sensitivity tests are summarized in Table VII-8 and are described in more detail below.

In the first of these sensitivity tests, where OSHA doubled the estimated portion of employees in regulated areas requiring disposable clothing, from 10 to 20 percent, and estimates of other input parameters remained unchanged, Table VII-8 shows that the estimated total costs of compliance would increase by \$3.6 million annually, or by about 0.54 percent, while net benefits would also decline by \$3.6 million, from \$4,532 million to \$4,528 million annually.

			Table VII	-8				
			~					
		,	Sensitivity T	ests				
Impact Variable	OSHA's Best Estimate	Sensitivity Test	Impact on Annualized Costs	Percentage Impact on Costs		Adjusted Annualized Costs		Adjusted Annualized Net Benefit
<u>Cost</u>								
OSHA's Best Estimate of (a) Annualized Tota	l Cost and (b) An	nualized Net Be	refits		(a)	\$657,892,211	(b)	\$4,531,808,579
Percentage of employees requiring disposable clothing (in regulated areas)	10%	20%	\$3,572,444	0.54%		\$661,464,655		\$4,528,236,135
ercentage of Employees with Baseline raining	50%	25%	\$7,854,808	1.19%		\$665,747,020		\$4,523,953,770
Travel times for medical exams	60 minutes	120 minutes	\$1,422,117	0.22%		\$659,314,329		\$4,530,386,461
εφοsure monitoring—persons per sample rea	4	. 3	\$24,807,252	3.77%		\$682,699,463		\$4,507,001,326
Cost for respirator filters	\$332 per year	-40%	-\$21,246,533	-3.23%		\$636,645,678		\$4,553,055,112
Discount rate for costs	7%	3%	\$20,562,832	3.13%		\$678,455,043		\$4,552,371,410
<u>Senefit</u>	HA's Best Estin	Sensitivity Test	on Annualized B	ntage Impact on Benefi	its Adj	justed Annualized Benefits	Adjuste	d Annualized Net Be
OSHA's Best Estimate of (c) Annualized Total	l Benefits and (b)	Annualized Net	Benefits		(c)	\$5,189,700,790	(b)	\$4,531,808,579
Monetized Benefits (High Morbidity Valuation/High Mortality Case Estimate)	Midpoint	High	\$2,926,681,791	56%		\$8,116,382,581		\$7,458,490,370
Monetized Benefits (Low Morbidity /aluation/Low Mortality Case Estimate)	Midpoint	Low	-\$2,797,448,568	-54%		\$2,392,252,222		\$1,734,360,011
Discount rate for benefits (7%)	3%	7%	-\$1,723,993,210	-33%		\$3,465,707,579		\$2,807,815,368
Discount rate for benefits (3%), with Adjustment to Monetized Benefits to Reflect ncreases in Real Per Capita Income Over	3%	Adjusted 3%	\$1,130,801,817	22%		\$6.320,502,607		\$5,662,610,396

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming economic conditions remain constant for the sixty year time horizon.

In a second sensitivity test, OSHA decreased the estimated current prevalence of baseline silica training by half, from 50 percent to 25 percent. As shown in Table VII-8, if OSHA's estimates of other input parameters remained unchanged, the total estimated costs of compliance would increase by \$7.9 million annually, or by about 1.19 percent, while net benefits would also decline by \$7.9 million annually, from \$4,532 million to \$4,524 million annually.

In a third sensitivity test, OSHA doubled the estimated travel time for employees to and from medical exams from 60 to 120 minutes. As shown in Table VII-8, if OSHA's estimates of other input parameters remained unchanged, the total estimated costs of compliance would increase by \$1.4 million annually, or by about 0.22 percent, while net benefits would also decline by \$1.4 million annually, from \$4,532 million to \$4,530 million annually.

In a fourth sensitivity test, OSHA reduced its estimate of the number of workers who could be represented by an exposure monitoring sample from four to three. This would have the effect of increasing such costs by one-third. As shown in Table VII-8, if OSHA's estimates of other input parameters remained unchanged, the total estimated costs of compliance would increase by \$24.8 million annually, or by about 3.77 percent, while net benefits would also decline by \$24.8 million annually, from \$4,532 million to \$4,507 million annually.

In a fifth sensitivity test, OSHA increased by 50 percent the size of the productivity penalty arising from the use of engineering controls in construction. As shown in Table VIII-23, if OSHA's estimates of other input parameters remained unchanged, the total estimated costs of compliance would increase by \$35.8 million annually, or by about 5.44 percent (and by 7.0 percent in construction), while net benefits would also decline by \$35.8 million annually, from \$4,532 million to \$4,496 million annually.

In a sixth sensitivity test, based on the discussion in Chapter V of this PEA, OSHA reduced the costs of respirator cartridges to reflect possible reductions in costs since the original costs per filter were developed in 2003, and inflated to current dollars. For this purpose, OSHA reduced respirator filter costs by 40 percent to reflect the recent lower-quartile estimates of costs relative to the costs used in OSHA's primary analysis. As shown in Table VIII-23, the total estimated costs of compliance would be reduced by \$21.2 million annually, or by about 3.23 percent, while net benefits would also increase by \$21.2 million annually, from \$4,532 million to \$4,553 million annually.

In a seventh sensitivity test, OSHA reduced the average crew size in general industry and maritime subject to a "unit" of engineering controls from 4 to 3. This would have the effect of increasing such costs by one-third. As shown in Table VIII-23, if OSHA's estimates of other input parameters remained unchanged, the total estimated costs of compliance would increase by \$20.8 million annually, or by about 3.16 percent (and by 14.2 percent in general industry and maritime), while net benefits would also decline by \$20.8 million annually, from \$4,532 million to \$4,511 million annually.

In an eighth sensitivity test, OSHA considered the effect on annualized net benefits of varying the discount rate for costs and the discount rate for benefits separately. In particular, the Agency examined the effect of reducing the discount rate for costs from 7 percent to 3 percent. As indicated in Table VII-8, this parameter change lowers the estimated annualized cost by \$20.6 million, or 3.13 percent. Total annualized net benefits would increase from \$4,532 million annually to \$4,552 million annually.

The Agency also performed sensitivity tests on several input parameters used to estimate the benefits of the proposed rule. In the first two tests, in an extension of results previously presented in Table VII-5, the Agency examined the effect on annualized net benefits of employing the high-end estimate of the benefits, as well as the low-end estimate. As discussed previously, the Agency examined the sensitivity of the benefits to both the number of different fatal lung cancer cases prevented, as well as the valuation of individual morbidity cases. Table VII-8 presents the effect on annualized net benefits of using the extreme values of these ranges, the high mortality count *and* high morbidity valuation case, and the low mortality count *and* low morbidity valuation case. As indicated, using the high estimate of mortality cases prevented and morbidity valuation, the benefits rise by 56 percent to \$8.1 billion, yielding net benefits of \$7.5 billion. For the low estimate of both cases and valuation, the benefits decline by 54 percent, to \$2.4 billion, yielding net benefits of \$1.7 billion.

In the third sensitivity test of benefits, the Agency examined the effect of raising the discount rate for benefits to 7 percent. The fourth sensitivity test of benefits examines the effect of adjusting monetized benefits to reflect increases in real per capita income over time. The results of these two sensitivity tests were previously shown in Table VII-6 and are repeated in Table VII-8. Raising the interest rate to 7 percent lowers the estimated benefits by 33 percent, to \$3.5 billion, yielding annualized net benefits of \$2.8 billion. Adjusting monetized benefits to reflect increases in real per capita income over time raises the benefits by 22 percent, to \$6.3 billion, yielding net benefits of \$5.7 billion.

"Break-Even" Analysis

OSHA also performed sensitivity tests on several other parameters used to estimate the net costs and benefits of the proposed rule. However, for these, the Agency performed a "break-even" analysis, asking how much the various cost and benefits inputs would have to vary in order for the costs to equal, or break even with, the benefits. The results are shown in Table VII-9.

In one break-even test on cost estimates, OSHA examined how much costs would have to increase in order for costs to equal benefits. As shown in Table VII-9, this point would be reached if costs increased by \$4.5 billion, or by 689 percent.

In a second test, looking specifically at the estimated engineering control costs, the Agency found that these costs would need to increase by \$4.5 billion, or 1,318 percent, for costs to equal benefits.

In a third sensitivity test, on benefits, OSHA examined how much its estimated monetary valuation of an avoided illness or an avoided fatality would need to be reduced in order for the costs to equal the benefits. Since the total valuation of prevented mortality and morbidity are each estimated to exceed \$1.9 billion, while the estimated costs are \$0.6 billion, an independent break-even point for each is impossible. In other words, for example, if no value is attached to an avoided illness associated with the rule, but the estimated value of an avoided fatality is held constant, the rule still has substantial net benefits. Only through a reduction in the estimated net value of both components is a break-even point possible.

The Agency, therefore, examined how large an across-the-board reduction in the monetized value of all avoided illnesses and fatalities would be necessary for the benefits to equal the costs. As shown in Table VII-9, an 87 percent reduction in the monetized value of all avoided illnesses and fatalities would be necessary for costs to equal benefits, reducing the estimated value to \$1.1 million per life saved, and an equivalent percentage reduction to about \$0.3 million per illness prevented.

In a fourth break-even sensitivity test, OSHA estimated how many fewer silica-related fatalities and illnesses would be required for benefits to equal costs. Paralleling the previous discussion, eliminating either the prevented mortality or morbidity cases alone would be insufficient to lower benefits to the break-even point. The Agency therefore

Table VII-9
Break-Even Sensitivity Analysis

	OSHA's Best Estimate of Annualized Cost or Benefit Factor	Factor Value at which Benefits Equal Costs	Required Factor Dollar/Number Change	Percentage Factor Change
Total Costs	\$657,892,211	\$5,189,700,790	\$4,531,808,579	688.8%
Engineering Control Costs	\$343,818,700	\$4,875,627,279	\$4,531,808,579	1318.1%
Benefits Valuation per Case Avoided Monetized Benefit per Fatality Avoided* Monetized Benefit per Illness Avoided*		\$1,102,889 \$326,430	-\$7,597,111 -\$2,248,570	-87.3% -87.3%
Cases Avoided Deaths Avoided* Illnesses Avoided*		87 201	-600 -1,384	-87.3% -87.3%

^{*}Note: The total estimated value of prevented mortality or morbidity alone exceeds the estimated cost of the rule, providing no break-even point.

Accordingly, these numbers represent a reduction in the composite valuation of an avoided fatality or illness or in the composite number of cases avoided.

examined them as a group. As shown in Table VII-9, a reduction of 87 percent, for both simultaneously, is required to reach the break-even point—600 fewer fatalities prevented annually, and 1,384 fewer silica-related illnesses prevented annually.

Taking into account both types of sensitivity analysis the Agency performed on its point estimates of the annualized costs and annualized benefits of the proposed rule, the results demonstrate that net benefits would be positive in all plausible cases tested. In particular, this finding would hold even with relatively large variations in individual input parameters. Alternately, one would have to imagine extremely large changes in costs or benefits for the rule to fail to produce net benefits. OSHA concludes that its finding of significant net benefits resulting from the proposed rule is a robust one.

OSHA welcomes input from the public regarding all aspects of this sensitivity analysis, including any data or information regarding the accuracy of the preliminary estimates of compliance costs and benefits and how the estimates of costs and benefits may be affected by varying assumptions and methodological approaches. OSHA also invites comment on the risk analysis and risk estimates from which the benefits estimates were derived.

REFERENCES

- Alberini A., and A. Krupnick, 2000. "Cost-of-Illness and Willingness-to-Pay Estimates of the Benefits of Improved Air Quality: Evidence from Taiwan", Land Economics, 76:1, pp. 37-53. **OSHA-2010-0034-0523**
- Aldy, J. E., and W. K. Viscusi, 2007. Age Differences in the Value of Statistical Life, Discussion Paper RFF DP 07005, Resources for the Future, April 2007. OSHA-2010-0034-1522
- Ashford, N.A., and C.C. Caldart, 1996. Technology, Law, and the Working Environment(Revised Edition). Washington, D.C.: Island Press. **OSHA-2010-0034-0538**
- Attfield, M. D., and J. Costello, 2004. Quantitative exposure-response for silica dust and lung cancer in Vermont granite workers. Am. J. Ind. Med. 45:129-138.

 OSHA-2010-0034-0543
- Buchanan D., B. G. Miller, and A. C. Soutar, 2003. Quantitative relations between exposure to respirable quartz and risk of silicosis. Occup. Environ Med. 60: 159-164. **OSHA-2010-0034-0306**
- Bureau of Labor Statistics (BLS, 2010a). U.S. Department of Labor. Current Population Survey. Table 5: Tenure with current employer of wage and salary workers by industry, class of worker, sex, and selected age, January 2010. (Mean Years). Unpublished data. **OSHA-2010-0034-1620**
- Bureau of Labor Statistics (BLS, 2010b). U.S. Department of Labor. Current Population Survey. Table 16: Employed persons by detailed industry, sex, and age. Annual Average 2010. (Median Age). Unpublished data. **OSHA-2010-0034-1672**
- Costa D., & M. Kahn, 2003. The Rising Value of Nonmarket Goods, American Economic Review, (93: 2), pp. 227-233. **OSHA-2010-0034-0610**
- Costa D., & M. Kahn, 2004. Changes in the Value of Life, 1940-1980, Journal of Risk and Uncertainty, (29: 2), pp. 159-180. **OSHA-2010-0034-0609**
- Dorman, P., and P. Hagstrom, 1998. Wage Compensation for Dangerous Work Revisited, Industrial and Labor Relations Review, 52:1, pp. 116-135. **OSHA-2010-0034-1265**
- Farber, D. A., and P. A. Hemmersbaugh, 1993. The Shadow of the Future: DiscounRates, Later Generations, and the Environment, Vanderbilt Law Review 46(2), pp. 267-304.

 OSHA-2010-0034-1667

- Food and Drug Administration (FDA, 2003). Food Labeling: *Trans* Fatty Acids in Nutrition Labeling, Nutrient Content Claims, and Health Claims. Final Rule, July 11, 2003. Federal Register, Volume 68, Number 133, pp. 41434-506. **OSHA-2010-0034-1618**
- Gomme, P., and P. Rupert, 2004. Per Capita Income Growth and Disparity in the United States, 1929-2003, Federal Reserve Bank of Cleveland, August 15.

 OSHA-2010-0034-0710
- Hall, R.E., and C. I. Jones, 2007. The Value of Life and the Rise in Health Spending, Quarterly Journal of Economics, CXXII, pp. 39-72. **OSHA-2010-0034-0720**
- Hintermann, B., A. Alberini, and A. Markandya, 2010. <u>Estimating the value of safety</u> with labour market data: are the results trustworthy? *Applied Economics*, 42 (9), pp. 1085-1100. **OSHA-2010-0034-0739**
- Kniesner, T. J., W. K. <u>Viscusi</u>, and J. P. Ziliak, 2010. Policy relevant heterogeneity in the value of statistical life: New evidence from panel data quantile regression, Journal of Risk and Uncertainty, 40, pp. 15-31. **OSHA-2010-0034-0767**
- Lind, R. C. (ed.), 1982a. Discounting for Time and Risk in Energy Policy. Washington, D.C.: Resources for the Future. **OSHA-2010-0034-1623**
- Lind, R. C. 1982b. A Primer on the Major Issues Relating to the Discount Rate for Evaluating National Energy Options, in Discounting for Time and Risk in Energy Policy, R. C. Lind (ed.). Washington, D.C.: Resources for the Future.
 OSHA-2010-0034-1622
- Lind, R. C., 1990. Reassessing the Government's Discount Rate Policy in Light of New Theory and Data in a World Economy with a High Degree of Capital Mobility. Journal of Environmental Economics and Management 18(2): 8-28.

 OSHA-2010-0034-1519
- Magat W., W. Viscusi, and J. Huber, 1996. A Reference Lottery Metric for Valuing Health, Management Science, (42: 8), pp. 1118-1130. **OSHA-2010-0034-0791**
- Miller, T., 2005. Costs of Silicosis and Chronic Beryllium Disease, Draft Final Report, November 22, 2005. Pacific Institution for Research and Evaluation, Prepared Under Task Order No. 2, Task Order Q049610282, Office of Regulatory Analysis, Occupational Safety and Health Administration.

 OSHA-2010-0034-0811
- Newell, R.G., and W. A. Pizer, 2003. Discounting the Distant Future: How Much Do Uncertain Rates Increase Valuations? Journal of Environmental Economics and Management, 46(1): 52-71. **OSHA-2010-0034-0833**

- Nordhaus, W. D., 2008. A Question of Balance: Weighing the Options on Global Warming Policies. New Haven, CT: Yale University Press.

 OSHA-2010-0034-0916
- Occupational Safety and Health Administration (OSHA, 2003a). Preliminary Initial Regulatory Flexibility Analysis of the Draft Proposed OSHA Standard for Silica Exposure in Construction. U.S. Dept. of Labor, Occupational Safety and Health Administration, Office of Regulatory Analysis. Docket H006A, Ex. 3-3. October 3, 2003. **OSHA-2010-0034-1685**
- Occupational Safety and Health Administration (OSHA, 2003b). Preliminary Initial Regulatory Flexibility Analysis of the Draft Proposed OSHA Standard for Silica Exposure in General Industry and Maritime. U.S. Dept. of Labor, Occupational Safety and Health Administration, Office of Regulatory Analysis. Docket H006A, Ex. 4-3. October 3, 2003. **OSHA-2010-0034-0938**
- Occupational Safety and Health Administration, 2006 (OSHA, 2006). Final Economic and Regulatory Flexibility Analysis for OSHA's Final Standard for Occupational Exposure to Hexavalent Chromium; Docket H054A, Exhibit 49, pp. VI-16 to VI-18. **OSHA-2010-0034-0941**
- Park, F., L. Stayner, R. Smith, S. Gilbert, and H. Checkoway, 2002. Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: a quantitative risk assessment, Occupational and Environmental Medicine (59: 36-43). **OSHA-2010-0034-0405**
- Rosen, S., 1988. The Value of Changes in Life Expectancy, Journal of Risk and Uncertainty, 1: 285-304. **OSHA-2010-0034-1165**
- Rosenman, K. D., M. J. Reilly, and P.K. Henneberger, 2003. Estimating the Total Number of Newly-Recognized Silicosis Cases in the United States, American Journal of Industrial Medicine (44:141-147). **OSHA-2010-0034-1166**
- Steenland K., M. Attfield, and A. Mannejte, 2002. Pooled analyses of renal disease mortality and occupational crystalline silica exposure in three cohorts. Annals of Occupational Hygiene. Vol 46, Supplement 1, pp. 4-9. **OSHA-2010-0034-0448**
- Steenland K, A. Mannetje, P. Boffetta, L. Stayner, M. Attfield, J. Chen, M. Dosemeci, N. DeKlerk, E. Hnizdo, R. Koskela, and H. Checkoway, 2001. Pooled exposure-response and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multi-centric study. Cancer Causes Control 12:773-784. **OSHA-2010-0034-0452**
- Sunstein, C., 2004. Valuing Life: A Plea for Disaggregation, Duke Law Journal 54: 385-445. **OSHA-2010-0034-1523**

- Thaler, R., and S. Rosen, 1976. "The Value of Saving a Life: Evidence from the Labor Market," in Household Production and Consumption, N E. Terleckyj (ed.), New York: Columbia University Press, 1976, pp. 265-298. **OSHA-2010-0034-1520**
- U.S. Bureau of Economic Analysis, 2010. National Income and Product Accounts Table:
 Table 1.1.9. Implicit Price Deflators for Gross Domestic Product
 [Index numbers, 2005=100]. Revised May 27, 2010.
 <http://www.bea.gov/national/nipaweb/TableView.asp?SelectedTable=13&Freq=Qtr&FirstYear=2006&LastYear=2008>> **OSHA-2010-0034-1666**
- U.S. Census Bureau, 2010. Income, Poverty, and Health Insurance Coverage in the United States: 2008, Current Population Reports, P60-236(RV), and Historical Tables -- Table P-1, September 2009. Internet release date: December 15, 2010. Available at: http://www.census.gov/hhes/www/income/data/historical/people/index.html OSHA-2010-0034-1621
- U.S. Congressional Budget Office, 1988 (CBO, 1988). Assessing the Costs of Environmental Legislation. Staff Working Paper, May. Available at: http://www.cbo.gov/ftpdocs/49xx/doc4952/doc08-Entire.pdf OSHA-2010-0034-0585
- U. S. Energy Information Administration (EIA, 2011). Annual Energy Outlook (AEO). Available at:

 http://www.eia.gov/oiaf/aeo/tablebrowser/#release=AEO2011&subject=0-AEO2011&table=18-AEO2011®ion=0-0&cases=ref2011-d120810c

 OSHA-2010-0034-1494
- U.S. Environmental Protection Agency, 2000 (EPA, 2000a). Guidelines for Preparing Economic Analyses. EPA-240-R-00-003. September. Available at: http://yosemite.epa.gov/ee/epa/eed.nsf/pages/Guidelines.html/\$file/Guidelines.pdf OSHA-2010-0034-1327
- U.S. Environmental Protection Agency, 2000 (EPA, 2000b). SAB Report on EPA's White Paper Valuing the Benefits of Fatal Cancer Risk Reduction. EPA-SAB-EEAC-00-013. **OSHA-2010-0034-0652**
- U. S. Environmental Protection Agency, 2003 (EPA, 2003). National Primary Drinking Water Regulations; Stage 2 Disinfectants and Disinfection Byproducts Rule; National Primary and Secondary Drinking Water Regulations; Approval of Analytical methods for Chemical Contaminants; Proposed Rule, August 18, 2003. Federal Register, Volume 68, Number 159. **OSHA-2010-0034-1665**

- U. S. Environmental Protection Agency, 2008 (EPA, 2008). Office of Air Quality Planning and Standards, Health and Environmental Impacts Division, Air Benefit and Cost Group, Final Ozone NAAQS Regulatory Impact Analysis, March. OSHA-2010-0034-0661
- U. S. Environmental Protection Agency, 2010 (EPA, 2010). The Benefits and Costs of the Clean Air Act: 1990 to 2020. Preliminary Draft Report Prepared by the USEPA Office of Air and Radiation. April 2010. Available at: http://yosemite.epa.gov/sab/sabproduct.nsf/fedrgstr_activites/EADC4268A8BD8 A51852576540049ED3A/\$File/2nd_Prospective.pdf
- U. S. Occupational Safety and Health Administration, 2009 (OSHA,2009). Office of Regulatory Analysis, Directorate of Evaluation and Analysis, Preliminary Initial Regulatory Impact Analysis of the Draft Proposed Standard for Occupational Exposure to Diacetyl and Food Flavorings Containing Diacetyl, April 20, 2009, as Appendix D to Report of the Small Business Advocacy Review Panel on the OSHA Draft Proposed Standard for Occupational Exposure to Diacetyl and Food Flavorings Containing Diacetyl, July 2, 2009, p. 34. OSHA-2008-0046-0932
- U. S. Office of Management and Budget, 2003 (OMB, 2003). Circular A-4, Regulatory Analysis, September 17, 2003. Available at:

 http://www.whitehouse.gov/sites/default/files/omb/assets/regulatory_matters_pdf/a-4.pdf. OSHA-2010-0034-1493
- Viscusi, W. & J. Aldy, 2003. The Value of a Statistical Life: A Critical Review of Market Estimates Throughout the World, Journal of Risk and Uncertainty, (27:5-76). **OSHA-2010-0034-1220**
- Winkelmayer, W., et al., 2002. Health Economics Evaluations: The Special Case of End-Stage Renal Disease Treatment, Medical Decision Marking, (22: 417-430). **OSHA-2010-0034-1228**

APPENDIX VII-A

ESTIMATED BENEFITS OF THE STANDARD BY YEAR

TABLE VII-A-1

Benefits by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Cases, Undiscounted Values and Values at a 3% Discount Rate with Adjustment to Monetized Benefits Reflecting an Increase in Per Capita Income Over Time
Based On Midpoint Estimates

	Ca	ses Prevented I	by Year After	Promulga	tion	Undiscounted Value of Cases Prevented by Year After Promuglation (\$M)			Present Valu		er Promugations creasing Benefi			djustment for			
Year After Promugation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Morbidity Cases Prevented	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total	Fatal Lung Cancer	Fatal Lung Diseases Other Than Cancer	Fatal End- Stage Renal Disease	Fatality Total	Morbidity	Grand Total
1	0	8	3	12	35	\$0	\$89	\$38	\$126.8	\$90.9	\$217.7	\$0.0	\$89.1	\$37.7		\$90.9	\$217.7
2	0	17 25	7	23 35	70	\$0 \$0	\$178	\$75	\$253.7 \$380.5	\$181.8	\$435.4	\$0.0	\$176.4	\$74.7		\$180.0	\$431.1 \$640.3
3 4	0	33	10 13	35 47	106 141	\$0 \$0	\$267 \$356	\$113 \$151	\$380.5 \$507.3	\$272.7 \$363.5	\$653.1 \$870.9	\$0.0 \$0.0	\$262.0 \$345.9	\$111.0 \$146.5		\$267.3 \$352.8	\$640.3 \$845.2
5	0	42	17	58	176	\$0	\$445	\$189	\$634.1	\$454.4	\$1,088.6	\$0.0	\$428.1	\$181.3		\$436.7	\$1,046.1
6	0	50	20	70	211	\$0	\$535	\$226	\$761.0	\$545.3	\$1,306.3	\$0.0	\$508.6	\$215.4	\$724.0	\$518.8	\$1,242.9
7	0	58	23	82	246	\$0	\$624	\$264	\$887.8	\$636.2	\$1,524.0	\$0.0	\$587.5	\$248.8		\$599.3	\$1,435.7
8 9	0	67 75	27 30	93 105	282 317	\$0 \$0	\$713 \$802	\$302 \$340	\$1,014.6 \$1,141.4	\$727.1 \$818.0	\$1,741.7 \$1,959.4	\$0.0 \$0.0	\$664.8 \$740.5	\$281.6 \$313.6		\$678.2 \$755.4	\$1,624.5 \$1,809.5
10	0	83	33	117	352	\$0	\$891	\$377	\$1,268.3	\$908.9	\$2,177.1	\$0.0	\$814.6	\$345.0		\$831.0	\$1,990.6
11	0	92	37	128	387	\$0	\$980	\$415	\$1,395.1	\$999.7	\$2,394.8	\$0.0	\$887.2	\$375.8	\$1,263.0	\$905.0	\$2,168.0
12	0	100	40	140	423	\$0	\$1,069	\$453	\$1,521.9	\$1,090.6	\$2,612.6	\$0.0	\$958.3	\$405.9		\$977.5	\$2,341.7
13 14	0	108 117	43 47	152 164	458 493	\$0 \$0	\$1,158 \$1,247	\$491 \$528	\$1,648.8 \$1,775.6	\$1,181.5 \$1,272.4	\$2,830.3 \$3,048.0	\$0.0 \$0.0	\$1,027.8 \$1,095.9	\$435.4 \$464.2		\$1,048.5 \$1,118.0	\$2,511.7 \$2,678.1
15	0	125	50	175	528	\$0	\$1,336	\$566	\$1,773.0	\$1,363.3	\$3,265.7	\$0.0	\$1,162.6	\$492.4		\$1,186.0	\$2,841.0
16	4	133	54	190	563	\$47	\$1,425	\$604	\$2,075.9	\$1,454.2	\$3,530.1	\$40.2	\$1,227.8	\$520.1	\$1,788.1	\$1,252.5	\$3,040.6
17	7	142	57	206	599	\$93	\$1,515	\$642	\$2,249.4	\$1,545.0	\$3,794.5	\$79.6	\$1,291.6	\$547.1		\$1,317.6	\$3,236.0
18 19	11 14	150 158	60 64	221	634 669	\$140	\$1,604	\$679 \$717	\$2,422.9	\$1,635.9	\$4,058.9	\$118.2	\$1,354.1	\$573.5		\$1,381.3	\$3,427.2
20	18	167	67	236 252	704	\$187 \$233	\$1,693 \$1,782	\$717 \$755	\$2,596.4 \$2,770.0	\$1,726.8 \$1,817.7	\$4,323.3 \$4,587.7	\$156.1 \$193.2	\$1,415.2 \$1,474.9	\$599.4 \$624.7		\$1,443.6 \$1,504.6	\$3,614.3 \$3,797.4
21	22	175	70	267	739	\$280	\$1,871	\$792	\$2,943.5	\$1,908.6	\$4,852.0	\$229.5	\$1,533.3	\$649.5		\$1,564.2	\$3,976.5
22	25	183	74	282	775	\$327	\$1,960	\$830	\$3,117.0	\$1,999.5	\$5,116.4	\$265.1	\$1,590.4	\$673.6		\$1,622.4	\$4,151.6
23	29 32	192	77	297	810	\$373	\$2,049	\$868	\$3,290.5	\$2,090.4	\$5,380.8	\$300.0	\$1,646.2	\$697.3		\$1,679.4	\$4,322.9
24 25	32 36	200 208	80 84	313 328	845 880	\$420 \$467	\$2,138 \$2,227	\$906 \$943	\$3,464.0 \$3,637.5	\$2,181.2 \$2,272.1	\$5,645.2 \$5,909.6	\$334.2 \$367.6	\$1,700.8 \$1,754.1	\$720.4 \$743.0		\$1,735.1 \$1,789.4	\$4,490.5 \$4,654.2
26	40	217	87	343	916	\$513	\$2,316	\$981	\$3,811.0	\$2,363.0	\$6,174.0	\$400.4	\$1,806.2	\$765.1		\$1,842.6	\$4,814.3
27	43	225	90	359	951	\$560	\$2,405	\$1,019	\$3,984.5	\$2,453.9	\$6,438.4	\$432.5	\$1,857.1	\$786.6	\$3,076.2	\$1,894.5	\$4,970.8
28	47	233	94	374	986	\$607	\$2,495	\$1,057	\$4,158.0	\$2,544.8	\$6,702.8	\$463.9	\$1,906.9	\$807.7		\$1,945.2	\$5,123.6
29 30	50 54	242 250	97 100	389 404	1,021 1,056	\$654 \$700	\$2,584 \$2,673	\$1,094 \$1,132	\$4,331.5 \$4,505.0	\$2,635.7 \$2,726.6	\$6,967.2 \$7,231.6	\$494.6 \$524.7	\$1,955.4 \$2,002.8	\$828.2 \$848.3		\$1,994.8 \$2,043.1	\$5,273.0 \$5,418.9
31	54 58	258	104	420	1,036	\$700	\$2,762	\$1,132	\$4,678.5	\$2,726.6	\$7,231.6	\$524.7 \$554.1	\$2,002.6	\$867.9		\$2,043.1	\$5,561.4
32	61	267	107	435	1,127	\$794	\$2,851	\$1,208	\$4,852.1	\$2,908.3	\$7,760.4	\$582.9	\$2,094.2	\$887.0		\$2,136.4	\$5,700.6
33	65	275	110	450	1,162	\$840	\$2,940	\$1,245	\$5,025.6	\$2,999.2	\$8,024.8	\$611.1	\$2,138.3	\$905.7		\$2,181.3	\$5,836.4
34 35	68 72	283	114 117	466	1,197	\$887	\$3,029	\$1,283	\$5,199.1	\$3,090.1	\$8,289.2	\$638.7 \$665.6	\$2,181.3	\$923.9		\$2,225.2	\$5,969.1
36	72 76	292 300	117	481 496	1,232 1,268	\$934 \$980	\$3,118 \$3,207	\$1,321 \$1,359	\$5,372.6 \$5,546.1	\$3,181.0 \$3,271.9	\$8,553.6 \$8,817.9	\$692.0	\$2,223.2 \$2,264.1	\$941.7 \$959.0		\$2,268.0 \$2,309.7	\$6,098.5 \$6,224.7
37	79	308	124	511	1,303	\$1,027	\$3,296	\$1,396	\$5,719.6	\$3,362.7	\$9,082.3	\$717.8	\$2,303.9	\$975.9		\$2,350.3	\$6,347.9
38	83	317	127	527	1,338	\$1,074	\$3,385	\$1,434	\$5,893.1	\$3,453.6	\$9,346.7	\$743.0	\$2,342.8	\$992.3	\$4,078.1	\$2,389.9	\$6,468.0
39	86	325	130	542	1,373	\$1,120	\$3,475	\$1,472	\$6,066.6	\$3,544.5	\$9,611.1	\$767.6	\$2,380.6	\$1,008.3		\$2,428.5	\$6,585.1
40 41	90 94	333 342	134 137	557 572	1,409 1,444	\$1,167 \$1,214	\$3,564 \$3,653	\$1,509 \$1,547	\$6,240.1 \$6,413.6	\$3,635.4 \$3,726.3	\$9,875.5 \$10,139.9	\$791.7 \$815.2	\$2,417.5 \$2,453.4	\$1,024.0 \$1,039.2		\$2,466.1 \$2,502.8	\$6,699.3 \$6,810.5
42	97	350	140	588	1,479	\$1,260	\$3,742	\$1,585	\$6,587.1	\$3,817.2	\$10,404.3	\$838.2	\$2,488.3	\$1,054.0		\$2,538.4	\$6,918.9
43	101	358	144	603	1,514	\$1,307	\$3,831	\$1,623	\$6,760.6	\$3,908.1	\$10,668.7	\$860.6	\$2,522.4	\$1,068.4	\$4,451.3	\$2,573.1	\$7,024.5
44	104	367	147	618	1,549	\$1,354	\$3,920	\$1,660	\$6,934.2	\$3,998.9	\$10,933.1	\$882.5	\$2,555.5	\$1,082.4		\$2,606.9	\$7,127.3
45 46	108 112	375 375	151 151	634 637	1,585 1,585	\$1,400 \$1,447	\$4,009 \$4,009	\$1,698	\$7,107.7 \$7,154.3	\$4,089.8	\$11,197.5 \$11,244.2	\$903.9 \$924.8	\$2,587.7 \$2,562.0	\$1,096.0 \$1,085.2		\$2,639.8	\$7,227.4 \$7,185.6
47	115	375	151	641	1,585	\$1,447	\$4,009	\$1,698 \$1,698	\$7,154.3	\$4,089.8 \$4,089.8	\$11,2 44 .2 \$11,290.8	\$945.2	\$2,536.7	\$1,065.2		\$2,613.6 \$2,587.7	\$7,144.0
48	119	375	151	644	1,585	\$1,540	\$4,009	\$1,698	\$7,247.7	\$4,089.8	\$11,337.5	\$965.0	\$2,511.6	\$1,063.8		\$2,562.1	\$7,102.5
49	122	375	151	648	1,585	\$1,587	\$4,009	\$1,698	\$7,294.4	\$4,089.8	\$11,384.2	\$984.4	\$2,486.7	\$1,053.3		\$2,536.8	\$7,061.2
50	126	375	151	652	1,585	\$1,634	\$4,009	\$1,698	\$7,341.1	\$4,089.8	\$11,430.9	\$1,003.4	\$2,462.1	\$1,042.9		\$2,511.6	\$7,019.9
51 52	130 133	375 375	151 151	655 659	1,585 1,585	\$1,680 \$1,727	\$4,009 \$4,009	\$1,698 \$1,698	\$7,387.7 \$7,434.4	\$4,089.8 \$4,089.8	\$11,477.6 \$11,524.3	\$1,021.8 \$1,039.8	\$2,437.7 \$2,413.6	\$1,032.5 \$1,022.3		\$2,486.8 \$2,462.2	\$6,978.8 \$6,937.8
53	137	375	151	662	1,585	\$1,774	\$4,009	\$1,698	\$7,434.4	\$4,089.8	\$11,570.9	\$1,057.3	\$2,389.7	\$1,012.2		\$2,402.2	\$6,896.9
54	140	375	151	666	1,585	\$1,821	\$4,009	\$1,698	\$7,527.8	\$4,089.8	\$11,617.6	\$1,074.4	\$2,366.0	\$1,002.2	\$4,442.6	\$2,413.6	\$6,856.2
55	144	375	151	670	1,585	\$1,867	\$4,009	\$1,698	\$7,574.5	\$4,089.8	\$11,664.3	\$1,091.0	\$2,342.6	\$992.2		\$2,389.7	\$6,815.6
56 57	148 151	375 375	151 151	673 677	1,585 1,585	\$1,914 \$1,961	\$4,009 \$4,009	\$1,698 \$1,698	\$7,621.1 \$7,667.8	\$4,089.8 \$4,089.8	\$11,711.0 \$11,757.7	\$1,107.2 \$1,123.0	\$2,319.4 \$2,296.4	\$982.4 \$972.7		\$2,366.1 \$2,342.7	\$6,775.1 \$6,734.8
58	155	375	151	680	1,585	\$2,007	\$4,009	\$1,698	\$7,714.5	\$4,089.8	\$11,757.7	\$1,123.0	\$2,290.4	\$963.1		\$2,342.7	\$6,694.6
59	158	375	151	684	1,585	\$2,054	\$4,009	\$1,698	\$7,761.2	\$4,089.8	\$11,851.0	\$1,153.3	\$2,251.2	\$953.5	\$4,358.0	\$2,296.5	\$6,654.5
60	162	375	151	688	1,585	\$2,101	\$4,009	\$1,698	\$7,807.9	\$4,089.8	\$11,897.7	\$1,167.9	\$2,228.9	\$944.1	\$4,340.8	\$2,273.8	\$6,614.6
Totals - 60 years				23,698	60,214				\$265,190	\$155,413	\$420,603.0				\$180,944.7	\$107,263.2	\$288,207.9

Annualized over 60 years: \$7,010.1 Annualized over 60 years: \$6,411.0

TABLE VII-A-2

Benefits by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Cases, Undiscounted Values and Values at a 3% Discount Rate Based On Midpoint Estimates

	c	Cases Prevented by Year After Promulgation			ation	Unc	liscounted Value	of Cases Prev	ented by Yea	r After Promugla	tion (\$M)	Pres	ent Value by Yea	r After Promuga	ations - 3%	Discount Rat	e (\$M)
Year After Promugation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Morbidity Cases Prevented	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total	Fatal Lung Cancer	Fatal Lung Diseases Other Than Cancer	Fatal End- Stage Renal Disease	Fatality Total	Morbidity	Grand Total
1 2	0	8 17	3 7	12 23	35 70	\$0.0 \$0.0	\$89.1 \$178.2	\$37.7 \$75.5	\$126.8 \$253.7	\$91 \$182	\$217.7 \$435.4	\$0.0 \$0.0	\$89.1 \$173.0	\$37.7 \$73.3	\$126.8 \$246.3	\$90.9 \$176.5	\$217.7 \$422.7
3	0	25	10	35	106	\$0.0	\$267.3	\$113.2	\$380.5	\$273	\$653.1	\$0.0	\$251.9	\$106.7	\$358.6	\$257.0	
4	0	33	13	47	141	\$0.0	\$356.4	\$150.9	\$507.3	\$364	\$870.9	\$0.0	\$326.1	\$138.1	\$464.3	\$332.7	
5 6	0	42 50	17 20	58 70	176 211	\$0.0 \$0.0	\$445.5 \$534.5	\$188.7 \$226.4	\$634.1 \$761.0	\$454 \$545	\$1,088.6 \$1,306.3	\$0.0 \$0.0	\$395.8 \$461.1	\$167.6 \$195.3	\$563.4 \$656.4	\$403.8 \$470.4	
7	ō	58	23	82	246	\$0.0	\$623.6	\$264.2	\$887.8	\$636	\$1,524.0	\$0.0	\$522.3	\$221.2	\$743.5	\$532.8	\$1,276.3
8 9	0	67 75	27 30	93 105	282 317	\$0.0 \$0.0	\$712.7 \$801.8	\$301.9 \$339.6		\$727 \$818	\$1,741.7 \$1,959.4	\$0.0 \$0.0	\$579.5 \$633.0	\$245.5 \$268.1	\$825.0 \$901.1	\$591.2 \$645.7	
10	0	83	33	117	352	\$0.0	\$890.9	\$377.4	\$1,141.4	\$909	\$2,177.1	\$0.0	\$682.8	\$289.2		\$696.6	
11	0	92	37	128	387	\$0.0	\$980.0	\$415.1	\$1,395.1	\$1,000	\$2,394.8	\$0.0	\$729.2	\$308.9	\$1,038.1	\$743.9	\$1,782.0
12 13	0	100 108	40 43	140 152	423 458	\$0.0 \$0.0	\$1,069.1 \$1,158.2	\$452.8 \$490.6		\$1,091 \$1,182	\$2,612.6 \$2,830.3	\$0.0 \$0.0	\$772.3 \$812.3	\$327.1 \$344.1	\$1,099.5 \$1,156.4	\$787.9 \$828.7	\$1,887.4 \$1,985.1
14	0	117	47	164	493	\$0.0	\$1,247.3	\$528.3	\$1,775.6	\$1,102	\$3,048.0	\$0.0	\$849.3	\$359.8	\$1,209.1	\$866.4	
15	0	125	50	175	528	\$0.0	\$1,336.4	\$566.0	\$1,902.4	\$1,363	\$3,265.7	\$0.0	\$883.5	\$374.2	\$1,257.7	\$901.3	\$2,159.0
16 17	4 7	133 142	54 57	190 206	563 599	\$46.7 \$93.4	\$1,425.5 \$1,514.6	\$603.8 \$641.5	\$2,075.9 \$2,249.4	\$1,454 \$1,545	\$3,530.1 \$3,794.5	\$30.0 \$58.2	\$915.0 \$943.8	\$387.5 \$399.8		\$933.4 \$962.8	\$2,265.8 \$2,364.6
18	11	150	60	221	634	\$140.0	\$1,603.6	\$679.3		\$1,636	\$4,058.9	\$84.7	\$970.2	\$411.0		\$989.8	\$2,455.7
19	14	158	64	236	669	\$186.7	\$1,692.7	\$717.0	\$2,596.4	\$1,727	\$4,323.3	\$109.7	\$994.3	\$421.2		\$1,014.3	
20 21	18 22	167 175	67 70	252 267	704 739	\$233.4 \$280.1	\$1,781.8 \$1,870.9	\$754.7 \$792.5	\$2,770.0 \$2,943.5	\$1,818 \$1,909	\$4,587.7 \$4,852.0	\$133.1 \$155.1	\$1,016.2 \$1,035.9	\$430.4 \$438.8	\$1,579.7 \$1,629.7	\$1,036.6 \$1,056.7	
22	25	183	74	282	775	\$326.8	\$1,960.0	\$830.2	\$3,117.0	\$1,999	\$5,116.4	\$175.7	\$1,053.6	\$446.3	\$1,675.5	\$1,074.8	\$2,750.3
23	29	192	77	297	810	\$373.4	\$2,049.1	\$867.9		\$2,090	\$5,380.8	\$194.9	\$1,069.4	\$453.0		\$1,090.9	
24 25	32 36	200 208	80 84	313 328	845 880	\$420.1 \$466.8	\$2,138.2 \$2,227.3	\$905.7 \$943.4	\$3,464.0 \$3,637.5	\$2,181 \$2,272	\$5,645.2 \$5,909.6	\$212.9 \$229.6	\$1,083.4 \$1,095.7	\$458.9 \$464.1	\$1,755.2 \$1,789.4	\$1,105.2 \$1,117.7	
26	40	217	87	343	916	\$513.5	\$2,316.4	\$981.1	\$3,811.0	\$2,363	\$6,174.0	\$245.2	\$1,106.3	\$468.6	\$1,820.2	\$1,128.6	\$2,948.7
27 28	43 47	225 233	90 94	359 374	951 986	\$560.2 \$606.8	\$2,405.5 \$2,494.6	\$1,018.9 \$1,056.6	\$3,984.5 \$4,158.0	\$2,454 \$2,545	\$6,438.4 \$6,702.8	\$259.7 \$273.2	\$1,115.4 \$1,123.0	\$472.4 \$475.7	\$1,847.6 \$1,871.9		
29	50	242	97	389	1,021	\$653.5	\$2,583.7	\$1,056.6	\$4,331.5	\$2,636 \$2,636	\$6,702.6	\$273.2	\$1,129.3	\$475.7 \$478.3	\$1,893.2		
30	54	250	100	404	1,056	\$700.2	\$2,672.7	\$1,132.1	\$4,505.0	\$2,727	\$7,231.6	\$297.1	\$1,134.2	\$480.4	\$1,911.7	\$1,157.0	\$3,068.7
31 32	58 61	258 267	104 107	420 435	1,092 1,127	\$746.9 \$793.6	\$2,761.8 \$2,850.9	\$1,169.8 \$1,207.6	\$4,678.5 \$4,852.1	\$2,817 \$2,908	\$7,496.0 \$7,760.4	\$307.7 \$317.4	\$1,137.8 \$1,140.3	\$482.0 \$483.0		\$1,160.7 \$1,163.3	\$3,088.2 \$3,104.1
33	65	275	110	450	1,162	\$840.2	\$2,940.0	\$1,245.3	\$5,025.6	\$2,999	\$8,024.8	\$326.3	\$1,140.3	\$483.6			
34	68	283	114	466	1,197	\$886.9	\$3,029.1	\$1,283.0	\$5,199.1	\$3,090	\$8,289.2	\$334.4	\$1,142.1	\$483.7	\$1,960.2	\$1,165.0	
35 36	72 76	292 300	117 120	481 496	1,232 1,268	\$933.6 \$980.3	\$3,118.2 \$3,207.3	\$1,320.8 \$1,358.5	\$5,372.6 \$5,546.1	\$3,181 \$3,272	\$8,553.6 \$8,817.9	\$341.7 \$348.4	\$1,141.4 \$1,139.8	\$483.5 \$482.8		\$1,164.4 \$1,162.8	
37	79	308	124	511	1,303	\$1,027.0	\$3,296.4	\$1,396.2		\$3,363	\$9,082.3	\$354.3	\$1,137.4	\$481.7			\$3,133.7
38	83	317	127	527	1,338	\$1,073.7	\$3,385.5	\$1,434.0	\$5,893.1	\$3,454	\$9,346.7	\$359.7	\$1,134.1	\$480.4	\$1,974.1	\$1,156.9	
39 40	86 90	325 333	130 134	542 557	1,373 1,409	\$1,120.3 \$1,167.0	\$3,474.6 \$3,563.7	\$1,471.7 \$1,509.4	\$6,066.6 \$6,240.1	\$3,545 \$3,635	\$9,611.1 \$9,875.5	\$364.4 \$368.5	\$1,130.0 \$1,125.2	\$478.6 \$476.6		\$1,152.8 \$1,147.9	
41	94	342	137	572	1,444	\$1,213.7	\$3,652.8	\$1,547.2	\$6,413.6	\$3,726	\$10,139.9	\$372.1	\$1,119.8	\$474.3	\$1,966.1	\$1,142.3	\$3,108.5
42	97	350 358	140	588	1,479	\$1,260.4	\$3,741.8	\$1,584.9	\$6,587.1	\$3,817	\$10,404.3	\$375.1 \$377.7	\$1,113.7	\$471.7 \$468.9	\$1,960.5	\$1,136.1	\$3,096.6
43 44	101 104	358 367	144 147	603 618	1,514 1,549	\$1,307.1 \$1,353.7	\$3,830.9 \$3,920.0	\$1,622.7 \$1,660.4	\$6,760.6 \$6,934.2	\$3,908 \$3,999	\$10,668.7 \$10,933.1	\$377.7 \$379.8	\$1,107.0 \$1,099.7	\$468.9 \$465.8		\$1,129.3 \$1,121.9	\$3,082.8 \$3,067.2
45	108	375	151	634	1,585	\$1,400.4	\$4,009.1	\$1,698.1	\$7,107.7	\$4,090	\$11,197.5	\$381.4	\$1,092.0	\$462.5	\$1,935.9	\$1,114.0	\$3,049.9
46 47	112 115	375 375	151 151	637 641	1,585 1,585	\$1,447.1 \$1,493.8	\$4,009.1 \$4,009.1	\$1,698.1 \$1,698.1	\$7,154.3 \$7,201.0	\$4,090 \$4,090	\$11,244.2 \$11,290.8	\$382.7 \$383.5	\$1,060.2 \$1,029.3	\$449.1 \$436.0	\$1,891.9 \$1,848.8	\$1,081.5 \$1,050.0	
47	115	375 375	151	644	1,585	\$1,493.8	\$4,009.1 \$4,009.1	\$1,698.1	\$7,201.0	\$4,090 \$4,090	\$11,290.8	\$383.5 \$384.0	\$1,029.3 \$999.3	\$436.0 \$423.3		\$1,050.0	
49	122	375	151	648	1,585	\$1,587.1	\$4,009.1	\$1,698.1	\$7,294.4	\$4,090	\$11,384.2	\$384.1	\$970.2	\$410.9	\$1,765.2	\$989.7	\$2,755.0
50 51	126 130	375 375	151 151	652 655	1,585 1,585	\$1,633.8 \$1,680.5	\$4,009.1 \$4,009.1	\$1,698.1 \$1,698.1	\$7,341.1 \$7,387.7	\$4,090 \$4,090	\$11,430.9 \$11,477.6	\$383.9 \$383.3	\$941.9 \$914.5	\$399.0 \$387.4	\$1,724.8 \$1,685.2	\$960.9 \$932.9	
52	133	375	151	659	1,585	\$1,000.5	\$4,009.1	\$1,698.1	\$7,434.4	\$4,090 \$4,090	\$11,524.3	\$382.5	\$887.9		\$1,646.5	\$905.7	
53	137	375	151	662	1,585	\$1,773.9	\$4,009.1	\$1,698.1	\$7,481.1	\$4,090	\$11,570.9	\$381.4	\$862.0	\$365.1	\$1,608.5	\$879.4	\$2,487.9
54 55	140 144	375 375	151 151	666 670	1,585 1,585	\$1,820.5 \$1,867.2	\$4,009.1 \$4,009.1	\$1,698.1 \$1,698.1	\$7,527.8 \$7,574.5	\$4,090 \$4,090	\$11,617.6 \$11,664.3	\$380.0 \$378.4	\$836.9 \$812.5	\$354.5 \$344.2	\$1,571.4 \$1,535.1	\$853.8 \$828.9	
56	144	375	151	673	1,585	\$1,007.2	\$4,009.1	\$1,698.1	\$7,574.5	\$4,090 \$4,090	\$11,004.3	\$376.4	\$788.9	\$344.2	\$1,499.6	\$804.7	
57	151	375	151	677	1,585	\$1,960.6	\$4,009.1	\$1,698.1	\$7,667.8	\$4,090	\$11,757.7	\$374.5	\$765.9	\$324.4	\$1,464.8	\$781.3	\$2,246.1
58 59	155 158	375 375	151 151	680 684	1,585 1,585	\$2,007.3 \$2,053.9	\$4,009.1 \$4,009.1	\$1,698.1 \$1,698.1	\$7,714.5 \$7,761.2	\$4,090 \$4,090	\$11,804.3 \$11,851.0	\$372.3 \$369.9	\$743.6 \$721.9		\$1,430.8 \$1,397.6	\$758.5 \$736.5	
60	162	375	151	688	1,585	\$2,053.9	\$4,009.1	\$1,698.1	\$7,807.9	\$4,090	\$11,897.7	\$367.2	\$700.9			\$715.0	
Totals - 60 years				23,698	60,214				\$265,190	\$155,413	\$420,603.0				\$90,446.6	\$54,969.6	\$145,416.2

Annualized over 60 years: \$7,010.1 Annualized over 60 years: \$5,254.3

TABLE VII-A-3

Benefits by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Cases, Undiscounted Values and Values at a 7% Discount Rate with Adjustment to Monetized Benefits Reflecting an Increase in Per Capita Income Over Time Based On Midpoint Estimates

		Cases Prevente	d by Year After	Promulgation	on	Undise	counted Value of	Cases Prevent	ed by Year	After Promugi	ation (\$M)	Present \			ions - 7% Disco		h Adjustment
Year After Promugation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total Fatalities	Morbidity Cases Prevented	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total	Fatal Lung Cancer	Fatal Lung Diseases Other Than Cancer	Fatal End- Stage Renal Disease	Fatality Total	Morbidity	Grand Total
1	0	8	3	12	35	\$0	\$89	\$38	\$127	\$90.9	\$217.7	\$0.0	\$89.1	\$37.7		\$90.9	\$217.7
2	0	17 25	10	23 35	70 106	\$0 \$0	\$178 \$267	\$75 \$113	\$254 \$380	\$181.8 \$272.7	\$435.4 \$653.1	\$0.0 \$0.0	\$169.7 \$242.4	\$71.9 \$102.7		\$173.1 \$247.3	\$414.7 \$592.4
4	0	33	13	47	141	\$0	\$356	\$151	\$507	\$363.5	\$870.9	\$0.0	\$307.8			\$314.0	\$752.3
5	0	42	17		176	\$0	\$445	\$189	\$634	\$454.4	\$1,088.6	\$0.0	\$366.5			\$373.9	\$895.6
6	0	50	20	70	211	\$0	\$535	\$226	\$761	\$545.3	\$1,306.3	\$0.0	\$418.8			\$427.3	\$1,023.5
7 8	0	58 67	23 27	82 93	246 282	\$0 \$0	\$624 \$713	\$264 \$302	\$888 \$1,015	\$636.2 \$727.1	\$1,524.0 \$1,741.7	\$0.0 \$0.0	\$465.4 \$506.5	\$197.1 \$214.5		\$474.7 \$516.7	\$1,137.2 \$1,237.8
9	0	75	30	105	317	\$0	\$802	\$340	\$1,141	\$818.0	\$1,959.4	\$0.0	\$542.7	\$229.9		\$553.6	\$1,326.2
10	0	83	33	117	352	\$0	\$891	\$377	\$1,268	\$908.9	\$2,177.1	\$0.0	\$574.3	\$243.3	\$817.5	\$585.9	\$1,403.4
11	0	92	37	128	387	\$0	\$980	\$415	\$1,395	\$999.7	\$2,394.8	\$0.0	\$601.6			\$613.8	\$1,470.2
12 13	0	100 108	40 43	140 152	423 458	\$0 \$0	\$1,069 \$1,158	\$453 \$491	\$1,522 \$1,649	\$1,090.6 \$1,181.5	\$2,612.6 \$2,830.3	\$0.0 \$0.0	\$625.1 \$644.9	\$264.8 \$273.2		\$637.7 \$657.9	\$1,527.5 \$1,576.0
14	0	117	47	164	493	\$0	\$1,247	\$528	\$1,776	\$1,272.4	\$3,048.0	\$0.0	\$661.5			\$674.8	\$1,616.4
15	0	125	50	175	528	\$0	\$1,336	\$566	\$1,902	\$1,363.3	\$3,265.7	\$0.0	\$675.0	\$285.9		\$688.5	\$1,649.4
16	4	133	54	190	563	\$47	\$1,425	\$604	\$2,076	\$1,454.2	\$3,530.1	\$22.5	\$685.7	\$290.4		\$699.5	\$1,698.0
17 18	7	142 150	57 60	206 221	599 634	\$93 \$140	\$1,515 \$1,604	\$642 \$679	\$2,249 \$2,423	\$1,545.0 \$1,635.9	\$3,794.5 \$4,058.9	\$42.8 \$61.1	\$693.8 \$699.7	\$293.9 \$296.4		\$707.8 \$713.8	\$1,738.3 \$1,770.9
19	14	158	64	236	669	\$140 \$187	\$1,60 4 \$1,693	\$679 \$717	\$2,423	\$1,726.8	\$4,056.9	\$77.6	\$703.4	\$290.4		\$713.6 \$717.5	\$1,770.9
20	18	167	67	252	704	\$233	\$1,782	\$755	\$2,770	\$1,817.7	\$4,587.7	\$92.4	\$705.1	\$298.7		\$719.3	\$1,815.5
21	22	175	70	267	739	\$280	\$1,871	\$792	\$2,943	\$1,908.6	\$4,852.0	\$105.6	\$705.1	\$298.7		\$719.3	\$1,828.7
22 23	25 29	183 192	74 77	282 297	775 810	\$327 \$373	\$1,960 \$2,049	\$830 \$868	\$3,117 \$3,290	\$1,999.5 \$2,090.4	\$5,116.4 \$5,380.8	\$117.3 \$127.7	\$703.5 \$700.5	\$298.0 \$296.7		\$717.7 \$714.6	\$1,836.5
23	32	200	80	313	845	\$420	\$2,049 \$2,138	\$906	\$3,464	\$2,090.4	\$5,560.6	\$127.7	\$700.5 \$696.1	\$296.7 \$294.9		\$714.6	\$1,839.4 \$1,837.9
25	36	208	84	328	880	\$467	\$2,227	\$943	\$3,637	\$2,272.1	\$5,909.6	\$144.7	\$690.6			\$704.5	\$1,832.4
26	40	217	87	343	916	\$513	\$2,316	\$981	\$3,811	\$2,363.0	\$6,174.0	\$151.6	\$684.0			\$697.8	\$1,823.2
27	43	225	90 94	359	951	\$560	\$2,405	\$1,019	\$3,985	\$2,453.9	\$6,438.4	\$157.5	\$676.5			\$690.1	\$1,810.7
28 29	47 50	233 242	94	374 389	986 1,021	\$607 \$654	\$2,495 \$2,584	\$1,057 \$1,094	\$4,158 \$4,332	\$2,544.8 \$2,635.7	\$6,702.8 \$6,967.2	\$162.5 \$166.7	\$668.2 \$659.1	\$283.0 \$279.2		\$681.6 \$672.3	\$1,795.3 \$1,777.3
30	54	250	100	404	1,056	\$700	\$2,673	\$1,132	\$4,505	\$2,726.6	\$7,231.6	\$170.1	\$649.3	\$275.0		\$662.4	\$1,756.9
31	58	258	104	420	1,092	\$747	\$2,762	\$1,170	\$4,679	\$2,817.4	\$7,496.0	\$172.8	\$639.0			\$651.9	\$1,734.4
32	61	267	107	435	1,127	\$794	\$2,851	\$1,208	\$4,852	\$2,908.3	\$7,760.4	\$174.9	\$628.2			\$640.9	\$1,710.1
33 34	65 68	275 283	110 114	450 466	1,162 1,197	\$840 \$887	\$2,940 \$3,029	\$1,245 \$1,283	\$5,026 \$5,199	\$2,999.2 \$3,090.1	\$8,024.8 \$8,289.2	\$176.3 \$177.3	\$617.0 \$605.4	\$261.3 \$256.4		\$629.4 \$617.6	\$1,684.1 \$1,656.8
35	72	292	117	481	1,137	\$934	\$3,029	\$1,203	\$5,373	\$3,181.0	\$8,553.6	\$177.7	\$593.6			\$605.5	\$1,628.2
36	76	300	120	496	1,268	\$980	\$3,207	\$1,359	\$5,546	\$3,271.9	\$8,817.9	\$177.7	\$581.5			\$593.2	\$1,598.6
37	79	308	124	511	1,303	\$1,027	\$3,296	\$1,396	\$5,720	\$3,362.7	\$9,082.3	\$177.3	\$569.1	\$241.1		\$580.6	\$1,568.1
38 39	83 86	317 325	127 130	527 542	1,338 1,373	\$1,074 \$1,120	\$3,385 \$3,475	\$1,434 \$1,472	\$5,893 \$6,067	\$3,453.6 \$3,544.5	\$9,346.7 \$9,611.1	\$176.5 \$175.5	\$556.7 \$544.1	\$235.8 \$230.5		\$567.9 \$555.1	\$1,536.9 \$1,505.2
40	90	333	134	557	1,409	\$1,120	\$3,475 \$3,564	\$1,472	\$6,067	\$3,635.4	\$9,875.5	\$175.5	\$531.5			\$542.2	\$1,472.9
41	94	342	137	572	1,444	\$1,214	\$3,653	\$1,547	\$6,414	\$3,726.3	\$10,139.9	\$172.4	\$518.9			\$529.3	\$1,440.3
42	97	350	140	588	1,479	\$1,260	\$3,742	\$1,585	\$6,587	\$3,817.2	\$10,404.3	\$170.5	\$506.2			\$516.4	\$1,407.5
43 44	101 104	358 367	144 147	603 618	1,514 1,549	\$1,307 \$1,354	\$3,831 \$3,920	\$1,623 \$1,660	\$6,761	\$3,908.1 \$3,998.9	\$10,668.7 \$10,933.1	\$168.4 \$166.1	\$493.6 \$481.0			\$503.5 \$490.7	\$1,374.6 \$1,341.5
44	104	375	151	634	1,549	\$1,354	\$3,920 \$4.009	\$1,660	\$6,934 \$7,108	\$3,996.9 \$4.089.8	\$10,933.1	\$163.7	\$468.5			\$490.7 \$477.9	\$1,341.5 \$1.308.6
46	112	375	151	637	1,585	\$1,447	\$4,009	\$1,698	\$7,154	\$4,089.8	\$11,244.2	\$161.1	\$446.2			\$455.2	\$1,251.4
47	115	375	151	641	1,585	\$1,494	\$4,009	\$1,698	\$7,201	\$4,089.8	\$11,290.8	\$158.3	\$425.0			\$433.5	\$1,196.8
48	119	375 375	151	644 648	1,585 1,585	\$1,540	\$4,009 \$4,009	\$1,698	\$7,248	\$4,089.8	\$11,337.5	\$155.5	\$404.7	\$171.4		\$412.9	\$1,144.5
49 50	122 126	375 375	151 151	652	1,585	\$1,587 \$1,634	\$4,009 \$4,009	\$1,698 \$1,698	\$7,294 \$7,341	\$4,089.8 \$4,089.8	\$11,384.2 \$11,430.9	\$152.6 \$149.6	\$385.4 \$367.1	\$163.3 \$155.5		\$393.2 \$374.5	\$1,094.5 \$1,046.7
51	130	375	151	655	1,585	\$1,680	\$4,009	\$1,698	\$7,388	\$4,089.8	\$11,477.6	\$146.5	\$349.6			\$356.6	\$1,000.9
52	133	375	151	659	1,585	\$1,727	\$4,009	\$1,698	\$7,434	\$4,089.8	\$11,524.3	\$143.4	\$333.0	\$141.0	\$617.4	\$339.7	\$957.1
53	137	375	151	662	1,585	\$1,774	\$4,009	\$1,698	\$7,481	\$4,089.8	\$11,570.9	\$140.3	\$317.1	\$134.3		\$323.5	\$915.2
54 55	140 144	375 375	151 151	666 670	1,585 1,585	\$1,821 \$1,867	\$4,009 \$4,009	\$1,698 \$1,698	\$7,528 \$7,574	\$4,089.8 \$4,089.8	\$11,617.6 \$11,664.3	\$137.1 \$134.0	\$302.0 \$287.6			\$308.1 \$293.4	\$875.2 \$836.8
56	144	375	151	673	1,585	\$1,007	\$4,009	\$1,698	\$7,621	\$4,089.8	\$11,004.3	\$134.0	\$273.9			\$293.4 \$279.4	\$800.2
57	151	375	151	677	1,585	\$1,961	\$4,009	\$1,698	\$7,668	\$4,089.8	\$11,757.7	\$127.6	\$260.9	\$110.5	\$499.0	\$266.1	\$765.1
58	155	375	151	680	1,585	\$2,007	\$4,009	\$1,698	\$7,715	\$4,089.8	\$11,804.3	\$124.4	\$248.5			\$253.5	\$731.6
59 60	158 162	375 375	151 151	684 688	1,585 1,585	\$2,054 \$2,101	\$4,009 \$4,009	\$1,698 \$1,698	\$7,761 \$7,808	\$4,089.8 \$4,089.8	\$11,851.0 \$11,897.7	\$121.2 \$118.1	\$236.6 \$225.4	\$100.2 \$95.5		\$241.4 \$229.9	\$699.5 \$668.8
"	102	3/5	151	300	1,303	Ψ2,101	Ψ-,009	ψ1,050	ψ1,000	⊕ - ,005.0	ψ11,037.7	ψ110.1	Ψ223.4	ψ30.0	Ψ-30.9	Ψ223.3	ψ000.0
Totals - 60 years				23,698	60,214				\$265,190	\$155,413	\$420,603.0				\$49,728.3	\$31,021.5	\$80,749.8

Annualized over 60 years: \$7,010.1 Annualized over 60 years: \$4,265.9

TABLE VII-A-4

Benefits by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Cases, Undiscounted Values and Values at a 7% Discount Rate
Based On Midpoint Estimates

	Cases Prevented by Year After Promulgation				ation	Undis	counted Value	of Cases Pre	vented by Yea	ar After Promug	lation (\$M)	Preser	t Value by Year	After Promuga	ations - 7%	Discount R	ate (\$M)
Year After Promugation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Morbidity Cases Prevented	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total	Fatal Lung Cancer	Fatal Lung Diseases Other Than Cancer	Disease	Fatality Total	,	Grand Total
1	0	8	3	12	35	\$0.0	\$89.1	\$37.7	\$126.8	\$90.9	\$217.7	\$0.0		\$37.7	\$126.8	\$90.9	\$217.7
2	0	17	7	23	70	\$0.0	\$178.2	\$75.5	\$253.7	\$181.8	\$435.4	\$0.0	\$166.5		\$237.1	\$169.9	\$406.9
3 4	0	25 33	10 13	35 47	106 141	\$0.0 \$0.0	\$267.3 \$356.4	\$113.2 \$150.9	\$380.5 \$507.3	\$272.7 \$363.5	\$653.1 \$870.9	\$0.0 \$0.0	\$233.4 \$290.9		\$332.3 \$414.1	\$238.1 \$296.8	\$570.5 \$710.9
5	0	33 42	13	47 58	176	\$0.0	\$356.4 \$445.5	\$150.9 \$188.7	\$507.3 \$634.1	\$363.5 \$454.4	\$870.9 \$1,088.6	\$0.0			\$414.1 \$483.8	\$296.8	\$710.9 \$830.5
6	0	50	20	70	211	\$0.0	\$534.5	\$226.4	\$761.0	\$545.3	\$1,306.3	\$0.0	\$381.1	\$161.4	\$542.6	\$388.8	\$931.4
7	0	58	23	82	246	\$0.0	\$623.6	\$264.2	\$887.8	\$636.2	\$1,524.0	\$0.0	\$415.6		\$591.6	\$423.9	\$1,015.5
8	ō	67	27	93	282	\$0.0	\$712.7	\$301.9	\$1,014.6	\$727.1	\$1,741.7	\$0.0			\$631.9	\$452.8	\$1,084.6
9	0	75	30	105	317	\$0.0	\$801.8	\$339.6	\$1,141.4	\$818.0	\$1,959.4	\$0.0	\$466.7	\$197.7	\$664.3	\$476.1	\$1,140.4
10	0	83	33	117	352	\$0.0	\$890.9	\$377.4	\$1,268.3	\$908.9	\$2,177.1	\$0.0	\$484.6	\$205.3	\$689.9	\$494.4	\$1,184.2
11	0	92	37	128	387	\$0.0	\$980.0	\$415.1	\$1,395.1	\$999.7	\$2,394.8	\$0.0			\$709.2	\$508.2	\$1,217.4
12	0	100	40	140	423	\$0.0	\$1,069.1	\$452.8	\$1,521.9	\$1,090.6	\$2,612.6	\$0.0			\$723.1	\$518.1	\$1,241.2
13	0	108	43	152	458	\$0.0	\$1,158.2	\$490.6	\$1,648.8	\$1,181.5	\$2,830.3	\$0.0	\$514.2		\$732.1	\$524.6	\$1,256.7
14	0	117	47 50	164 175	493 528	\$0.0 \$0.0	\$1,247.3	\$528.3	\$1,775.6	\$1,272.4	\$3,048.0	\$0.0	\$517.6		\$736.8	\$528.0	\$1,264.8
15 16	0	125 133	50	175	528 563	\$0.0 \$46.7	\$1,336.4 \$1,425.5	\$566.0 \$603.8	\$1,902.4 \$2,075.9	\$1,363.3 \$1,454.2	\$3,265.7 \$3,530.1	\$0.0 \$16.9	\$518.3 \$516.7		\$737.8 \$752.4	\$528.7 \$527.1	\$1,266.5 \$1,279.5
17	4 7	142	57	206	599	\$93.4	\$1,425.5 \$1,514.6	\$641.5	\$2,075.9	\$1, 454 .2 \$1,545.0	\$3,794.5	\$16.9			\$762.4	\$527.1	\$1,279.5
18	11	150	60	200	634	\$140.0	\$1,603.6	\$679.3	\$2,422.9	\$1,635.9	\$4,058.9	\$44.3			\$767.0	\$523.4 \$517.9	\$1,284.9
19	14	158	64	236	669	\$186.7	\$1,692.7	\$717.0	\$2,596.4	\$1,726.8	\$4,323.3	\$55.2			\$768.2	\$510.9	\$1,279.1
20	18	167	67	252	704	\$233.4	\$1,781.8	\$754.7	\$2,770.0	\$1,817.7	\$4,587.7	\$64.5	\$492.7		\$765.9	\$502.6	\$1,268.5
21	22	175	70	267	739	\$280.1	\$1,870.9	\$792.5	\$2,943.5	\$1,908.6	\$4,852.0	\$72.4	\$483.5		\$760.6	\$493.2	\$1,253.9
22	25	183	74	282	775	\$326.8	\$1,960.0	\$830.2	\$3,117.0	\$1,999.5	\$5,116.4	\$78.9	\$473.4	\$200.5	\$752.8	\$482.9	\$1,235.7
23	29	192	77	297	810	\$373.4	\$2,049.1	\$867.9	\$3,290.5	\$2,090.4	\$5,380.8	\$84.3	\$462.5		\$742.7	\$471.8	\$1,214.5
24	32	200	80	313	845	\$420.1	\$2,138.2	\$905.7	\$3,464.0	\$2,181.2	\$5,645.2	\$88.6			\$730.7	\$460.1	\$1,190.8
25	36	208	84	328	880	\$466.8	\$2,227.3	\$943.4	\$3,637.5	\$2,272.1	\$5,909.6	\$92.0	\$439.1	\$186.0	\$717.1	\$447.9	\$1,165.1
26	40	217	87	343	916	\$513.5	\$2,316.4	\$981.1	\$3,811.0	\$2,363.0	\$6,174.0	\$94.6	\$426.8		\$702.2	\$435.4	\$1,137.6
27 28	43 47	225 233	90 94	359 374	951 986	\$560.2 \$606.8	\$2,405.5 \$2,494.6	\$1,018.9 \$1,056.6	\$3,984.5	\$2,453.9 \$2,544.8	\$6,438.4 \$6,702.8	\$96.5 \$97.7	\$414.2 \$401.5		\$686.1 \$669.2	\$422.5 \$409.5	\$1,108.7
28 29	47 50	233 242	94	374	1,021	\$653.5	\$2,494.6	\$1,056.6	\$4,158.0 \$4,331.5	\$2,544.8 \$2,635.7	\$6,702.8 \$6,967.2	\$97.7 \$98.3	\$401.5 \$388.6		\$651.5	\$409.5 \$396.4	\$1,078.7 \$1,047.9
30	54	250	100	404	1,021	\$700.2	\$2,563.7 \$2,672.7	\$1,094.3	\$4,505.0	\$2,726.6	\$7,231.6	\$98.4 \$98.4	\$375.7		\$633.2	\$383.3	\$1,047.9
31	58	258	104	420	1,092	\$746.9	\$2,761.8	\$1,169.8	\$4,678.5	\$2,817.4	\$7,496.0	\$98.1	\$362.8		\$614.6	\$370.1	\$984.7
32	61	267	107	435	1,127	\$793.6	\$2,850.9	\$1,207.6	\$4,852.1	\$2,908.3	\$7,760.4	\$97.4	\$350.0		\$595.7	\$357.1	\$952.8
33	65	275	110	450	1,162	\$840.2	\$2,940.0	\$1,245.3	\$5,025.6	\$2,999.2	\$8,024.8	\$96.4	\$337.3	\$142.9	\$576.6	\$344.1	\$920.8
34	68	283	114	466	1,197	\$886.9	\$3,029.1	\$1,283.0	\$5,199.1	\$3,090.1	\$8,289.2	\$95.1	\$324.8		\$557.5	\$331.4	\$888.9
35	72	292	117	481	1,232	\$933.6	\$3,118.2	\$1,320.8	\$5,372.6	\$3,181.0	\$8,553.6	\$93.6	\$312.5		\$538.4	\$318.8	\$857.2
36	76	300	120	496	1,268	\$980.3	\$3,207.3	\$1,358.5	\$5,546.1	\$3,271.9	\$8,817.9	\$91.8			\$519.5	\$306.5	\$825.9
37	79	308	124	511	1,303	\$1,027.0	\$3,296.4	\$1,396.2	\$5,719.6	\$3,362.7	\$9,082.3	\$89.9	\$288.6		\$500.7	\$294.4	\$795.0
38 39	83 86	317 325	127 130	527 542	1,338 1,373	\$1,073.7 \$1,120.3	\$3,385.5 \$3,474.6	\$1,434.0 \$1,471.7	\$5,893.1 \$6,066.6	\$3,453.6 \$3,544.5	\$9,346.7 \$9,611.1	\$87.8 \$85.7	\$277.0 \$265.7	\$117.3 \$112.5	\$482.1 \$463.8	\$282.5 \$271.0	\$764.6 \$734.8
40	90	323	134	542 557	1,373	\$1,120.3	\$3,563.7	\$1,471.7	\$6,240.1	\$3,635.4	\$9,875.5	\$83.4	\$253.7 \$254.6		\$445.9	\$271.0	\$734.6 \$705.7
41	94	342	137	572	1,444	\$1,213.7	\$3,652.8	\$1,547.2	\$6,413.6	\$3,726.3	\$10.139.9	\$81.1	\$243.9		\$428.3	\$248.8	\$677.1
42	97	350	140	588	1,479	\$1,260.4	\$3,741.8	\$1,584.9	\$6,587.1	\$3,817.2	\$10,404.3	\$78.7	\$233.5		\$411.1	\$238.2	\$649.3
43	101	358	144	603	1,514	\$1,307.1	\$3,830.9	\$1,622.7	\$6,760.6	\$3,908.1	\$10,668.7	\$76.2			\$394.3	\$228.0	\$622.3
44	104	367	147	618	1,549	\$1,353.7	\$3,920.0	\$1,660.4	\$6,934.2	\$3,998.9	\$10,933.1	\$73.8	\$213.7		\$378.0	\$218.0	\$596.0
45	108	375	151	634	1,585	\$1,400.4	\$4,009.1	\$1,698.1	\$7,107.7	\$4,089.8	\$11,197.5	\$71.3	\$204.3		\$362.1	\$208.4	\$570.5
46	112	375	151	637	1,585	\$1,447.1	\$4,009.1	\$1,698.1	\$7,154.3	\$4,089.8	\$11,244.2	\$68.9	\$190.9		\$340.6	\$194.7	\$535.4
47	115	375 375	151	641	1,585	\$1,493.8	\$4,009.1	\$1,698.1	\$7,201.0	\$4,089.8	\$11,290.8	\$66.5	\$178.4		\$320.4	\$182.0	\$502.4
48 49	119 122	375 375	151 151	644 648	1,585 1,585	\$1,540.5 \$1,587.1	\$4,009.1 \$4,009.1	\$1,698.1 \$1,698.1	\$7,247.7 \$7,294.4	\$4,089.8 \$4,089.8	\$11,337.5	\$64.1 \$61.7	\$166.7 \$155.8		\$301.4 \$283.5	\$170.1 \$159.0	\$471.5 \$442.5
50	122	375 375	151	652	1,585	\$1,587.1	\$4,009.1	\$1,698.1	\$7,294.4 \$7,341.1	\$4,089.8 \$4,089.8	\$11,384.2 \$11,430.9	\$61.7 \$59.3	\$155.8 \$145.6		\$283.5 \$266.7	\$159.0 \$148.6	\$442.5 \$415.2
50	130	375	151	655	1,585	\$1,680.5	\$4,009.1	\$1,698.1	\$7,341.1	\$4,089.8	\$11,430.9	\$59.3 \$57.0	\$136.1	\$57.6	\$250.8	\$146.6 \$138.8	\$389.6
52	133	375	151	659	1,585	\$1,727.2	\$4,009.1	\$1,698.1	\$7,434.4	\$4,089.8	\$11,524.3	\$54.8	\$127.2		\$235.9	\$129.8	\$365.6
53	137	375	151	662	1,585	\$1,773.9	\$4,009.1	\$1,698.1	\$7,481.1	\$4,089.8	\$11,570.9	\$52.6	\$118.9		\$221.8	\$121.3	\$343.1
54	140	375	151	666	1,585	\$1,820.5	\$4,009.1	\$1,698.1	\$7,527.8	\$4,089.8	\$11,617.6	\$50.4	\$111.1	\$47.1	\$208.6	\$113.3	\$321.9
55	144	375	151	670	1,585	\$1,867.2	\$4,009.1	\$1,698.1	\$7,574.5	\$4,089.8	\$11,664.3	\$48.4	\$103.8		\$196.2	\$105.9	\$302.1
56	148	375	151	673	1,585	\$1,913.9	\$4,009.1	\$1,698.1	\$7,621.1	\$4,089.8	\$11,711.0	\$46.3	\$97.0		\$184.5	\$99.0	\$283.5
57	151	375	151	677	1,585	\$1,960.6	\$4,009.1	\$1,698.1	\$7,667.8	\$4,089.8	\$11,757.7	\$44.4	\$90.7		\$173.5	\$92.5	\$266.0
58	155	375	151	680	1,585	\$2,007.3	\$4,009.1	\$1,698.1	\$7,714.5	\$4,089.8	\$11,804.3	\$42.4	\$84.8		\$163.1	\$86.5	\$249.6
59 60	158	375	151	684	1,585	\$2,053.9	\$4,009.1	\$1,698.1	\$7,761.2	\$4,089.8	\$11,851.0	\$40.6			\$153.3	\$80.8	\$234.2
60	162	375	151	688	1,585	\$2,100.6	\$4,009.1	\$1,698.1	\$7,807.9	\$4,089.8	\$11,897.7	\$38.8	\$74.0	\$ 31.4	\$144.2	\$75.5	\$219.7
Totals - 60 years				23,698	60,214				\$265,190	\$155,413	\$420,603.0				\$29,928.1	\$19,145.6	\$49,073.7

Annualized over 60 years: \$7,010.1 Annualized over 60 years: \$3,495.5

APPENDIX VII-B

NET BENEFITS OF SILICA PROPOSAL, DISAGGREGATED FOR GENERAL INDUSTRY/MARITIME AND CONSTRUCTION

Table VII-B-1
Annual Monetized Net Benefits Resulting from a Reduction in Exposure to Crystalline Silica to Proposed PEL of 50 μg/m³ and Alternative PEL of 100 μg/m³
(\$Billions)

PEL			50			100	
Discount Rate	Range	Total	Construction	GI & Maritime	Total	Construction	GI & Maritime
Undiscounted (0%)	Low	\$2.5	\$2.1	\$0.4	\$1.2	\$1.2	(\$0.0)
	Midpoint	\$6.4	\$4.9	\$1.5	\$3.4	\$3.3	\$0.1
	High	\$10.2	\$7.7	\$2.5	\$5.6	\$5.5	\$0.1
Discounted at 3%, with	Low	\$2.3	\$1.9	\$0.3	\$1.1	\$1.1	(\$0.0)
a suggested increased in monetized benefits	Midpoint	\$5.8	\$4.5	\$1.3	\$3.1	\$3.0	\$0.0
over time	High	\$9.3	\$7.0	\$2.3	\$5.1	\$5.0	\$0.1
Discounted at 3%	Low	\$1.8	\$1.5	\$0.3	\$0.8	\$0.8	(\$0.0)
	Midpoint	\$4.6	\$3.6	\$1.1	\$2.5	\$2.4	\$0.0
	High	\$7.5	\$5.6	\$1.8	\$4.1	\$4.0	\$0.1
Discounted at 7%, with	Low	\$1.3	\$1.1	\$0.2	\$0.6	\$0.6	(\$0.0)
a suggested increased in monetized benefits	Midpoint	\$3.6	\$2.8	\$0.8	\$1.9	\$1.9	\$0.0
over time	High	\$5.9	\$4.4	\$1.5	\$3.3	\$3.2	\$0.1
Discounted at 7%	Low	\$1.0	\$0.8	\$0.1	\$0.5	\$0.5	(\$0.0)
	Midpoint	\$2.8	\$2.2	\$0.7	\$1.5	\$1.5	\$0.0
	High	\$4.7	\$3.5	\$1.2	\$2.6	\$2.6	\$0.0

CHAPTER VIII: REGULATORY ALTERNATIVES

This chapter discusses various regulatory alternatives to the proposed OSHA silica standard. OSHA believes that this presentation of regulatory alternatives serves two important functions. The first is to explore the possibility of less costly ways (than the proposed rule) to provide an adequate level of worker protection from exposure to respirable crystalline silica. The second is tied to the Agency's statutory requirement, which underlies the proposed rule, to reduce significant risk to the extent feasible. If, based on evidence presented during notice and comment, OSHA is unable to justify its preliminary findings of significant risk and feasibility as presented in the preamble to the proposed rule, the Agency must then consider regulatory alternatives that do satisfy its statutory obligations.

Each regulatory alternative presented here is described and analyzed relative to the proposed rule. Where appropriate, the Agency notes whether the regulatory alternative, to be a legitimate candidate for OSHA consideration, requires evidence contrary to the Agency's findings of significant risk and feasibility. To facilitate comment, the regulatory alternatives have been organized into four categories: (1) alternative PELs to the proposed PEL of $50 \,\mu\text{g/m}^3$; (2) regulatory alternatives that affect proposed ancillary provisions; (3) a regulatory alternative that would modify the proposed methods of compliance; and (4) regulatory alternatives concerning when different provisions of the proposed rule would take effect.

ALTERNATIVE PELS

OSHA is proposing a new PEL for respirable crystalline silica of $50 \,\mu\text{g/m}^3$ for all industry sectors covered by the rule. OSHA's proposal is based on the requirements of the Occupational Safety and Health Act (OSH Act) and court interpretations of the Act. For health standards issued under section 6(b)(5) of the OSH Act, OSHA is required to promulgate a standard that reduces significant risk to the extent that it is technologically and economically feasible to do so. See Section II of the preamble, Pertinent Legal Authority, for a full discussion of OSHA legal requirements.

OSHA has conducted an extensive review of the literature on adverse health effects associated with exposure to respirable crystalline silica. The Agency has also developed estimates of the risk of silica-related diseases assuming exposure over a working lifetime at the proposed PEL and action level, as well as at OSHA's current PELs. These analyses are presented in a background document entitled "Respirable Crystalline Silica -- Health Effects Literature Review and Preliminary Quantitative Risk Assessment" and are summarized in the preamble to the proposed rule in Section V, Health Effects Summary, and Section VI, Summary of OSHA's Preliminary Quantitative Risk Assessment, respectively. The available evidence indicates that employees exposed to respirable crystalline silica well below the current PELs are at increased risk of lung cancer mortality and silicosis mortality and morbidity. Occupational exposures to respirable crystalline silica also may result in the development of kidney and autoimmune diseases and in death from other nonmalignant respiratory diseases. As discussed in Section VII, Significance of Risk, in the preamble, OSHA preliminarily finds that worker exposure to respirable crystalline silica constitutes a significant risk and that the proposed standard will substantially reduce this risk.

Section 6(b) of the OSH Act (29 U.S.C. 655(b)) requires OSHA to determine that its standards are technologically and economically feasible. OSHA's examination of the technological and economic feasibility of the proposed rule is presented in this PEA, and it is summarized in Section VIII of the preamble. For general industry and maritime, OSHA has preliminarily concluded that the proposed PEL of $50~\mu g/m^3$ is technologically feasible for all affected industries. For construction, OSHA has preliminarily determined that the proposed PEL of $50~\mu g/m^3$ is feasible in 10 out of 12 of the affected activities. Thus, OSHA preliminarily concludes that engineering and work practices will be sufficient to reduce and maintain silica exposures to the proposed PEL of $50~\mu g/m^3$ or below in most operations most of the time in the affected industries. For those few operations within an industry or activity where the proposed PEL is not technologically feasible even when workers use recommended engineering and work practice controls, employers can supplement controls with respirators to achieve exposure levels at or below the proposed PEL.

OSHA developed quantitative estimates of the compliance costs of the proposed rule for each of the affected industry sectors. The estimated compliance costs were compared with industry revenues and profits to provide a screening analysis of the economic feasibility of complying with the revised standard and an evaluation of the potential economic impacts. Industries with unusually high costs as a percentage of revenues or profits were further analyzed for possible economic feasibility issues. After performing these analyses, OSHA has preliminarily concluded that compliance with the requirements of the proposed rule would be economically feasible in every affected industry sector.

OSHA has examined two regulatory alternatives (named Regulatory Alternatives #1 and #2) that would modify the PEL for the proposed rule. Under Regulatory Alternative #1, the proposed PEL would be changed from $50 \, \mu \text{g/m}^3$ to $100 \, \mu \text{g/m}^3$ for all industry sectors covered by the rule, and the action level would be changed from $25 \, \mu \text{g/m}^3$ to $50 \, \mu \text{g/m}^3$ (thereby keeping the action level at one-half of the PEL). Under Regulatory Alternative #2, the proposed PEL would be lowered from $50 \, \mu \text{g/m}^3$ to $25 \, \mu \text{g/m}^3$ for all industry sectors covered by the rule, while the action level would remain at $25 \, \mu \text{g/m}^3$ (because of difficulties in accurately measuring exposure levels below $25 \, \mu \text{g/m}^3$).

Tables VIII-1 and VIII-2 present, for informational purposes, the estimated costs, benefits, and net benefits of the proposed rule under the proposed PEL of $50~\mu g/m^3$ and for the regulatory alternatives of a PEL of $100~\mu g/m^3$ and a PEL of $25~\mu g/m^3$ (Regulatory Alternatives # 1 and #2), using alternative discount rates of 3 and 7 percent. These two tables also present the incremental costs, the incremental benefits, and the incremental net benefits of going from a PEL of $100~\mu g/m^3$ to the proposed PEL of $50~\mu g/m^3$ and then of going from the proposed PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$. Table VIII-1 breaks out costs by provision and benefits by type of disease and by morbidity/mortality, while Table VIII-2 breaks out costs and benefits by major industry sector.

Та	ble VIII-1: Ann	ualized Cost	s, Benefits an	d Incremental		its of OSHA's Millions (\$200		Silica Standard o	f 50 μg/m³ an	id 100 μg/m³ Alterr	ative			
		25 μg/m	3	Increment	tal Cos	sts/Benefits		50 μg/m³		Incrementa	Costs/Benefits		100 μg/m³	
Discount Rate	_	3%	7%	3	8%	7%	_	3%	7%	3%	7%	_	3%	7%
Annualized Costs														
Engineering Controls (includes Abrasive Blasting)		\$330	\$344		\$0	\$0		\$330	\$344	\$187	\$197		\$143	\$147
Respirators		\$421	\$422		330	\$331		\$91	\$91	\$88	\$88		\$2	\$3
Exposure Assessment		\$203	\$203		3131	\$129		\$73	\$74	\$26	\$26		\$47	\$48
Medical Surveillance		\$219	\$227	\$	143	\$148		\$76	\$79	\$28	\$29		\$48	\$50
Training		\$49	\$50		\$0	\$0		\$49	\$50	\$0	\$0		\$49	\$50
Regulated Area or Access Control		\$85	\$86	;	\$66	\$66	_	\$19	\$19	\$10	\$10	_	\$9	\$10
Total Annualized Costs (point estimate)		\$1,308	\$1,332	\$	\$670	\$674		\$637	\$658	\$339	\$351		\$299	\$307
Annual Benefits: Number of Cases Prevented	Cases			Cases			Cases			Cases		Cases		
Fatal Lung Cancers (midpoint estimate)	237			75			162			79		83		
Fatal Silicosis & other Non-Malignant Respiratory Diseases	527			152			375			186		189		
Fatal Renal Disease	258			108			151			91		60		
Silica-Related Mortality	1,023	\$4,811	\$3,160	335 \$1,	,543	\$1,028	688	\$3,268	\$2,132	357 \$1,704	\$1,116	331	\$1,565	\$1,016
Silicosis Morbidity	1,770	\$2,219	\$1,523	186 \$	\$233	\$160	1,585	\$1,986	\$1,364	632 \$792	\$544	953	\$1,194	\$820
Monetized Annual Benefits (midpoint estimate)		\$7,030	\$4,684	\$1,	,776	\$1,188		\$5,254	\$3,495	\$2,495	\$1,659		\$2,759	\$1,836
Net Benefits		\$5,722	\$3,352	\$1,	,105	\$514		\$4,617	\$2,838	\$2,157	\$1,308		\$2,460	\$1,529

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

Table VIII-2: Annualized Costs, Benefits and Incremental Benefits of OSHA's Proposed Silica Standard of 50 μg/m³ and 100 μg/m³ Alternative, by Major Industry Sector Millions (\$2009) 25 µg/m³ Incremental Costs/Benefits 50 μg/m³ Incremental Costs/Benefits 100 µg/m³ Discount Rate 3% 7% 3% 7% 3% 7% 3% 7% 3% 7% Annualized Costs \$1,043 \$1,062 \$548 \$551 \$495 \$233 \$241 \$262 \$270 Construction \$511 General Industry/Maritime \$264 \$270 \$122 \$123 \$143 \$147 \$106 \$110 \$36 \$37 Total Annualized Costs \$1,308 \$670 \$674 \$637 \$658 \$339 \$351 \$299 \$307 \$1,332 Annual Benefits: Number of Cases Prevented Cases Cases Cases Cases Cases Silica-Related Mortality Construction 802 \$3,804 \$2,504 235 \$1,109 \$746 567 \$2,695 \$1,758 242 \$1,158 \$760 325 \$1,537 \$998 General Industry/Maritime 221 \$1,007 \$657 100 \$434 \$283 121 \$573 \$374 115 \$545 \$356 6 \$27 \$18 Total 1,023 \$4,811 \$3,160 335 \$1,543 \$1,028 688 \$3,268 \$2,132 357 \$1,704 \$1,116 331 \$1,565 \$1,016 Silicosis Morbidity \$930 1,157 Construction \$1,451 \$996 77 \$96 \$66 1,080 \$1,354 161 \$202 \$139 919 \$1,152 \$791 General Industry/Maritime 613 \$768 \$528 109 \$136 \$94 504 \$632 \$434 471 \$590 \$405 33 \$42 \$29 \$233 \$544 Total 1,770 \$2,219 \$1,523 186 \$160 1.585 \$1,986 \$1,364 632 \$792 953 \$1,194 \$820 Monetized Annual Benefits (midpoint estimate) Construction \$5,255 \$3,500 \$1,205 \$812 \$4,049 \$2,688 \$1,360 \$898 \$2,690 \$1,789 General Industry/Maritime \$570 \$1,205 \$1,775 \$1,184 \$377 \$808 \$1,135 \$761 \$69 \$47 Total \$7,030 \$4,684 \$1,776 \$1,188 \$5,254 \$3,495 \$2,495 \$1,659 \$2,759 \$1,836 Net Benefits Construction \$4.211 \$2,437 \$657 \$261 \$3.555 \$2,177 \$1.127 \$658 \$2,427 \$1.519 General Industry/Maritime \$914 \$448 \$1,062 \$1,511 \$254 \$661 \$1,029 \$651 \$33 \$10 Total \$5.722 \$3.352 \$1.105 \$514 \$4,617 \$2.838 \$2,157 \$1.308 \$2,460 \$1.529

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

As Tables VIII-1 and VIII-2 show, going from a PEL of $100~\mu\text{g/m}^3$ to a PEL of $50~\mu\text{g/m}^3$ would prevent, annually, an additional 357 silica-related fatalities and an additional 632 cases of silicosis. Based on its preliminary findings that the proposed PEL of $50~\mu\text{g/m}^3$ significantly reduces worker risk from silica exposure (as demonstrated by the number of silica-related fatalities and silicosis cases avoided) and is both technologically and economically feasible, OSHA cannot propose a PEL of $100~\mu\text{g/m}^3$ (Regulatory Alternative #1) without violating its statutory obligations under the OSH Act. However, the Agency will consider evidence that challenges its preliminary findings.

As previously noted, Tables VIII-1 and VIII-2 also show the costs and benefits of a PEL of $25~\mu g/m^3$ (Regulatory Alternative #2), as well as the incremental costs and benefits of going from the proposed PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$. Because OSHA determined that a PEL of $25~\mu g/m^3$ would not be feasible (that is, engineering and work practices would not be sufficient to reduce and maintain silica exposures to a PEL of $25~\mu g/m^3$ or below in most operations most of the time in the affected industries), the Agency did not attempt to identify engineering controls or their costs for affected industries to meet this PEL. Instead, for purposes of estimating the costs of going from a PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$, OSHA assumed that all workers exposed between $50~\mu g/m^3$ and $25~\mu g/m^3$ would have to wear respirators to achieve compliance with the $25~\mu g/m^3$ PEL. OSHA then estimated the associated additional costs for respirators, exposure assessments, medical surveillance, and regulated areas (the latter three for ancillary requirements specified in the proposed rule).

As shown in Tables VIII-1 and VIII-2, going from a PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$ would prevent, annually, an additional 335 silica-related fatalities and an additional 186 cases of silicosis. These estimates support OSHA's preliminarily finding that there is significant risk remaining at the proposed PEL of $50~\mu g/m^3$. However, the Agency has preliminarily determined that a PEL of $25~\mu g/m^3$ (Regulatory Alternative #2) is not technologically feasible, and for that reason, cannot propose it without violating its statutory obligations under the OSH Act.

REGULATORY ALTERNATIVES THAT AFFECT ANCILLARY PROVISIONS

The proposed rule contains several ancillary provisions (provisions other the PEL), including requirements for exposure assessment, medical surveillance, silica training, and regulated areas or access control. As shown in Table VIII-1, these ancillary provisions represent approximately \$223 million (or about 34 percent) of the total annualized costs of the rule of \$658 million (using a 7 percent discount rate). The two most expensive of the ancillary provisions are the requirements for medical surveillance, with annualized costs of \$79 million, and the requirements for exposure monitoring, with annualized costs of \$74 million.

As proposed, the requirements for exposure assessment are triggered by the action level. As described in the preamble, OSHA has defined the action level for the proposed standard as an airborne concentration of respirable crystalline silica of 25 μ g/m³

calculated as an eight-hour time-weighted average. In this proposal, as in other standards, the action level has been set at one-half of the PEL.

Because of the variable nature of employee exposures to airborne concentrations of respirable crystalline silica, maintaining exposures below the action level provides reasonable assurance that employees will not be exposed to respirable crystalline silica at levels above the PEL on days when no exposure measurements are made. Even when all measurements on a given day may fall below the PEL (but are above the action level), there is some chance that on another day, when exposures are not measured, the employee's actual exposure may exceed the PEL. When exposure measurements are above the action level, the employer cannot be reasonably confident that employees have not been exposed to respirable crystalline silica concentrations in excess of the PEL during at least some part of the work week. Therefore, requiring periodic exposure measurements when the action level is exceeded provides the employer with a reasonable degree of confidence in the results of the exposure monitoring.

The action level is also intended to encourage employers to lower exposure levels in order to avoid the costs associated with the exposure assessment provisions. Some employers would be able to reduce exposures below the action level in all work areas, and other employers in some work areas. As exposures are lowered, the risk of adverse health effects among workers decreases.

OSHA's preliminary risk assessment indicates that significant risk remains at the proposed PEL of 50 µg/m³. Where there is continuing significant risk, the decision in the Asbestos case (*Bldg. and Constr.Trades Dep't, AFL-CIO v. Brock*, 838 F.2d 1258, 1274 (D.C. Cir. 1988)) indicated that OSHA should use its legal authority to impose additional requirements on employers to further reduce risk when those requirements will result in a greater than *de minimis* incremental benefit to workers' health. OSHA's preliminary conclusion is that the requirements triggered by the action level will result in a very real and necessary, but non-quantifiable, further reduction in risk beyond that provided by the PEL alone. OSHA's choice of proposing an action level for exposure monitoring of one-half of the PEL is based on the Agency's successful experience with other standards, including those for inorganic arsenic (29 CFR 1910.1018), ethylene oxide (29 CFR 1910.1052).

As specified in the proposed rule, all workers exposed to respirable crystalline silica above the PEL of $50 \,\mu\text{g/m}^3$ are subject to the medical surveillance requirements. This means that the medical surveillance requirements would apply to 15,172 workers in general industry and 336,244 workers in construction. OSHA estimates that 457 possible silicosis cases will be referred to pulmonary specialists annually as a result of this medical surveillance.

OSHA has preliminarily determined that these ancillary provisions will: (1) help to ensure the PEL is not exceeded, and (2) minimize risk to workers given the very high level of risk remaining at the PEL. Medical surveillance is particularly important for this rule because those exposed above the PEL are at significant risk of illness. OSHA did

not estimate, and the benefits analysis does not include, monetary benefits resulting from early discovery of illness.

Because medical surveillance and exposure assessment are the two most costly ancillary provisions in the proposed rule, the Agency has examined four regulatory alternatives (named Regulatory Alternatives #3, #4, #5, and #6) involving changes to one or the other of these ancillary provisions. These four regulatory alternatives are defined below and the incremental cost impact of each is summarized in Table VIII-3. In addition, OSHA is including a regulatory alternative (named Regulatory Alternative #7) that would remove all ancillary provisions.

Table VIII-3: Cost of Regulatory Alternatives Affecting Ancillary Provisions

3% Discount Rate		Cost		Increme	ntal Cost Relative to F	Proposal
	Construction	GI/M	Total	Construction	GI/M	Total
Proposed Rule	\$494,826,699	\$142,502,681	\$637,329,380			
Option 3: PEL=50; AL=50	\$457,686,162	\$117,680,601	\$575,366,763	-\$37,140,537	-\$24,822,080	-\$61,962,617
Option 4: PEL=50; AL =25, with medical surveillance triggered by AL	\$606,697,624	\$173,701,827	\$780,399,451	\$111,870,925	\$31,199,146	\$143,070,071
Option 5: PEL=50; AL=25, with medical exams annually	\$561,613,766	\$145,088,559	\$706,702,325	\$66,787,067	\$2,585,878	\$69,372,945
Option 6: PEL=50; AL=25, with surveillance triggered by AL and medical exams annually	\$775,334,483	\$203,665,685	\$979,000,168	\$280,507,784	\$61,163,004	\$341,670,788
7% Discount Rate		Cost		Increme	ntal Cost Relative to F	Proposal
	Construction	GI/M	Total	Construction	GI/M	Total
Proposed Rule	\$511,165,616	\$146,726,595	\$657,892,211			
Option 3: PEL=50; AL=50	\$473,638,698	\$121,817,396	\$595,456,093	-\$37,526,918	-\$24,909,200	-\$62,436,118
Option 4: PEL=50; AL =25, with medical surveillance triggered by AL	\$627,197,794	\$179,066,993	\$806,264,787	\$132,371,095	\$36,564,312	\$168,935,407
Option 5: PEL=50; AL=25, with medical exams annually	\$575,224,843	\$149,204,718	\$724,429,561	\$64,059,227	\$2,478,122	\$66,537,350
Option 6: PEL=50; AL=25, with surveillance triggered by AL and medical exams annually	\$791,806,358	\$208,339,741	\$1,000,146,099	\$280,640,742	\$61,613,145	\$342,253,887

Under Regulatory Alternative #3, the action level would be raised from 25 μ g/m³ to 50 μ g/m³ while keeping the PEL at 50 μ g/m³. As a result, exposure monitoring requirements would be triggered only if workers were exposed above the proposed PEL of 50 μ g/m³. As shown in Table VIII-3, Regulatory Option #3 would reduce the annualized cost of the proposed rule by about \$62 million, using a discount rate of either 3 percent or 7 percent).

Under Regulatory Alternative #4, the action level would remain at $25 \mu g/m^3$ but medical surveillance would now be triggered by the action level, not the PEL. As a result, medical surveillance requirements would be triggered only if workers were exposed at or above the proposed action level of $25 \mu g/m^3$. As shown in Table VIII-3, Regulatory Option #4 would increase the annualized cost of the proposed rule by about \$143 million, using a discount rate of 3 percent (and by about \$169 million, using a discount rate of 7 percent).

Under Regulatory Alternative #5, the only change to the proposed rule would be to the medical surveillance requirements. Instead of requiring workers exposed above the PEL to have a medical check-up every three years, those workers would be required to have a medical check-up annually. As shown in Table VIII-3, Regulatory Option #5 would increase the annualized cost of the proposed rule by about \$69 million, using a discount rate of 3 percent (and by about \$66 million, using a discount rate of 7 percent).

Regulatory Alternative #6 would essentially combine the modified requirements in Regulatory Alternatives #4 and #5. Under Regulatory Alternative #6, medical surveillance would be triggered by the action level, not the PEL, and workers exposed at or above the action level would be required to have a medical check-up annually rather than triennially. The exposure monitoring requirements in the proposed rule would not be affected. As shown in Table VIII-3, Regulatory Option #6 would increase the annualized cost of the proposed rule by about \$342 million, using a discount rate of either 3 percent or 7 percent.

OSHA is not able to quantify the effects of these preceding four regulatory alternatives on protecting workers exposed to respirable crystalline silica at levels at or below the proposed PEL of $50 \,\mu\text{g/m}^3$ —where significant risk remains. The Agency solicits comment on the extent to which these regulatory options may improve or reduce the effectiveness of the proposed rule.

The final regulatory alternative affecting ancillary provisions, Regulatory Alternative #7, would eliminate all of the ancillary provisions of the proposed rule, including exposure assessment, medical surveillance, training, and regulated areas or access control. However, it should be carefully noted that elimination of the ancillary provisions does not mean that all costs for ancillary provisions would disappear. In order to meet the PEL, employers would still commonly need to do monitoring, train workers on the use of controls, and set up some kind of regulated areas to indicate where respirator use would be required. It is also likely that employers would increasingly follow the many recommendations to provide medical surveillance for employees. OSHA has not

attempted to estimate the extent to which the costs of these activities would be reduced if they were not formally required, but OSHA welcomes comment on the issue.

As indicated previously, OSHA preliminarily finds that there is significant risk remaining at the proposed PEL of $50 \mu g/m^3$. However, the Agency has also preliminarily determined that $50 \mu g/m^3$ is the lowest feasible PEL. Therefore, the Agency believes that it is necessary to include ancillary provisions in the proposed rule to further reduce the remaining risk. OSHA anticipates that these ancillary provisions will reduce the risk beyond the reduction that will be achieved by a new PEL alone.

OSHA's reasons for including each of the proposed ancillary provisions are detailed in Section XVI of the preamble, Summary and Explanation of the Standards. In particular, OSHA believes that requirements for exposure assessment (or alternately, using specified exposure control methods for selected construction operations) would provide a basis for ensuring that appropriate measures are in place to limit worker exposures. Medical surveillance is particularly important because individuals exposed above the PEL (which triggers medical surveillance in the proposed rule) are at significant risk of death and illness. Medical surveillance would allow for identification of respirable crystalline silica-related adverse health effects at an early stage so that appropriate intervention measures can be taken. OSHA believes that regulated areas and access control are important because they serve to limit exposure to respirable crystalline silica to as few employees as possible. Finally, OSHA believes that worker training is necessary to inform employees of the hazards to which they are exposed, along with associated protective measures, so that employees understand how they can minimize potential health hazards. Worker training on silica-related work practices is particularly important in controlling silica exposures because engineering controls frequently require action on the part of workers to function effectively.

OSHA expects that the benefits estimated under the proposed rule will not be fully achieved if employers do not implement the ancillary provisions of the proposed rule. For example, OSHA believes that the effectiveness of the proposed rule depends on regulated areas or access control to further limit exposures and on medical surveillance to identify disease cases when they do occur.

Both industry and worker groups have recognized that a comprehensive standard is needed to protect workers exposed to respirable crystalline silica. For example, the industry consensus standards for crystalline silica, ASTM E 1132 – 06, Standard Practice for Health Requirements Relating to Occupational Exposure to Respirable Crystalline Silica, and ASTM E 2626 – 09, Standard Practice for Controlling Occupational Exposure to Respirable Crystalline Silica for Construction and Demolition Activities, as well as the draft proposed silica standard for construction developed by the Building and Construction Trades Department, AFL-CIO, have each included comprehensive programs. These recommended standards include provisions for methods of compliance, exposure monitoring, training, and medical surveillance (ASTM, 2006; 2009; BCTD 2001). Moreover, as mentioned previously, where there is continuing significant risk, the decision in the Asbestos case (Bldg. and Constr. Trades Dep't, AFL-CIO v. Brock, 838

F.2d 1258, 1274 (D.C. Cir. 1988)) indicated that OSHA should use its legal authority to impose additional requirements on employers to further reduce risk when those requirements will result in a greater than <u>de minimis</u> incremental benefit to workers' health. OSHA preliminarily concludes that the additional requirements in the ancillary provisions of the proposed standard clearly exceed this threshold.

A REGULATORY ALTERNATIVE THAT MODIFIES THE METHODS OF COMPLIANCE

The proposed standard in general industry and maritime would require employers to implement engineering and work practice controls to reduce employees' exposures to or below the PEL. Where engineering and/or work practice controls are insufficient, employers would still be required to implement them to reduce exposure as much as possible, and to supplement them with a respiratory protection program. Under the proposed construction standard, employers would be given two options for compliance. The first option largely follows requirements for the general industry and maritime proposed standard, while the second option outlines, in Table 1 (Exposure Control Methods for Selected Construction Operations) of the proposed rule, specific construction exposure control methods. Employers choosing to follow OSHA's proposed control methods would be considered to be in compliance with the engineering and work practice control requirements of the proposed standard, and would not be required to conduct certain exposure monitoring activities.

One regulatory alternative (Regulatory Alternative #8) involving methods of compliance would be to eliminate Table 1 as a compliance option in the construction sector. Under this regulatory alternative, OSHA estimates that there would be no effect on estimated benefits but that the annualized costs of complying with the proposed rule (*without* the benefit of the Table 1 option in construction) would increase by \$175 million, totally in exposure monitoring costs, using a 3 percent discount rate (and by \$178 million using a 7 percent discount rate), so that the total annualized compliance costs for all affected establishments in construction would increase from \$495 to \$670 million using a 3 percent discount rate (and from \$511 to \$689 million using a 7 percent discount rate).

REGULATORY ALTERNATIVES THAT AFFECT THE TIMING OF THE STANDARD

The proposed rule would become effective 60 days following publication of the final rule in the Federal Register. Provisions outlined in the proposed standard would become enforceable 180 days following the effective date, with the exceptions of engineering controls and laboratory requirements. The proposed rule would require engineering controls to be implemented no later than one year after the effective date, and laboratory requirements would be required to begin two years after the effective date.

One regulatory alternative (Regulatory Alternative #9) involving the timing of the standard would arise if, contrary to OSHA's preliminary findings, a PEL of $50 \,\mu\text{g/m}^3$ with an action level of $25 \,\mu\text{g/m}^3$ were found to be technologically and economically

feasible some time in the future (say, in five years), but not feasible immediately. In that case, OSHA might issue a final rule with a PEL of 50 μ g/m³ and an action level of 25 $\mu g/m^3$ to take effect in five years, but at the same time issue an interim PEL of 100 $\mu g/m^3$ and an action level of 50 μ g/m³ to be in effect until the final rule becomes feasible. Under this regulatory alternative, and consistent with the public participation and "look back" provisions of Executive Order 13563, the Agency could monitor compliance with the interim standard, review progress toward meeting the feasibility requirements of the final rule, and evaluate whether any adjustments to the timing of the final rule would be needed. Under Regulatory Alternative #9, the estimated costs and benefits would be somewhere between those estimated for a PEL of 100 μ g/m³ with an action level of $50 \mu \text{g/m}^3$ and those estimated for a PEL of $50 \mu \text{g/m}^3$ with an action level of $25 \mu \text{g/m}^3$, the exact estimates depending on the length of time until the final rule is phased in. OSHA emphasizes that this regulatory alternative is contrary to the Agency's preliminary findings of economic feasibility and, for the Agency to consider it, would require specific evidence introduced on the record to show that the proposed rule is not now feasible but would be feasible in the future.

Although OSHA did not explicitly develop or quantitatively analyze any other regulatory alternatives involving longer-term or more complex phase-ins of the standard (possibly involving more delayed implementation dates for small businesses), the Agency is soliciting comments on this issue. Such a particularized, multi-year phase-in would have several advantages, especially from the viewpoint of impacts on small businesses. First, it would reduce the one-time initial costs of the standard by spreading them out over time, a particularly useful mechanism for small businesses that have trouble borrowing large amounts of capital in a single year. A differential phase-in for smaller firms would also aid very small firms by allowing them to gain from the control experience of larger firms. A phase-in would also be useful in certain industries—such as foundries, for example—by allowing employers to coordinate their environmental and occupational safety and health control strategies to minimize potential costs. However a phase-in would also postpone the benefits of the standard.

OSHA requests comments on these regulatory alternatives, including the Agency's choice of regulatory alternatives (and whether there are other regulatory alternatives the Agency should consider) and the Agency's analysis of them.

CHAPTER IX: INITIAL REGULATORY FLEXIBILITY ANALYSIS

The Regulatory Flexibility Act, as amended in 1996, requires the preparation of an Initial Regulatory Flexibility Analysis (IRFA) for proposed rules where there would be a significant economic impact on a substantial number of small entities. (5 U.S.C. 601-612). Under the provisions of the law, each such analysis shall contain:

- 1. a description of the impact of the proposed rule on small entities;
- 2. a description of the reasons why action by the agency is being considered;
- 3. a succinct statement of the objectives of, and legal basis for, the proposed rule;
- 4. a description of and, where feasible, an estimate of the number of small entities to which the proposed rule will apply;
- 5. a description of the projected reporting, recordkeeping, and other compliance requirements of the proposed rule, including an estimate of the classes of small entities which will be subject to the requirements and the type of professional skills necessary for preparation of the report or record;
- 6. an identification, to the extent practicable, of all relevant Federal rules which may duplicate, overlap, or conflict with the proposed rule; and
- 7. a description and discussion of any significant alternatives to the proposed rule which accomplish the stated objectives of applicable statutes and which minimize any significant economic impact of the proposed rule on small entities, such as:
 - a) the establishment of differing compliance or reporting requirements or timetables that take into account the resources available to small entities;
 - b) the clarification, consolidation, or simplification of compliance and reporting requirements under the rule for such small entities;
 - c) the use of performance rather than design standards; and
 - d) an exemption from coverage of the rule, or any part thereof, for such small entities.

5 U.S.C. 603, 607. The Regulatory Flexibility Act further states that the required elements of the IRFA may be performed in conjunction with or as part of any other agenda or analysis required by any other law if such other analysis satisfies the provisions of the IRFA. 5 U.S.C. 605.

While a full understanding of OSHA's analysis and conclusions with respect to costs and economic impacts on small entities requires a reading of the complete PEA and its

supporting materials, this IRFA will summarize the key aspects of OSHA's analysis as they affect small entities.

A DESCRIPTION OF THE IMPACT OF THE PROPOSED RULE ON SMALL ENTITIES

Chapter VI of this PEA summarized the impacts of the proposed rule on small entities. Tables VI-7 and VI-12 showed costs as a percentage of profits and revenues for small entities in general industry and maritime and in construction, respectively, classified as small by the Small Business Administration, and Tables VI-8 and VI-13 showed costs as a percentage of revenues and profits for business entities with fewer than 20 employees in general industry and maritime and in construction, respectively. (The costs in these tables were annualized using a discount rate of 7 percent.)

A DESCRIPTION OF THE REASONS WHY ACTION BY THE AGENCY IS BEING CONSIDERED

Exposure to crystalline silica has been shown to increase the risk of several serious diseases. Crystalline silica is the only known cause of silicosis, which is a progressive respiratory disease in which respirable crystalline silica particles cause an inflammatory reaction in the lung, leading to lung damage and scarring, and, in some cases, to complications resulting in disability and death. In addition, many well-conducted investigations of exposed workers have shown that exposure increases the risk of mortality from lung cancer, chronic obstructive pulmonary disease (COPD), and renal disease. OSHA's detailed analysis of the scientific literature and silica-related health risks are presented in the background document entitled "Respirable Crystalline Silica -- Health Effects Literature Review and Preliminary Quantitative Risk Assessment" (placed in Docket OSHA-2010-0034).

Based on a review of over 60 epidemiological studies covering more than 30 occupational groups, OSHA preliminarily concludes that crystalline silica is a human carcinogen. Most of these studies documented that exposed workers experience higher lung cancer mortality rates than do unexposed workers or the general population, and that the increase in lung cancer mortality is related to cumulative exposure to crystalline silica. These exposure-related trends strongly implicate crystalline silica as a likely causative agent. This is consistent with the conclusions of other government and public health organizations, including the International Agency for Research on Cancer (IARC), the Agency for Toxic Substance and Disease Registry (ATSDR), the World Health Organization (WHO), the U.S. Environmental Protection Agency (EPA), the National Toxicology Program (NTP), the National Academies of Science (NAS), the National Institute for Occupational Safety and Health (NIOSH), and the American Conference of Governmental Industrial Hygienists (ACGIH)

OSHA believes that the strongest evidence for carcinogenicity comes from studies in five industry sectors (diatomaceous earth, pottery, granite, industrial sand, and coal mining) as well as a study by Steenland et al. (2001) that analyzed pooled data from 10 occupational cohort studies; each of these studies found a positive relationship between exposure to crystalline silica and lung cancer mortality. Based on a variety of relative risk models fit to these data sets, OSHA estimates that the excess lifetime risk to workers exposed over a working life of 45 years at the current general industry permissible exposure limit (PEL) (approximately $100 \, \mu g/m^3$ respirable crystalline silica) is between 13 and 60 deaths per 1,000 workers. For exposure over a working life at the current construction and shipyard employment PELs (estimated to range between 250 and 500 $\mu g/m^3$), the estimated risk lies between 37 and 653 deaths per 1,000. Reducing these PELs to the proposed PEL of $50 \, \mu g/m^3$ respirable crystalline silica results in a substantial reduction of these risks, to a range estimated to be between 6 and 26 deaths per 1,000 workers.

OSHA has also quantitatively evaluated the mortality risk from non-malignant respiratory disease, including silicosis and COPD. Risk estimates for silicosis mortality are based on a study by Mannetje et al. (2002), which pooled data from six worker cohort studies to derive a quantitative relationship between exposure and death rate for silicosis. For non-malignant respiratory disease, risk estimates are based on an epidemiologic study of diatomaceous earth workers, which included a quantitative exposure-response analysis (Park et al., 2002). For 45 years of exposure to the current general industry PEL, OSHA's estimates of excess lifetime risk are 11 deaths per 1,000 workers for the pooled analysis and 83 deaths per 1,000 workers based on Park et al.'s (2002) estimates. At the proposed PEL, estimates of silicosis and non-malignant respiratory disease mortality are 7 and 43 deaths per 1,000, respectively. As noted by Park et al. (2002), it is likely that silicosis as a cause of death is often misclassified as emphysema or chronic bronchitis; thus, Mannetje et al.'s selection of deaths may tend to underestimate the true risk of silicosis mortality, while Park et al.'s (2002) analysis would more fairly capture the total respiratory mortality risk from all non-malignant causes, including silicosis and COPD.

OSHA also identified seven studies that quantitatively described relationships between exposure to respirable crystalline silica and silicosis morbidity, as diagnosed from chest radiography (i.e., chest x-rays or computerized tomography). Estimates of silicosis morbidity derived from these cohort studies range from 60 to 773 cases per 1,000 workers for a 45-year exposure to the current general industry PEL, and approach unity for a 45-year exposure to the current construction/shipyard PEL. Estimated risks of silicosis morbidity range from 20 to 170 cases per 1,000 workers for a 45-year exposure to the proposed PEL, reflecting a substantial reduction in the risk associated with exposure to the current PELs.

OSHA's estimates of crystalline silica-related renal disease mortality risk are derived from an analysis by Steenland et al. (2002), in which data from three cohort studies were pooled to derive a quantitative relationship between exposure to silica and the relative risk of end-stage renal disease mortality. The cohorts included workers in the U.S. gold mining, industrial sand, and granite industries. From this study, OSHA estimates that exposure to the current general industry and proposed PELs over a working life would

result in a lifetime excess renal disease risk of 39 and 32 deaths per 1,000 workers, respectively. For exposure to the current construction/shipyard PEL, OSHA estimates the excess lifetime risk to range from 52 to 63 deaths per 1,000 workers.

A STATEMENT OF THE OBJECTIVES OF, AND LEGAL BASIS FOR, THE PROPOSED RULE

The objective of the proposed rule is to reduce the numbers of fatalities and illnesses occurring among employees exposed to respirable crystalline silica in general industry, maritime, and construction sectors. This objective will be achieved by requiring employers to install engineering controls where appropriate and to provide employees with the equipment, respirators, training, exposure monitoring, medical surveillance, and other protective measures to perform their jobs safely. The legal basis for the rule is the responsibility given the U.S. Department of Labor through the Occupational Safety and Health Act of 1970 (OSH Act). The OSH Act provides that, in promulgating health standards dealing with toxic materials or harmful physical agents, the Secretary "shall set the standard which most adequately assures, to the extent feasible, on the basis of the best available evidence that no employee will suffer material impairment of health or functional capacity even if such employee has regular exposure to the hazard dealt with by such standard for the period of his working life." 29 U.S.C. Sec. 655(b)(5). See Section II of the preamble for a more detailed discussion.

A DESCRIPTION OF AND ESTIMATE OF THE NUMBER OF SMALL ENTITIES TO WHICH THE PROPOSED RULE WILL APPLY

OSHA has completed a preliminary analysis of the impacts associated with this proposal, including an analysis of the type and number of small entities to which the proposed rule would apply, as described above. In order to determine the number of small entities potentially affected by this rulemaking, OSHA used the definitions of small entities developed by the Small Business Administration (SBA) for each industry.

OSHA estimates that approximately 470,000 small business or government entities would be affected by the proposed standard. Within these small entities, roughly 1.3 million workers are exposed to crystalline silica and would be protected by the proposed standard. A breakdown, by industry, of the number of affected small entities is provided in Table III-3 in Chapter III of this PEA.

OSHA estimates that approximately 356,000 very small entities would be affected by the proposed standard. Within these very small entities, roughly 580,000 workers are exposed to crystalline silica and would be protected by the proposed standard. A breakdown, by industry, of the number of affected very small entities is provided in Table III-4 in Chapter III of this PEA.

A DESCRIPTION OF THE PROJECTED REPORTING, RECORDKEEPING, AND OTHER COMPLIANCE REQUIREMENTS OF THE PROPOSED RULE

Tables IX-1 and IX-2 show the average costs of the proposed standard by NAICS code and by compliance requirement for, respectively, small entities (classified as small by SBA) and very small entities (fewer than 20 employees). For the average small entity in general industry and maritime, the estimated cost of the proposed rule would be about \$2,103 annually, with engineering controls accounting for 67 percent of the costs and exposure monitoring accounting for 23 percent of the costs. For the average small entity in construction, the estimate cost of the proposed rule would be about \$798 annually, with engineering controls accounting for 47 percent of the costs, exposure monitoring accounting for 17 percent of the costs, and medical surveillance accounting for 15 percent of the costs.

For the average very small entity in general industry and maritime, the estimate cost of the proposed rule would be about \$616 annually, with engineering controls accounting for 55 percent of the costs and exposure monitoring accounting for 33 percent of the costs. For the average very small entity in construction, the estimate cost of the proposed rule would be about \$533 annually, with engineering controls accounting for 45 percent of the costs, exposure monitoring accounting for 16 percent of the costs, and medical surveillance accounting for 16 percent of the costs.

Table IX-3 shows the unit costs which form the basis for these cost estimates for the average small entity and very small entity.

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars)

					(2009 dollars)			
NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
324121	Asphalt paving mixture and block manufacturing	\$232	\$4	\$13	\$1	\$74	\$1	\$326
324122	Asphalt shingle and roofing materials	\$5,721	\$297	\$1,887	\$103	\$114	\$111	\$8,232
325510	Paint and coating manufacturing	\$0	\$10	\$36	\$3	\$15	\$4	\$69
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$6,310	\$428	\$2,065	\$150	\$162	\$160	\$9,274
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$1,679	\$114	\$663	\$41	\$47	\$42	\$2,586
327113	Porcelain electrical supply mfg	\$6,722	\$458	\$2,656	\$162	\$188	\$170	\$10,355
327121	Brick and structural clay mfg	\$28,574	\$636	\$3,018	\$226	\$237	\$236	\$32,928
327122	Ceramic wall and floor tile mfg	\$10,982	\$245	\$1,160	\$87	\$91	\$91	\$12,655
327123	Other structural clay product mfg	\$10,554	\$235	\$1,115	\$83	\$87	\$87	\$12,162
327124	Clay refractory manufacturing	\$1,325	\$92	\$653	\$33	\$81	\$34	\$2,218
327125	Nonclay refractory manufacturing	\$1,964	\$136	\$802	\$48	\$110	\$51	\$3,110
327211	Flat glass manufacturing	\$4,068	\$160	\$520	\$56	\$50	\$60	\$4,913

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327212	Other pressed and blown glass and glassware manufacturing	\$889	\$34	\$110	\$12	\$11	\$13	\$1,068
327213	Glass container manufacturing	\$2,004	\$76	\$248	\$27	\$24	\$29	\$2,408
327320	Ready-mixed concrete manufacturing	\$1,728	\$460	\$1,726	\$163	\$121	\$171	\$4,369
327331	Concrete block and brick mfg	\$3,236	\$245	\$1,257	\$87	\$134	\$91	\$5,049
327332	Concrete pipe mfg	\$5,105	\$386	\$1,983	\$137	\$211	\$143	\$7,966
327390	Other concrete product mfg	\$3,016	\$228	\$1,171	\$81	\$125	\$85	\$4,705
327991	Cut stone and stone product manufacturing	\$2,821	\$207	\$1,040	\$74	\$65	\$77	\$4,284
327992	Ground or treated mineral and earth manufacturing	\$12,034	\$174	\$3,449	\$62	\$191	\$65	\$15,975
327993	Mineral wool manufacturing	\$1,365	\$56	\$185	\$20	\$17	\$21	\$1,664
327999	All other misc. nonmetallic mineral product mfg	\$2,222	\$168	\$863	\$60	\$92	\$62	\$3,467
331111	Iron and steel mills	\$604	\$34	\$138	\$12	\$11	\$13	\$812
331112	Electrometallurgica I ferroalloy product manufacturing	\$514	\$29	\$118	\$10	\$10	\$11	\$692

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$664	\$38	\$154	\$13	\$13	\$14	\$896
331221	Rolled steel shape manufacturing	\$583	\$33	\$135	\$12	\$11	\$12	\$787
331222	Steel wire drawing	\$638	\$36	\$148	\$13	\$12	\$14	\$862
331314	Secondary smelting and alloying of aluminum	\$577	\$33	\$133	\$11	\$11	\$12	\$777
331423	Secondary smelting, refining, and alloying of copper	\$534	\$30	\$125	\$11	\$10	\$11	\$722
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$548	\$31	\$128	\$11	\$11	\$12	\$741
331511	Iron foundries	\$9,143	\$522	\$2,777	\$185	\$200	\$194	\$13,021
331512	Steel investment foundries	\$11,874	\$675	\$3,596	\$240	\$249	\$251	\$16,885
331513	Steel foundries (except investment)	\$9,223	\$526	\$2,802	\$187	\$202	\$196	\$13,135
331524	Aluminum foundries (except die-casting)	\$7,367	\$419	\$2,231	\$149	\$155	\$156	\$10,476

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331525	Copper foundries (except die-casting)	\$4,563	\$260	\$1,382	\$92	\$96	\$96	\$6,489
331528	Other nonferrous foundries (except die-casting)	\$3,895	\$222	\$1,179	\$79	\$82	\$82	\$5,539
332111	Iron and steel forging	\$531	\$30	\$161	\$11	\$12	\$11	\$756
332112	Nonferrous forging	\$533	\$30	\$162	\$11	\$12	\$11	\$760
332115	Crown and closure manufacturing	\$514	\$29	\$156	\$10	\$11	\$11	\$732
332116	Metal stamping	\$533	\$30	\$162	\$11	\$12	\$11	\$759
332117	Powder metallurgy part manufacturing	\$535	\$31	\$163	\$11	\$12	\$11	\$762
332211	Cutlery and flatware (except precious) manufacturing	\$518	\$30	\$157	\$10	\$11	\$11	\$738
332212	Hand and edge tool manufacturing	\$542	\$31	\$165	\$11	\$12	\$12	\$772
332213	Saw blade and handsaw manufacturing	\$528	\$30	\$160	\$11	\$12	\$11	\$752
332214	Kitchen utensil, pot, and pan manufacturing	\$560	\$32	\$170	\$11	\$12	\$12	\$798
332323	Ornamental and architectural metal work	\$524	\$20	\$102	\$7	\$11	\$8	\$673
332439	Other metal container manufacturing	\$550	\$31	\$167	\$11	\$12	\$12	\$784

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332510	Hardware manufacturing	\$531	\$30	\$161	\$11	\$12	\$11	\$756
332611	Spring (heavy gauge) manufacturing	\$529	\$30	\$161	\$11	\$12	\$11	\$754
332612	Spring (light gauge) manufacturing	\$585	\$33	\$178	\$12	\$13	\$12	\$834
332618	Other fabricated wire product manufacturing	\$537	\$31	\$163	\$11	\$12	\$11	\$765
332710	Machine shops	\$518	\$30	\$157	\$10	\$11	\$11	\$738
332812	Metal coating and allied services	\$843	\$33	\$165	\$12	\$18	\$12	\$1,083
332911	Industrial valve manufacturing	\$528	\$30	\$160	\$11	\$12	\$11	\$752
332912	Fluid power valve and hose fitting manufacturing	\$532	\$30	\$162	\$11	\$12	\$11	\$757
332913	Plumbing fixture fitting and trim manufacturing	\$528	\$30	\$160	\$11	\$12	\$11	\$752
332919	Other metal valve and pipe fitting manufacturing	\$536	\$31	\$163	\$11	\$12	\$11	\$764
332991	Ball and roller bearing manufacturing	\$545	\$31	\$131	\$11	\$11	\$12	\$741
332996	Fabricated pipe and pipe fitting manufacturing	\$529	\$30	\$161	\$11	\$12	\$11	\$754
332997	Industrial pattern manufacturing	\$517	\$29	\$157	\$10	\$11	\$11	\$736

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332998	Enameled iron and metal sanitary ware manufacturing	\$484	\$23	\$97	\$8	\$10	\$9	\$630
332999	All other miscellaneous fabricated metal product manufacturing	\$521	\$30	\$158	\$11	\$11	\$11	\$742
333319	Other commercial and service industry machinery manufacturing	\$526	\$30	\$160	\$11	\$12	\$11	\$750
333411	Air purification equipment manufacturing	\$525	\$30	\$160	\$11	\$11	\$11	\$748
333412	Industrial and commercial fan and blower manufacturing	\$555	\$32	\$169	\$11	\$12	\$12	\$791
333414	Heating equipment (except warm air furnaces) manufacturing	\$520	\$30	\$158	\$11	\$11	\$11	\$741
333511	Industrial mold manufacturing	\$522	\$30	\$159	\$11	\$11	\$11	\$743
333512	Machine tool (metal cutting types) manufacturing	\$524	\$30	\$159	\$11	\$11	\$11	\$746

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333513	Machine tool (metal forming types) manufacturing	\$532	\$30	\$162	\$11	\$12	\$11	\$758
333514	Special die and tool, die set, jig, and fixture manufacturing	\$522	\$30	\$158	\$11	\$11	\$11	\$743
333515	Cutting tool and machine tool accessory manufacturing	\$524	\$30	\$159	\$11	\$11	\$11	\$746
333516	Rolling mill machinery and equipment manufacturing	\$522	\$30	\$159	\$11	\$11	\$11	\$744
333518	Other metalworking machinery manufacturing	\$537	\$31	\$163	\$11	\$12	\$11	\$765
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$546	\$31	\$166	\$11	\$12	\$12	\$777
333613	Mechanical power transmission equipment manufacturing	\$529	\$30	\$161	\$11	\$12	\$11	\$754
333911	Pump and pumping equipment manufacturing	\$535	\$31	\$163	\$11	\$12	\$11	\$762

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333912	Air and gas compressor manufacturing	\$532	\$30	\$162	\$11	\$12	\$11	\$758
333991	Power-driven handtool manufacturing	\$514	\$29	\$156	\$10	\$11	\$11	\$732
333992	Welding and soldering equipment manufacturing	\$523	\$30	\$159	\$11	\$11	\$11	\$745
333993	Packaging machinery manufacturing	\$521	\$30	\$158	\$11	\$11	\$11	\$742
333994	Industrial process furnace and oven manufacturing	\$531	\$30	\$161	\$11	\$12	\$11	\$757
333995	Fluid power cylinder and actuator manufacturing	\$531	\$30	\$161	\$11	\$12	\$11	\$756
333996	Fluid power pump and motor manufacturing	\$542	\$31	\$165	\$11	\$12	\$11	\$772
333997	Scale and balance (except laboratory) manufacturing	\$537	\$31	\$163	\$11	\$12	\$11	\$764
333999	All other miscellaneous general purpose machinery manufacturing	\$523	\$30	\$159	\$11	\$11	\$11	\$745
334518	Watch, clock, and part manufacturing	\$514	\$29	\$156	\$10	\$11	\$11	\$732

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
335211	Electric housewares and household fans	\$523	\$20	\$76	\$7	\$9	\$8	\$643
335221	Household cooking appliance manufacturing	\$529	\$20	\$77	\$7	\$9	\$8	\$649
335222	Household refrigerator and home freezer manufacturing	\$1,452	\$56	\$210	\$19	\$26	\$21	\$1,784
335224	Household laundry equipment manufacturing	\$1,461	\$56	\$212	\$19	\$26	\$21	\$1,795
335228	Other major household appliance manufacturing	\$523	\$20	\$101	\$7	\$11	\$8	\$671
336111	Automobile manufacturing	\$1,309	\$75	\$297	\$25	\$23	\$28	\$1,757
336112	Light truck and utility vehicle manufacturing	\$4,789	\$273	\$1,085	\$92	\$86	\$102	\$6,425
336120	Heavy duty truck manufacturing	\$1,211	\$69	\$275	\$23	\$22	\$26	\$1,626
336211	Motor vehicle body manufacturing	\$579	\$33	\$137	\$11	\$11	\$12	\$784
336212	Truck trailer manufacturing	\$525	\$30	\$160	\$11	\$11	\$11	\$748
336213	Motor home manufacturing	\$792	\$45	\$181	\$15	\$15	\$17	\$1,064

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336311	Carburetor, piston, piston ring, and valve manufacturing	\$525	\$30	\$160	\$11	\$11	\$11	\$748
336312	Gasoline engine and engine parts manufacturing	\$522	\$30	\$120	\$10	\$10	\$11	\$703
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$524	\$30	\$121	\$10	\$10	\$11	\$706
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$526	\$30	\$120	\$10	\$10	\$11	\$708
336340	Motor vehicle brake system manufacturing	\$527	\$30	\$121	\$10	\$10	\$11	\$710
336350	Motor vehicle transmission and power train parts manufacturing	\$528	\$30	\$121	\$10	\$10	\$11	\$710
336370	Motor vehicle metal stamping	\$556	\$32	\$169	\$11	\$12	\$12	\$792
336399	All other motor vehicle parts manufacturing	\$535	\$30	\$123	\$10	\$10	\$11	\$721
336611	Ship building and repair	\$13,685	\$0	\$718	\$692	\$47	\$75	\$15,217
336612	Boat building	\$2,831	\$0	\$202	\$149	\$11	\$16	\$3,209

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336992	Military armored vehicle, tank, and tank component manufacturing	\$624	\$35	\$149	\$12	\$12	\$13	\$845
337215	Showcase, partition, shelving, and locker manufacturing	\$527	\$30	\$160	\$11	\$12	\$11	\$751
339114	Dental equipment and supplies manufacturing	\$671	\$39	\$145	\$14	\$11	\$15	\$895
339116	Dental laboratories	\$12	\$7	\$130	\$3	\$44	\$3	\$199
339911	Jewelry (except costume) manufacturing	\$120	\$92	\$475	\$33	\$41	\$34	\$795
339913	Jewelers' materials and lapidary work manufacturing	\$151	\$115	\$596	\$41	\$51	\$43	\$997
339914	Costume jewelry and novelty manufacturing	\$87	\$44	\$229	\$16	\$19	\$16	\$412
339950	Sign manufacturing	\$465	\$20	\$107	\$7	\$11	\$8	\$618
423840	Industrial supplies, wholesalers	\$313	\$29	\$257	\$10	\$15	\$11	\$636
482110	Rail transportation							
621210	Dental offices	\$3	\$2	\$32	\$1	\$11	\$1	\$50
Total – Ge Maritime	neral Industry and	\$1,399	\$93	\$483	\$46	\$46	\$36	\$2,103
236100	Residential Building Construction	\$264	\$43	\$34	\$37	\$27	\$15	\$419

Table IX-1: Average Costs for Small Entities Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
236200	Nonresidential Building Construction	\$234	\$104	\$67	\$89	\$66	\$14	\$575
237100	Utility System Construction	\$978	\$89	\$172	\$78	\$185	\$30	\$1,531
237200	Land Subdivision	\$104	\$9	\$25	\$8	\$30	\$3	\$180
237300	Highway, Street, and Bridge Construction	\$692	\$109	\$179	\$95	\$227	\$26	\$1,329
237900	Other Heavy and Civil Engineering Construction	\$592	\$60	\$134	\$52	\$175	\$18	\$1,032
238100	Foundation, Structure, and Building Exterior Contractors	\$401	\$359	\$113	\$307	\$91	\$49	\$1,319
238200	Building Equipment Contractors	\$156	\$18	\$21	\$16	\$27	\$7	\$244
238300	Building Finishing Contractors	\$289	\$24	\$23	\$50	\$27	\$9	\$421
238900	Other Specialty Trade Contractors	\$460	\$43	\$65	\$52	\$79	\$30	\$729
999000	State and Local Governments [c]	\$108	\$16	\$31	\$14	\$43	\$11	\$222
Total Co	enstruction	\$375	\$132	\$72	\$122	\$71	\$26	\$798

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2010).

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
324121	Asphalt paving mixture and block manufacturing	\$74	\$1	\$5	\$0	\$26	\$0	\$107
324122	Asphalt shingle and roofing materials	\$914	\$48	\$476	\$17	\$23	\$18	\$1,496
325510	Paint and coating manufacturing	\$0	\$7	\$33	\$3	\$13	\$3	\$58
327111	Vitreous china plumbing fixtures & bathroom accessories manufacturing	\$851	\$58	\$422	\$21	\$26	\$22	\$1,400
327112	Vitreous china, fine earthenware, & other pottery product manufacturing	\$705	\$48	\$349	\$17	\$22	\$18	\$1,160
327113	Porcelain electrical supply mfg	\$851	\$58	\$422	\$21	\$26	\$22	\$1,400
327121	Brick and structural clay mfg	\$2,096	\$47	\$277	\$17	\$19	\$17	\$2,474
327122	Ceramic wall and floor tile mfg	\$2,385	\$53	\$316	\$19	\$22	\$20	\$2,815
327123	Other structural clay product mfg	\$2,277	\$51	\$301	\$18	\$21	\$19	\$2,687
327124	Clay refractory manufacturing	\$301	\$21	\$186	\$8	\$20	\$8	\$543
327125	Nonclay refractory manufacturing	\$471	\$33	\$291	\$12	\$32	\$12	\$852
327211	Flat glass manufacturing	\$842	\$34	\$163	\$12	\$12	\$12	\$1,075

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
327212	Other pressed and blown glass and glassware manufacturing	\$873	\$34	\$164	\$12	\$12	\$12	\$1,107
327213	Glass container manufacturing	\$873	\$34	\$164	\$12	\$12	\$12	\$1,107
327320	Ready-mixed concrete manufacturing	\$475	\$127	\$595	\$46	\$37	\$47	\$1,328
327331	Concrete block and brick mfg	\$966	\$74	\$470	\$27	\$44	\$27	\$1,608
327332	Concrete pipe mfg	\$1,046	\$80	\$509	\$29	\$48	\$29	\$1,741
327390	Other concrete product mfg	\$854	\$65	\$416	\$23	\$39	\$24	\$1,422
327991	Cut stone and stone product manufacturing	\$1,158	\$86	\$535	\$31	\$30	\$32	\$1,872
327992	Ground or treated mineral and earth manufacturing	\$3,564	\$52	\$1,280	\$19	\$63	\$19	\$4,997
327993	Mineral wool manufacturing	\$823	\$34	\$166	\$12	\$12	\$13	\$1,061
327999	All other misc. nonmetallic mineral product mfg	\$797	\$61	\$388	\$22	\$37	\$22	\$1,327
331111	Iron and steel mills	\$517	\$30	\$197	\$11	\$13	\$11	\$777

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331112	Electrometallurgi cal ferroalloy product manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
331210	Iron and steel pipe and tube manufacturing from purchased steel	\$514	\$30	\$196	\$11	\$12	\$11	\$774
331221	Rolled steel shape manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
331222	Steel wire drawing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
331314	Secondary smelting and alloying of aluminum	\$514	\$30	\$196	\$11	\$12	\$11	\$774
331423	Secondary smelting, refining, and alloying of copper	\$0	\$0	\$0	\$0	\$0	\$0	\$0
331492	Secondary smelting, refining, and alloying of nonferrous metal (except cu & al)	\$514	\$30	\$196	\$11	\$12	\$11	\$774
331511	Iron foundries	\$1,093	\$63	\$416	\$23	\$26	\$23	\$1,644
331512	Steel investment foundries	\$1,181	\$68	\$448	\$24	\$28	\$25	\$1,774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
331513	Steel foundries (except investment)	\$1,060	\$61	\$404	\$22	\$26	\$22	\$1,595
331524	Aluminum foundries (except die-casting)	\$1,425	\$82	\$541	\$29	\$33	\$30	\$2,141
331525	Copper foundries (except die-casting)	\$1,503	\$86	\$570	\$31	\$35	\$32	\$2,257
331528	Other nonferrous foundries (except die-casting)	\$1,401	\$80	\$532	\$29	\$33	\$30	\$2,104
332111	Iron and steel forging	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332112	Nonferrous forging	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332115	Crown and closure manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332116	Metal stamping	\$515	\$30	\$196	\$11	\$12	\$11	\$775
332117	Powder metallurgy part manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332211	Cutlery and flatware (except precious) manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332212	Hand and edge tool manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332213	Saw blade and handsaw manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332214	Kitchen utensil, pot, and pan manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
332323	Ornamental and architectural metal work	\$520	\$20	\$127	\$7	\$12	\$8	\$694
332439	Other metal container manufacturing	\$524	\$30	\$199	\$11	\$13	\$11	\$788
332510	Hardware manufacturing	\$517	\$30	\$197	\$11	\$13	\$11	\$777
332611	Spring (heavy gauge) manufacturing	\$523	\$30	\$199	\$11	\$13	\$11	\$786
332612	Spring (light gauge) manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332618	Other fabricated wire product manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332710	Machine shops	\$515	\$30	\$196	\$11	\$12	\$11	\$774
332812	Metal coating and allied services	\$519	\$20	\$127	\$7	\$12	\$8	\$694
332911	Industrial valve manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332912	Fluid power valve and hose fitting manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332913	Plumbing fixture fitting and trim manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
332919	Other metal valve and pipe fitting manufacturing	\$519	\$30	\$198	\$11	\$13	\$11	\$781
332991	Ball and roller bearing manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332996	Fabricated pipe and pipe fitting manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332997	Industrial pattern manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
332998	Enameled iron and metal sanitary ware manufacturing	\$484	\$23	\$153	\$8	\$12	\$9	\$690
332999	All other miscellaneous fabricated metal product manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333319	Other commercial and service industry machinery manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333411	Air purification equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333412	Industrial and commercial fan and blower manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333414	Heating equipment (except warm air furnaces) manufacturing	\$517	\$30	\$197	\$11	\$13	\$11	\$777
333511	Industrial mold manufacturing	\$515	\$30	\$196	\$11	\$12	\$11	\$774
333512	Machine tool (metal cutting types) manufacturing	\$516	\$30	\$196	\$11	\$13	\$11	\$776
333513	Machine tool (metal forming types) manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333514	Special die and tool, die set, jig, and fixture manufacturing	\$515	\$30	\$196	\$11	\$12	\$11	\$774
333515	Cutting tool and machine tool accessory manufacturing	\$515	\$30	\$196	\$11	\$12	\$11	\$775
333516	Rolling mill machinery and equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333518	Other metalworking machinery manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333612	Speed changer, industrial high- speed drive, and gear manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333613	Mechanical power transmission equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333911	Pump and pumping equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333912	Air and gas compressor manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333991	Power-driven handtool manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333992	Welding and soldering equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333993	Packaging machinery manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333994	Industrial process furnace and oven manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
333995	Fluid power cylinder and actuator manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333996	Fluid power pump and motor manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333997	Scale and balance (except laboratory) manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
333999	All other miscellaneous general purpose machinery manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
334518	Watch, clock, and part manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
335211	Electric housewares and household fans	\$0	\$0	\$0	\$0	\$0	\$0	\$0
335221	Household cooking appliance manufacturing	\$523	\$20	\$127	\$7	\$12	\$8	\$698
335222	Household refrigerator and home freezer manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
335224	Household laundry equipment manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
335228	Other major household appliance manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0
336111	Automobile manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336112	Light truck and utility vehicle manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336120	Heavy duty truck manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336211	Motor vehicle body manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336212	Truck trailer manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336213	Motor home manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336311	Carburetor, piston, piston ring, and valve manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336312	Gasoline engine and engine parts manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
336322	Other motor vehicle electrical and electronic equipment manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336330	Motor vehicle steering and suspension components (except spring) manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336340	Motor vehicle brake system manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336350	Motor vehicle transmission and power train parts manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336370	Motor vehicle metal stamping	\$517	\$30	\$197	\$11	\$13	\$11	\$778
336399	All other motor vehicle parts manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
336611	Ship building and repair	\$2,820	\$0	\$253	\$151	\$13	\$16	\$3,252
336612	Boat building	\$2,816	\$0	\$252	\$151	\$12	\$15	\$3,247
336992	Military armored vehicle, tank, and tank component manufacturing	\$0	\$0	\$0	\$0	\$0	\$0	\$0

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
337215	Showcase, partition, shelving, and locker manufacturing	\$514	\$30	\$196	\$11	\$12	\$11	\$774
339114	Dental equipment and supplies manufacturing	\$663	\$39	\$180	\$14	\$12	\$14	\$922
339116	Dental laboratories	\$8	\$5	\$107	\$2	\$32	\$2	\$156
339911	Jewelry (except costume) manufacturing	\$45	\$35	\$225	\$13	\$17	\$13	\$348
339913	Jewelers' materials and lapidary work manufacturing	\$52	\$40	\$256	\$14	\$19	\$15	\$397
339914	Costume jewelry and novelty manufacturing	\$50	\$26	\$166	\$9	\$12	\$10	\$274
339950	Sign manufacturing	\$459	\$20	\$132	\$7	\$12	\$7	\$639
423840	Industrial supplies, wholesalers	\$262	\$24	\$215	\$9	\$13	\$9	\$531
482110	Rail transportation							
621210	Dental offices	\$3	\$2	\$32	\$1	\$11	\$1	\$49
Total – Ge and Maritin	neral Industry me	\$337	\$29	\$205	\$12	\$23	\$11	\$616

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS	Industry	Engineering Controls (includes Abrasive Blasting)	Respirators	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
236100	Residential Building Construction	\$264	\$43	\$42	\$38	\$30	\$15	\$432
236200	Nonresidential Building Construction	\$117	\$52	\$42	\$46	\$37	\$7	\$301
237100	Utility System Construction	\$326	\$30	\$71	\$27	\$69	\$10	\$532
237200	Land Subdivision	\$104	\$9	\$25	\$8	\$30	\$3	\$180
237300	Highway, Street, and Bridge Construction	\$275	\$44	\$89	\$39	\$102	\$10	\$559
237900	Other Heavy and Civil Engineering Construction	\$202	\$20	\$57	\$18	\$67	\$6	\$372
238100	Foundation, Structure, and Building Exterior Contractors	\$228	\$204	\$80	\$180	\$58	\$28	\$778
238200	Building Equipment Contractors	\$156	\$18	\$26	\$16	\$30	\$7	\$253
238300	Building Finishing Contractors	\$289	\$24	\$28	\$51	\$30	\$9	\$431
238900	Other Specialty Trade Contractors	\$276	\$26	\$49	\$32	\$53	\$18	\$454
999000	State and Local Governments [c]	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total Co	onstruction	\$242	\$87	\$56	\$83	\$49	\$17	\$533

Table IX-2: Average Costs for Very Small Entities (<20 employees) Affected by the Proposed Silica Standard for General Industry, Maritime, and Construction (2009 dollars) (continued)

NAICS Industry	Engineering Controls (includes Respirators Abrasive Blasting)	Exposure Monitoring	Medical Surveillance	Training	Regulated Areas or Access Control	Total
----------------	---	------------------------	-------------------------	----------	--	-------

Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2010).

Table IX-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry, Maritime, and Construction

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Saw enclosure	8'x8'x8' wood/plastic	N/A	\$487.70	\$48.77	\$118.95	Fabrication costs estimated by ERG, assuming in-plant work. Five-year life.
Cab enclosures	Enclosed cabs	N/A	\$15,164.82	\$5,307.69	\$3,698.56	ERG estimate based on vendor interviews.
LEV for hand held grinders	Shrouds + vacuum	N/A	\$1,671.63	\$585.07	\$407.70	Vacuum plus shroud adapter (http://www.proventilation.com/products/productDetail.asp?id=15); 35% for maintenance and operating costs.
Upgraded abrasive blast cabinet	Improved maintenance and purchases for some	N/A	\$4,666.10	\$1,000.00	\$664.35	Assumes add. maintenance (of up to \$2,000) or new cabinets (\$8,000) (Norton, 2003)
Improved spray booth for pottery	Maintenance time & materials	N/A	\$116.65	\$114.68	\$231.33	Annual: \$100 materials plus 4 hours maintenance time
Improved LEV for ceramics spray booth	Increased air flow; per cfm	N/A	\$3.21	\$0.88	\$3.21	25% of installed CFM price
Exhaust for saw, cut stone industry	Based on saw LEV (e.g., pg. 10-158, 159, 160, ACGIH, 2001)	450	\$5,774.30	\$1,577.35	\$822.13	ERG based on typical saw cfm requirements.
LEV for hand chipping in cut stone	Granite cutting and finishing; (pg. 10-94, ACGIH, 2001)	600	\$7,699.06	\$2,103.14	\$1,096.17	ERG estimate of cfm requirements

Table IX-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry, Maritime, and Construction

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Exhaust trimming machine	Based on abrasive cut-off saw; (pg. 10-134) (ACGIH, 2001)	500	\$6,415.89	\$1,752.61	\$913.48	Opening of 2 sq ft assumed, with 250 cfm/sq. ft.
Bag opening	Bag opening station; (pg. 10- 19, ACGIH, 2001)	1,513	\$19,414.48	\$5,303.41	\$2,764.18	3.5'x1.5' opening; with ventilated bag crusher (200 cfm)
Conveyor ventilation	Conveyor belt ventilation; (pg. 10-70, ACGIH, 2001)	700	\$8,982.24	\$2,453.66	\$1,278.87	Per take-off point, 2' wide belt.

Table IX-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry, Maritime, and Construction (continued)

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Bucket elevator ventilation	Bucket elevator ventilation (pg. 10-68; ACGIH, 2001)	1,600	\$20,530.84	\$5,608.36	\$2,923.13	2'x3'x30' casing; 4 take-offs @250 cfm; 100 cfm per sq ft of cross section
Bin and hopper ventilation	Bin and hopper ventilation (pg. 10-69; ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	350 cfm per ft2; 3' belt width
Screen ventilation	Ventilated screen (pg. 10- 173, ACGIH, 2001)	1,200	\$15,398.13	\$4,206.27	\$2,192.35	4'x6' screen; 50 cfm per ft ²
Batch operator workstation	Bin & hopper ventilation for unvented mixers (pg. 10-69, ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	ERG estimate of cfm requirements
LEV for hand grinding operator (pottery)	Hand grinding bench (pg. 10- 135, ACGIH, 2001)	3,750	\$48,119.16	\$13,144.60	\$6,851.09	ERG estimate of cfm requirements
LEV, mixer and muller hood	Mixer & muller hood (pg. 10-87, ACGIH, 2001)	1,050	\$13,473.36	\$3,680.49	\$1,918.30	ERG estimate of cfm requirements
LEV for bag filling stations	Bag filling station (pg. 10- 15, ACGIH, 2001)	1,500	\$19,247.66	\$5,257.84	\$2,740.43	Includes costs for air shower

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Installed manual spray mister	Manual controls, system covers 100 ft of conveyor	N/A	\$10,207.09	\$1,020.71	\$1,453.26	National Environmental Services Company (Kestner, 2003).
Install cleaning hoses, reslope floor, drainage	Plumbing for hose installations, floor resloping and troughs	N/A	\$36,412.40	\$3,258.87	\$5,184.31	ERG estimate. Includes cost of water and labor time.
Shakeout conveyor enclosure	Ventilated shakeout conveyor enclosure	10,000	\$128,317.75	\$35,052.26	\$18,269.56	ERG estimate
Shakeout side-draft ventilation	Shakeout double side-draft table (pg. 10-23, ACGIH, 2001)	28,800	\$369,555.11	\$100,950.52	\$52,616.33	ERG estimate of cfm requirements
Shakeout enclosing hood	Ventilated enclosing hood (pg. 10-23, ACGIH, 2001); 4'x4' openings	7,040	\$90,335.69	\$24,676.79	\$37,538.56	ERG estimate of opening size required
Small knockout table	Portable grinding table pg. 10-136), ACGIH, 2001), 3'x3' opening	1,350	\$17,322.90	\$4,732.06	\$7,198.45	ERG estimate of opening size required

Table IX-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry, Maritime, and Construction (continued)

		Ventilation	Capital Cost	Operating	Annualized	
Control [a]	Description	Airflow (cfm)	[b]	Cost	Capital Cost	Comment or Source
Large knockout table	Hand grinding table pg. 10- 135), ACGIH, 2001), 4'x6' surface	4,800	\$61,592.52	\$16,825.09	\$25,594.48	ERG estimate of bench surface area
Ventilated abrasive cutoff saw	Ventilated cut-off saw (pg. 10-134, ACGIH, 2001, 2'x3' opening	1,500	\$19,247.66	\$5,257.84	\$7,998.27	ERG estimate of opening size required
Hand grinding bench (foundry)	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x5'	3,750	\$48,119.16	\$13,144.60	\$6,851.09	ERG estimate of cfm requirements; 250 cfm/sq. ft.
Forming operator bench (pottery)	Bench with LEV (pg. 10-149, ACGIH, 2001), 3'x4'	1,400	\$17,964.48	\$4,907.32	\$2,557.74	ERG estimate of cfm requirements; 125 cfm per linear foot
Hand grinding bench (pottery)	Bench with LEV (pg. 10-135, ACGIH, 2001); 3'x4'	2,400	\$30,796.26	\$8,412.54	\$4,384.69	ERG estimate of cfm requirements; 200 cfm/sq. ft.
Hand tool hardware	Retrofit suction attachment	200	\$464.21	\$701.05	\$66.09	ERG estimate of cfm requirements
Clean air island	Clean air supplied directly to worker	2,500	\$32,079.44	\$8,763.07	\$4,567.39	ERG estimate of cfm requirements; 125 cfm/sq. ft. for 20 square feet
Water fed chipping equipment drum cleaning	Shop-built water feed equipment	N/A	\$116.65	\$0.00	\$116.65	ERG estimate. \$100 in annual costs

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Ventilation for drum cleaning	Ventilation blower and ducting	N/A	\$792.74	\$198.18	\$193.34	Electric blower (1,277 cfm) and 25 ft. of duct. Northern Safety Co. (p. 193)
Control room	10'x10' ventilated control room with HEPA filter	200	\$19,556.79	\$701.05	\$2,784.45	ERG estimate based on RSMeans (2003), ACGIH (2001)
Control room improvement	Repair and improve control room enclosure	N/A	\$2,240.00	N/A	\$318.93	ERG estimate. Assumes repairs are 20% of new control room cost.
Improved bag valves	Bags with extended polyethylene valve, incremental cost per bag	N/A	\$0.01	N/A	N/A	Cecala et. al., (1986)
Dust suppressants	Kleen Products 50 lb poly bag green sweeping compound	N/A	N/A	\$634.54	\$0.00	\$0.28/lb, 2 lbs/day; 5 minutes/day (www.fastenal.com).
HEPA vacuum for housekeeping	NILFISK VT60 wet/dry hepa vac, 15 gal	N/A	\$3,494.85	\$511.20	\$852.36	Nilfisk, HEPA vacuum (http://www.sylvane.com/nilfisk. html)
HEPA vacuum for housekeeping	NILFISK, large capacity	N/A	\$7,699.06	\$988.90	\$1,877.73	Nilfisk, HEPA vacuum (McCarthy, 2003)
Yard dust suppression	100 ft, 1" contractor hose and nozzle	N/A	\$204.14	\$0.00	\$112.91	Contactor hose and nozzle; 2 year life; (www.pwmall.com)

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Wet methods to clean concrete mixing equip.	10 mins per day per operator	N/A	\$0.00	\$916.82	\$0.00	10 mins per day per mixer operator
HEPA vacuum substitute for compressed air	Incremental time to remove dust by vacuum	N/A	N/A	\$494.54	\$0.00	5 min per day per affected worker
Spray system for wet concrete finishing	Shop-built sprayer system	N/A	\$204.67	\$20.47	\$113.20	Assumes \$100 in materials and 4 hours to fabricate. Also 10% for maintenance
Substitute alt., non- silica, blasting media	Alternative media estimated to cost 22 percent more	N/A	\$0.00	\$33,646.00	\$0.00	Based on 212,000 square feet of coverage per year per crew
Abrasive blasting cost per square foot (dry blasting)	125 blasting days per year	N/A	N/A	\$2.00	N/A	ERG estimate based on RSMeans (2009)
Half-mask, non-powered, air-purifying respirator	Unit cost includes expenses for accessories, training, fit testing, and cleaning	N/A	N/A	\$570.13	N/A	

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Full-face nonpowered air-purifying respirator	Unit cost includes expenses for accessories, training, fit testing, and cleaning	N/A	N/A	\$637.94	N/A	
Half-face respirator (construction)	Unit cost includes expenses for accessories, training, fit testing, and cleaning	N/A	N/A	\$468.74	N/A	
Industrial Hygiene Fees/persona I breathing zone	Consulting IH technician - rate per sample. Assumes IH rate of \$500 per day and samples per day of 2, 6, and 8 for small, medium, and large establishments, respectively.	N/A	N/A	\$500	N/A	
Exposure assessment lab fees and shipping cost		N/A	N/A	\$133.38	N/A	Lab fees (EMSL Laboratory, 2000) and OSHA estimates. Inflated to 2009 values.

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Physical examination by knowledgeabl e Health Care Practitioner	Evaluation and office consultation including detailed examination.	N/A	N/A	\$100.00	N/A	ERG, 2010
Chest X-ray	Tri-annual radiologic examination, chest; stereo, frontal. Costs include consultation and written report.	N/A	N/A	\$79.61	N/A	
Pulmonary function test	Tri-annual spirometry, including graphic record, total and timed vital capacity, expiratory flow rate measurements(s), and/or maximal voluntary ventilation.	N/A	N/A	\$54.69	N/A	

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source
Examination by a pulmonary specialist [c]	Office consultation and evaluation by a pulmonary specialist	N/A	N/A	\$190.28	N/A	
Training instructor cost per hour		N/A	N/A	\$34.09	N/A	Based on supervisor wage, adjusted for fringe benefits (BLS, 2008, updated to 2009 dollars)
Training materials for class per attendee	Estimated cost of \$2 per worker for the training/reading materials.	N/A	N/A	\$2.00	N/A	
Value of worker time spent in class		N/A	N/A	\$17.94	N/A	Based on worker wage, adjusted for fringe benefits (BLS, 2008, updated to 2009 dollars)
Cost - disposable particulate respirator (N95)	\$1.00 per respirator per day, typical cost for N95 disposable respirator	N/A	N/A	\$1.00	N/A	Lab Safety Supply, 2010
Disposable clothing	Per suit, daily clothing costs for 10% of workers	N/A	N/A	\$5.50	N/A	Lab Safety Supply, 2010
Hazard tape	Per regulated area for annual set-up (300 ft)	N/A	N/A	\$5.80	N/A	Lab Safety Supply, 2010

Control [a]	Description	Ventilation Capital Cost scription Airflow [b]		Operating Cost	Annualized Capital Cost	Comment or Source				
Warning signs (6 per regulated area)	\$25.30 per sign	N/A	N/A	\$151.80	N/A	Lab Safety Supply, 2010				
Wet kit, with water tank		N/A	\$226.73	\$0.18[d]	\$125.40	Contractors Direct (2009); Berland House of Tools (2009); mytoolstore (2009)				
Dust shrouds: grinder		N/A	\$97.33	\$0.14[d]	\$97.33	Contractors Direct (2009); Berland House of Tools (2009); Dust-Buddy (2009); Martin (2008)				
Water tank, portable (unspecified capacity)		N/A	N/A	\$15.50[e]	N/A	RSMeans - based on monthly rental cost				
Water tank, small capacity (hand pressurized)		N/A	\$73.87	\$0.11[d]	\$79.04	Contractors Direct (2009); mytoolstore (2009)				
Hose (water), 20', 2" diameter		N/A	N/A	\$1.65[e]	N/A	RSMeans - based on monthly cost				
Custom water spray nozzle and attachments		N/A	\$363	\$0.54[d]	\$388.68	New Jersey Laborers' Health and Safety Fund (2007)				
Hose (water), 200', 2" diameter		N/A	N/A	\$16.45[e]	N/A	RSMeans - based on monthly rental cost				

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source			
Vacuum, 10- 15 gal with HEPA		N/A	\$725	\$0.56[d]	\$400.99	ICS (2009); Dust Collection (2009); EDCO (2009); CS Unitec (2009)			
Vacuum, large capacity with HEPA		N/A	\$2,108	\$1.63[d]	\$1,165.92	ICS (2009); EDCO (2009); Aramsco (2009)			
Dust extraction kit (rotary hammers)		N/A	\$215	\$0.30[d]	\$214.81	Grainger (2009); mytoolstore (2009); Toolmart (2009)			
Dust control/quarry drill		N/A	N/A	\$17.33[e]	N/A	RSMeans Heavy Construction Cost Data (2008)			
Dustless drywall sander		N/A	\$133	\$0.19[d]	\$133.33	Home Depot (2009); LSS (2009); Dustless Tech (2009)			
Cab enclosure /w ventilation and air conditioning		N/A	\$13,000	\$2.59[d]	\$1,850.91	Estimates from equipment suppliers and retrofitters			
Foam dust suppression system		N/A	\$14,550	\$162.07[e]	\$2,071.59	Midyette (2003).			
Water tank, engine driven discharge, 5000 gal.		N/A	N/A	\$121.50[d]	N/A	RSMeans (2008) - based on monthly rental cost			

Control [a]	Description	Ventilation Airflow (cfm)	Capital Cost [b]	Operating Cost	Annualized Capital Cost	Comment or Source			
Tunnel dust suppression system supplement		N/A	\$7,928	\$2.71[e]	\$1,933.47	Raring (2003).			
Training instructor cost per hour (Construction)		N/A	N/A	\$43.12	N/A	Based on supervisor wage, adjusted for fringe benefits (BLS, 2008, updated to 2009 dollars)			
Value of worker time spent in class (Construction)		N/A	N/A	\$22.22	N/A	Based on worker wage, adjusted for fringe benefits (BLS, 2008, updated to 2009 dollars)			
Warning signs (3 per regulated area) (Construction)	\$25.30 per sign	N/A	N/A	\$75.90	N/A	Lab Safety Supply, 2010			
Per-worker costs for written access control plan or regulated area setup implementati on (Construction)	Weighted average annual cost per worker; Applies to workers with exposures above the PEL.			\$175.56					

Table IX-3: Source Information for the Unit Cost Estimates Used in OSHA's Preliminary Cost Analysis for General Industry, Maritime, and Construction (continued)

Control [a]	Description	Ventilation Airflow	Capital Cost	Operating Cost	Annualized	Comment or Source
Control [a]	Description	(cfm)	[b]		Capital Cost	Comment or Source

[a] For local exhaust ventilation (LEV), maintenance, and conveyor covers, OSHA applied the following estimates:

LEV: capital cost = \$12.83 per cfm; operating cost = \$3.51 per cfm; annualized capital cost = \$1.83 per cfm; based on current energy prices and the estimates of consultants to ERG (2010)

Maintenance: estimated as 10% of capital cost

Conveyor Covers: estimated as \$17.10 per linear foot for 100 ft. (Landola, 2003); capital cost = \$19.95 per linear ft., including all hardware; annualized capital cost = \$2.84 per linear ft.

- [b] Adjusted from 2003 price levels using an inflation factor of 1.166, calculated as the ratio of average annual GDP Implicit Price Deflator for 2009 and 2003.
- [c] Mean expense per office-based physician visit to a pulmonary specialist for diagnosis and treatment, based on data from the 2004 Medical Expenditure

Panel Survey. Inflated to 2009 dollars using the consumer price inflator for medical services.

Costs for physical exams and tests, chest X-ray, and pulmonary tests are direct medical costs used in bundling services under Medicare (Intellimed International, 2003). Costs are inflated by 30% to eliminate the effect of Medicare discounts that are unlikely to apply to occupational medicine environments.

- [d] Daily maintenance and operating cost
- [e] Daily equipment costs derived from RS Means (2008) monthly rental rates, which include maintenance and operating costs. Source: U.S. Dept. of Labor, OSHA, Directorate of Evaluation and Analysis, Office of Regulatory Analysis, based on ERG (2010).

FEDERAL RULES WHICH MAY DUPLICATE, OVERLAP, OR CONFLICT WITH THE PROPOSED RULE

OSHA has not identified any other Federal rules which may duplicate, overlap, or conflict with the proposal, and requests comments from the public regarding this issue.

ALTERNATIVES TO THE PROPOSED RULE WHICH ACCOMPLISH THE STATED OBJECTIVES OF APPLICABLE STATUTES AND WHICH MINIMIZE ANY SIGNIFICANT ECONOMIC IMPACT OF THE PROPOSED RULE ON SMALL ENTITIES

This section first discusses several provisions in the proposed standard that OSHA has adopted or modified based on comments from small entity representatives (SERs) during the SBREFA Panel process or on recommendations made by the SBREFA Panel as potentially alleviating impacts on small entities. Then, the Agency presents various regulatory alternatives to the proposed OSHA silica standard.

Elements of Proposed Rule to Reduce Impacts on Small Entities

The SBREFA Panel was concerned that changing work conditions in the construction industry would make it difficult to apply some of the provisions that OSHA suggested at the time of the Panel. OSHA has preliminarily decided to change its approach in this sector. OSHA is proposing two separate standards, one for general industry and maritime and one for construction. As described in the preamble, in construction, OSHA has provided a table – labeled Table 1, Exposure Control Methods for Selected Construction Operations – that for special operations enables the employer to implement engineering controls, work practices, and respiratory protection without the need for exposure assessment. Table 1 in the proposed construction standard presents engineering and work practice controls and respiratory protection options for special operations. Where employees perform the special operations listed in the table and the employer has fully implemented the engineering controls, work practices, and respiratory protection specified in the table, the employer is not required to assess the exposure of employees performing such operations.

As an alternative to the regulated area provision, OSHA is proposing that employers be permitted the option of establishing written access control plans that must contain provisions for a competent person; procedures for notifying employees of the presence of exposure to respirable crystalline silica and demarcating such areas from the rest of the workplace; in multi-employer workplaces, the methods for informing other employers of the presence and location of areas where silica exposures may exceed the PEL; provisions for limiting access to areas where silica exposures are likely; and procedures for providing respiratory protection to employees entering areas with controlled access. Further discussion on this alternative is found in the Summary and Explanation for paragraph (e) Regulated Areas and Access Control.

OSHA believes that, although the estimated per-worker cost for written access control plans averages somewhat higher than the per-worker cost for regulated areas (\$199.29 per worker for the control plans vs. \$167.65 per worker for the regulated area), access control plans may be significantly less costly and more protective than regulated areas in certain work situations.

Some SERs were already applying many of the protective controls and practices that would be required by the ancillary provisions of the standard. However, many SERs objected to the provisions regarding housekeeping, protective clothing, and hygiene facilities. For this proposed rule, OSHA removed the requirement for hygiene facilities, which has resulted in the elimination of compliance costs for change rooms, shower facilities, lunch rooms, and hygiene-specific housekeeping requirements. OSHA also restricted the provision for protective clothing (or, alternatively, any other means to remove excessive silica dust from work clothing) to situations where there is the potential for employees' work clothing to become grossly contaminated with finely divided material containing crystalline silica.

Regulatory Alternatives

For the convenience of those persons interested only in OSHA's regulatory flexibility analysis, this section repeats the discussion of the various regulatory alternatives to the proposed OSHA silica standard presented in Chapter VIII of this PEA.

Each regulatory alternative presented here is described and analyzed relative to the proposed rule. Where appropriate, the Agency notes whether the regulatory alternative, to be a legitimate candidate for OSHA consideration, requires evidence contrary to the Agency's findings of significant risk and feasibility. To facilitate comment, the regulatory alternatives have been organized into four categories: (1) alternative PELs to the proposed PEL of $50 \,\mu\text{g/m}^3$; (2) regulatory alternatives that affect proposed ancillary provisions; (3) a regulatory alternative that would modify the proposed methods of compliance; and (4) regulatory alternatives concerning when different provisions of the proposed rule would take effect.

Alternative PELs

OSHA is proposing a new PEL for respirable crystalline silica of $50 \,\mu\text{g/m}^3$ for all industry sectors covered by the rule. OSHA's proposal is based on the requirements of the Occupational Safety and Health Act (OSH Act) and court interpretations of the Act. For health standards issued under section 6(b)(5) of the OSH Act, OSHA is required to promulgate a standard that reduces significant risk to the extent that it is technologically and economically feasible to do so. See Section II of the preamble, Pertinent Legal Authority, for a full discussion of OSHA legal requirements.

OSHA has conducted an extensive review of the literature on adverse health effects associated with exposure to respirable crystalline silica. The Agency has also developed estimates of the risk of silica-related diseases assuming exposure over a working lifetime

at the proposed PEL and action level, as well as at OSHA's current PELs. These analyses are presented in a background document entitled "Respirable Crystalline Silica -- Health Effects Literature Review and Preliminary Quantitative Risk Assessment" and are summarized in the preamble in Section V, Health Effects Summary, and Section VI, Summary of OSHA's Preliminary Quantitative Risk Assessment, respectively. The available evidence indicates that employees exposed to respirable crystalline silica well below the current PELs are at increased risk of lung cancer mortality and silicosis mortality and morbidity. Occupational exposures to respirable crystalline silica also may result in the development of kidney and autoimmune diseases and in death from other nonmalignant respiratory diseases. As discussed in Section VII, Significance of Risk, in the preamble, OSHA preliminarily finds that worker exposure to respirable crystalline silica constitutes a significant risk and that the proposed standard will substantially reduce this risk.

Section 6(b) of the OSH Act (29 U.S.C. 655(b)) requires OSHA to determine that its standards are technologically and economically feasible. OSHA's examination of the technological and economic feasibility of the proposed rule is presented in Chapter IV of this PEA, and is summarized in Section VIII of the preamble. For general industry and maritime, OSHA has preliminarily concluded that the proposed PEL of 50 μ g/m³ is technologically feasible for all affected industries. For construction, OSHA has preliminarily determined that the proposed PEL of 50 μ g/m³ is feasible in 10 out of 12 of the affected activities. Thus, OSHA preliminarily concludes that engineering and work practices will be sufficient to reduce and maintain silica exposures to the proposed PEL of 50 μ g/m³ or below in most operations most of the time in the affected industries. For those few operations within an industry or activity where the proposed PEL is not technologically feasible even when workers use recommended engineering and work practice controls, employers can supplement controls with respirators to achieve exposure levels at or below the proposed PEL.

OSHA developed quantitative estimates of the compliance costs of the proposed rule for each of the affected industry sectors. The estimated compliance costs were compared with industry revenues and profits to provide a screening analysis of the economic feasibility of complying with the revised standard and an evaluation of the potential economic impacts. Industries with unusually high costs as a percentage of revenues or profits were further analyzed for possible economic feasibility issues. After performing these analyses, OSHA has preliminarily concluded that compliance with the requirements of the proposed rule would be economically feasible in every affected industry sector.

OSHA has examined two regulatory alternatives (named Regulatory Alternatives #1 and #2) that would modify the PEL for the proposed rule. Under Regulatory Alternative #1, the proposed PEL would be changed from $50 \,\mu\text{g/m}^3$ to $100 \,\mu\text{g/m}^3$ for all industry sectors covered by the rule, and the action level would be changed from $25 \,\mu\text{g/m}^3$ to $50 \,\mu\text{g/m}^3$ (thereby keeping the action level at one-half of the PEL). Under Regulatory Alternative #2, the proposed PEL would be lowered from $50 \,\mu\text{g/m}^3$ to $25 \,\mu\text{g/m}^3$ for all industry sectors covered by the rule, while the action level would remain at $25 \,\mu\text{g/m}^3$ (because of difficulties in accurately measuring exposure levels below $25 \,\mu\text{g/m}^3$).

Tables IX-4 and IX-5 present, for informational purposes, the estimated costs, benefits, and net benefits of the proposed rule under the proposed PEL of $50~\mu g/m^3$ and for the regulatory alternatives of a PEL of $100~\mu g/m^3$ and a PEL of $25~\mu g/m^3$ (Regulatory Alternatives # 1 and #2), using alternative discount rates of 3 and 7 percent. These two tables also present the incremental costs, the incremental benefits, and the incremental net benefits of going from a PEL of $100~\mu g/m^3$ to the proposed PEL of $50~\mu g/m^3$ and then of going from the proposed PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$. Table IX-4 breaks out costs by provision and benefits by type of disease and by morbidity/mortality, while Table IX-5 breaks out costs and benefits by major industry sector.

Table IX-4: Annualized Costs, Benefits and Incremental Benefits of OSHA's Proposed Silica Standard of 50 μg/m³ and 100 μg/m³ Alternative Millions (\$2009)															
	25 μg/m³		Incremental Costs/Benefits		50 μg/m³		Incremental Costs/Benefits		100 μg/m³						
Discount Rate	_	3%	7%		3%	7%	_	3%	7%	[.	3%	7%	_	3%	7%
Annualized Costs															
Engineering Controls (includes Abrasive Blasting)		\$330	\$344		\$0	\$0		\$330	\$344		\$187	\$197		\$143	\$147
Respirators		\$421	\$422		\$330	\$331		\$91	\$91		\$88	\$88		\$2	\$3
Exposure Assessment		\$203	\$203		\$131	\$129		\$73	\$74		\$26	\$26		\$47	\$48
Medical Surveillance		\$219	\$227		\$143	\$148		\$76	\$79		\$28	\$29		\$48	\$50
Training		\$49	\$50		\$0	\$0		\$49	\$50		\$0	\$0		\$49	\$50
Regulated Area or Access Control		\$85	\$86		\$66	\$66	_	\$19	\$19	,	\$10	\$10	_	\$9	\$10
Total Annualized Costs (point estimate)		\$1,308	\$1,332	:	\$670	\$674		\$637	\$658		\$339	\$351		\$299	\$307
Annual Benefits: Number of Cases Prevented	Cases			Cases 75			Cases			Cases			Cases		
Fatal Lung Cancers (midpoint estimate)	237						162			79			83		
Fatal Silicosis & other Non-Malignant Respiratory Diseases	527			152			375			186			189		
Fatal Renal Disease	258			108			151			91			60		
Silica-Related Mortality	1,023	\$4,811	\$3,160	335 \$1	1,543	\$1,028	688	\$3,268	\$2,132	357	\$1,704	\$1,116	331	\$1,565	\$1,016
Silicosis Morbidity	1,770	\$2,219	\$1,523	186	\$233	\$160	1,585	\$1,986	\$1,364	632	\$792	\$544	953	\$1,194	\$820
Monetized Annual Benefits (midpoint estimate)		\$7,030	\$4,684	\$1	1,776	\$1,188		\$5,254	\$3,495		\$2,495	\$1,659		\$2,759	\$1,836
Net Benefits		\$5,722	\$3,352	\$1	1,105	\$514		\$4,617	\$2,838		\$2,157	\$1,308		\$2,460	\$1,529

Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

Table IX-5: Annualized Costs, Benefits and Incremental Benefits of OSHA's Proposed Silica Standard of 50 μg/m³ and 100 μg/m³ Alternative, by Major Industry Sector Millions (\$2009) 25 µg/m³ Incremental Costs/Benefits 50 μg/m³ Incremental Costs/Benefits 100 µg/m³ Discount Rate 3% 7% 3% 7% 3% 7% 3% 7% 3% 7% Annualized Costs \$1,043 \$1,062 \$548 \$551 \$495 \$233 \$241 \$262 \$270 Construction \$511 General Industry/Maritime \$264 \$270 \$122 \$123 \$143 \$147 \$106 \$110 \$36 \$37 Total Annualized Costs \$1,308 \$1,332 \$670 \$674 \$637 \$658 \$339 \$351 \$299 \$307 Annual Benefits: Number of Cases Prevented Cases Cases Cases Cases Cases Silica-Related Mortality Construction 802 \$3,804 \$2,504 235 \$1,109 \$746 567 \$2,695 \$1,758 242 \$1,158 \$760 325 \$1,537 \$998 General Industry/Maritime 221 \$1,007 \$657 100 \$434 \$283 121 \$573 \$374 115 \$545 \$356 6 \$27 \$18 Total 1,023 \$4,811 \$3,160 335 \$1,543 \$1,028 688 \$3,268 \$2,132 357 \$1,704 \$1,116 331 \$1,565 \$1,016 Silicosis Morbidity \$930 1,157 Construction \$1,451 \$996 77 \$96 \$66 1,080 \$1,354 161 \$202 \$139 919 \$1,152 \$791 General Industry/Maritime 613 \$768 \$528 109 \$136 \$94 504 \$632 \$434 471 \$590 \$405 33 \$42 \$29 \$233 \$544 Total 1,770 \$2,219 \$1,523 186 \$160 1.585 \$1,986 \$1,364 632 \$792 953 \$1,194 \$820 Monetized Annual Benefits (midpoint estimate) Construction \$5,255 \$3,500 \$1,205 \$812 \$4,049 \$2,688 \$1,360 \$898 \$2,690 \$1,789 General Industry/Maritime \$570 \$1,205 \$1,775 \$1,184 \$377 \$808 \$1,135 \$761 \$69 \$47 \$3,495 Total \$7,030 \$4,684 \$1,776 \$1,188 \$5,254 \$2,495 \$1,659 \$2,759 \$1,836 Net Benefits Construction \$4.211 \$2,437 \$657 \$261 \$3.555 \$2,177 \$1.127 \$658 \$2,427 \$1.519 General Industry/Maritime \$914 \$448 \$254 \$1,062 \$33 \$1,511 \$661 \$1,029 \$651 \$10 Total \$5.722 \$3.352 \$1.105 \$514 \$4,617 \$2.838 \$2,157 \$1.308 \$2,460 \$1.529

Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis

^{*} Benefits are assessed over a 60-year time horizon, during which it is assumed that economic conditions remain constant. Costs are annualized over ten years, with the exception of equipment expenditures, which are annualized over the life of the equipment. Annualized costs are assumed to continue at the same level for sixty years, which is consistent with assuming that economic conditions remain constant for the sixty year time horizon.

As Tables IX-4 and IX-5 show, going from a PEL of $100~\mu g/m^3$ to a PEL of $50~\mu g/m^3$ would prevent, annually, an additional 357 silica-related fatalities and an additional 632 cases of silicosis. Based on its preliminary findings that the proposed PEL of $50~\mu g/m^3$ significantly reduces worker risk from silica exposure (as demonstrated by the number of silica-related fatalities and silicosis cases avoided) and is both technologically and economically feasible, OSHA cannot propose a PEL of $100~\mu g/m^3$ (Regulatory Alternative #1) without violating its statutory obligations under the OSH Act. However, the Agency will consider evidence that challenges its preliminary findings.

As previously noted, Tables IX-4 and IX-5 also show the costs and benefits of a PEL of $25~\mu\text{g/m}^3$ (Regulatory Alternative #2), as well as the incremental costs and benefits of going from the proposed PEL of $50~\mu\text{g/m}^3$ to a PEL of $25~\mu\text{g/m}^3$. Because OSHA determined that a PEL of $25~\mu\text{g/m}^3$ would not be feasible (that is, engineering and work practices would not be sufficient to reduce and maintain silica exposures to a PEL of $25~\mu\text{g/m}^3$ or below in most operations most of the time in the affected industries), the Agency did not attempt to identify engineering controls or their costs for affected industries to meet this PEL. Instead, for purposes of estimating the costs of going from a PEL of $50~\mu\text{g/m}^3$ to a PEL of $25~\mu\text{g/m}^3$, OSHA assumed that all workers exposed between $50~\mu\text{g/m}^3$ and $25~\mu\text{g/m}^3$ would have to wear respirators to achieve compliance with the $25~\mu\text{g/m}^3$ PEL. OSHA then estimated the associated additional costs for respirators, exposure assessments, medical surveillance, and regulated areas (the latter three for ancillary requirements specified in the proposed rule).

As shown in Tables IX-4 and IX-5, going from a PEL of $50~\mu g/m^3$ to a PEL of $25~\mu g/m^3$ would prevent, annually, an additional 335 silica-related fatalities and an additional 186 cases of silicosis. These estimates support OSHA's preliminarily finding that there is significant risk remaining at the proposed PEL of $50~\mu g/m^3$. However, the Agency has preliminarily determined that a PEL of $25~\mu g/m^3$ (Regulatory Alternative #2) is not technologically feasible, and for that reason, cannot propose it without violating its statutory obligations under the OSH Act.

Regulatory Alternatives That Affect Ancillary Provisions

The proposed rule contains several ancillary provisions (provisions other the PEL), including requirements for exposure assessment, medical surveillance, silica training, and regulated areas or access control. As shown in Table IX-4, these ancillary provisions represent approximately \$223 million (or about 34 percent) of the total annualized costs of the rule of \$658 million (using a 7 percent discount rate). The two most expensive of the ancillary provisions are the requirements for medical surveillance, with annualized costs of \$79 million, and the requirements for exposure monitoring, with annualized costs of \$74 million.

As proposed, the requirements for exposure assessment are triggered by the action level. As described in the preamble, OSHA has defined the action level for the proposed standard as an airborne concentration of respirable crystalline silica of 25 μ g/m³

calculated as an eight-hour time-weighted average. In this proposal, as in other standards, the action level has been set at one-half of the PEL.

Because of the variable nature of employee exposures to airborne concentrations of respirable crystalline silica, maintaining exposures below the action level provides reasonable assurance that employees will not be exposed to respirable crystalline silica at levels above the PEL on days when no exposure measurements are made. Even when all measurements on a given day may fall below the PEL (but are above the action level), there is some chance that on another day, when exposures are not measured, the employee's actual exposure may exceed the PEL. When exposure measurements are above the action level, the employer cannot be reasonably confident that employees have not been exposed to respirable crystalline silica concentrations in excess of the PEL during at least some part of the work week. Therefore, requiring periodic exposure measurements when the action level is exceeded provides the employer with a reasonable degree of confidence in the results of the exposure monitoring.

The action level is also intended to encourage employers to lower exposure levels in order to avoid the costs associated with the exposure assessment provisions. Some employers would be able to reduce exposures below the action level in all work areas, and other employers in some work areas. As exposures are lowered, the risk of adverse health effects among workers decreases.

OSHA's preliminary risk assessment indicates that significant risk remains at the proposed PEL of 50 μg/m³. Where there is continuing significant risk, the decision in the Asbestos case (*Bldg. and Constr.Trades Dep't, AFL-CIO v. Brock*, 838 F.2d 1258, 1274 (D.C. Cir. 1988)) indicated that OSHA should use its legal authority to impose additional requirements on employers to further reduce risk when those requirements will result in a greater than *de minimis* incremental benefit to workers' health. OSHA's preliminary conclusion is that the requirements triggered by the action level will result in a very real and necessary, but non-quantifiable, further reduction in risk beyond that provided by the PEL alone. OSHA's choice of proposing an action level of one-half of the PEL is based on the Agency's successful experience with other standards, including those for inorganic arsenic (29 CFR 1910.1018), ethylene oxide (29 CFR 1910.1047), benzene (29 CFR 1910.1028), and methylene chloride (29 CFR 1910.1052).

As specified in the proposed rule, all workers exposed to respirable crystalline silica above the PEL of $50~\mu g/m^3$ are subject to the medical surveillance requirements. This means that the medical surveillance requirements would apply to 15,172 workers in general industry and 336,244 workers in construction. OSHA estimates that 457 possible silicosis cases will be referred to pulmonary specialists annually as a result of this medical surveillance.

OSHA has preliminarily determined that these ancillary provisions will: (1) help to ensure the PEL is not exceeded, and (2) minimize risk to workers given the very high level of risk remaining at the PEL. Medical surveillance is particularly important for this rule because those exposed above the PEL are at significant risk of illness. OSHA did

not estimate, and the benefits analysis does not include, monetary benefits resulting from early discovery of illness.

Because medical surveillance and exposure assessment are the two most costly ancillary provisions in the proposed rule, the Agency has examined four regulatory alternatives (named Regulatory Alternatives #3, #4, #5, and #6) involving changes to one or the other of these ancillary provisions. These four regulatory alternatives are defined below and the incremental cost impact of each is summarized in Table IX-6. In addition, OSHA is including a regulatory alternative (named Regulatory Alternative #7) that would remove all ancillary provisions.

Table IX-6: Cost of Regulatory Alternatives Affecting Ancillary Provisions

3% Discount Rate		Cost		Incremental Cost Relative to Proposal		
	Construction	GI/M	Total	Construction	GI/M	Total
Proposed Rule	\$494,826,699	\$142,502,681	\$637,329,380			
Option 3: PEL=50; AL=50	\$457,686,162	\$117,680,601	\$575,366,763	-\$37,140,537	-\$24,822,080	-\$61,962,617
Option 4: PEL=50; AL =25, with medical surveillance triggered by AL	\$606,697,624	\$173,701,827	\$780,399,451	\$111,870,925	\$31,199,146	\$143,070,071
Option 5: PEL=50; AL=25, with medical exams annually	\$561,613,766	\$145,088,559	\$706,702,325	\$66,787,067	\$2,585,878	\$69,372,945
Option 6: PEL=50; AL=25, with surveillance triggered by AL and medical exams annually	\$775,334,483	\$203,665,685	\$979,000,168	\$280,507,784	\$61,163,004	\$341,670,788
7% Discount Rate		Cost		Increme	ntal Cost Relative to F	Proposal
7 70 Discount Nate	Construction	GI/M	Tatal		GI/M	<u> </u>
	Construction		Total	Construction	GI/IVI	Total
Proposed Rule	\$511,165,616	\$146,726,595	\$657,892,211			
Option 3: PEL=50; AL=50	\$473,638,698	\$121,817,396	\$595,456,093	-\$37,526,918	-\$24,909,200	-\$62,436,118
Option 4: PEL=50; AL =25, with medical surveillance triggered by AL	\$627,197,794	\$179,066,993	\$806,264,787	\$132,371,095	\$36,564,312	\$168,935,407
Option 5: PEL=50; AL=25, with medical exams annually	\$575,224,843	\$149,204,718	\$724,429,561	\$64,059,227	\$2,478,122	\$66,537,350
Option 6: PEL=50; AL=25, with surveillance triggered by AL and medical exams annually	\$791,806,358	\$208,339,741	\$1,000,146,099	\$280,640,742	\$61,613,145	\$342,253,887

Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Evaluation and Analysis, Office of Regulatory Analysis

Under Regulatory Alternative #3, the action level would be raised from 25 μ g/m³ to 50 μ g/m³ while keeping the PEL at 50 μ g/m³. As a result, exposure monitoring requirements would be triggered only if workers were exposed above the proposed PEL of 50 μ g/m³. As shown in Table IX-6, Regulatory Option #3 would reduce the annualized cost of the proposed rule by about \$62 million, using a discount rate of either 3 percent or 7 percent.

Under Regulatory Alternative #4, the action level would remain at $25 \mu g/m^3$ but medical surveillance would now be triggered by the action level, not the PEL. As a result, medical surveillance requirements would be triggered only if workers were exposed at or above the proposed action level of $25 \mu g/m^3$. As shown in Table IX-6, Regulatory Option #4 would increase the annualized cost of the proposed rule by about \$143 million, using a discount rate of 3 percent (and by about \$169 million, using a discount rate of 7 percent).

Under Regulatory Alternative #5, the only change to the proposed rule would be to the medical surveillance requirements. Instead of requiring workers exposed above the PEL to have a medical check-up every three years, those workers would be required to have a medical check-up annually. As shown in Table IX-6, Regulatory Option #5 would increase the annualized cost of the proposed rule by about \$69 million, using a discount rate of 3 percent (and by about \$66 million, using a discount rate of 7 percent).

Regulatory Alternative #6 would essentially combine the modified requirements in Regulatory Alternatives #4 and #5. Under Regulatory Alternative #6, medical surveillance would be triggered by the action level, not the PEL, and workers exposed at or above the action level would be required to have a medical check-up annually rather than triennially. The exposure monitoring requirements in the proposed rule would not be affected. As shown in Table IX-6, Regulatory Option #6 would increase the annualized cost of the proposed rule by about \$342 million, using a discount rate of either 3 percent or 7 percent.

OSHA is not able to quantify the effects of these preceding four regulatory alternatives on protecting workers exposed to respirable crystalline silica at levels at or below the proposed PEL of $50 \,\mu\text{g/m}^3$ —where significant risk remains. The Agency solicits comment on the extent to which these regulatory options may improve or reduce the effectiveness of the proposed rule.

The final regulatory alternative affecting ancillary provisions, Regulatory Alternative #7, would eliminate all of the ancillary provisions of the proposed rule, including exposure assessment, medical surveillance, training, and regulated areas or access control. However, it should be carefully noted that elimination of the ancillary provisions does not mean that all costs for ancillary provisions would disappear. In order to meet the PEL, employers would still commonly need to do monitoring, train workers on the use of controls, and set up some kind of regulated areas to indicate where respirator use would be required. It is also likely that employers would increasingly follow the many recommendations to provide medical surveillance for employees. OSHA has not

attempted to estimate the extent to which the costs of these activities would be reduced if they were not formally required, but OSHA welcomes comment on the issue.

As indicated previously, OSHA preliminarily finds that there is significant risk remaining at the proposed PEL of $50 \mu g/m^3$. However, the Agency has also preliminarily determined that $50 \mu g/m^3$ is the lowest feasible PEL. Therefore, the Agency believes that it is necessary to include ancillary provisions in the proposed rule to further reduce the remaining risk. OSHA anticipates that these ancillary provisions will reduce the risk beyond the reduction that will be achieved by a new PEL alone.

OSHA's reasons for including each of the proposed ancillary provisions are detailed in Section XVI of the preamble, Summary and Explanation of the Standards. In particular, OSHA believes that requirements for exposure assessment (or alternately, using specified exposure control methods for selected construction operations) would provide a basis for ensuring that appropriate measures are in place to limit worker exposures. Medical surveillance is particularly important because individuals exposed above the PEL (which triggers medical surveillance in the proposed rule) are at significant risk of death and illness. Medical surveillance would allow for identification of respirable crystalline silica-related adverse health effects at an early stage so that appropriate intervention measures can be taken. OSHA believes that regulated areas and access control are important because they serve to limit exposure to respirable crystalline silica to as few employees as possible. Finally, OSHA believes that worker training is necessary to inform employees of the hazards to which they are exposed, along with associated protective measures, so that employees understand how they can minimize potential health hazards. Worker training on silica-related work practices is particularly important in controlling silica exposures because engineering controls frequently require action on the part of workers to function effectively.

OSHA expects that the benefits estimated under the proposed rule will not be fully achieved if employers do not implement the ancillary provisions of the proposed rule. For example, OSHA believes that the effectiveness of the proposed rule depends on regulated areas or access control to further limit exposures and on medical surveillance to identify disease cases when they do occur.

Both industry and worker groups have recognized that a comprehensive standard is needed to protect workers exposed to respirable crystalline silica. For example, the industry consensus standards for crystalline silica, ASTM E 1132 – 06, Standard Practice for Health Requirements Relating to Occupational Exposure to Respirable Crystalline Silica, and ASTM E 2626 – 09, Standard Practice for Controlling Occupational Exposure to Respirable Crystalline Silica for Construction and Demolition Activities, as well as the draft proposed silica standard for construction developed by the Building and Construction Trades Department, AFL-CIO, have each included comprehensive programs. These recommended standards include provisions for methods of compliance, exposure monitoring, training, and medical surveillance (ASTM, 2006; 2009; BCTD 2001). Moreover, as mentioned previously, where there is continuing significant risk, the decision in the Asbestos case (Bldg. and Constr. Trades Dep't, AFL-CIO v. Brock, 838

F.2d 1258, 1274 (D.C. Cir. 1988)) indicated that OSHA should use its legal authority to impose additional requirements on employers to further reduce risk when those requirements will result in a greater than <u>de minimis</u> incremental benefit to workers' health. OSHA preliminarily concludes that the additional requirements in the ancillary provisions of the proposed standard clearly exceed this threshold.

A Regulatory Alternative that Modifies the Methods of Compliance

The proposed standard in general industry and maritime would require employers to implement engineering and work practice controls to reduce employees' exposures to or below the PEL. Where engineering and/or work practice controls are insufficient, employers would still be required to implement them to reduce exposure as much as possible, and to supplement them with a respiratory protection program. Under the proposed construction standard, employers would be given two options for compliance. The first option largely follows requirements for the general industry and maritime proposed standard, while the second option outlines, in Table 1 (Exposure Control Methods for Selected Construction Operations) of the proposed rule, specific construction exposure control methods. Employers choosing to follow OSHA's proposed control methods would be considered to be in compliance with the engineering and work practice control requirements of the proposed standard, and would not be required to conduct certain exposure monitoring activities.

One regulatory alternative (Regulatory Alternative #8) involving methods of compliance would be to eliminate Table 1 as a compliance option in the construction sector. Under this regulatory alternative, OSHA estimates that there would be no effect on estimated benefits but that the annualized costs of complying with the proposed rule (*without* the benefit of the Table 1 option in construction) would increase by \$175 million, totally in exposure monitoring costs, using a 3 percent discount rate (and by \$178 million using a 7 percent discount rate), so that the total annualized compliance costs for all affected establishments in construction would increase from \$495 to \$670 million using a 3 percent discount rate (and from \$511 to \$689 million using a 7 percent discount rate).

Regulatory Alternatives that Affect the Timing of the Standard

The proposed rule would become effective 60 days following publication of the final rule in the Federal Register. Provisions outlined in the proposed standard would become enforceable 180 days following the effective date, with the exceptions of engineering controls and laboratory requirements. The proposed rule would require engineering controls to be implemented no later than one year after the effective date, and laboratory requirements would be required to begin two years after the effective date.

One regulatory alternative (Regulatory Alternative #9) involving the timing of the standard would arise if, contrary to OSHA's preliminary findings, a PEL of $50 \,\mu\text{g/m}^3$ with an action level of $25 \,\mu\text{g/m}^3$ were found to be technologically and economically feasible some time in the future (say, in five years), but not feasible immediately. In that case, OSHA might issue a final rule with a PEL of $50 \,\mu\text{g/m}^3$ and an action level of 25

 $\mu g/m^3$ to take effect in five years, but at the same time issue an interim PEL of 100 $\mu g/m^3$ and an action level of 50 $\mu g/m^3$ to be in effect until the final rule becomes feasible. Under this regulatory alternative, and consistent with the public participation and "look back" provisions of Executive Order 13563, the Agency could monitor compliance with the interim standard, review progress toward meeting the feasibility requirements of the final rule, and evaluate whether any adjustments to the timing of the final rule would be needed. Under Regulatory Alternative #9, the estimated costs and benefits would be somewhere between those estimated for a PEL of 100 $\mu g/m^3$ with an action level of 50 $\mu g/m^3$ and those estimated for a PEL of 50 $\mu g/m^3$ with an action level of 25 $\mu g/m^3$, the exact estimates depending on the length of time until the final rule is phased in. OSHA emphasizes that this regulatory alternative is contrary to the Agency's preliminary findings of economic feasibility and, for the Agency to consider it, would require specific evidence introduced on the record to show that the proposed rule is not now feasible but would be feasible in the future.

Although OSHA did not explicitly develop or quantitatively analyze any other regulatory alternatives involving longer-term or more complex phase-ins of the standard (possibly involving more delayed implementation dates for small businesses), OSHA is soliciting comments on this issue. Such a particularized, multi-year phase-in would have several advantages, especially from the viewpoint of impacts on small businesses. First, it would reduce the one-time initial costs of the standard by spreading them out over time, a particularly useful mechanism for small businesses that have trouble borrowing large amounts of capital in a single year. A differential phase-in for smaller firms would also aid very small firms by allowing them to gain from the control experience of larger firms. A phase-in would also be useful in certain industries—such as foundries, for example—by allowing employers to coordinate their environmental and occupational safety and health control strategies to minimize potential costs. However a phase-in would also postpone the benefits of the standard, recognizing, as described in Chapter VII, that the full benefits of the proposal would take a number of years to fully materialize even in the absence of a phase-in.

As previously, discussed in Chapter VIII of this PEA, OSHA requests comments on these regulatory alternatives, including the Agency's choice of regulatory alternatives (and whether there are other regulatory alternatives the Agency should consider) and the Agency's analysis of them.

SBREFA PANEL

Table IX-7 lists all of the SBREFA Panel recommendations and OSHA's responses to these recommendations.

Table IX-7: SBREFA Panel Recommendations and OSHA Responses

SBREFA Panel Recommendation

The Panel recommended that OSHA give consideration to the alternative of improved enforcement of and expanded outreach for the existing rule rather than a new rule. In addition, the Panel recommended that OSHA carefully study the effects of existing compliance and outreach efforts, such as the Special Emphasis Program on silica, with a view to better delineating the effects of such efforts. This examination should include (1) a year-by-year analysis of the extent of noncompliance discovered in OSHA compliance inspections, and (2) the kinds of efforts OSHA made to improve enforcement and outreach.

(General Industry) The Panel recommended that OSHA revise its economic and regulatory flexibility analyses as appropriate to reflect the SERs' comments on underestimation of costs, and that the Agency compare OSHA's revised estimates to alternative estimates provided and methodologies suggested by the SERs. For those SER estimates and methodological suggestions that OSHA does not adopt, the Panel recommends that OSHA explain its reasons for preferring an alternative estimate and solicit comment on the issue.

OSHA Response

As discussed in Chapter II of this PEA, Need for Regulation (and summarized in Section VIII.B of the preamble), OSHA has reviewed existing enforcement and outreach programs, as well as other legal and administrative remedies, and believes that a standard would be the most effective means to protect workers from exposure to silica.

A review of OSHA's compliance assistance efforts and an analysis of compliance with the current PELs for respirable crystalline silica are discussed in Section III of the preamble, Events Leading to the Proposed Standard.

OSHA has reviewed its cost estimates in response to the comments received from the SERs and evaluated the alternative estimates and methodologies suggested by the SERs. In some cases (such as for exposure monitoring and training) OSHA has revised its cost estimates in response to SER comments. However, OSHA has not made all cost changes suggested by the SERs, but has retained (or simply updated) those cost estimates that OSHA determined reflect sound methodology and reliable data. OSHA requests comments on the Agency's estimated costs and on the assumptions applied in the cost analysis, and has included this topic in Section I. Issues (See Compliance Costs) of the preamble and in Chapter V of this PEA.

The Panel recommended that, as time permits, OSHA revise its economic and regulatory flexibility analyses as appropriate to reflect the SERs' comments on underestimation of costs and that the Agency compare the OSHA revised estimates to alternative estimates provided and methodologies suggested by the SERs. For those SER estimates and methodological suggestions that OSHA does not adopt, the Panel recommends that OSHA explain its reasons for preferring an alternative estimate and solicit comment on the issue.

The Panel recommended that prior to publishing a proposed standard, OSHA should carefully consider the ability of each potentially affected industry to meet any proposed PEL for silica, and that OSHA should recognize, and incorporate in its cost estimates, specific issues or hindrances that different industries may have in implementing effective controls.

The Panel recommended that OSHA carefully review the basis for its estimated exposure monitoring costs, consider the concerns raised by the SERs, and ensure that its estimates are revised, as appropriate, to fully reflect the costs likely to be incurred by potentially affected establishments.

OSHA Response

OSHA has extensively reviewed its costs estimates, changed many of them in response to SER comments, and solicits comments on these revised cost estimates.

A few examples of OSHA's cost changes are given in the responses to specific issues below (e.g., exposure monitoring, medical exams, training and familiarization). OSHA requests comments on the Agency's estimated costs and on the assumptions applied in the cost analysis, and has included this topic in Section I. Issues (See Compliance Costs) in the preamble and in Chapter V of this PEA.

This PEA reflects OSHA's judgment on technological feasibility and includes responses to specific issues raised by the Panel and SERs. OSHA solicits comment on the accuracy and reasonableness of these judgments and has included this topic in Section I. Issues (See Technological and Economic Feasibility of the Proposed PEL and Compliance Costs) in the preamble.

Table 1 in the proposed standard is designed to relieve establishments in construction from requirements for exposure assessment when certain controls are established. OSHA developed cost estimates in this PEA for exposure monitoring as a function of the size of the establishment. OSHA's cost estimates now reflect the fact that smaller entities will tend to experience larger unit costs. OSHA estimated higher exposure monitoring costs for small entities because an industrial hygienist could not take as many samples a day in a small establishment as in a large one. OSHA believes that its unit cost estimates for exposure monitoring are realistic but will raise that as an issue. See Chapter V of this PEA for details of OSHA's unit costs for exposure monitoring in general industry and maritime.

SBREFA Panel Recommendation	OSHA Response
The Panel recommended that OSHA carefully	OSHA's cost estimates for health screening are a
review the basis for its estimated health screening	function of the size of the establishment.
compliance costs, consider the concerns raised by	OSHA's cost estimates now reflect the fact that
the SERs, and ensure that its estimates are	smaller entities will tend to experience larger unit
revised, as appropriate, to fully reflect the costs	costs. OSHA estimated higher medical
likely to be incurred by potentially affected	surveillance costs (than was estimated in the
establishments.	Preliminary Initial Regulatory Flexibility
	Analysis (PIRFA)) for small entities because
	smaller establishments would be more likely to
	send the workers off-site for medical testing.
	In addition, OSHA significantly increased the
	total costs of exposure sampling and x-rays in
	medical surveillance by assuming no existing
	compliance with the those provisions in the
	proposed rule (as compared to an average of 32.6
	percent and 34.8 percent existing compliance,
	respectively, in the PIRFA).
(Construction) The Panel recommended that	OSHA removed the specific hygiene provisions
OSHA carefully review the basis for its estimated	in the proposed rule, which has resulted in the
hygiene compliance costs, consider the concerns	elimination of compliance costs for change
raised by the SERs, and ensure that its estimates	rooms, shower facilities, lunch rooms, and
are revised, as appropriate, to fully reflect the	hygiene-specific housekeeping requirements.
costs likely to be incurred by potentially affected	However, OSHA has retained requirements and
establishments.	cost estimates for disposable clothing (in
	regulated areas) where there is the potential for
	employees' work clothing to become grossly
	contaminated with finely divided material
	containing crystalline silica.
The Panel recommended that OSHA carefully	Dry sweeping remains a prohibited activity in the
review the issue of dry sweeping in the analysis,	proposed standard and OSHA has estimated the
consider the concerns raised by the SERs, and	costs for the use of wet methods to control dust
ensure that its estimates are revised, as	(see Table IX-3, above). OSHA requests
appropriate, to fully reflect the costs likely to be	comment on the use of wet methods as a
incurred by potentially affected establishments.	substitute for dry sweeping and has included this
	topic in Section I. Issues (See Compliance Costs
	and Provisions of the Standards – Methods of
	compliance) in the preamble.

The Panel recommended that OSHA carefully review the basis for its training costs, consider the concerns raised by the SERs, and ensure that its estimates are revised, as appropriate, to fully reflect the costs likely to be incurred by potentially affected establishments.

OSHA Response

One participant in the silica SBREFA process objected to ERG's analytical assumption (used in OSHA's Preliminary Initial Regulatory Flexibility Analysis) that training is needed only for those workers exposed above the action level and suggested that training might be necessary for all at-risk workers. For the proposed rule, the scope of this requirement was revised so that the provision now would apply to all workers with any potential occupational exposure to respirable crystalline silica; OSHA has estimated training costs in this PEA accordingly.

OSHA estimated higher training costs for small entities because of smaller-sized training classes and significantly increased training costs by assuming only half compliance for half of the affected establishments (compared to an average of 56 percent existing compliance for all establishments in the PIRFA).

(Construction) SERs raised cost issues similar to those in general industry, but were particularly concerned about the impact in construction, given the high turnover rates in the industry.

The Panel recommended that OSHA carefully review the basis for its estimated compliance costs, consider the concerns raised by the SERs, and ensure that its estimates are revised, as appropriate, to fully reflect the costs likely to be incurred by potentially affected establishments.

The cost estimates in this PEA reflect OSHA's best judgment and take the much higher labor turnover rates in construction into account when calculating costs. For the proposed rule, OSHA used the most recent BLS turnover rate of 64 percent for construction (versus a turnover rate of 27.2 percent for general industry). OSHA believes that the estimates in this PEA capture the effect of high turnover rates in construction and solicits comments on this issue in Section I. Issues (See Compliance Costs) in the preamble.

(Construction) The Panel recommended that OSHA (1) carefully review the basis for its estimated labor costs, and issues related to the use of FTEs in the analysis, (2) consider the concerns raised by the SERs, and (3) ensure that its estimates are revised, as appropriate, to fully reflect the costs likely to be incurred by potentially affected establishments.

(Construction) Some SERs requested that OSHA apply a 30-day exclusion for implementing

engineering and work practice controls, as was

and maritime.

reflected in the draft standard for general industry

The Panel recommended that OSHA consider this change and request comment on the appropriateness of exempting operations that are conducted fewer than 30 days per year from the hierarchy requirement.

(Construction) The Panel recommended that OSHA consider and seek comment on the need to prohibit employee rotation as a means of complying with the PEL and the likelihood that employees would be exposed to other serious hazards if the Agency were to retain this provision.

OSHA Response

OSHA used the exposure profiles to estimate the number of full-time-equivalent (FTE) workers in construction who are exposed above the PEL. This would be the exposure profile if all exposed workers worked full-time only at the specified silica-generating tasks. In OSHA's analysis, the actual number of workers exposed above the PEL is represented by from two to five times the number of FTE workers, depending on the activity. The estimate of the total number of atrisk workers takes into account the fact that most workers, regardless of construction occupation, spend some time working on jobs where no silica contamination is present. For the control cost analysis, however, it matters only how many worker-days there are in which exposures are above the PEL. These are the worker-days in which controls are required. The control costs (as opposed to the program costs) are independent of the number of at-risk workers associated with these worker-days. OSHA emphasizes that the use of FTEs does not "discount" its estimates of aggregate control costs.

A 30-day exemption from the requirement to implement engineering and work practice controls was not included in the proposed standard for construction, and has been removed from the proposed standard for general industry. OSHA requests comment on the issue of a 30-day exemption, and has included this topic in Section I. Issues (See Provisions of the Standards – Methods of compliance) in the preamble.

The proposed prohibition on rotation is explained in the Summary and Explanation for paragraph (f) Methods of Compliance in the preamble. OSHA solicits comment on the prohibition of employee rotation to achieve compliance when exposure levels exceed the PEL, and has included this topic in Section I. Issues (See Provisions of the Standards – Methods of compliance) in the preamble.

(Construction) Some SERs questioned the scientific and legal basis for the draft prohibitions on the use of compressed air, brushing, and dry sweeping of silica-containing debris. Others raised feasibility concerns such as in instances where water or electric power was unavailable or where use of wet methods could damage construction materials.

The Panel recommended that OSHA carefully consider the need for and feasibility of these prohibitions given these concerns, and that OSHA seek comment on the appropriateness of such prohibitions.

(Construction) The Panel recommended that OSHA carefully consider whether regulated area provisions should be included in the draft proposed standard, and, if so, where and how regulated areas are to be established. OSHA should also clarify in the preamble and in its compliance assistance materials how compliance is expected to be achieved in the various circumstances raised by the SERs.

(Construction) The Panel recommended that OSHA clarify how the regulated area requirements would apply to multi-employer worksites in the draft standard or preamble, and solicit comments on site control issues.

(Construction) Many SERs were concerned with the extent to which they felt the draft proposed standard would require the use of respirators in construction activities.

The Panel recommended that OSHA carefully consider its respiratory protection requirements, the respiratory protection requirements in Table 1, and the PEL in light of this concern.

OSHA Response

As discussed in the Summary and Explanation of paragraph (f) Methods of Compliance in the preamble, the prohibition against the use of compressed air, brushing, and dry sweeping applies to situations where such activities could contribute to employee exposure that exceeds the PEL. OSHA solicits comment on this issue, and has included this topic in Section I. Issues (See Provisions of the Standards – Methods of compliance) in the preamble.

As described in the Summary and Explanation for paragraph (e) Regulated Areas and Access Control in the preamble, the proposed standard includes a provision for implementation of "access control plans" in lieu of establishing regulated areas. Clarification for establishing either a regulated area or an access control plan is provided in the Summary and Explanation.

The Summary and Explanation for paragraph (e) Regulated Areas and Access Control in the preamble clarifies this requirement. OSHA requests comment on this topic, and has included this topic in Section I. Issues (See Provisions of the Standards – Methods of compliance) in the preamble.

OSHA has made a preliminary determination that compliance with the proposed PEL can be achieved in most operations most of the time through the use of engineering and work practice controls. However, as described in the Summary and Explanation of paragraphs (f) Methods of Compliance and (g) Respiratory Protection in the preamble and in the Technological Feasibility chapter of this PEA, use of respiratory protection will be required for some operations. OSHA solicits comment on this issue in Section I. Issues (See Technological and Economic Feasibility of the Proposed PEL) in the preamble.

(Construction) The Panel recommended that OSHA carefully address the issues of reliability of exposure measurement for silica and laboratory requirements. The Panel also recommended that OSHA seek approaches to a construction standard that can mitigate the need for extensive exposure monitoring to the extent possible.

(Construction) As in general industry, many SERs were concerned about all of these provisions because, they contended, silica is not recognized as either a take-home or dermal hazard. Further, many said that these provisions would be unusually expensive in the context of construction work. Other SERs pointed out that protective clothing could lead to heat stress problems in some circumstances.

The Panel recommended that OSHA carefully reexamine the need for these provisions in the construction industry and solicit comment on this issue.

(Construction) The Panel recommended that OSHA explicitly examine the issue of availability of specialists called for by these provisions, and re-examine the costs and feasibility of such requirements based on their findings with respect to availability, as needed.

(Construction) The Panel recommended that OSHA carefully consider the need for preplacement physicals in construction, the possibility of delayed initial screening (so only employees who had been on the job a certain number of days would be required to have initial screening), and solicit comment on this issue.

OSHA Response

OSHA discusses the reliability of measuring respirable crystalline silica in the Technological Feasibility chapter of this PEA. An exemption for monitoring is also provided where the employer uses Table 1. As discussed in the Summary and Explanation for paragraph (d) Exposure Assessment in the preamble, the proposed standard also allows a performance option for exposure assessment that is expected to reduce the amount of monitoring needed. OSHA solicits comment on this topic in Section I. Issues (See Provisions of the Standards – Exposure Assessment) in the preamble.

As described in the Summary and Explanation for paragraph (e) Regulated Areas and Access
Control in the preamble, OSHA has proposed a limited requirement for use of protective clothing or other means to remove silica dust from contaminated clothing. This requirement would apply only in regulated areas where there is the potential for work clothing to become grossly contaminated with silica dust. No requirement for hygiene facilities is included in the proposed standard. OSHA solicits comment regarding appropriate requirements for use of protective clothing and hygiene facilities in Section I. Issues (See Provisions of the Standards – Regulated areas and access control) in the preamble.

The provisions requiring B-readers and pulmonary specialists are discussed in the Summary and Explanation of paragraph (n) Medical Surveillance in the preamble, and the numbers of available specialists are reported. OSHA solicits comment on this issue in Section I. Issues (See Provisions of the Standards – Medical surveillance) in the preamble.

As described in the Summary and Explanation for paragraph (n) Medical Surveillance in the preamble, an initial examination is required within 30 days after initial assignment to a job with exposure above the action level for more than 30 days per year. OSHA solicits comment on this proposed requirement in Section I. Issues (See Provisions of the Standards – Medical surveillance) in the preamble.

SBREFA Panel Recommendation	OSHA Response
(Construction) Like the general industry SERs, construction SERs raised the issue that they would prefer a warning label with wording similar to that used in asbestos and lead. The Panel recommended that OSHA consider this suggestion and solicit comment on it.	The proposed standard does not specify wording for labels. OSHA solicits comment on this issue in Section I. Issues (See Provisions of the Standards – Hazard communication) in the preamble.
(Construction) Some SERs questioned whether hazard communication requirements made sense on a construction site where there are tons of silica-containing dirt, bricks, and concrete. The Panel recommended OSHA consider how to address this issue in the context of hazard communication.	The proposed standard requires hazard communication for employees who are potentially exposed to respirable crystalline silica. Many of the proposed requirements are already required by OSHA's Hazard Communication Standard. The Agency requests comment on the proposed requirements in Section I. Issues (See Provisions of the Standards – Hazard communication) in the preamble.
(Construction) The Panel recommended that OSHA carefully review the recordkeeping requirements with respect to both their utility and burden.	OSHA has reviewed the recordkeeping requirements as required by the Paperwork Reduction Act. Detailed analysis of the recordkeeping requirements can be found in OSHA's information collection request submitted to OMB. The recordkeeping requirements are discussed in the Summary and Explanation for paragraph (j) Recordkeeping in the preamble. OSHA solicits comment on these requirements in Section I. Issues (See Provisions of the Standards – Recordkeeping) in the preamble.
The Panel recommended that OSHA, to the extent permitted by the availability of economic data, update economic data to better reflect recent changes in the economic status of the affected industries consistent with its statutory mandate.	OSHA has prepared this PEA using the most current economic data available.
SERs in construction, and some in general industry, felt the estimate of affected small entities and employees did not give adequate consideration to workers who would be subject to exposure at a site but were not directly employed by firms engaged in silica-associated work, such as employees of other subcontractors at a construction site, visitors to a plant, etc. The Panel recommended that OSHA carefully	The scope of the proposed standard is discussed in the Summary and Explanation for paragraph (a) Scope and Application in the preamble.

SBREFA Panel Recommendation	OSHA Response
examine this issue, considering both the possible	
costs associated with such workers, and ways of	
clarifying what workers are covered by the	
standard.	
The Panel recommended that OSHA clarify in	The relationship between the proposed rule and
any rulemaking action how its action is or is not	EPA requirements is discussed in Section XVI,
related to designating silica-containing materials	Environmental Impacts.
as hazardous wastes.	
Some SERs also noted the issue that the use of	Silica wastes are not classified as hazardous.
wet methods in some areas may violate EPA rules	Therefore OSHA believes that the incremental
with respect to suspended solids in runoff unless	disposal costs resulting from dust collected in
provision is made for recycling or settling the	vacuums and other sources are likely to be quite
suspended solids out of the water.	small. An analysis of wet methods for dust
	controls suggests that in most cases the amount of
The Panel recommended that OSHA investigate	slurry discharged are not sufficient to cause a run
this issue, add appropriate costs if necessary, and	off to storm drains. OSHA solicits comments on
solicit comment on this issue.	this topic in Section I. Issues (See Environmental
sometic comment on this issue.	Impacts) in the preamble.
The Panel recommended that OSHA (1) carefully	A review of OSHA's outreach efforts is provided
consider and solicit comment on the alternative of	in Section III, Events Leading to the Proposed
improved outreach and support for the existing	Standards. OSHA solicits comment on this topic
standard; (2) examine what has and has not been	in Section I. Issues (See Alternatives/Ways to
accomplished by existing outreach and	Simplify a New Standard).
enforcement efforts; and (3) examine and fully	Simping a riew standard).
discuss the need for a new standard and if such a	
standard can accomplish more than improved	
outreach and enforcement.	
The Panel recommended, if there is to be a	OSHA has made a preliminary determination that
standard for construction, that OSHA: (1) seek	compliance with the proposed PEL can be
ways to greatly simplify the standard and restrict	achieved in most operations most of the time
the number of persons in respirators; (2) consider	through the use of engineering and work practice
the alternative of a standard oriented to	
	controls. However, as described in the Summary
engineering controls and work practices in	and Explanation of paragraphs (f) Methods of
construction; and (3) analyze and solicit comment	Compliance and (g) Respiratory Protection in the
on ways to simplify the standard.	preamble and in the Technological Feasibility
	chapter of this PEA, use of respiratory protection
	will be required for some operations. OSHA
	solicits comment on this topic in Section I. Issues
	(See Technological and Economic Feasibility of
	the Proposed PEL) in the preamble. OSHA also
	solicits comment on ways to simplify the standard
	in Section I. Issues (See Alternatives/Ways to
m p 1 114 1164 1164	Simplify a New Standard) in the preamble.
The Panel recommended that, if there is to be a	As discussed in the Summary and Explanation for
standard, OSHA consider and solicit comment on	paragraph (c) <u>Permissible Exposure Limit (PEL)</u>

SBREFA Panel Recommendation	OSHA Response
maintaining the existing PEL. The Panel also	in the preamble, OSHA has made a preliminary
recommends that OSHA examine each of the	determination that the proposed PEL is necessary
ancillary provisions on a provision-by-provision	to meet the legal requirements to reduce
basis in light of the comments of the SERs on the	significant risk to the extent feasible. Because the
costs and lack of need for some of these	proposed PEL is a fixed value, OSHA also
provisions.	believes it is easier to understand when compared
	to the current PEL. OSHA solicits comment on
	the proposed PEL, as well as each of the ancillary
	provisions in Section I. Issues (See Provisions of
	the Standards – PEL and action level) in the
	preamble.
(General Industry) The Panel recommended that	This PEA reflects OSHA's judgment on the
OSHA carefully examine the technological and	technological and economic feasibility of the
economic feasibility of the draft proposed	proposed standard and includes responses to
standard in light of these SER comments.	specific issues raised by the Panel. OSHA
	solicits comment on the accuracy and
	reasonableness of these judgments in Section I.
	Issues (See Technological and Economic
	Feasibility of the Proposed PEL) in the preamble.
(General Industry) Some SERs were concerned	OSHA has proposed to limit the prohibition on
that the prohibition on dry sweeping was not	dry sweeping to situations where this activity
feasible or cost effective in their industries.	could contribute to exposure that exceeds the
The Panel recommended that OSHA consider this	PEL. The Agency solicits comment on this topic
issue and solicit comment on the costs and	in Section I. Issues (See Provisions of the
necessity of such a prohibition.	Standards – Methods of compliance) in the
	preamble.
(General Industry) The Panel recommended that	Proposed regulated area provisions are explained
OSHA carefully consider whether regulated area	in the Summary and Explanation for paragraph
provisions should be included in the draft	(e) Regulated Areas and Access Control in the
proposed standard, and, if so, where and how	<u>preamble</u> . The proposed standard also includes a
regulated areas are to be established. OSHA	provision for implementation of "access control
should also clarify in the preamble and in its	plans" in lieu of establishing regulated areas.
compliance assistance materials how compliance	Clarification for establishing an access control
is expected to be achieved in the various	plan is provided in the Summary and
circumstances raised by the SERs.	Explanation.
(General Industry) The Panel recommended that	OSHA has made a preliminary determination in
OSHA carefully examine the issues associated	the proposed rule that only certain sampling and
with reliability of monitoring and laboratory	analytical methods can be used to measure
standards in light of the SER comments, and	airborne crystalline silica at the proposed PEL.
solicit comment on these issues.	Issues related to sampling and analytical methods
	are discussed in the Technological Feasibility
	section of this PEA. OSHA solicits comment on
	the Agency's preliminary determination in
	Section I. Issues (See Provisions of the Standards
	– Exposure Assessment) in the preamble.

(General Industry) Some SERs preferred the more performance-oriented Option 2 provision included in the draft exposure assessment requirements, stating that fixed-frequency exposure monitoring can be unnecessary and wasteful. However, other SERs expressed concern over whether such a performance-oriented approach would be consistently interpreted by enforcement officers.

The Panel recommended that OSHA continue to consider Option 2 but, should OSHA decide to include it in a proposed rule, clarify what would constitute compliance with the provision. Some SERs were also concerned about the wording of the exposure assessment provision

(General Industry) Some SERs were also concerned about the wording of the exposure assessment provision of the draft proposed standard. These SERs felt that the wording could be taken to mean that an employer needed to perform initial assessments annually.

The Panel recommended that OSHA clarify this issue.

(General Industry) While some SERs currently provide both protective clothing and hygiene facilities, others provide neither. Those SERs that do not currently provide either felt that these provisions were both highly expensive and unnecessary. Some SERs stated that these provisions were pointless because silica is not a take-home hazard or a dermal hazard. Others suggested that such provisions only be required when the PEL is exceeded.

The Panel recommended that OSHA carefully consider the need for these provisions, and solicit comment on the need for these provisions, and how they might be limited.

(General Industry) The SER comments included several suggestions regarding the nature and wording of the health screening requirements. (See, e.g., OSHA, 2003, pp. 25-28.)
The Panel recommended that OSHA consider

OSHA Response

The proposed standard provides two options for periodic exposure assessment; (1) a fixed schedule option, and (2) a performance option. The performance option provides employers flexibility in the methods used to determine employee exposures, but requires employers to accurately characterize employee exposures. The proposed approach is explained in the Summary and Explanation for paragraph (d) Exposure Assessment in the preamble. OSHA solicits comments on the proposed exposure assessment provision in Section I. Issues (See Provisions of the Standards – Exposure Assessment) in the preamble.

The requirement for initial exposure assessment is clarified in the Summary and Explanation of paragraph (d) Exposure Assessment in the preamble. The term "initial" indicates that this is the first action required to assess exposure and is required only once.

As described in the Summary and Explanation for paragraph (e) Regulated Areas and Access
Control in the preamble, OSHA has proposed a limited requirement for use of protective clothing or other means to remove silica dust from contaminated clothing. This requirement would apply only in regulated areas where there is the potential for work clothing to become grossly contaminated with silica dust. No requirement for hygiene facilities is included in the proposed standard. OSHA solicits comment regarding appropriate requirements for use of protective clothing and hygiene facilities in Section I. Issues (See Provisions of the Standards – Regulated areas and access control) in the preamble.

OSHA has considered these comments and revised the proposed standard where appropriate. The revisions are discussed in the Summary and Explanation of paragraph (n) Medical Surveillance in the preamble.

SBREFA Panel Recommendation	OSHA Response
revising the standard in light of these comments,	ODIN Response
as appropriate. (General Industry) The Panel recommended that OSHA explicitly examine and report on the availability of specialists called for by these provisions, and re-examine the costs and feasibility of such requirements based on their findings with respect to availability, as needed. (General Industry) Though the provision for hazard communication simply repeats such provisions already in existence, some SERs urged OSHA to use this opportunity to change the requirement so that warning labels would only be required of substances that were more than 1%	The provisions requiring B-readers and pulmonary specialists are discussed in the Summary and Explanation of paragraph (n) Medical Surveillance in the preamble, and the numbers of available specialists are reported. OSHA solicits comment on this topic in Section I. Issues (See Provisions of the Standards – Medical surveillance) in the preamble. OSHA has preliminarily determined to rely on the provisions of the Hazard Communication Standard (HCS) in the proposed rule. The HCS requires labels for mixtures that contain more than 0.1% of a carcinogen. OSHA solicits comment on this topic in Section I. Issues (See Provisions of the Standards – Medical
(rather than the current 0.1%) by weight of silica. The Panel recommended that OSHA consider this suggestion and solicit comment on it. (General Industry) The Panel recommended that OSHA carefully review the recordkeeping	surveillance) in the preamble. The recordkeeping requirements are discussed in the Summary and Explanation for paragraph (j)
requirements with respect to both their utility and burden. (Construction) The Panel recommended that	Recordkeeping in the preamble. OSHA solicits comment on these requirements in Section I. Issues (See Provisions of the Standards – Recordkeeping) in the preamble. OSHA has made the preliminary determination
OSHA continue to evaluate the appropriateness of and consider modifications to scope Option 2 that can more readily serve to limit the scope of the standard.	that scope Option 1 is most appropriate. OSHA solicits comment on this subject in Section I. Issues (See Provisions of the Standards – Scope) in the preamble.
(Construction) Many SERs found the requirements for a competent person hard to understand. Many SERs took the competent person requirement as requiring a person with a high level of skills, such as the ability to conduct monitoring. Other SERs said this requirement would require training a high percentage of their employees as competent persons because they typically had many very small crews at many sites. In general, the SERs thought this requirement as written would be difficult to comply with and costly. The Panel recommended that OSHA seek ways to	The standard requires a competent person only in limited circumstances when an employer selects the option to implement an "access control plan" in lieu of establishing a regulated area. Further clarification is provided in the Summary and Explanation of paragraph (e) Regulated Areas and Access Control in the preamble.

	L a great to
SBREFA Panel Recommendation	OSHA Response
clarify OSHA's intent with respect to this	
requirement and more clearly delineate the	
responsibilities of competent persons.	
(Construction) Many SERs did not understand	The rationale for the operations and control
that Table 1 was offered as an alternative to	measures to be included in Table 1 is provided in
exposure assessment and demonstration that the	the Summary and Explanation for paragraph (f)
PEL is being met. Some SERs, however,	Methods of Compliance in the preamble. Table 1
understood the approach and felt that it had merit.	includes some operations for which it is
These SERs raised several issues concerning the	anticipated that even with the implementation of
use of Table 1, including:	control measures, exposure levels will routinely
•	
•	_ * *
	<u> </u>
	<u> </u>
•	
	– Methods of compliance) in the preamble.
no use of, respirators.	
The Panel recommended that OSHA carefully consider these suggestions, expand Table 1, and	
The Panel recommends that OSHA thoroughly	OSHA significantly expanded its economic
review the economic impacts of compliance with	impact and economic feasibility analyses in
a proposed silica standard and develop more	Chapter VI of this PEA. As part of the impact
detailed feasibility analyses where appropriate.	analysis, OSHA added data on normal year-to-
	1 *
	<u> </u>
	<u> </u>
	<u> </u>
	* *
	T = = =
±	
putting employees in respirators is considered.	<u>*</u>
	· ·
consider these suggestions, expand Table 1, and make other modifications, as appropriate. The Panel recommends that OSHA thoroughly review the economic impacts of compliance with a proposed silica standard and develop more	Chapter VI of this PEA. As part of the impact

(Construction) Some SERs indicated that the unit costs were underestimated for monitoring, similar to the general industry issues raised previously. In addition, special issues for construction were raised (i.e., unpredictability of exposures), suggesting the rule would be costly, if not impossible to comply with.

The Panel recommends that OSHA carefully review the basis for its estimated compliance costs, consider the concerns raised by the SERs, and ensure that its estimates are revised, as appropriate, to fully reflect the costs likely to be incurred by potentially affected establishments.

OSHA Response

Chapter V of this PEA.

To reflect the fact that an industrial hygienist could not typically take as many samples a day in a small establishment as in a large one, OSHA developed cost estimates for exposure monitoring as a function of the size of the establishment. OSHA's cost estimates therefore now reflect the fact that smaller entities will tend to experience larger unit costs for exposure monitoring.

To reflect possible problems of unpredictability of exposure in construction, Table 1 in the proposed standard has been designed to allow establishments in construction the option, for certain operations, to implement engineering controls, work practices, and respiratory protection without the need for exposure assessment.

OSHA has carefully reviewed the basis for its exposure monitoring cost estimates and considered the concerns raised by the SERs. OSHA solicits comments on this issue in Chapter V of this PEA.

(General Industry) The Panel recommends that OSHA use the best scientific evidence and methods available to determine the significance of risks and magnitude of benefits for occupational exposure to silica.

The Panel further recommends that OSHA evaluate existing state silicosis surveillance data to determine whether there are industry-specific differences in silicosis risks, and whether or how the draft standard should be revised to reflect such differences.

The SERs, however, also had many specific issues concerning what OSHA should do if it chooses to go forward with a proposed rule. In order to reflect these specific issues, the Panel has made many recommendations concerning issues to be considered if the Agency goes forward with a rule. The Panel also recommends that OSHA take great care in reviewing and considering all comments made by the SERs.

OSHA Response

OSHA has conducted a comprehensive review of the scientific evidence from toxicological and epidemiological studies on adverse health effects associated with occupational exposure to respirable crystalline silica. This review is summarized in Section V of the preamble, Health Effects Summary, and estimates of the risks of developing silica-related diseases are summarized in Section VI, Summary of the Preliminary Quantitative Risk Assessment. The significance of these risks is examined in Section VII, Significance of Risk. The benefits associated with the proposed rule are summarized in Section VIII.G, Benefits and Net Benefits in the preamble and in Chapter VII of this PEA. Although OSHA's preliminary analysis indicates that a variety of factors may affect the toxicologic potency of crystalline silica found in different work environments, OSHA has not identified information that would allow the Agency to calculate how these influences may affect disease risk to workers in any particular workplace setting.

OSHA has carefully considered the Panel recommendations, and the Agency's responses are listed in this table. In addition, specific issues raised in comments by individual SERs are addressed throughout the preamble.

REFERENCES

- Mannetje, A., Steenland K., Attfield, M., Boffetta, P., Checkoway, H., DeKlerk, N., and Koskela, R. (Mannetje, A. et al., 2002). Exposure-response analysis and risk assessment for silica and silicosis mortality in a pooled analysis of six cohorts. Occupational and Environmental Medicine 59: 723-728, 2002. **OSHA-2010-0034-1089**
- Park, R., Rice F., Stayner L., Smith R., Gilbert S., Checkoway, H. (Park, R. et al., 2002). Exposure to crystalline silica, silicosis, and lung disease other than cancer in diatomaceous earth industry workers: a quantitative risk assessment.
 Occupational and Environmental Medicine 59:36-43, 2002. OSHA-2010-0034-0405
- Steenland, K. Attfield, M., and Mannetje, A. (Steenland et al., 2002). Pooled analyses of renal disease mortality and crystalline silica exposure in three cohorts. Annals of Occupational Hygiene 46:4–9, 2002. **OSHA-2010-0034-0448**
- Steenland, K., Mannetje A., Boffetta, P., Stayner, L., Attfield, M., Chen, J., Dosemeci, M., DeKlerk, N., Hnizdo, E., Koskela, R., and Checkoway, H. (Steenland et al., 2001a). Pooled exposure-response and risk assessment for lung cancer in 10 cohorts of silica-exposed workers: an IARC multi-centre study. Cancer Causes Control 12:773-784, 2001. **OSHA-2010-0034-0452**

CHAPTER X: ENVIRONMENTAL IMPACTS

OSHA has reviewed the silica proposal according to the National Environmental Policy Act (NEPA) of 1969 (42 U.S.C. 4321 et seq.), the regulations of the Council on Environmental Quality (40 CFR part 1500), and the Department of Labor's NEPA procedures (29 CFR part 11). Based on that review, OSHA does not expect that the proposed rule, in and of itself, would create additional environmental issues. However, as noted in the SBREFA report (OSHA, 2003, p. 77), some Small Entity Representatives (SERs) raised the possibility that the use of wet methods to limit occupational (and environmental) exposures in some areas may violate EPA rules with respect to suspended solids in runoff unless provision is made for recycling or settling the suspended solids out of the water. The SBREFA Panel recommended that OSHA investigate this issue, add appropriate costs if necessary, and solicit comment on this issue.

Some large construction projects may already require a permit to address storm water runoff, independent of any OSHA requirements to limit worker exposure to silica. These environmental requirements come from or reference the Clean Water Act of 1987. As applied to construction activities, EPA requirements generally pertain to projects of one acre or more and impose the use of Best Management Practices (BMPs) to minimize the pollution, via water runoff, of storm water collection systems and surface waters. In some cases, these requirements are administered by States.

Otherwise, the use of wet methods to control silica dust as mandated by an OSHA silica standard is not directly addressed by EPA requirements. Local governments, however, might require compliance with EPA BMPs when granting construction permits. As an example, the California Department of Transportation's Construction Site Best Management Practice (BMP) Field Manual and Troubleshooting Guide includes the following guidance for paving and grinding operations: "Do not allow wastes, such as AC [asphalt concrete] pieces, PCC [Portland concrete cement] grinding residue/slurry, sand/gravel, exposed aggregate concrete residue, or dig-out materials into storm drains or receiving waters. Sweep, vacuum, and collect such wastes and recycle or dispose of properly" (State of California, Department of Transportation, 2003, p. 61). Contractors following these BMPs would need to take steps to prevent water used for dust control from running into storm drains, drainage ditches, or surface waters. Slurries left on paved areas would need to be swept or vacuumed to prevent subsequent runoff during storms.

It should be noted that the objective of these BMPs is a reduction in the amount of pollutants washed into storm drain systems or surface waters, rather than reductions in discharges per se. The environmental concern is that the use of wet methods to control silica dust would, besides creating silica slurry, facilitate discharges of other pollutants.

The silica controls costed by OSHA in Chapter VI of this PEA show six tasks where wet methods are suggested: stationary masonry saws, hand-held masonry saws, walk-behind and other large concrete saws, concrete grinding with walk-behind equipment, asphalt milling, and pavement breaking and other demolition with jackhammers. A detailed review of the control measures for these equipment types suggests that only the use of wet methods with pavement

breakers has the potential to directly result in runoff discharges to storm drains or surface waters. Even then, the water required would most often not create a runoff potential. The control costs for each of these jobs contains a productivity impact factor, part of which is intended to account for extra cleanup time associated with use of wet methods to control dust, including sweeping or vacuuming of silica slurry. However, such efforts may be less laborious than having to clean up free silica dust and may result in a net decrease in silica (and any other contaminants related to its production) running off into the water supply. OSHA's estimate of the potential environmental impact of each of these six equipment types is summarized below:

- Stationary masonry saws: Most stationary saws come equipped with a water basin that typically holds several gallons of water and a pump for recycling water for wet cutting. The water is recirculated and, thus, not continually discharged. When emptied, the amount of water is not sufficient to produce a runoff.
- Hand-held masonry saws: Large quantities of water typically are not required. Water is supplied from a small capacity water tank. Any slurry residue after cutting could be dealt with by sweeping or vacuuming.
- Walk-behind and other large concrete saws: Larger concrete saws are equipped with a tank to supply water to the blade while cutting. These saws leave a slurry residue, but do not require so much water as to create a runoff.
- Walk-behind concrete grinders and millers: Some tools are equipped with a water-feed system. In these, a water line from a tank, a garden hose, or other water supply leads to the grinding head and delivers water to spray or flood the cutting tool and/or the work surface. When an automatic water feed is not available, a helper can apply water directly to the cutting surface. While such wet methods might generate enough water to create a runoff, these grinding and milling activities are typically done during the finishing stages of structure construction (e.g., parking garages) and often inside the structure. Thus, direct discharges to storm drains or surface waters are unlikely.
- Asphalt milling for pavement resurfacing: A typical asphalt milling machine has a builtin reservoir from which water is applied to the cutting drum. The amount of water used, however, is insufficient to produce a runoff.
- Impact drillers/pavement breakers: Water for dust suppression can be applied manually, or using a semi-automated water-feed device. In the simplest method for suppressing dust, a dedicated helper directs a constant spray of mist at the impact point while another worker operates the jackhammer. The helper can use a hose with a garden-style spray nozzle to maintain a steady and carefully directed mist at the impact point where material is broken and crushed. Jackhammers retrofitted with a focused water mist aimed at the tip of the blade offer a dramatic decrease in silica exposure. Although water-fed jackhammers are not commercially available, it is neither expensive nor difficult to retrofit equipment. Studies suggest that a water flow rate of 1/8 to 1/4 gallon per minute is best for silica dust control. At this rate, about 7.5 to 15 gallons of water per hour would be applied to (i.e., sprayed on) the work area. It is unclear whether this quantity of water applied to a moveable work area at a constant rate would produce a runoff. If the work

were in sufficient proximity to a storm drain or surface water, the contractor might need to use a simple barrier to prevent the water from entering the drain, or filter it. Because the volume of water is relatively small, the costs for such barriers are likely insubstantial. However, because this type of runoff could happen occasionally, OSHA has added costs for barriers in costing silica controls for this task.

As a result of this review, OSHA has made a determination that the silica proposal would have little potential impact on air, water, or soil quality; plant or animal life; the use of land; or aspects of the external environment. As described above in this section, effective abatement measures are available where the potential for environmental impacts exist. Therefore, OSHA preliminarily concludes that the proposed standard would have no significant environmental impacts. However, while the Agency does not believe that the proposed rule would create significant costs, or otherwise pose a significant challenge, for employers to comply with existing environmental rules, OSHA welcomes comment on this or any other environmentally related issues, or potential conflicts with other agency rules.

REFERENCES

OSHA (OSHA, 2003b). Preliminary Initial Regulatory Flexibility Analysis of the Draft Proposed OSHA Standard for Silica Exposure in General Industry and Maritime. U.S. Dept. of Labor, Occupational Safety and Health Administration, Office of Regulatory Analysis. Docket H006A, Ex. 4-3. October 3, 2003. **OSHA-2010-0034-0938**

State of California, Department of Transportation, 2003. Construction Site Best Management Practice (BMP) Field Manual and Troubleshooting Guide. CTSW-02-007. January, 2003. **OSHA-2010-0034-1153**

APPENDIX A

HYDRAULIC FRACTURING

INTRODUCTION

The purpose of this appendix is to provide the elements of the preliminary economic analysis for the hydraulic fracturing industry. Hydraulic fracturing is sometimes called "fracking" and the terms will be used interchangeably in this appendix. Hydraulic fracturing operations were not specifically evaluated in the original analysis prepared by OSHA. However, the number of hydraulic fracturing operations has increased rapidly in recent years, and new information indicates that some workers at hydraulic fracturing operations are exposed to significant levels of silica. OSHA finds that sufficient data are now available to provide the main elements of the economic and technological feasibility analysis for this industry.

In 2010 and 2011, investigators from NIOSH conducted eleven site visits to assess chemical exposures at hydraulic fracturing operations, including exposure to crystalline silica dust. These site visits were conducted with the cooperation of the National Service, Transmission, Exploration & Production Safety [STEPS] Network, an industry-sponsored volunteer organization formed in 2003 to improve safety and health in the oil and gas industry. Air monitoring conducted by NIOSH at the fracking sites indicated that some workers were routinely exposed to silica dust in excess of the current OSHA general industry PEL. NIOSH's reports on these visits contained specific recommendations for control of dust at fracking sites and the use of respiratory protection until feasible engineering controls could be implemented.

In 2011, under STEPS, a focus group on crystalline silica was formed involving representatives from the oil and gas industry and other related industries, along with NIOSH and OSHA, to increase awareness of the potential hazard and promote the development and implementation of controls to protect hydraulic fracturing workers from hazardous exposures to crystalline silica. OSHA and NIOSH worked with the silica focus group to develop and issue a Hazard Alert in June 2012 on silica exposure at hydraulic fracturing operations. NIOSH is continuing to work with industry members on the design and development of engineering controls for fracking sites.

This Appendix includes descriptions of engineering controls recommended by NIOSH for hydraulic fracturing sites, such as misting systems, containment on transfer points, and local exhaust ventilation. It also includes descriptions of engineering controls that have been used at other types of operations, such as control booths used in surface mining and mineral processing, that could potentially be implemented at fracking sites. OSHA is particularly interested in receiving public comment or additional information on the effectiveness of the controls described in reducing worker exposure to silica, the costs and time required to implement controls, and the feasibility of any new technology. Specific questions on these points are included in the NPRM Issues Section on the technical feasibility of engineering controls (#9 through #17), compliance costs (#18), and effect on small entities (#19).

This appendix presents OSHA's preliminary results with respect to the industrial profile, technological feasibility, benefits, costs, economic feasibility, and regulatory flexibility findings with respect to the hydraulic fracturing industry. The Agency's analysis in this appendix was supported by the work of its contractor, Eastern Research Group (ERG), as reflected in its final report to OSHA in hydraulic fracturing (ERG, 2013).

INDUSTRIAL PROFILE

In this section, OSHA presents a brief description of the hydraulic fracturing industry and its activities. OSHA then identifies the NAICS industries with potential worker exposure to silica during hydraulic fracturing. Next, OSHA provides summary statistics for the affected industry, including the number of affected entities and establishments, and the average revenue for affected entities and establishments. This information is provided for each affected NAICS industry in total, as well as for small entities as defined by SBA. Finally, OSHA will provide other production estimates that will be useful for the subsequent cost estimates.

Hydraulic fracturing is a process used to extract natural gas and oil deposits from shale and other tight geologic formations. The process begins once well drilling is complete. Workers in the oil and gas industry pump fracturing fluid, composed of base fluid (usually water); a proppant (usually sand); and chemical additives, into the new well bore under extremely high pressures (e.g., 7,000 psi to 9,000 psi) (Esswein, 2012). The high pressure fractures the shale or rock formation, allowing the natural gas trapped in the formation to flow into the well. The large quantity of sand or other proppant in the fracturing fluid holds the fractures in the shale formation open after the pressure is released. Use of this process has increased significantly in recent years due to new horizontal drilling and multistage hydraulic fracturing technologies that improve access to natural gas and oil deposits.

Silica sand that is used as a proppant contains a high percentage of crystalline silica, typically ranging from 60 to 100 percent depending on the source (Halliburton MSDS, 2008; Carmeuse MSDS, 2009). Therefore, when silica sand is used as a proppant in hydraulic fracturing, high concentrations of respirable silica dust can become airborne as workers deliver, convey, and mix the sand with fracturing fluid. An enormous quantity of proppant is involved in the hydraulic fracturing process; each lateral drilling zone radiating from the vertical well bore requires 190,000 to 300,000 lbs. of sand. A vertical well might serve several horizontal zones, each of which is treated sequentially by hydraulic fracturing (involving approximately a half-day of active pumping per zone). More than one vertical well can be drilled at one well pad², and the number of personnel and the amount of sand, equipment, and activity at a site increases when multiple crews hydraulically fracture multiple wells at the same time.

¹ Hydraulic fracturing crews frequently spend several days performing active hydraulic fracturing at a site where a well has several zones, with additional days for equipment setup and removal on the days before and after hydraulic fracturing. The stay can be longer when multiple wells are located at the same site. Once the job is complete, the crew moves onto another site, where the process is repeated. The hydraulic fracturing process is a relatively brief phase of well installation, which can take three or four months, including site preparation, drilling, installing pipelines, and the initial stages of environmental reclamation (Rader, 2102). Over this period, a number of different specialized work crews will occupy the site, often for overlapping periods. During hydraulic fracturing several dozen workers can be on the site, but most work occurs outside the central sand-handling zone, which is only occupied by fracturing sand workers. The number of fracturing sand workers typically ranges from a half-dozen to two dozen, depending on the size of the project and whether multiple hydraulic fracturing crews are involved. A crew of 10 to 12 workers is typical (STEPS, 2012).

² The worksite around the wellhead is known as the well pad. The size of the well pad will vary, depending on the location, but it is typically between 1.5 and 5.7 acres. A well pad may contain one well, but it has become common to drill multiple wells from a single well pad (NYSDEC, 2011).

The hydraulic fracturing process generally proceeds as follows. Sand truck drivers deliver sand to the site and pneumatically pump it from trucks into large pieces of equipment (sand movers) that store sand. Workers regulate the flow of sand out of the sand mover onto a series of associated conveyor belts, which carry the sand to a hopper from which the sand is metered into a blender. The sand, water, and chemical additives are mixed together in the blender before the sand-laden fracturing fluid is pumped through a high-pressure manifold into the well. This final step does not contribute to worker silica exposures because sand is both wet and contained in an enclosed system by this stage; however, up to this step, respirable silica emissions occur at numerous points as the dry sand is moved from the trucks to the sand movers to the conveyor belts to the blender hopper.

Hydraulic fracturing crews work as a team that travels from well site to well site. Individual workers are specialized and have defined roles. Those whose jobs keep them in the central area near the sand-handling equipment can experience high levels of respirable silica exposure. Ancillary workers who have work locations on the perimeter can experience elevated silica exposures, although they are not in the immediate vicinity of the dust emissions. Workers whose jobs either do not require entry into the central work area or only require entry intermittently experience variable exposure depending on the amount of time they spend near dusty activities.

The hydraulic fracturing process occurs in the following main phases for a single well, as shown in Table A-1.

Table A-1: Major Stages of Well Fracturing Work

Phase	Duration	Activities
Well site setup	5–60 days	 Transporting hydraulic fracturing equipment and materials to the well pad (may begin during the late stages of drilling) Removing drilling equipment from the wellhead Positioning and installing hydraulic fracturing equipment
Well and equipment testing	<1 day	Pumping a testing fluid through hydraulic fracturing equipment at high pressure
Fracturing	1–30 days	 Perforating the well casing Blending fracturing fluid components Pumping fracturing fluid Installing isolation plugs
Flowback	2–8 weeks	 Removing plugs Collecting used fracturing fluid from the well Treating and recycling used fracturing fluid

Source: ERG, 2013.

Fracturing times can vary from one-half day to a month or more. During this time, the well casing might be perforated multiple times, and different blends of fracturing fluid might be pumped down the well to initiate and spread fractures. Although pumping of fracturing fluid is intermittent during this period, the overall process of perforating, pumping, and plugging requires continuous, 24-hour operation until it is complete.

Wells are typically fractured one segment, or stage, at a time. The well is fractured in stages instead of all at once to provide better control over fracture locations and because of pumping equipment limitations. Typically, a new well is fractured in 10 to 16 stages, but a well can be fractured in as many as 40 stages (Montgomery et al., 2010). Figure 2 in the ERG report illustrates five fractured stages separated by four fracturing plugs in a horizontal well. A horizontal well is a well that has been drilled with a horizontal component, giving it an L-shape.

Each stage is fractured in a series of steps, shown below in Table A-2.

Table A-2: Major Stages for Fracturing of a Specific Stage

Step	Activities		
	Configuring the perforator (setting explosive charges) above		
Perforating	ground		
	Lowering and then pumping the perforating gun into the well with		
	wireline equipment. (The wireline is a slender, rod-like piece of		
	metal used for lowering special tools into the well.)		
	Setting off charges to create holes in the well casing		
Fracturing fluid	Blending of fracturing fluid components		
blending and pumping	Pumping fracturing fluid into the well		
Isolation	Inserting an isolation plug into the well		
	Securing the plug to isolate a stage		

Source: API, 2009.

The steps presented in the table are repeated until all stages in the production zone have been fractured. The total length of time it takes to fracture an individual stage varies by well site and well depth. The shortest jobs require approximately one-half day.

Fracturing fluid may be blended and pumped by a company different from the one that drilled the well. Additionally, a diverse contingent of contractors may carry out the multitude of tasks involved during fracturing (e.g., perforation, wireline operations).

Affected Industries by NAICS

Oilfield activities are classified primarily into five NAICS codes:

- NAICS 211111 (Crude Petroleum and Natural Gas Extraction)
- NAICS 211112 (Natural Gas Liquid Extraction)
- NAICS 213111 (Drilling Oil and Gas Wells)
- NAICS 213112 (Support Services for Oil and Gas Operations)
- NAICS 333132 (Oil and Gas Field Machinery and Equipment Manufacturing)

U.S. Census identifies NAICS 213112 (Support services for oil and gas operations), as the industry that includes the establishments involved in hydraulic fracturing. This NAICS code also captures a range of other oilfield service activities (Other oil and gas field services; Oil and gas exploration services; Oil and gas well surveying; Cementing oil and gas well; and Running, cutting, and pulling casings, tubes, or rods) designed to support oilfield exploration or to supplement the production from oil and gas wells. In 2007, hydraulic fracturing represented 10.5 percent of the economic activity in NAICS 213112.

Discussions held by ERG with industry personnel and a review of the available literature confirm the Census data: hydraulic fracturing is performed almost entirely by oilfield service contractors

A-6

that are classified in NAICS 213112. These contractors are employed by oil and gas firms. Some industry contacts also mentioned that a few oil and gas producers own and deploy their own fracturing crews, but noted that the share of fracturing activity performed by oil and gas firms is negligible. Therefore, for this analysis, OSHA has ignored the portion of fracturing that might be performed by oil and gas production companies. OSHA requests comment on the size and scope of hydraulic fracturing performed by oil and gas production companies. The definition of the fracking industry is blurred by the additional services the fracking companies might provide. At the large firms, extensive engineering and well management services are often provided. Firms also manufacture some well equipment and otherwise reflect the diversity of activities in the oilfield. In an online business publication produced by Dun & Bradstreet, some of the largest entities are classified in multiple NAICS codes (Dun & Bradstreet, 2013).³ For example, the Baker-Hughes operations in Texas are classified as well servicers in NAICS 213112 (Support Services for Oil and Gas Operations) but their Montana operations are classified as a manufacturer of well equipment in NAICS 333132 (Oil and Gas Field Machinery and Equipment Manufacturing). Similarly, Schlumberger's Colorado office appears under the NAICS 238910 (Site Preparation Contractors) and their Los Angeles office is classified under NAICS 237110 (Water & Sewer System Construction). Other relatively large fracking companies' operations also are classified in other NAICS. These NAICS designations might be accurate, as the various companies engage in a range of oilfield activities. However, the observation also suggests that some establishments might be classified into other oilfield categories.

Even among the smallest firms, fracking companies might also offer various well services (perhaps acidizing, where acid pumped into the formation helps to improve flow) that might help keep low-pressure wells producing. Most of these other activities offered by the smallest firms, however, are within the coverage of NAICS 213112 (Support services for oil and gas operations).

³ As both the Dun & Bradstreet and Census information are provided voluntarily and are not subject to audit, some of the listings or data might be erroneous and subject to revision at each publication cycle.

Table A-3: Product Line Breakdown for Support Services for Oil and Gas Operations (NAICS 213112)

Product code	Industry	Value of shipments of this line (1,000)	Percentage of Industry Value (%) ^a
213112	Support activities for oil & gas operations	\$44,200,088	100%
21311235	Other oil & gas field services	\$23,427,308	53.0%
21311211	Oil & gas field exploration services	\$6,312,385	14.3%
21311233	Hydraulic fracturing of oil & gas wells	\$4,646,738	10.5%
21311232	Oil & gas well surveying & well logging	\$1,840,840	4.2%
21311234	Running, cutting, & pulling casings, tubes, or rods	\$1,583,512	3.6%
21311231	Cementing oil & gas wells	\$1,318,555	3.0%
213112W	Support activities for oil & gas operations, not specified by kind	\$5,070,750	10.5%

[a] Total does not equal the sum of components as result of rounding.

Source: U.S. Census, 20074

Characteristics of Affected Entities and Establishments

Based on discussions with industry contacts, a review of the literature by ERG, and an examination of websites advertising hydraulic fracturing services, OSHA estimates that approximately 200 entities are engaged in hydraulic fracturing. Three large companies (Schlumberger, Halliburton, and Baker Hughes) account for approximately 30 percent of the fracking market. A second tier of approximately 10 firms serves a substantial share of the remaining market. These firms include Frac Tech Services International (FTSI), Cudd Pressure Control, Pumpco Energy Services, and others. These companies have sufficient equipment to handle the largest fracking jobs, but do not provide the same range of technical services as the largest three firms. A third tier consists of approximately 40 to 50 firms that also have capability for large fracking jobs but are not as widely active across oil and gas regions in the United States.

The final tier consists of small, possibly single-crew, hydraulic fracturing companies that have sufficient capacity to handle only minor, low-pressure refracturing jobs on conventional oil and

⁴ U.S. Census, 2007. Industry Statistics Sampler http://www.census.gov/econ/industry/products/p213112.htm.

gas wells.⁵ All of the major oil and gas producing regions host a number of these very small fracking firms, and although no reliable figures were identified, OSHA, based on ERG's conversation with industry representatives, estimates that there are approximately 150 of them. Employment within these small companies can be as low as 20 or fewer workers, as very small fracking jobs might be accomplished with as few as 5 or 6 workers. With additional administrative and technical support personnel, it is estimated that the smallest firm size would require at least 10 employees. One industry contact noted that it is possible that some operations are run by sole proprietors who then assemble a temporary hydraulic fracturing crew for individual jobs. The frequency of this arrangement is not known and is likely very limited because of the difficulty of assembling a sufficiently experienced crew for individual jobs.

In hydraulic fracturing, even the smallest firm must be fairly capital-intensive because the minimum pumping equipment requirements are substantial, and therefore a modest-sized full-service fracking firm is likely to have at least \$50 million in equipment assets. An industry contact estimated that even the smallest firms need an investment of over \$1 million in pumping and other equipment. Very small firms are able to minimize their investments by purchasing second-hand equipment that is in need of servicing and that is sufficient for use on relatively low-pressure jobs.

Firms and Establishments

To estimate the number of establishments in the industry, ERG examined the company websites of some of the largest firms in the fracking industry in order to gauge the approximate number of establishments each firm operated. While the small firms are almost certainly operating in one or two locations, ERG noted that the largest firms operated up to 30 locations in the United States. From these data and discussions with experts on the industry, ERG estimated the number of establishments per entity across various size classes in order to derive the aggregate number of establishments in the industry. Using these judgments, ERG estimated that the 200 entities in hydraulic fracturing operate 444 establishments. The estimates supporting this calculation are shown in Table A-4.

⁵ Refracturing is an operation to restimulate a well after an initial period of production. It is performed to restore well productivity to near original or even higher rates of production and to extend the productive life of a well (Schlumberger, 2013)

Table A-4: Estimated Number of Hydraulic Fracturing Establishments

Employee Size Category	Estimated Number of Entities in Hydraulic Fracturing	Estimated No. of Establishments per Entity	Total Establishments
10-19	100	1	100
20-99	50	1.2	60
100-499	46	4	184
500+	4	25	100
Total	200		444

Source: ERG, 2013.

Revenue and Profit Estimates

For most industries covered in this PEA, where an industry contained both establishments that used processes causing silica exposures and establishments that did not use such processes, OSHA has assumed that the establishments using processes that cause silica exposures are financially typical of the industry as a whole. In the case of fracking however, such an assumption was not plausible. For example, NAICS 213112 includes some firms with fewer than 10 employees. As discussed above, given that even the smallest hydraulic fracturing firms have substantial equipment requirements, and that minimal crew sizes imply a need for at least ten employees, OSHA believes that the number of fracturing firms with fewer than 10 employees is negligible. Therefore, the Agency removed firms with 9 or fewer employees from consideration for the analysis.

Even after this adjustment, the revenue data for typical firms in oil and gas well drilling support services was still found to be unreasonable for fracking firms. For example, for the smallest size category considered (10-19 employees), based on ERG's analysis, OSHA estimates that such firms would not be performing any large-scale fracturing jobs but would be restricted to small jobs generating roughly \$5,000 to \$50,000 in revenues. Using an average revenue for the smallest fracturing jobs of \$25,000 per job and the industry-wide Bureau of the Census revenue estimate of \$2.1 million per year per firm, the average hydraulic fracturing establishment with 10-19 employees would, on average, be able to perform only 84 fracking jobs per year in order

⁶ As mentioned above, NAICS 213112 includes a range of other oilfield service activities, such as other oil and gas field services; oil and gas exploration services; oil and gas well surveying; cementing oil and gas well; and running, cutting, and pulling casings, tubes, or rods. These activities, which do not involve hydraulic fracturing, can more reasonably be performed by firms with fewer than ten employees. Firms that perform these types of non-fracturing services are judged to dominate the smallest size categories in the industry.

to meet the Census revenue estimate. ERG estimated that most of the jobs would be single-day jobs and that a firm could do far more than 84 jobs a year. Thus, OSHA concludes that the industry-wide average revenue estimate appears to underestimate the average revenues for hydraulic fracturing firms. OSHA requests comment on the typical lengths of time involved in the major stages of well fracturing work and the range of revenues earned for hydraulic fracturing jobs.

The underestimation of revenues for hydraulic fracturing firms relative to the other oilfield service firms is expected given the high capital-to-labor ratio of hydraulic fracturing relative to the other firms. For example, companies can offer wireline services with relatively light, mobile rigs that are much less expensive than the equipment necessary for hydraulic fracturing.

The Small Business Administration (SBA) defines a small business for this industry as a firm that earns receipts no greater than \$7 million per year. ERG evaluated the percentage of establishments performing hydraulic fracturing who would fall under this level and the upward adjustment to average revenue per establishment that would be necessary to correct for the difference in capital-to-labor ratios among the entities covered. However, limitations to the available data complicate this adjustment process.

Examining the 10-19 employee size category, and noting that an entity averaging only \$25,000 per fracking job could only perform 84 small fracking jobs per year to earn \$2.1 million per year reported, the average revenues attributed to fracturing activity appear too low. If these small fracking jobs typically only require one day to complete, then such a firm would have a utilization rate for its hydraulic fracturing equipment of 23 percent of the days of the year. A firm with a more plausible utilization rate, namely a rate three times as high (69 percent), would generate \$6.3 million per year, or nearly the small business revenue limit.

For firms in the 20-99 employee size category, average revenues are calculated at \$5.9 million. Most of the firms in this size category are likely to compete for new well completion work, which is considerably more lucrative than the small refracturing jobs. Most new wells require fracturing of multiple stages (sections of the well), with one to three stages often being performed per day. A typical single stage of a new well fracturing job is estimated to generate roughly \$100,000. One large fracking company reported that its annual average revenue per stage for 2011was \$139,000 (FTSI, 2011).

As a result, the average revenue figures in the Census data again appear to be substantially too low. A firm in the 20-99 employee size category, if performing new well fracturing, would have performed only 52 stages before reaching the average revenue level and 70 stages of work before reaching the small business size limit. While it is possible that a few firms would fall below the SBA size limit, OSHA judged that the large majority of firms in this size category would exceed the small business revenue limit.

OSHA concludes that, for purposes of the regulatory flexibility screening analysis, only firms in the 10-19 employee size category are capable of performing hydraulic fracturing work and yet are small enough to remain below the SBA small business cutoff. Moreover, OSHA concludes that a negligible number of firms in the next larger size category would also be small entities.

Table A-5 summarizes the industry characterization for hydraulic fracturing firms in the hydraulic fracturing portion of the industry and the small business entities in the industry. Because small business entities typically have fewer than twenty employees, OSHA, in this appendix, will not report separately the results for entities with fewer than 20 employees.

Table A-5: Characteristics of Businesses Performing Hydraulic Fracturing Affected by OSHA's

Proposed Standard for Silica

-- Entities in NAICS 213112 --

Industry Portion	Affected Entities [a]	Affected Establish- ments [a]	Total Affected Employment [a]	Total Revenues (\$1,000) [b]	Revenues Per Entity (\$1,000)	Revenues per Establishment (\$1,000)
All Hydraulic Fracturing Firms only	200	444	25,440	\$8,219,837	\$41,099	\$18,513
Hydraulic Fracturing SBA-Defined Small Entities	100	100	1,500 [c]	\$547,500	\$5,475	\$5,475

- [a] Estimated by ERG.
- [b] Calculated from or based on the number of establishments and the per-establishment revenues shown in Table A-6
- [c] ERG used the midpoint of the employment range 10-19 to estimate the average employees per entity for entities with fewer than 20 employees and SBA entities.

Source: ERG, 2013.

Applying the following methodology, and as summarized in Table A-6, ERG revised the reported Census figures for revenue per establishment for NAICS 213112 to generate more reasonable estimates of revenues for active hydraulic fracturing firms. ERG first developed estimates of the likely revenue per stage for hydraulic fracturing work. At the low end, ERG estimated that \$25,000 per stage was representative of the work on low-pressure, shallow, conventional wells. At the high end, ERG drew from the average revenue per stage (\$136,335) reported by a large hydraulic fracturing company in its 2011 annual report (FTSI, 2011). The estimate in the second size category (\$50,000) allows for a mix of small fracking jobs with jobs on new wells. Work on new wells dominates the industry activities and typical revenues per stage for hydraulic fracturing work on new wells are estimated to be much closer to the \$100,000 figure. Thus, the \$50,000 average revenue per stage is judged by OSHA to be a conservative estimate.

Table A-6: Derivation of Adjusted Per-Establishment Revenue Estimates for Firms in the Hydraulic Fracturing Industry

Employee Size Category	HF Entities	Estimated HF Establishments	Census-Based Revenue Per Establishment Estimate (a)	Estimated HF Revenue Per Stage (b)	R	nated Esta evenues (\$ ent Utilizat (Po	61,000) at
10-19	100	100	\$2,064,073	\$25,000	\$2,281	\$4,563	\$6,844
20-99	50	60	\$5,158,959	\$50,000	\$4,563	\$9,125	\$13,688
100-499	46	184	\$15,005,003	\$100,000	\$9,125	\$18,250	\$27,375
500+	4	100	\$24,000,429	\$136,335 (c)	\$12,441	\$24,881	\$37,322
Hydraulic Fracturing Industry	200	444				\$15,428	

- (a) Estimated by ERG.
- (b) Estimated by ERG.
- (c) FTSI, 2011.
- (d) Utilization is defined as performance of one stage per day for the specified percentage of days in the years. As noted in the text, many hydraulic fracturing jobs will accomplish more than one stage in a day. Source: ERG, 2013.

ERG then estimated a range of revenues using annual equipment utilization rates of 25, 50 and 75 percent. For simplicity, utilization is defined for this estimate as the completion of one stage in a day. Although in this analysis, very small fracking firms are modeled to engage in a single stage of activity at a time, in fact, hydraulic fracturing firms of all sizes can often perform more than one stage per day. For small firms, this might mean traveling to a second well on a single day to perform a second fracking job. On large wells, the rate at which stages are completed varies with the depth at which stages are performed. Therefore, because of the mobility and flexibility of fracking firms, the definition of utilization applied here is a conservative factor in the definition of revenues.

In the final step of its model, ERG calculated revenues using the range of equipment utilization rates described above. Because the hydraulic fracturing industry has been extremely active for the last several years, actual utilization rates are quite high and many firms have purchased new equipment (PacWest Consulting Partners, 2012). For this analysis, however, to avoid

overestimating revenues, ERG selected a 50 percent utilization rate for estimating revenues per establishment. Nonetheless, uncertainty regarding utilization rates for the smallest operators in the fracking market remains. In addition, while most information suggests that new-well hydraulic fracturing dominates industry activities, OSHA has limited information on the scale of activities among the small hydraulic fracturing firms. The focus on the robust new-well fracking activity might overstate the market and the viability of the smallest fracking operators. Using the 50 percent utilization estimate, ERG estimated average revenues for hydraulic fracturing firms as ranging from \$4.6 million for a 10-19 employee establishment to \$24.9 million for one of the largest establishments, and OSHA has applied those revenue estimates in this preliminary economic analysis. OSHA requests data on equipment utilization rates among fracking firms and information on the scale of activities of all hydraulic fracturing firms, particularly firms defined as small by the SBA definition.

Table A-7 presents OSHA's preliminary estimate of revenue and profit for firms in the hydraulic fracturing industry affected by the proposed standard.

Table A-7: Profit and Revenue for Entities in the Hydraulic Fracturing Industry Affected by OSHA's Proposed Standard for Silica – NAICS 213112

Industry Portion	Profit Rate [a]	Revenues (\$1,000)	Profit (\$1,000)	Revenues Per Entity (\$1,000)	Profit Per Entity (\$1,000)	Revenues per Establishment (\$1,000)	Profit Per Establishment (\$1,000)
Total for Entire NAICS	10.31%	\$34,524,044	\$3,559,429	\$5,044	\$520	\$4,311	\$444
Hydraulic fracturing firms only	10.31%	\$8,219,837	\$847,465	\$41,099	\$4,237	\$18,513	\$1,909
Hydraulic fracturing entities with fewer than 20 employees	10.31%	\$547,500	\$56,447	\$5,475	\$564	\$5,475	\$564
Hydraulic fracturing SBA entities	10.31%	\$547,500	\$56,447	\$5,475	\$564	\$5,475	\$564

[a] IRS, 2002 to 2006.

Source: ERG, 2013.

Other Industry Characteristics

In addition to estimating the numbers of entities and establishments and their revenues and profits, OSHA, in the following sections, derives estimates of the number of fracturing fleets and the wells of various kinds fractured per year. Estimates of the number of affected employees are discussed following the technological feasibility sections, which discusses the kinds of occupations and the associated silica exposure in hydraulic fracturing.

Fracturing Fleets

As another component of the analysis, ERG assembled information on the number of fracking fleets in the industry. Industry publications have estimated the number of individual fleets and the pumping horsepower that operate in the United States. Sufficient work capacity to perform a full-scale fracturing operation can be as low as 30,000 horsepower for a typical fleet, but can also range up to 40,000 to 50,000 horsepower of fracturing capacity. According to one industry source, recent figures indicate that, as of mid-2012, an estimated 503 U.S. fracking fleets operated 14.7 million in hydraulic horsepower (HHP) capacity. The same industry source also forecast that by the end of 2012 the number of fracking crews will have grown to 530 and the aggregate pumping capacity will have grown to 15.6 million HHP. For this cost analysis, OSHA used an estimate of 530 fleets: 100 small fleets, 244 medium fleets, and 186 large fleets. Because most of the costs represent modifications to the fracking equipment, the fleet estimate is a significant driver of the total prospective compliance costs.

Most significant hydraulic fracturing entities maintain sufficient horsepower capacity to allow them to compete for new well jobs. As has been discussed, however, some very small fracturing companies might be competing for only small refracking jobs on relatively low-pressure existing wells.

To accommodate 24-hour well operations that occur in most locations, ERG's model allows for two active shifts at any time. Common arrangements are for crews to work 7 days on and 7 days off, or to work 10-day periods, with a single rest day in the middle of the 10-day work period.

While crew sizes vary with the job, information from industry sources helped ERG model the typical fracturing crew size. Larger crews are needed for fracturing jobs on new deep wells with horizontal components. Because new well fracking occupies more crew time than re-fracturing of existing wells, larger fracking crews will be more common. Large fracking crews employ 15 to 20 workers, while small fracking crews commonly range from 6 to 10 workers. The midpoints of the crew sizes are, therefore, 17.5 and 8, respectively.

ERG estimated that 84 percent of the wells on which fracturing occurs are new wells and 16 percent are existing wells. Applying these relative shares to the estimated mean crew sizes given above, ERG calculated the average crew size for all fracking operations to be 16 workers. Because, as noted above, 24-hour fracking schedules are common, many fleets employ three crews, to allow for a day, night, and rotation shifts. On the other hand, small or less complex projects might be performed only with daytime crews. To allow for multiple crews per shift,

ERG estimated that two crews per fleet should reflect the industry average. Thus, based on ERG's model of the fracking workforce, OSHA estimates that there are, on average, 32 crew members per mobile fracking fleet. Multiplying the estimated 530 fleets by an average fleet size of 32 workers, OSHA estimates a total worker population of 16,960 in hydraulic fracturing fleets.

OSHA notes that not all fracking fleets are fully deployed at all times. However, the utilization rate for hydraulic fracturing fleets was not incorporated into this analysis, and OSHA requests comment on fleet utilization rates in hydraulic fracturing.

Besides the well crews, generally, a number of workers in other occupational trades are present around the well during the fracturing operation. This group can include a representative of the oil and gas company, a toolpusher (equipment supplier), a drilling mud supplier, vendors for other well services, and other individuals. The number of these other workers was estimated by ERG to be roughly equivalent to the fracking crew population, at least during daylight hours. However, for the night shift, such participation by other workers cannot be substantiated by expert sources and, according to ERG, is probably somewhat reduced due to turnover and other dynamics associated with employment within the ancillary and fracking well support operations

For the workers present on the well pad who are not directly part of the hydraulic fracturing crews and who therefore are seldom exposed to significant levels of crystalline silica, OSHA has excluded an assessment of control costs in this preliminary analysis. Any compliance efforts for this diverse workforce would be the responsibility of their employers and would not be related to any intrinsic hydraulic fracturing function. OSHA anticipates that silica dust exposures would be limited by the distancing of workers from the fracking equipment during operations, a relatively simple procedure given that the job functions of these workers should not require them to be close to the dust-generating areas. OSHA requests data on the risk of silica exposure for ancillary and support personnel on hydraulic fracturing well pads.

Oil and Gas Wells Fractured

To assess the extent of hydraulic fracturing activities, it is useful to examine the available recent data on the number of wells drilled annually in the United States. The U.S. Energy Information Administration (EIA) reports that 41,118 oil and gas wells were drilled in 2011, including 21,709 for crude oil, 14,917 for natural gas, and 4,492 dry holes (EIA, 2012). These are overall numbers and include both exploratory and developmental wells as well as those that were not fractured. The total number of natural gas, crude oil, and dry hole wells drilled from 2007 to 2011 is presented below in Table A-8, with details on the number of exploratory and development wells in each of the three categories.

⁷ A dry hole is a well that is drilled but does not produce oil or gas in commercially worthwhile amounts.

Table A-8: Number of Gas and Oil Wells Drilled in the United States

			Year		
	2007	2008	2009	2010	2011
Natural Gas					
Exploratory and Development	32,719	32,274	18,234	16,973	14,917
Exploratory	2,794	2,345	1,196	1,044	843
Developmental	29,925	29,929	17,038	15,929	14,074
Crude Oil					
Exploratory and Development	13,361	16,645	11,261	16,254	21,709
Exploratory	806	892	612	668	979
Developmental	12,555	15,753	10,649	15,586	20,730
Dry Holes					
Exploratory and Development	4,978	5,428	3,552	4,277	4,492
Exploratory	1,582	1,715	1,052	1,093	1,011
Developmental	3,396	3,713	2,500	3,184	3,481
Total					
Exploratory and Development	51,058	54,347	33,047	37,504	41,118
Exploratory	5,182	4,952	2,860	2,805	2,833
Developmental	45,876	49,395	30,187	34,699	38,285

Source: Energy Information Administration (EIA, 2012)

The boom in hydraulic fracturing is associated with its use in completion of gas wells. The technique has also proved extremely valuable as a means of stimulating production from certain challenging fields that, until fairly recently, were not major producing fields.

According to 2005 Congressional testimony by the Interstate Oil and Gas Compact Commission, a group that represents governors from oil and gas producing states, hydraulic fracturing was used in 90 percent of all oil and natural gas wells recently drilled in the United States (EWG, 2012). Similarly, FracFocus, a national hydraulic fracturing chemical registry managed by two multi-state governmental bodies, the Ground Water Protection Council and the Interstate Oil and Gas Compact Commission, estimates that of the total wells drilled in 2011 (41,118 wells), 85 percent, or 35,000 wells, were hydraulically fractured (FracFocus, 2012). According to experts, 60 to 80 percent of all U.S. wells drilled in the next ten years will require hydraulic fracturing to continue operating (FracFocus, 2010). These 35,000 hydraulic fracturing jobs for new wells form the bulk of the fracking market.

No oilfield data sources provide national estimates of the number of refracturing jobs performed in recent years. Discussions with several oilfield contacts suggest, however, that refracturing jobs represent a small portion of industry activity (ERG, 2013). However, OSHA cautions that these comments might not capture the activities of the very small fracking firms performing small refracturing jobs on older, low-pressure conventional oil and gas wells, the volume of which has not been well reported.

According to EIA data, in 2009 the well count totaled 824,847, consisting of 461,388 gas wells and 363,459 oil wells (EIA, 2010). By 2010, the number of gas wells had grown to 487,627 wells (EIA, 2013). Of this total, an estimated 211,706 were unconventional gas wells. The American Petroleum Institute (API) surveyed producers and, based on the survey results, estimated that 2.31 percent of unconventional gas wells were re-fractured in 2010 (API, 2012). For conventional wells, the rate of refracturing is even lower. The API survey results indicate that 0.3 percent of these gas wells were refractured during 2010. ERG was unable to estimate the number of oil wells being refractured, although discussions with industry contacts suggest that these wells represent a very small portion of activity (ERG, 2013).

Applying the API survey-based estimate that 2.31 percent of unconventional gas wells and 0.3 percent of conventional gas wells are refractured, OSHA calculates that the combined number of wells refractured annually totals 5,718 gas wells. This estimate of refractured gas wells represents approximately 16 percent of the estimated number of new wells completed with hydraulic fracturing. In discussions with ERG, industry suggested that this level of refracturing appears to be high. However, at this time OSHA lacks data to make an alternative estimate and requests public comment on this estimate of the number of gas wells refractured annually.

⁸ Unconventional wells are those that are difficult to develop and can only be produced using horizontal wells that are stimulated by hydraulic fracturing (Kelso, 2012). API (2012) reports that EPA's 2010 well counts include 200,921 conventional wells and 154,161 unconventional wells (including 31,381 shale; 47,371 coal bed-methane; and 75,409 tight). With unconventional wells making up 43 percent of the total, OSHA estimates that, of the 487,627 wells reported by EIA (2013), 211,706 are unconventional.

⁹ The rate at which unconventional wells are refractured is strongly influenced by a large number of refracturing jobs in one particular oilfield. When this oilfield is removed from the data, the share of refractured wells drops to 0.7 percent for unconventional wells (API, 2012). Nevertheless, with no statistical basis to exclude this oilfield from the data, for this preliminary analysis OSHA has retained it in the database and therefore applied the overall rate of refracturing (2.31 percent) instead of the downward adjusted rate.

GROWTH OF THE HYDRAULIC FRACTURING INDUSTRY

The Department of Energy forecasts that shale gas production will increase almost threefold from 2009 to 2035 (U.S. EIA, 2011a). Tight sand gas and coalbed methane, both of which require hydraulic fracturing in nearly all cases to be released, accounted for approximately 28 percent and 8 percent respectively of total U.S. gas production in 2009 (U.S. EPA, 2011a).

In the very near future, however, the growth of the hydraulic fracturing sector is less certain, as an industry source estimates that fleet utilization rates began to decline during 2012. The U.S. rig count is a leading indicator of the utilization rate for hydraulic fracturing equipment, and based on recent trends in that leading indicator, the utilization rate, estimated at 95 percent in the first quarter of 2012, was projected to fall to 85 percent during the second quarter (PacWest Consulting Partners, 2012).

Production of shale gas grew by an average of 48 percent per year between 2006 and 2010, largely due to advances in hydraulic fracturing combined with horizontal drilling (U.S. EIA, 2011a). Because using the two techniques in combination greatly increases the productivity of unconventional reservoirs, the rise in use of hydraulic fracturing techniques has largely matched the rise in horizontal well drilling (U.S. EIA, 2011a, 2011b). In some fields, the growth in horizontal drilling and hydraulic fracturing are quite dramatic. For example, in the Barnett shale in Texas, the most extensively developed shale gas field in the United States, the number of producing horizontal wells rose from fewer than 400 to over 10,000 between 2004 and 2010 (U.S. EIA, 2011b). The development of shale oil resources is likely to represent a substantial share of oil and gas activity for a number of years

TECHNOLOGICAL FEASIBILITY

Methodology

Defining "Silica" Data

Unless specifically indicated otherwise, all silica exposure data, samples, and results discussed in this technological feasibility analysis refer to personal breathing zone (PBZ) measurements of respirable crystalline silica. The term "respirable crystalline silica" is used as defined in the proposed rule (see "Definitions").

Data Sources and Source Characteristics

General information on the data sources and source characteristics for the overall technological feasibility analysis is discussed in Section IV.A—Methodology of the Preliminary Economic Analysis. Details regarding the data sources used for this supplemental appendix are presented below under the heading "Baseline Conditions and Exposure Profile."

Methods to Assess Feasibility of Control Technology

Exposure profiles were developed by job category. OSHA analyzed the distribution of silica exposure data for each job category involved in hydraulic fracturing operations, drawing information from sources such as NIOSH site visits, trade and industry organizations, OSHA site visits, and peer-reviewed journals.

All results in the general industry exposure profiles, including the measurements in this hydraulic fracturing section, are 8-hour time-weighted average (TWA) PBZ samples collected over periods of 360 minutes or more (for the purposes of this analysis, defined as "full-shift"). To determine an 8-hour TWA, the exposure level for the period sampled is assumed to have continued over any unsampled portion of the shift. OSHA has preliminarily determined that this sample criterion is valid because workers in general industry are likely to work at the same general task or repeating set of tasks over most of their shift; thus, unsampled periods generally are likely to be similar to the sampled periods.

For additional information on the methodologies used for this analysis, please consult Section IV.A—Methodology of the Preliminary Economic Analysis.

OSHA has organized activities at hydraulic fracturing sites into three main job categories: fracturing sand workers, ancillary support workers, and remote/intermittent support workers. Table A-9 provides information on these job categories and their source of exposure.

Job Category*	Major Activities and Sources of Exposure
Fracturing Sand Workers in the Central Area (e.g., sand mover operator, conveyor belt tender,	Operate and tend equipment in the central sand-handling area on hydraulic fracturing sites
blender tender, water operator, pump	Dust ejected from the thief hatches on the top of the sand mover:
truck operator)	 Dust released from the conveyor belt under the sand movers.
	 Dust created as sand drops into or is agitated in the blender hopper.
	 Dust released from conveyor belt operation.
	 Sand released at the top of the end of the sand belt on the sand movers.
	 Dust ejected from the side fill ports on the sand movers.
Ancillary Support Workers (e.g., chemical truck operator, hydration unit operator)	Operate or tend equipment that is at a fixed location on the perimeter or slightly removed from the central sand-handling area, such as chemical trucks and hydration units.
	 Dust disbursed from processes operated by fracturing sand workers in the central sand-handling area.
	 Sand and aggregate on the ground, crushed by heavy equipmen and disturbed by passing vehicles.
	 Accumulated dust in vehicle and equipment cabs occupied by drivers and operators.
Remote/Intermittent Support Workers (e.g., roving operator, ground guide, sand coordinator, mechanic, QA technician, fueler, wire-line crew)	Active over a wide area of the site, primarily outside the central sand handling area, but may include brief, occasional excursions into the central sand-handling area. These workers may spend time at a primary base location (truck, trailer) away from sand-handling.
	 Dust disbursed from processes operated by fracturing sand workers in the central sand-handling area.
	 Sand and aggregate on the ground, crushed by heavy equipmen and disturbed by traffic on the site.
	 Dust released inside trailer while QA/QC techs sieve sand to check sand quality. Normally only QC technicians are exposed in these instances because they are the only workers in the trailer while this work is performed.
*Job categories are intended to represe allocated differently, depending on the	these instances because they are the only workers in the traile while this work is performed. ent job functions; actual job titles may differ and responsibilities may be

Baseline Conditions and Exposure Profile

OSHA reviewed the best available exposure monitoring data, consisting of six NIOSH reports on hydraulic fracturing sites. ¹⁰ Between 2010 and 2011, NIOSH visited 11 hydraulic fracturing worksites in five states (seven sites in Colorado and individual sites in Arkansas, North Dakota, Pennsylvania, and Texas) as part of an industry-wide effort to identify and characterize exposures to vapors, gases, particulates and fumes among gas and oil field workers (Esswein, 2013). Participation in the program was voluntary, and the sites visited were not selected at random, but rather at the request of industry representatives. OSHA does not have data to evaluate the extent to which these particular sites are representative of all hydraulic fracturing operations; however, according to industry sources, the sites visited are typical of the hydraulic fracturing operations in these different geographic areas.

During these visits, NIOSH collected full-shift air samples to determine the levels of worker exposure to respirable silica on the work sites, and based on the results of the air sampling, NIOSH identified exposure to respirable silica at these sites as an occupational health hazard.

NIOSH spent three days at each of the eleven sites to obtain PBZ air samples and some area samples (OSHA-NIOSH Alert, 2012). Conditions varied between the sites. NIOSH collected samples in diverse seasons, with temperatures ranging from 30° to 113° Fahrenheit, and at elevations ranging from 246 feet to 4,813 feet. ¹¹ Well sites included single stage "re-fracs" (rejuvenating old wells), multistage hydraulic fracturing, and "zipper-fracs" (multiple parallel wells) (Esswein, 2013). ¹²

Respirable dust at these sites contained a relatively high percentage of silica. Among the 88 samples for which this information is available from all NIOSH site visits, more than half had greater than 41 percent silica in the sample (with a range of 6 to 100 percent silica). An exception was NIOSH's Site 6, at which a granular ceramic medium containing 1 percent silica replaced half of the silica sand proppant (NIOSH HF-Site 6, 2011). Exposure controls were largely absent during the monitoring periods, representing what are characterized here as baseline conditions.

¹⁰ Sources are NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011. Each report covers three days at one hydraulic fracturing site, except "Site 2" which covers one-half day at each of six re-fracking (well renewal) sites; travel time between sites was not sampled. In order to detect even low levels of silica, NIOSH collected personal samples based on large air volumes by using high flow respirable dust cyclones (BGI model GK2.69) and air sampling pumps set to 4.2 liters per minute to collect samples over workers entire shift (NIOSH HF-Site 3, 2011). Many of these shifts exceeded 8 hours. These samples represent the best available silica exposure data for hydraulic fracturing site workers.

¹¹ The Site 5 report describes "gusty wind" conditions on site, "between 5 and 7 mph" (NIOSH HF-Site 5, 2011). Sites 1, 4, 5, and 6 were sampled during summer, Site 2 was sampled during winter, and Site 3 was sampled during spring (NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011).

¹² Simultaneous or "zipper" hydraulic fracturing involves "two or more parallel wells [that] are drilled and then perforated in alternate intervals along the well bores and fractured at the perforations This creates a high-density network of fractures between the wells that increases production in both wells" (Gilleland, 2011).

The following sections describe the baseline conditions, and Table A-10 summarizes the exposure information for the affected job categories. Because few controls were in use at the time of the NIOSH visits, and industry work practices have been modified somewhat since that time, OSHA seeks additional information to update both the exposure profile and information related to controls.

Baseline Conditions for Fracturing Sand Workers

OSHA reviewed 51 exposure results for fracturing sand workers from the six NIOSH reports on hydraulic fracturing sites. The exposure profile, provided in Table A-10, shows a full-shift mean exposure of 464 μ g/m³, a median of 330 μ g/m³, and range of 10 to 2,570 μ g/m³ for this group of workers. Nearly 75 percent of the sample results in this job category exceed 100 μ g/m³, which is approximately equal to the current PEL for general industry. More than half (27 of 51 samples) exceed 250 μ g/m³ and nearly 10 percent (5 of 51 samples) exceed 1,000 μ g/m³. Eight fracturing sand worker samples exceed 820 μ g/m³, which is the highest exposure level of any worker in the other job categories at hydraulic fracturing sites).

Most of the full-shift fracturing sand worker samples that exceed 1,000 $\mu g/m^3$ are associated with sand mover operations. For example, one of the highest sample results (2,000 $\mu g/m^3$) was collected on a worker at the bottom operator station on a sand mover at a site where "hot loading" occurred and where sand contained a high percentage of silica (most respirable dust samples in which silica was detected contained 50 to 100 percent quartz) (NIOSH HF-Site 3, 2011). Other sample results for sand mover operators exposed above 1,000 $\mu g/m^3$ include values of 1,010 $\mu g/m^3$, 1,100 $\mu g/m^3$, and 1,950 $\mu g/m^3$ (NIOSH HF-Site 3, 2011; NIOSH HF-Site 5, 2011). The worker with the highest full-shift sample result (2,570 $\mu g/m^3$), however, was not a sand mover operator, but instead worked near sand movers while tending sand conveyer belts in hot, dry, breezy weather at a location where respirable dust samples contained 30 to 65 percent quartz (NIOSH HF-Site 1, 2010). At these three sites where exposure levels exceeded 1,000 $\mu g/m^3$, the extremely high silica exposure levels were associated with worker positions immediately down-wind of points from which sand dust was released (e.g., thief hatches, conveyers, sand hoppers).

At the time NIOSH visited these sites, these fracturing sand workers wore either filtering facepiece or half-facepiece respirators. Since then, firms have made efforts to protect workers at hydraulic fracturing sites from exposures to crystalline silica. One such effort is more frequent use of full-facepiece respirators by workers in the central sand-handling areas at hydraulic fracturing sites. (ERG, 2013).

¹³ The exact value for the current PEL varies depending on the silica content of the dust and is calculated based on the equation published in 29 CFR 1910.1000 Table Z-2. For additional information see the discussion in Section IV.B – Technological Feasibility.

¹⁴ Sources: NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011.

¹⁵ The term "hot loading" refers to the time-saving practice of continuing the hydraulic fracturing process while refilling the sand mover. This practice involves leaving the sand mover and associated conveyors running while the sand mover is being simultaneously refilled with sand from a sand truck (using a pneumatic conveyance system). The pneumatic transfer of sand into the sand mover adds air to the interior, which then vents through any available openings. The combined activities are visibly dustier than the individual activities (Esswein, 2012). A bottom operator station includes a control panel for the sand mover and a sight line to lower portions of the equipment.

NIOSH documented baseline conditions for fracturing sand workers, which included largely uncontrolled work processes using dry sands from various sources. ¹⁶ The work typically occurs at sites that contain numerous trucks, sand movers, and related large equipment that block natural breezes that might otherwise create some air exchange in the area where dust is released in the highest concentration (Esswein, 2012; Rader, 2012). An alternative proppant (e.g., ceramic media) is used occasionally at sites where conditions benefit from the proppant's unique properties (e.g., strength, shape, size, uniformity). The exposure profile represents fracturing sand worker exposure on sites operating under these baseline conditions.

Baseline Conditions for Ancillary Support Workers

The six NIOSH reports on hydraulic fracturing sites also contain exposure data (six samples) for ancillary support workers. Half of the samples exceeded the current PEL, while the remaining samples were 50 μ g/m³ or less. The median exposure level for this job category is 142 μ g/m³, with a mean of 243 μ g/m³ and range of 9 μ g/m³ to 820 μ g/m³. The highest exposure level for a worker in this job category, 820 µg/m³ obtained for a hydration worker, was more than three times the next highest level for a hydration worker, 240 µg/m³, obtained at the same worksite, but likely on a different day (NIOSH HF-Site 3, 2011). In contrast, other hydration worker results from a second site were 9 µg/m³, 26 µg/m³ and 44 µg/m³ at a site where fracturing sand worker exposures reached 983 μg/m³ (NIOSH HF-Site 4, 2011). Fracturing sand worker exposure levels at Site 4 were substantially elevated, although not as high as at Site 3, where the median fracturing sand worker exposure was 625 µg/m³). ¹⁸ This suggests that the most highly exposed ancillary support worker (from HF Site 3) spent markedly more time in close contact with fracturing sand workers and their exposure sources than would normally be the case. Unusual exposure patterns can result from workers temporarily assigned to another job duty (in this case fracturing sand worker), upset conditions or from individual work practices, any of which could cause an ancillary support worker to spend more time than usual in the extremely dusty fracturing sand work area.

Ancillary support worker baseline conditions are also documented by the NIOSH reports. Workers in this job category work at fixed positions just outside the central sand-handling area. The primary sources of exposure for ancillary support workers are the processes controlled by the fracturing sand workers (Esswein, 2012). Variable wind and weather conditions carry airborne silica from the central work area, where controls are largely absent, causing bystander

¹⁶ Sources: NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011

 $^{^{17}}$ Sources: NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011.

 $^{^{18}}$ At HF Site 3, 10 fracturing sand worker exposure levels were 85 $\mu g/m^3$, 130 $\mu g/m^3$, 330 $\mu g/m^3$, 363 $\mu g/m^3$, 620 $\mu g/m^3$, 630 $\mu g/m^3$, 1,100 $\mu g/m^3$, 1,950 $\mu g/m^3$, and 2,000 $\mu g/m^3$ (average 796 $\mu g/m^3$, median 625 $\mu g/m^3$ over three days) (NIOSH HF-Site 3, 2011). These sample results for these fracturing sand workers are higher than the mean and median for the fracturing sand worker job category, suggesting that the dust levels at Site 3 were higher than the typical site. Even so, the hydration worker with an exposure level of 820 $\mu g/m^3$ (greater than the average fracturing sand worker exposure level at the same site) appears to have performed the job in a way that incurred greater exposure than would otherwise have been expected.

exposure for ancillary support workers (Esswein, 2012). Silica dust accumulated in the vehicle cabs and silica-containing sand and aggregate crushed on the ground by passing heavy equipment contribute to ancillary support worker exposure whenever these sources are disturbed. The exposure profile, based on NIOSH's reports, represents ancillary support worker exposure on sites operating under these baseline, uncontrolled, conditions.

Baseline Conditions for Remote/Intermittent Support Workers

The six NIOSH reports provide 26 sample results for remote/intermittent support workers, who typically had lower daily exposures compared to fracturing sand workers and ancillary support workers. The remote/intermittent support worker exposures are characterized by a median of 51 $\mu g/m^3$, a mean of 88 $\mu g/m^3$, and a range of 6 $\mu g/m^3$ to 630 $\mu g/m^3$. Overall, 13 samples (50 percent) are 50 $\mu g/m^3$ or less, another 9 (34 percent) are greater than 50 $\mu g/m^3$ but no greater than 100 $\mu g/m^3$, and four samples (16 percent) exceed 100 $\mu g/m^3$ (these four samples range from 140 $\mu g/m^3$ to 630 $\mu g/m^3$). Among the workers in this job category, only those serving as ground guides periodically experienced exposures greater than 100 $\mu g/m^3$ (4 samples, or 18 percent of the 22 samples for ground guides). Although their exposure is intermittent, their duties take them near moving vehicles (which disturb dust) and into the central sand-handling area as they guide sand delivery trucks into positions near sand movers. The single sample for a QA technician was less than 25 $\mu g/m^3$, as was one of the three samples obtained for mechanics (the other two sample results for mechanics were between 50 $\mu g/m^3$ and 100 $\mu g/m^3$).

NIOSH also documented baseline conditions for remote/intermittent support workers, which included the largely uncontrolled work processes of workers in another job category (fracturing sand workers). Sand and aggregate crushed on the ground by passing heavy equipment contribute to remote/intermittent support worker exposure whenever these materials are disturbed. Similar to the other job categories, the exposure profile for remote/intermittent support workers is based on NIOSH's reports and therefore represents the exposure of workers in this job category operating under these baseline, uncontrolled, conditions.

It is important to note that certain remote/intermittent support workers, such as QA technicians who sieve sand as part of quality testing, handle silica-containing materials in a manner that could be a meaningful source of exposure if performed on a large scale. However, OSHA has no evidence that shows that these workers experience significant exposure from the small-scale short-term testing activities in which they are involved at hydraulic fracturing sites.

¹⁹ NIOSH did not document the QA technician's activities. However it is reasonable to assume that sieving of small samples was part of the worker's activities during sampling since it is one of the tasks involved with this job.

Table A-10—Respirable Crystalline Silica Exposure Range and Profile for Hydraulic Fracturing During Support Activities for Oil and Gas Operations (NAICS 213112)

	Exposure Summary Exposure Range Exposure Profile												
Job Category	N	Mean (µg/m3)	Median (μg/m3)	Min (µg/m3)	Max (μg/m3)	<25 (μg/m3)	≥25 and ≤50 (µg/m3)	>50 and ≤100 (µg/m3)	>100 and ≤250 (µg/m3)	>250 and ≤500 (µg/m3)	>500 and ≤1,000 (µg/m3)	>1,000 and ≤2,000 (µg/m3)	>2,000
Fracturing Sand Workers	51	464	330	10	2,570	1 2.0%	5 9.8%	7 13.7%	11 21.6%	10 19.6%	12 23.5%	4 7.8%	1 2.0%
Ancillary Support Workers	6	243	142	9	820	1 16.7%	2 33.3%	0 0%	1 16.7%	1 16.7%	1 16.7%	0 0.0%	0 0.0%
Remote/intermittent Workers	26	26	88	51	6	8 30.8%	5 19.2%	9 34.6%	2 7.7%	1 3.8%	1 3.8%	0 0.0%	0 0.0%
Total	83	330	121	6	2,570	10 12.0%	12 14.5%	16 19.3%	14 16.9%	12 14.5%	14 16.9%	4 4.8%	1 1.2%

Notes: All samples are PBZ results for durations of 360 minutes or more and represent 8-hour time-weighted average (TWA) exposures with the assumption that exposure continued at the same level during any unsampled portion of the shift.

This exposure profile assumes that the distribution of the available exposure samples represents the distribution of actual workers and facilities in this industry. OSHA seeks additional information to better describe the distribution of exposures in this industry.

Sources: NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 5, 2011; NIOSH HF-Site 6, 2011.

Additional Controls

Additional Controls for Fracturing Sand Workers

As indicated in the exposure profile, OSHA estimates that slightly less than 12 percent of fracturing sand workers currently have exposures at or below the proposed PEL of 50 $\mu g/m^3$. For the remaining workers, additional controls will be required to reduce exposures below current levels.

Dust containing silica is emitted from several points on equipment operated by fracturing sand workers. Based on visual observation, NIOSH identified seven primary sources of emissions affecting workers engaged in hydraulic fracturing. These seven sources, itemized below, were observed at each of the eleven work sites at which NIOSH conducted air monitoring (Esswein, 2013):

- 1. Dust ejected from thief hatches on top of the sand movers.
- 2. Dust released from the conveyor belts under the sand movers.
- 3. Dust generated on site by truck traffic (road dust).
- 4. Dust created as the sand drops into, or is agitated in the blender hopper.
- 5. Dust released from the conveyor belt operation.
- 6. Sand released at the top end of the sand belt (associated with the sand movers).
- 7. Dust ejected from the fill ports on the side of the sand movers.

Table A-11 shows how these seven primary and two other sources of exposure relate to the three job categories.

Table A-11 – Sources of Worker Exposure to Silica at Hydraulic Fracturing Sites										
Job Category	Potential Silica Exposure Sources									
	Thief hatches – sand mover top	Conveyor belt under sand movers	Dust raised by traffic	Blender hopper	Conveyor belt operation	Transfer point from sand belts on sand movers	Sand Fill Ports	Sand sieve (QC laboratory only)	Dust in vehicle cabs	
Hydraulic Fracturing Worker (Central Zone)	**	**	*	**	**	**	**	NA	NA	
Ancillary Support Workers (Nearby)	*	*	**	*	*	*	*	NA	**	
Remote/Intermittent Support Workers	*	*	*	*	*	*	*	**	*	

^{* =} Exposure is primarily as bystander; silica dust originates with other workers' activities.

Sources: NIOSH HF-Site 1, 2010; NIOSH HF-Site 2, 2011; NIOSH HF-Site 3, 2011; NIOSH HF-Site 4, 2011; NIOSH HF-Site 6, 2011; NIOSH HF-Site 6, 2011.

To limit worker exposure to silica, emissions should be reduced from each of the seven primary sources, a process that will require a combination of control methods. Effective control methods include local exhaust ventilation (LEV), wet methods, enclosure (equipment, workers), work practices and administrative controls, and substitution.

Local Exhaust Ventilation (LEV)

Control equipment that encloses and ventilates emission points is used broadly to control silica dust in both general industry and the construction industry. This control method is highly effective when designed to capture dust at the release point and with sufficient suction (pressure and volume) to overcome competing forces, such as turbulence, leakage, other sources of air flow, and dust particles in motion. Captured air released in the work area needs to be treated with an appropriate air-cleaning device to prevent respirable particles from recirculating back into workers' breathing zones. LEV with a tight-fitting or partially enclosing hood is a control option for all the major sources of dust released from sand-handling equipment in hydraulic fracturing work zones.

OSHA identified two commercial providers offering *powered LEV systems* built for the purpose of controlling dust emissions from dust sources associated with filling sand movers (FracSandDC, 2012; NOV, 2012). One is an add-on retrofit option for sand movers (operating at a speed of 3,200 cubic feet per minute ([cfm]). The other is reportedly available installed on new sand movers, retrofit on existing sand movers, or as a dust control service package providing trailer-based equipment (45,000 cfm) and personnel to set up and operate it on a per-job basis. Both draw air from the sand mover

^{** =} Exposure is directly associated with the workers' activities and equipment.

NA = Source of exposure is not applicable to job category.

to control dust released while sand trucks pneumatically fill the sand mover (STEPS, 2012; JJBodies, 2011; NOV, 2012; FracSandDC, 2012). Captured dust is held in containers until disposed of (in accordance with local requirements) (STEPS, 2012). One of the systems also can be configured to provide LEV at the transfer belt and conveyers (STEPS, 2012; JJBodies, 2011). The manufacturer reports that preliminary test results suggest substantial reductions in airborne dust exposure; however, workers in the area continue to require respiratory protection (STEPS, 2012). ²¹

Separately, NIOSH has designed and tested a prototype *mini-baghouse passive dust collection system* that fits over individual thief hatches and deposits collected sand back into the sand mover (STEPS, 2012; Esswein, 2012; NIOSH HF-Site 6, 2011). NIOSH recommends that "baghouse material should be selected to control respirable particles in the size range of 3-5 microns" (i.e., the size of respirable dust) (NIOSH HF-Site 6, 2011). NIOSH reports that the design is promising and may be commercially available in the future (Esswein, 2012).

OSHA notes that with LEV systems that focus on controlling dust from thief hatches or the sand mover in general, other control methods (e.g., additional LEV, wet methods) still will be needed to manage dust released from conveyers, transfer belts, and hoppers.

OSHA has not identified studies or data demonstrating the effectiveness of LEV for controlling silica exposure of fracturing sand workers. However, the sections of this technological feasibility analysis covering foundries, pottery, and construction industry activities such as milling, rock and concrete drilling, and rock crushing discuss examples of beneficial ventilation systems currently in use for other large-scale operations involving sand and other silica-containing materials. Although these industries do not handle the same quantity of sand on a daily basis as that used by the hydraulic fracturing industry, several of the industries do use notable amounts of high-silica sands and have achieved marked reductions in silica exposure using LEV systems. The following examples from the foundry industry demonstrate that appropriately designed and maintained LEV systems can have a great influence on silica exposure levels. The reader is directed to Section IV.C—Technological Feasibility of the Preliminary Economic Analysis for additional examples from the industries mentioned above.

The foundry includes facilities that handle large quantities of silica sands. Although foundries do not use the extreme tonnage of sand encountered at hydraulic fracturing sites, the handling processes are similar, including extensive use of conveyer

²⁰ For example, at a well location used for tests, sand fines (sand particles) collected by the ventilation system (up to 1,000 pounds per stage) were buried in accordance with local environmental management procedures (STEPS, 2012). Depending on the dust collection system used, fines are collected and held for disposal in barrels or bulk bags.

²¹ OSHA was not able to obtain additional information regarding exposure concentrations or the level of respiratory protection needed during use of this control system.

²² As of November 2012, NIOSH and an LEV system supplier both reported that technical evaluations and exposure studies were in the planning stages (Esswein, 2012; STEPS, 2012).

belts under hot and dry conditions to transport dusty sands returned from the shakeout area for reuse in molds for metal casting. Foundry workers in the sand systems operator job category manage the flow of sand through hoppers and bins before blending it with clay (another silica-containing material) in equipment called mullers. In the ferrous sand-casting foundry industry, exposure monitoring data obtained by OSHA at a foundry showed an 83 percent reduction in sand system operator silica levels (from 231 µg/m³ to 40 µg/m³) after the foundry installed LEV and repaired leaks in the mixer (OSHA SEP Inspection Report 122040488). Standards published by the American Conference of Governmental Industrial Hygienists (ACGIH) and the American Foundrymen's Society (AFS) for sand mixers and mullers, bins, hoppers, and screens specify that equipment be well enclosed and exhausted at a minimum rate of 150 cfm (200 cfm in the case of screens) per square foot of opening (ACGIH, 2010; AFS, 1985). ACGIH also recommends an air flow rate of 250 cfm per square foot of opening for toxic dusts, which might be more appropriate for silica-containing materials than the published air flow rates for other materials handled by similar equipment (ACGIH, 2010).

Both OSHA and NIOSH showed that controlling dust from foundry sand-handling equipment could result in low silica exposures. An exposure of $11~\mu g/m^3$ (the concentration limit of detection [LOD]) was obtained for a sand systems operator who was controlling a muller with both muller belts and sand elevator fully enclosed (OSHA SEP Inspection Report 108772377). NIOSH reported exposures less than $30~\mu g/m^3$ at a facility where a sand system operator monitored a pneumatic transport system that moved sand to the mixing equipment (NIOSH ECTB 233-107c, 2000). 23

Although conditions in foundries are substantially different from those found in hydraulic fracturing sites, the principles of enclosure and exhaust ventilation apply equally to both. A well-designed ventilation system associated with an appropriate process enclosure or enclosing hood is highly effective for capturing silica dust before it spreads through the workplace. While no documentation exists showing to what extent the commercial systems currently available or under development control respirable silica exposure, the available evidence suggests that each of those systems likely reduces dust emissions from thief hatches (one of the greatest sources of dust at these sites). The best available evidence OSHA has – photographs and videos of hydraulic fracturing worksites – suggests that thief hatches account for at least half (and likely more than half) of the visible dust released at these sites over the course of a day (FracSand DC, 2012). Visible dust is not a measure of respirable dust concentration, but it is a marker for airborne dust

²³ In addition, this facility used specifically sized (A50-grain), pre-washed lake sand for casting, which likely helped reduce exposures (NIOSH ECTB 233-107c, 2000). Pre-washing sand can remove fine respirable-sized particles that might otherwise become airborne when workers use the sand. Washed lake sands contain fewer very fine particles and the grains are more rounded than angular sand types. In the foundry industry, for a variety of reasons (e.g., reduction of fine particles, improved mold permeability, reduced resin use), rounded or partially rounded sands provide better casting results for bonded sand-casting methods. The same characteristics (washed, rounded, reduced fine particles) are beneficial for proppants used in the gas and oil industry (Maslowski, 2012).

in general, of which respirable dust is typically one component (OSHA 3362-05, 2009). The LEV systems currently available or under development for hydraulic fracturing sites are unproven, but available information on these and similar types of equipment suggest that this type of technology has potential as an effective control for thief hatch emissions. If so, the exposures of all workers in the central fracturing sand-handling area could be reduced by half (based on the visual impression that at least 50 percent of total emissions are contributed by thief hatch emissions, as noted above). As a result of this 50 percent reduction, all workers with current exposures between 50 μ g/m³ and 100 μ g/m³ would experience modified exposure levels of 50 μ g/m³ or less. Air monitoring will be required to confirm the actual extent of the exposure reduction that employers achieve by controlling thief hatch emissions. OSHA is interested in receiving additional information from the public on the emissions from individual equipment at sand fracturing sites and by how much these emissions could be reduced through the use of controls.

The supplier of at least one commercially available ventilation system also applies LEV to other dust sources associated with hydraulic fracturing equipment, including conveyer belts, transfer belts, hoppers, and drop points (STEPS, 2012). The available information is insufficient for evaluating the effectiveness of these controls. An analogous situation exists, however, in a study of rock-crushing equipment used to crush pure quartz stone in the Iranian quartz powder production region (Bahrami et al., 2008). Like hydraulic fracturing equipment in the United States, the crushers initially were completely without controls, operating in an extremely high-silica environment (the stone contained 98 percent silica). The investigators compared area samples obtained at uncontrolled, small, mechanized crushing machines to similar samples obtained for equivalent machines fitted with LEV at hoppers, rotary grinders, screeners and conveyor belts (the LEV system was not further described by the investigators). They found that airborne respirable dust concentrations were higher (levels of 111,000 µg/m³ to 179,000 µg/m³) for uncontrolled equipment compared to those fitted with LEV, which were 99 percent lower (Bahrami et al., 2008). This study is described in more detail in the Preliminary Economic Analysis Section IV.C—Technological Feasibility discussion of rock crushing machine operators and tenders. Although hydraulic fracturing sand equipment is markedly larger scale, and worker exposure levels tend to be correspondingly higher, the Iranian experience offers insight into the degree of control that might be available from basic LEV installed on previously uncontrolled equipment, where silica can constitute 100 percent of the respirable dust.²⁵ If the hydraulic fracturing silica emissions from conveyors, drop points,

²⁴ A reduction in visual emissions suggests that dusty air is not vented from the thief hatch, and exposure from that particular source is reduced. Visible emissions, however, do not indicate the extent to which respirable particles are captured by or pass through any air-cleaning device (e.g., cyclone, filters) handling that air. Air-cleaning devices that are not effective for respirable-size particles can release those particles at the point where exhaust air is discharged. Depending on the discharge location, exhaust air from an inefficient dust capture system might contribute to worker exposure, as noted by Flanagan et al. (2001), where a low-efficiency vacuum filter contributed to worker exposures after the vacuum was used to collect concrete slurry from wet cutting operations in the construction industry.

 $^{^{25}}$ Fifty of the 51 largely uncontrolled respirable dust PBZ sample results for fracturing sand workers evaluated by NIOSH ranged from 66 $\mu g/m^3$ to 3,370,000 $\mu g/m^3$, up to 20 times higher than uncontrolled area concentrations (111,000 $\mu g/m^3$ to 179,000 $\mu g/m^3$) reported by Bahrami et al. (2008). One additional

and hoppers were also reduced by the same 99 percent reported by Bahrami et al. (2008), the current maximum hydraulic fracturing worker silica exposure (2,570 μ g/m³) might be reduced by a corresponding amount to 26 μ g/m³ (or half this amount if eliminating emissions from thief hatches resulted in a 50 percent decrease in total exposure). OSHA acknowledges that the large scale of hydraulic fracturing equipment might make it more difficult to control than the small Iranian rock crushers (because markedly greater cfm would be required, and temporary equipment might not fit as well). If instead exposures at conveyers, drop points, and hoppers were only controlled by 66 percent (instead of a 99-percent reduction), hydraulic fracturing workers currently exposed to levels that do not exceed 250 μ g/m³ would be reduced to 85 μ g/m³ or less. ²⁶ Similarly, exposures up to and including 290 μ g/m³ would also be reduced to a level no greater than 100 μ g/m³. When combined with a 50-percent reduction due to control of exposure from thief hatches, these worker exposure levels would be reduced to 50 μ g/m³ or less. ²⁷

Pneumatic Sand Transport Systems

An additional option is to use pneumatic sand transport to move sand within the hydraulic fracturing site. Pneumatic sand systems currently are successfully used on hydraulic fracturing sites to transfer sand from sand delivery trucks to the sand movers. These systems fully enclose the sand as it is carried by fast-moving air through a system of pipes until it is delivered to its destination (at a hydraulic fracturing site, OSHA anticipates that the destination would be the blender hopper). At that point (the blender hopper), the same type of emissions capture system would be needed as is currently under consideration for the sand mover thief hatches, which now vent excess air used to pneumatically convey sand into the sand mover.

NIOSH recommends pneumatic sand transport systems for use in mines, an industry closely related to the hydraulic fracturing industry in that most worksites are in remote (rather than urban) locations, central processes that involve moving massive quantities of dusty mineral matter with the ultimate goal of extracting natural materials from the earth. Additionally, silica exposure is a notable source of concern for workers in both industries. NIOSH describes pneumatic material transport systems for the mining industry, as follows:

respirable dust result exceeded $8,000,000 \,\mu\text{g/m}^3$ and was excluded from this calculation. Note that these figures represent respirable dust, as opposed to respirable silica, concentrations.

²⁶ This 66 percent reduction represents two-thirds of the effective reduction reported in Bahrami et al. (2008). OSHA is using this reduction percentage because the Agency believes that exposures at hydraulic fracturing sites occur on larger scales and may be more difficult to control than exposures at the rock crushing sites studied by Bahrami et al. (2008). Thus, the reduction from 99 percent to 66 percent is a conservative estimate used in lieu of another reduction factor based on more complete evidence.

 $^{^{27}}$ A control method offering a 66 percent reduction will reduce an exposure of up to 250 $\mu g/m^3$ to 85 $\mu g/m^3$ or less (or an exposure of 290 $\mu g/m^3$ to 99 $\mu g/m^3$ or less). An additional 50 percent reduction due to controlling emissions from the thief hatches will further reduce these exposure levels by one-half, to 43 $\mu g/m^3$ or less. The same additional 50 percent reduction will reduce an exposure of up to 100 $\mu g/m^3$ to a level of 50 $\mu g/m^3$ or lower.

Pneumatic conveyors are tubes or ducts through which material is moved by pressure or vacuum (suction) systems. Positive pressure systems can be either dilute phase or dense phase. Dilute phase uses a low (dilute) product to air ratio for transport, while dense phase uses a high (dense) product to air ratio. Dilute phase flow is when the air velocity in the conveyor line is high enough to keep the product being conveyed airborne. Dense phase does not require the product to be airborne. Material being conveyed lies for periods of time in the bottom of a horizontal line and sometimes flows through the line in slugs. Dilute phase systems typically operate at pressures obtainable from a fan and dense phase systems use a high-pressure compressed air source. When material is fed into a pressure system, the material is conveyed to a storage bin with dust collection, cyclone, or filter-type collector. The conveying air then escapes through the cyclone vent or a filter.

Since positive pressure pneumatic systems are totally enclosed, dust emissions do not usually occur unless the system has worn-out areas. Because maximum wear in the conveying ductwork occurs at elbows, long-radius elbows made of heavy gauge material should be used. Numerous styles of wear-resistant elbows are [commercially] available. The elbows can also be lined with refractory or ceramic material to further reduce wear and abrasion. In low-pressure pneumatic systems, dust may also leak through joints. Self-adhesive neoprene gaskets should be used at all joints to provide a dust-tight seal.(NIOSH-RI9689, 2012)

Such a pneumatic system would eliminate all sources of silica exposure from the sand truck to the blender hopper, except that associated with the vent where pressurized air is vented near the ultimate sand delivery point. As noted earlier in this discussion of LEV exposure control options for this job category, NIOSH reported exposures below the limit of detection (in this case less than 30 $\mu g/m^3$) for a worker in the vicinity of sand handling areas at a foundry that moved quantities of silica sand via a pneumatic transport system (NIOSH ECTB 233-107c, 2000). OSHA does, however, recognize that using pneumatic sand transport systems, which cannot move the same large quantity of sand per minute as conveyor belts, might result in operational inefficiencies by reducing the rate of sand delivery to the blender hopper. Additionally, pneumatic systems can be costly to maintain because the aggressive action of fast-moving sand acts as an abrasive and can cause system components to deteriorate.

Wet Methods

Wet dust suppression methods have proven effective for controlling silica dust in a wide variety of settings. Water spray, or amended water spray (including additives to extend the functional benefit of the water spray), is widely used to control dust in outdoor storage yards in both general industry and construction. Although OSHA does not have information demonstrating the effectiveness of this method for controlling road dust at hydraulic fracturing sites, numerous examples exist in other industries, where heavy

equipment operates constantly on what otherwise would be dusty driving areas. For example, in the structural clay industry (i.e., manufacturing bricks and concrete block from clay and concrete that contain silica), front-end loaders and other heavy equipment constantly move back and forth on the site. As at hydraulic fracturing sites, spilled sand and related silica materials at structural clay sites are crushed by vehicles and become airborne when disturbed. Workers in the material handler job category are exposed to silica when they operate this equipment; however, wet methods can reduce exposure levels for these workers. Dust suppressants or frequent wetting using a water spray truck can limit the amount of dust that becomes airborne. For example, a brick manufacturing facility described in NIOSH ECTB 233-124c (2000) sprayed the yard (product storage area) with water five times per day. Five of the six results obtained for material handlers operating in the area were below the LOD (16 μ g/m³ in this case), while one result was 43 μ g/m³ (NIOSH ECTB 233-124c, 2000).

A study by Addo and Sanders (1995) offers additional support for the application of dust suppressants to work areas and storage yards. The study examined three chemical dust suppressants (lignosulfate, calcium chloride, and magnesium chloride) applied to an unpaved roadway for four and a half months and found that, compared to an untreated roadway, the suppressants reduced fugitive dust emissions by 50 to 70 percent.

Wet methods and dust suppressants, such as foam sprays, can also be applied to process equipment and conveyers to prevent silica dust from becoming airborne as raw materials are transferred within a work area. For example, as noted under baseline conditions for the material handler–loader operator subcategory in the structural clay industry, dust suppression was used at a structural clay facility visited by NIOSH and is associated with a silica result of 56 μ g/m³ (NIOSH ECTB 233-124c, 2000). The foam application system consisted of "a drum of citrus-based surfactant, a control panel, hoses, a manifold, and 4 spray heads. This system worked by blanketing the surface of the conveyed material with foam, preventing the generation of silica containing aerosols" (NIOSH ECTB 233-124c, 2000).

There is another telling example of dust suppression during road milling operations. Road milling machines, which process and convey large quantities of silica-containing asphalt road surface, make use of wet methods during milling (at the cutting drum) and increasingly are applying water spray to the recyclable asphalt product (containing sand and silica rock aggregate) on conveyer belts as a dust control measure. In a study conducted in the Netherlands, a novel wet dust emission suppression system reduced the PBZ respirable quartz exposure of asphalt milling machine drivers to a mean of 20 μ g/m³ (n = 4), with a range of 9 μ g/m³ to 30 μ g/m³ (Van Rooij and Klaasse, 2007). The system consists of 24 spray nozzles (located at the picks drum, collection conveyer, and loading conveyer), which spray aerosolized water containing an additive (likely a foam, based on the product name) onto the milled asphalt material (Van Rooij and Klaasse, 2007). The additive foam causes the dust to become tacky and aggregate, and the foam expands rapidly to encompass small particles generated by the tool's aggressive action. This

technology can offer more effective dust suppression than plain water. ²⁸ Milling machine tenders also benefitted from the system, having a mean PBZ respirable quartz exposure of $8 \mu g/m^3$ (n = 4), with a range of $4 \mu g/m^3$ to $12 \mu g/m^3$. Compared with a standard milling machine, which uses only cooling water (not aerosolized) on the blade, the use of the aerosolized water and foam system reduced the mean exposure for drivers and tenders combined by 97 percent. Without the added controls (i.e., cooling water only), mean exposure was $418 \mu g/m^3$ (n = 2) for drivers and $509 \mu g/m^3$ (n = 1) for tenders.

OSHA recognizes that gas and oil companies must use great care to limit the number and type of materials introduced into the well hole; therefore, additives might not be suitable for sands destined for hydraulic fracturing. Investigators Van Rooij and Klaasse (2007) also reported results of using aerosolized water without the additive foam. Aerosolized water alone provided a substantial benefit, resulting in PBZ respirable quartz exposures of 42 μ g/m³ and 57 μ g/m³ for milling machine drivers and 56 μ g/m³ and 104 μ g/m³ for tenders. Aerosolized water reduced the mean exposure for drivers and tenders combined by 86 percent compared with cooling water only; however, three of four exposures remained above the proposed PEL of 50 μ g/m³. The authors did not report individual sample durations, but the average sampling time for all 15 results was 254 minutes (range: 60 to 388 minutes). The investigators concluded that exposure results were lower when the additive was used in the spray water. NIOSH, in cooperation with an industry group, is evaluating control methods, including water spray and LEV, for road milling machines in the United States.

Wet dust suppression systems can also reduce general dust levels across a worksite when other, more local methods only partially control the emissions source. NIOSH describes this control method as it is used in the mining industry, which, like hydraulic fracturing, handles large quantities of silica materials as sand, rock and ore during processes that, if uncontrolled, generate substantial dust:

Wet suppression systems are probably the oldest and most often used method of dust control at mineral processing operations. In the vast majority of cases for mineral processing operations, the wet suppression system used is a water spray system. Although the use of water sprays is a simple technique, there are a number of factors that should be evaluated to determine the most effective design for a particular application. There are two methods to control dust using water sprays at mineral processing operations:

- Preventing dust from becoming liberated and airborne by directly spraying the ore.
- Knocking airborne dust down by spraying the dust cloud and causing the particles to collide with water droplets and fall out of the air.

²⁸ Although more costly than a simple water spray, foams are more effective (by volume applied) than water spray. Foam can be adapted to control dust from most tasks, including applications that require a rugged design (Van Rooij and Klaasse, 2007).

Most operations use a combination of both methods in the overall dust control plan. When considering the use of a wet suppression system, some general considerations and guidelines apply:

- The effectiveness of water spray application is dependent on nozzle type, droplet size, spray pressure, spray pattern, spray angle, spray volume, spray droplet velocity, and spray droplet distribution.
- Each ore type and application point is a unique situation and needs to be evaluated separately to achieve the optimal design.
- Water evaporates and needs to be reapplied at various points throughout the process to remain effective.
- Water freezes and its use is limited during certain times of the year and in certain climates.
- Wet suppression cannot be used with all ores, especially those that have higher concentrations of clay or shale. These minerals tend to cause screens to bind and chutes to clog, even at low moisture percentages.
- Over application in the volume of moisture is a problem in all operations and can impact the equipment as well as the total process. In most cases, a well-designed suppression system will not exceed 0.5% moisture application, which is roughly equivalent to one gallon per ton of ore.
- The suppression system should be automated so that sprays are only used during times of production when ore is actually being processed. For dust knockdown, a delay timer may be incorporated into some applications to allow the suppression system to operate for a short time period after a dust-producing event.

When considering sprays, one of the primary aspects is the droplet size. When wetting the ore to keep dust from becoming airborne, droplet sizes above 100 microns should be used. In contrast, when the goal is to knock down existing dust in the air, the water droplets should be in size ranges similar to the dust particles. The intent is to have the droplets collide and attach themselves to the dust particles, causing them to fall from the air. In these cases, droplets in the range of 10 to 50 microns have been shown to be most effective. [From NIOSH IC 9521, 2010]

As discussed in the section on construction rock crushing, an international report on wet dust control methods for rock crushers in India offers evidence that water mist reduces silica exposure in rock crushing and conveying operations.²⁹ At several small, tightly

²⁹ Like hydraulic fracturing, rock crushing involves high-silica (e.g., concrete, asphalt, brick), dusty materials, frequently transported by conveyor belts for hours at a time.

clustered rock crushing machine sites in India, five initial respirable quartz results obtained during dry crushing operations ranged from $60~\mu g/m^3$ to $360~\mu g/m^3$, with a median of 290 $\mu g/m^3$ and a mean of 246 $\mu g/m^3$ (Gottesfeld et al., 2008). Although the stationary (movable, but apparently not mobile) crushers were mechanized (powered), the workers loaded the crusher hopper manually and carried off the crushed material by hand in sacks. None of the crushing machines was equipped with an operator's booth. Among the sites evaluated for this study, the bulk stone quartz content ranged from below 4 percent to 27 percent, with an additional 3 to 6 percent cristobalite at some sites.

Results were markedly lower when water spray systems were installed. Of the 150 small Indian crushing mills in the study area, 40 subsequently agreed to install atomizing water spray dust suppression systems. 30 The 18 follow-up breathing zone and area samples collected during the monsoon season range from 5 µg/m³ to 55 µg/m³, with a median of 11 μg/m³ and a mean of 14 μg/m³ (sampling durations not reported).³¹ A second set of follow-up samples was collected during the dry season. These 27 post-control dry season samples (15 PBZ and 12 area samples), obtained over approximately 2 to 5 hours, range from 10 μ g/m³ to 630 μ g/m³, with a median of 20 μ g/m³ and a mean of 63 μ g/m³. Gottesfeld et al. (2008) note that the higher sample results observed after spray systems were installed (29 percent exceeded 50 µg/m³) might have been due to one or more spray nozzles that did not function and neighboring rock crushing mills that did not have dust control equipment (dust drifted between neighboring operations). Although the wide exposure range indicates that elevated exposure occurred occasionally, both the median and the mean were dramatically lower after the control system was installed. Respirable dust levels dropped by 63 percent. This reduction is based on the difference in respirable dust before controls were applied and after water spray controls were added during the dry season.

A general mist system of the type described above (see Gottesfeld et al., 2008) could provide supplemental dust control at hydraulic fracturing sites where LEV alone does not completely control workers' silica exposure. For example, when combined with LEV controls on thief hatches, conveyors, and other sources of emissions, the installation of a water misting/fogging that provides an additional 63% reduction in dust emissions, would reduce the exposure of fracturing sand workers who are currently exposed to levels as high as 770 μ g/m³ to levels of 49 μ g/m³ or less.

³⁰ The water spray systems were provided by an international partnership studying silica exposure in the crushing mills, where the workforce primarily consisted of tribal women and adolescent girls (Gottesfeld et al., 2008).

³¹ The researchers intended for both area and PBZ samples to represent individual worker exposures. They placed sampling pumps in a stationary location in the immediate work area when workers were reluctant to wear them. Although sample results are presented individually in the study, it does not differentiate between area and PBZ samples in the post-control data. As such, the range, mean, and median values contain both area and PBZ results. Although OSHA prefers PBZ samples to represent actual worker exposures, the Agency has used this data because it is the best available information.

As discussed in Section IV.A—Methodology, employers will benefit from expert advice in selecting a water mist system. For example, the size of the droplets is at least as important as the type and volume of the spray.

Additional exposure reductions can be achieved by moistening the proppant on conveyer belts and at drop points. This method is recommended by NIOSH and typically involves adding 0.1 percent to 1.5 percent water to the proppant (NIOSH HF-Site 6, 2011; NIOSH RI 9689, 2012). Hydraulic fracturing sites can account for the amount of moisture added as dust suppressant to materials on conveyer belts approaching the blender hopper, so the fluid balance in the fracturing slurry remains predictable. OSHA recognizes that adding moisture at the early stages of the process (e.g., in the truck before sand is delivered) is less practical, as it could interfere with the truck's pneumatic sand delivery system. Because they fully enclose the sand, pneumatic transport systems are a highly effective dust control method, providing the dust controls are available on the receiving vessel (in this case, the sand mover). OSHA also acknowledges that it might be more difficult to account for water added as a dust suppressant between the delivery truck and final conveyers, since more of the water would evaporate under warm and dry conditions than during cool or humid conditions.

Enclosure

Process enclosure limits emissions from areas under positive pressure (e.g., fill ports and unused thief hatches on sand movers) and areas of turbulence (e.g., conveyers, sand drop points from the ends of conveyers). Enclosures used with LEV improve ventilation effectiveness so engineers can design systems with smaller, more energy-efficient fans. Worker enclosures can limit employee exposures by providing clean filtered air to an enclosed, pressurized operator's booth. Several opportunities for reducing exposures by enclosure exist at hydraulic fracturing sites.

NIOSH noted that the fill ports on the sides of the sand movers can be a primary source of silica exposure for all fracturing sand workers in the area during the periods when the sand movers are refilled by the sand delivery truck drivers (NIOSH HF-Site 1, 2010). Sand delivery typically involves just one or two of the several nozzles on each sand mover. One component of silica management at hydraulic fracturing sites involves preventing silica release from those fill ports that are not in use. Fill ports are not intended for pressure relief and should be closed with manufacturer-provided or replacement end caps (NIOSH HF-Site 6, 2011). Tight closure with a cap will prevent silica emissions from this source. The ability to tightly close by valve or cap is a typical design feature wherever unused ports are present in pneumatic sand transport system-receiving vessels (i.e., tanks, rail cars, trucks, and process equipment—including sand

³² Sand delivery trucks connect pneumatic sand transport hoses to the ports to add sand to the sand movers. The ports are designed for filling the sand mover rather than as relief valves for dusty air introduced into the sand mover during pneumatic sand transport from the delivery truck. However, when they are left open during filling, dusty air vents out through any unused fill ports (particularly those on the opposite side of the sand mover) (NIOSH HF-Site 1, 2010).

movers) (Smith and Voges, no date; Dynamic Air, 2011; Bhatia, no date).³³ Replacement port caps are commercially available (NOV, 2012).³⁴ Installing a leak-proof gasket and closing unused thief hatches will also help ventilation systems function more efficiently and reduce opportunities for exposure.

Exposure reduction can be enhanced by enclosing conveyors and particularly conveyor drop points. NIOSH advocates reducing and enclosing drop points: "Some methods to accomplish this are through the use of rock ladders, telescopic chutes, spiral chutes, and bin-lowering chutes" (NIOSH RI-9689, 2012). These options are applicable to hydraulic fracturing sites, for which NIOSH recommended shrouding or skirting at the end of the sand belt to limit dust released as material falls from the belt (NIOSH HF-Site 6, 2011). ACGIH recommends reducing the height of conveyor transfer points so that dusty material falls the minimum distance possible. Ventilated conveyors require extra ventilation when the fall distance is three feet or greater (ACGIH, 2010 [see VS-50-20]).

Enclosing the operator is another practical option for protecting workers who must work in particularly harsh environments. At hydraulic fracturing sites, some of the most highly exposed workers will benefit from operator enclosures (clean air booths) placed at the sand mover and conveyor belt operator work stations. From within an appropriately positioned booth workers can observe operations while breathing filtered air. Silica exposure only occurs when the worker exits the booth (e.g., to adjust a control or address an equipment problem). Therefore, a worker who spends 50 percent of the shift in a well-sealed, pressurized clean air control booth, will experience an approximately 50% reduction in exposure, assuming constant level of exposure outside the booth.

There are several types of operator enclosures that could be used to reduce exposures on hydraulic fracturing worksites. Environmental cabs on trucks and heavy equipment represent one form of mobile control booth. Portable control booths positioned on pallets or a truck bed are also an option. To permit workers to spend a greater amount of time in the booth, the equipment control panel can be converted to a mobile control (on a cord with the controls positioned in the booth interior) or wireless/radio remote control (worker carries the control module into the booth). Mobile and remote control modules

³³ In pneumatic transport system designs, ports that are not intended to be completely sealed typically are considered part of the air-venting system and usually are vented back to the sand source to minimize product loss, or they are connected to a LEV system that provides dust capture (Smith and Voges, no date; Dynamic Air, 2011; Bhatia, no date). LEV systems are described earlier in this section in the discussion of LEV as a silica control option.

³⁴ In calculating exposure reduction OSHA assumes that the step of closing the side ports is taken at the same time as LEV is applied to the thief hatches (together these steps provide the 50 percent exposure reduction described for the thief hatch LEV control option).

³⁵ OSHA assumes that at least partial enclosure is included as part of an efficient LEV system design and installation for conveyors, drop points and hoppers.

are increasingly commercially available for many types of heavy stationary and mobile equipment.³⁶

An example of control booths used to protect workers who otherwise would be exposed to silica comes from the structural clay industry. As in the hydraulic fracturing industry, workers in the structural clay industry handle bulk quantities of sand, blending them with clay powder or cement to form batches of bricks or concrete masonry units. In structural clay manufacturing plants, when exposures continue to be elevated during automated mixer charging, the charging system controls can be placed in an enclosed operator booth. At a structural clay facility visited twice by OSHA, an area sample collected inside a poorly sealed ventilated control room resulted in an average silica concentration of 111 µg/m³ (OSHA SEP Inspection Report 300523396). Before OSHA's next visit, the facility sealed gaps around the main entrance door to the control room. This modification reduced airborne silica levels inside the room to 11 µg/m³, a 90-percent reduction compared to the earlier sample. The reduced level likely represented an even greater percent reduction compared to the dusty grinding equipment area outside the control room. OSHA notes that low silica levels inside the control room suggest that the room provides a substantial level of protection for any worker inside (OSHA SEP Inspection Report 300523396.

In the Dust Control Handbook for Industrial Minerals Mining and Processing, NIOSH analyzed the elements of effective control booths and cabs, reporting that the level of dust protection depends on the adequacy of the following factors: enclosure integrity (well sealed), filtration (sufficiently efficient for respirable particles), pressurization (positive pressure inside to keep dusty outside air from leaking in), work practices to keep doors and windows closed, climate control (so doors and windows can be kept closed), housekeeping in the enclosure (remove any dust that gets inside), and maintenance (including changing outside air filters as necessary) (NIOSH RI 9689, 2012). The NIOSH handbook includes a table summarizing NIOSH studies on personnel enclosures (cabs) associated with mining equipment (routinely used with massive quantities of dusty, silica-containing mineral materials), which shows dust reduced 63 to 98.8 percent by the cabs.³⁷ Ability to maintain a slight pressurization was one of the most important factors in reducing dust. Although some cabs (and related booths) perform exceedingly well in excluding dust (98.9 percent reduction), the amount of exposure reduction they offer decreases when the door is opened frequently (as the worker enters and exits), since dusty air can enter each time. Therefore, OSHA estimates that a cab or booth on a hydraulic fracturing site, which workers might need to enter and exit many times per hour, would offer somewhat less than 98.8 percent reduction, with the 90 percent

³⁶ Examples of remote controls used for dusty equipment in industries that work with silica are provided by Cattron-Theimig (no date), Komatsu America (2010), Pentek-Squirrel-III (1997), NIOSH EPHB 334-11a (2008), and Minnich (2009).

³⁷ The 63 to 98.9 percent reduction in airborne dust levels reported by NIOSH is equal to protection factors of 2.8 to 89.3. A protection factor of 100 reduces exposure 99 percent and a protection factor of 1,000 reduces exposure 99.9 percent (NIOSH RI 9689, 2012).

reduction OSHA found for the structural clay facility booth likely being more typical (OSHA SEP Inspection Report 300523396). 38

On hydraulic fracturing sites, workers who can spend even 50 percent of the time in an environmental control/clean air booth that offers a 90 percent exposure reduction could have their exposures reduced by 45 percent. This means that for a hypothetical fracturing sand worker spending 50 percent of an 8-hour shift in an environmental control booth, a current exposure level up to 1,000 $\mu g/m^3$ can be reduced by 45 percent to 550 $\mu g/m^3$ or less. Furthermore, an exposure level of 1,400 $\mu g/m^3$ could be reduced to 770 $\mu g/m^3$ using this method. Significant exposure reduction can be achieved when other exposure controls are added (i.e., water spray/misting equipment, partial enclosures with LEV, and thief hatch controls, which together reduce exposures of up to 770 $\mu g/m^3$ to levels of 49 $\mu g/m^3$ or less). These estimates show that fracturing sand workers with current exposures greater than 770 $\mu g/m^3$ and no greater than 1,400 $\mu g/m^3$ (nearly 10 percent of the samples in the exposure profile for hydraulic fracturing workers) can ultimately experience exposure of 49 $\mu g/m^3$ or less through the use of multiple controls.

As noted above, the exposure reduction potential of an operator enclosure or booth is related to both the efficiency of the booth in excluding dust and the amount of time the worker spends in the booth. Workers able to spend 80 percent of the time in a booth that is 90 percent efficient in excluding dust would experience a greater exposure reduction (72 percent) than workers able to spend only 50 percent of work time in the same booth (45 percent). This exposure reduction would have a large effect on the sample result for even the most highly exposed individual in this industry (2,570 μ g/m³ recorded for a fracturing sand worker monitoring conveyer belts). For example, spending 80 percent of the shift in an operator booth (90 percent efficient) could reduce this worker's exposure level to 717 μ g/m³ . With the addition of the control combination discussed above, the worker's ultimate exposure level could also be reduced to 49 μ g/m³ or less (46 μ g/m³ in this case). OSHA believes that under current working conditions it is more realistic for fracturing sand workers to spend 50 percent of the time in a booth; however, when an additional level of protection is necessary, increasing time in the booth remains an option.

³⁸ Booth efficiency also can be reduced if portable equipment is not maintained routinely; seals tend to deteriorate more quickly on enclosures that are moved frequently. Routine housekeeping and maintenance of the booth seals and ventilation system will be necessary to ensure portable equipment retains this level of effectiveness (NIOSH RI 9689, 2012).

³⁹ When a booth offers 90 percent efficient protection from airborne dust exposure and a worker spends 50 percent of the shift in the booth, the worker's exposure will be reduced by 45 percent (0.9 x 0.5 = 0.45). In the second example, the worker spending 70 percent of the time spent in a booth that is 90 percent efficient would have a 63 percent decrease in exposure (0.9 x 0.7 = 0.63) Following the same calculation method, a worker spending 80 percent of the shift in the booth (still 90 percent efficient) will experience 72 percent exposure reduction.

⁴⁰ An exposure reduction of 45 percent will leave a residual exposure 55 percent (1 - 0.45 = 0.55). For the hypothetical worker with a current exposure of 1,000 μg/m³, exposure after the control will be equal to 550 μg/m³ (calculation: $0.55 \times 1,000 \text{ μg/m}^3 = 550 \text{ μg/m}^3$). Using the same procedure, OSHA calculates that a 45 percent reduction in an exposure level of 1,400 will result in an exposure of 770 μg/m³.

Worker enclosures, including operator control booths and heavy equipment cabs, are described in more detail in the Preliminary Economic Analysis Section IV.C—Technological Feasibility discussions of concrete products industry mixer operators, foundry furnace operators, structural clay grinder operators, and workers operating rock crushing machines.

Work Practices and Administrative Controls

Work practices and administrative control options provide workers with standard operating procedures that help workers cover fill ports and close any thief hatches that do not need to be open during sand mover filling and hydraulic fracturing processes, require workers to stand back from dust emission points unless necessary, minimize hot-loading unless adequate controls are in place to protect workers, and limit personnel in the areas where greatest exposure tends to occur.⁴¹

Another work practice control option involves adjusting equipment to minimize the height from which proppant falls from conveyer belts during transfers (to other conveyors or to the blender hopper). Reducing the drop distance minimizes the influence of competing air currents and reduces the amount of dust that becomes airborne as proppant transfers between conveyors or from conveyor to blender hopper. Design "VS-50-20" in ACGIH (2010) recommends that drop distances be less than 3 feet. For ventilated systems, additional ventilation is required to compensate for dust released during greater falls. NIOSH also recommends that fall heights for materials be minimized whenever possible (NIOSH RI-9689, 2012).

Combination of Controls

The massive quantities of sand and high silica content mean that a combination of controls likely will be necessary to reduce silica dust at fracturing sites. Control options such as LEV, general misting wet methods, road wetting with amended water, full enclosure (sealing unused side ports), and work practice/administrative controls are not mutually exclusive and can be used in any combination.

As determined in the discussions of LEV, wet methods, and enclosures above, exposure levels can be reduced dramatically by installing effective combinations of controls. In summary, in the preceding discussion of control options OSHA has shown:

Operator enclosures: For a hypothetical fracturing sand worker spending 50 percent of an 8-hour shift in an environmental control booth (90 percent efficient against dust, as identified in OSHA SEP Inspection Report 300523396), a current exposure level up to 1,000 $\mu g/m^3$ can be reduced by 45 percent to 550 $\mu g/m^3$ or less. Furthermore, an exposure level of 1,400 $\mu g/m^3$ could be reduced to 770 $\mu g/m^3$ using this method. Five (10 percent) of the samples in the exposure profile for fracturing sand workers exceed 770

⁴¹ OSHA recognizes that the practice of hot-loading reduces otherwise unproductive time spent refilling the sand mover.

 μ g/m³ but do not exceed 1,400 μ g/m³. All but three (6 percent) of the 51 samples used in the exposure profile for fracturing sand workers are less than 1,400 μ g/m³. 42

Wet methods: When a misting/fogging system that provides a 63-percent reduction in exposure level, as demonstrated by Gottesfeld et al. (2008), is installed at a hydraulic fracturing site, fracturing sand workers who are currently exposed to levels greater than 290 μg/m³, but no more than 770 μg/m³, could have their exposures reduced to between 108 μg/m³ to 285 μg/m³ or less. Eighteen (35 percent) of the 51 samples used in the fracturing sand worker exposure profile are already in the range of 290 μg/m³ to 770 μg/m³. This control option will also benefit workers whose exposure can be reduced to 770 μg/m³ or lower though the use of operator enclosures.

Partial enclosure and LEV: If exposures at conveyers, drop points, and hoppers are reduced by 66 percent (two-thirds of the 99-percent reduction reported by Bahrami et al. (2008)), hydraulic fracturing workers currently exposed to levels that do not exceed 250 μg/m³ would have exposures of 85 μg/m³ or less. Similarly, exposures up to and including 290 μg/m³ would be reduced to a level no greater than 100 μg/m³. Workers whose exposures are reduced to 290 μg/m³ or less by other control options (operator enclosures and wet methods) will also benefit to the same extent. Twelve samples (nearly 24 percent) in the fracturing sand worker exposure profile are already greater than 100 μg/m³, but do not exceed 290 μg/m³.

LEV control at thief hatches: Based on a visual assessment of video and photographs (FracSand DC, 2012), OSHA estimates at least a 50-percent exposure reduction due to control of emissions from thief hatches. This would cut worker exposures in half. Once the exposure of a worker is reduced to a level of 100 μg/m³ or less (by the control options listed above or any other methods), OSHA anticipates that the addition of LEV on thief hatches will further reduce the exposure to 50 μg/m³ or less. Seven samples in the fracturing sand worker exposure profile are currently greater than 50 μg/m³ but not greater than 100 μg/m³. When the exposure of more highly exposed workers can be reduced to this same range (greater than 50 μg/m³, but not more than 100 μg/m³) using the control options described above (partial enclosure with LEV, wet methods, operator enclosures), the same LEV control at thief hatches will further reduce the exposure of those workers to 50 μg/m³ or less.⁴³

 $^{^{42}}$ The remaining three fracturing sand workers with exposures that exceed 1,400 $\mu g/m^3$ would also have their exposure reduced to levels below 770 $\mu g/m^3$ if the workers were able to spend 80 percent (rather than 50 percent) of their time in the booth; however, OSHA does not have evidence that this amount of time in the booth is as realistic as 50 percent under current site conditions.

⁴³ The highest fracturing sand worker sample result is 2,570 μg/m³. Applying a 45 percent reduction for using a 90-percent-efficient control booth 50 percent of the time results in 2,570 μg/m³ x 0.55 = 1,414 μg/m³. Applying the 63 percent reduction reported by Gottesfeld et al. (2008) for water mist dust control results in 1,414 μg/m³ x 0.37 = 523 μg/m³. An additional estimated 66 percent reduction based on the study of LEV applied to Iranian rock crushers (Bahrami et al., 2008) yields 178 μg/m³. Applying an estimated 50 percent reduction based on a visual assessment reduces this value to 89 μg/m³.

Combination of controls: In summary, OSHA's analysis above shows that different combinations of controls can be used to reduce exposures of up to 1,400 μ g/m³ to levels below the proposed PEL of 50 μ g/m³. For workers with current exposures above 770 μ g/m³ but no greater than 1,400 μ g/m³, all the controls discussed above – operator enclosures, wet methods, partial enclosure and LEV, and LEV control at thief hatches – will need to be applied to achieve exposures below 50 μ g/m³. For workers with current exposures greater than 290 μ g/m³ but not exceeding 770 μ g/m³, the use of wet methods, partial enclosure and LEV, and LEV control at thief hatches should control exposures to below 50 μ g/m³. Where current exposures are still lower – up to 290 μ g/m³ – only partial enclosure and LEV, along with LEV control at thief hatches, will be necessary to reduce exposures below the proposed PEL. Finally, where worker exposures are already at or below the current PEL of 100 μ g/m³, exposures below the proposed PEL could be achieved simply through LEV control at thief hatches.

Substitution

Substitution is another option for reducing silica exposures at hydraulic fracturing sites. Oil and gas extraction worksites present two opportunities for substitution: work zone surfacing materials and proppant.

NIOSH reported that spilled silica sand and aggregate crushed by heavy equipment in the work zone contribute to worker silica exposures (Esswein, 2012). This source of exposure can be reduced by covering the work zone with substitute materials such as low-silica or granite aggregate (which contains silica, but is very hard so less subject to crushing).

The second substitution option involves the proppant. Hydraulic fracturing requires a granular media proppant—typically sand. To function as a proppant, the sand must stand up to considerable pressure in the well, and the physical properties of quartz make this type of sand particularly useful. However, alternate media are available and widely used for this purpose under certain circumstances. Commercially available alternatives include sand of other mineral content (reduced silica sand, usually mined from a different source than pure silica sand), coated sand (resin over sand grains to improve durability), and low-silica clay or ceramic granules. NIOSH observed a hydraulic fracturing crew using ceramic sand containing less than 1 percent silica (NIOSH HF-Site 6, 2011). Substituting such a proppant for silica sand would reduce silica exposure levels by up to 99 percent or more (depending on the amount of silica in the alternative proppant) compared to pure silica sand.

⁴⁴ OSHA chose to discuss these specific combinations of controls for purposes of analyzing the technological feasibility of achieving the proposed PEL in the hydraulic fracturing industry. The Agency recognizes, however, that different combinations of controls than those specified here may also be appropriate for achieving needed reductions in exposure.

⁴⁵ NIOSH reported that the proppant's MSDS listed less than 1 percent quartz in the product. NIOSH analysis confirmed that the percentage was slightly lower than 1 percent (NIOSH HF-Site 6, 2011).

OSHA acknowledges that these substitute materials are more costly than natural sands. Due to their cost, alternate proppants tend to be reserved for special circumstances (particularly high-pressure wells) where the special characteristics (increased durability, uniformity, or roundness) are needed to help extend well life.

Low-silica alternate media can also be used in combination with (high-quartz) natural sand media. NIOSH obtained PBZ samples at a hydraulic fracturing site that used a mixture of natural sand and ceramic proppant (58 percent of the total proppant used that day was the low-silica ceramic proppant, while the remaining 42 percent was silica sand). PBZ samples indicated that the silica content of the samples was lower (3 to 25 percent silica) than at sites using only high-silica sands (typically between 50 and 100 percent silica) (NIOSH HF-Site 6, 2011). Although reducing the silica content of the proppant does reduce the silica in the airborne dust, worker exposures can still be significant; at this NIOSH site 9 of the 11 PBZ samples exceeded 50 μ g/m³. None exceeded 100 μ g/m³.

In an example from the foundry industry, which also processes, conveys, and blends quantities of high-silica sand, substituting non-silica granular media (that is less toxic than silica) for silica sand used for molds and cores virtually eliminated the silica exposures of all foundry sand system operators. A report from the Industrial Commission of Ohio shows that exposures dropped below the LOD for all workers when the foundry used a non-silica substitute: olivine sand (ERG # OH-1460). Another aluminum foundry reported respirable dust levels of 300 to 1600 μ /m but no exposure to silica when using olivine sand (Foundry Engineering Group Project – Case History H, 2000). These examples from the foundry industry support NIOSH's findings, discussed above, showing marked reductions in respirable dust silica content at a hydraulic fracturing site using a low-silica alternate media as a portion of the proppant (NIOSH HF-Site 6, 2011).

Before using an alternate material, employers must evaluate the health hazards associated with it and take any necessary steps to protect workers from the hazards.

Additional Controls for Ancillary Support Workers

The exposure profile, presented in Table A-10, provides information on ancillary support workers, including OSHA's estimate that half (50 percent) of the workers in this job category are currently exposed to silica levels of $50 \, \mu g/m^3$ or less. Because ancillary support workers primarily are exposed to dust drifting into their work areas from the central fracturing sand zone, the additional controls necessary to reduce the exposure of fracturing sand workers to $50 \, \mu g/m^3$ or less also are expected to reduce the exposure of all ancillary support workers to $50 \, \mu g/m^3$ or less.

⁴⁶ Olivine is a magnesium-iron ortho-silicate mineral that contains little or no quartz and is commercially available as sand for foundries.

⁴⁷ Samples were collected over 3- to 6-hour periods.

Following the control process outlined above for fracturing sand workers, all workers with exposure levels of 770 $\mu g/m^3$ or less will have their exposure levels reduced by an estimated 63 percent (to 285 $\mu g/m^3$) when site misting is applied, and by another estimated 66 percent (to 96 $\mu g/m^3$) by LEV applied to conveyors, transfer belts, drop points, and hoppers. Exposures will be reduced by an additional 50 percent (to 48 $\mu g/m^3$) through effective LEV on thief hatches. If these estimates prove to be correct, no additional controls will be necessary for ancillary support workers.

The unusually high exposure of a single ancillary support worker is presumed to have been influenced by either an upset condition or work practices. 48 This worker's exposure of 820 µg/m³ suggests several possible scenarios: 1) an upset condition; 2) the worker was performing the role of another job category (fracturing sand worker); or 3) work practices kept the worker in intensely dusty areas longer than is typical of this job category. The exposure value is more typical of the fracturing sand worker job category than an ancillary support worker. Respiratory protection should be used when upset conditions cause a situation where overexposure could occur. Information that the worker will receive under other provisions of this standard and the hazard communication standard would permit the worker to understand the benefits of minimizing time in extremely dusty areas when not required to work there by scenarios 1 and 2. A modest 6 percent reduction in the worker's exposure (from 820 µg/m³ to 770 µg/m³) would mean that the exposure of this worker too could be reduced to 50 µg/m³ or less by the combination of controls that would reduce fracturing sand worker exposures from 770 μg/m³ to 50 μg/m³ or less. This can be accomplished by seeking lower dust areas (at a greater distance from intense dust sources) when not actively making water connections.

In the event that any workers in this job category remain exposed above the proposed PEL of $50 \,\mu\text{g/m}^3$, other control methods are available, including improved closure and housekeeping in vehicle cabs to prevent tracked or settled dust from becoming a source of exposure. NIOSH recommends several cab design features and emphasizes the importance of maintenance and cleanliness (NIOSH 2009-123, 2009). Cabs employing several of these recommendations regularly achieve exposure reductions (inside versus outside the cab) exceeding 90 percent (Cecala et al., 2005; NIOSH 528, 2007).

Furthermore, ancillary support workers will also benefit from yard dust controls, as discussed for remote/intermittent support workers.

Additional Controls for Remote/Intermittent Support Workers

The exposure profile, summarized in Table A-10, presents OSHA's estimate that 50 percent of remote/intermittent support workers have current exposures of 50 μ g/m³ or less. Further controls will be needed to reduce the exposure levels of the 50 percent of workers in this job category whose exposures are above the proposed PEL of 50 μ g/m³.

⁴⁸ The worker was a hydration worker with a sample result of 820 μg/m³, more than three times greater than any other worker performing the same job. Because all other hydration workers in the exposure profile had markedly lower exposures, the data suggests an atypical scenario in this worker's work day.

Like the ancillary support workers, the remote/intermittent support workers primarily are exposed when dust drifts into their work areas from the central fracturing sand zone or when they enter this zone as part of their job duties. Controlling silica emitted from fracturing sand-handling equipment will, therefore, reduce most exposure experienced by remote/intermittent support workers.

Following the control process outlined above for fracturing sand workers, the exposures of all remote/intermittent support workers (all of whom had exposure levels of 770 $\mu g/m^3$ or less) will be reduced by an estimated 63 percent (to 285 $\mu g/m^3$) when site misting is applied, and all exposures less than 290 $\mu g/m^3$ will then be reduced by another estimated 66 percent (to 99 $\mu g/m^3$) by LEV applied to conveyors, transfer belts, drop points, and hoppers. Exposures will be halved (i.e., reduced by an additional 50 percent to 48 $\mu g/m^3$) through effective LEV on thief hatches. If these estimates prove to be correct, no additional controls will be necessary for ancillary support workers.

Based on this information, OSHA preliminarily concludes that no additional controls are necessary for remote/intermittent support workers. However, additional potential sources of exposure exist for these workers and if employers observe that exposure levels remain elevated, they should consider options for reducing dust disturbed by passing vehicles on the site.

Wet dust suppression methods for yard dust are described above in the discussion of wet methods for controlling fracturing sand worker exposures. To reiterate, water spray or amended water spray (including additives to extend the functional benefit of the water spray) are widely used to control dust in outdoor storage yards in both general industry and construction. As noted previously, Addo and Sanders (1995) examined three chemical dust suppressants (lignosulfate, calcium chloride, and magnesium chloride) applied to an unpaved roadway for four and a half months and found that, compared to an untreated roadway, the suppressants reduced fugitive dust emissions by 50 to 70 percent. NIOSH provides a detailed discussion of factors that influence the effectiveness of dust suppression methods for yards and roads (NIOSH RI9689, 2012). Citing a study conducted in 1981 by Midwest Research, NIOSH notes that "There is very little information about the use of surfactants to extend the effective life of watering haul roads. However, observations have noted that the time between watering roads can be extended 33-50 percent when surfactants are used" (NIOSH RI 9689, 2012). Other options for reducing dust from passing vehicles include speed control (slower vehicles kick up less dust), traffic control, and surface roughness (a rougher aggregate or "cloddy" soil surface prevents wind from picking up as much dust).

Certain remote/intermittent support workers (e.g., Q/A technicians who sieve sand as part of quality testing) handle silica-containing materials in a manner that could be a potential source of exposure if performed on a large scale. However, no evidence exists that these workers experience measurable exposure from the small-scale short-term testing activities in which they are involved at hydraulic fracturing sites. As indicated in Table A-10, the single sample that NIOSH obtained for a Q/A technician (who sifted sand samples) had a result of $10 \mu g/m^3$ (below the LOD).

Feasibility Finding

Feasibility Finding for Fracturing Sand Workers

Based on the best available information, OSHA estimates that 88 percent of fracturing sand workers require additional controls to reach the proposed PEL of 50 $\mu g/m^3$ or below. OSHA preliminarily concludes that silica levels of 50 $\mu g/m^3$ or less can be achieved for 94 percent of the workers in this job category (those with current exposures that do not exceed 1,440 $\mu g/m^3$). ⁴⁹ These levels can be achieved by using a combination of control options, with a greater number of controls necessary for more highly exposed workers. These controls include installing a fully effective LEV system on thief hatches and sealing fill ports on sand movers; installing LEV on conveyors, transfer belts, drop points, and hoppers; adding a site water misting/fogging system; and, for the most highly exposed workers, providing operator booths.

The nearly 14 percent of fracturing sand workers with exposure levels that meet the current PEL, but exceed $50~\mu g/m^3$, can be protected by adding emission controls on sand mover thief hatches (and ensuring that the side ports on sand movers are closed when not in use). Based on visual estimates, effective emission controls on the thief hatches will reduce the exposure of these workers by at least half (FracSand DC, 2012). This 50 percent reduction will reduce exposures that are at the current PEL or less to the level of the proposed PEL ($50~\mu g/m^3$) or less.

Because the current exposure level of most fracturing sand workers (nearly 75 percent) exceeds the current PEL, further control methods will be needed to control the exposure of these workers to the level of the current PEL. Once the current PEL is achieved for these workers, the option described above (adding emission controls to the thief hatches and closing unused side ports) will bring their exposure down to the current PEL or less, in the same manner as for the workers who currently have exposures greater than 50 $\mu g/m^3$, but not exceeding 100 $\mu g/m^3$.

The following supplemental controls will reduce the exposure of most remaining workers in this job category to the level of the current PEL, or less.

Providing LEV on conveyers, drop points, and hoppers is anticipated to reduce exposures 66 percent. A study of LEV by Bahrami et al. (2008) demonstrated a 99-percent difference between controlled and wholly uncontrolled exposure associated with small-scale, high-silica rock crushing, conveying, screening, and hopper operations. OSHA has preliminarily estimated 66 percent effectiveness rather than 99 percent for the larger scale, but otherwise similar conveying and hopper operations at largely uncontrolled

⁴⁹ In addition to the exposure distribution presented in the exposure profile for fracturing sand workers, the following supplemental distribution of the same 51 samples is also useful for applying control options to this group of workers: Exposure ranges: group <25 μg/m³: 1 sample (2 percent); group ≥25 μg/m³ to ≤50 μg/m³: 5 samples (10 percent); group >50 μg/m³ to ≤100 μg/m³: 7 samples (14 percent); group >100 μg/m³ to ≤290 μg/m³: 12 samples (24 percent); group >290 μg/m³ to ≤770 μg/m³: 18 samples (35 percent); group >770 μg/m³ to ≤1,400 μg/m³: 5 samples (10 percent); Group >1,400 μg/m³: 3 samples (6 percent).

high-silica hydraulic fracturing worksites. Using this method, the exposures of the 24 percent of hydraulic fracturing workers currently exposed to levels greater than 100 $\mu g/m^3$, but less than or equal to 290 $\mu g/m^3$, can be reduced to the level of the current PEL or less.

For the 35 percent of workers in this job category that are currently exposed between 290 $\mu g/m^3$ and 770 $\mu g/m^3$, site water misting/fogging system will reduce airborne silica levels by 63 percent, to a level of 285 $\mu g/m^3$ or less. Gottesfeld et al. (2008) reported an average 63 percent reduction in silica concentrations when water misting/fogging systems were installed an Indian rock crushing site. Once the exposures of these workers are no greater than 290 $\mu g/m^3$, same controls described above (i.e., LEV on conveyors, transfer belts, drop points, and hoppers) will reduce their exposure levels to the current PEL. From the current PEL, exposures can be halved (to the proposed PEL of 50 $\mu g/m^3$) by adding emission controls on sand mover thief hatches.

For fracturing sand workers that are currently exposed to levels above 770 μ g/m³, additional controls will be necessary. Environmentally controlled operator's booths are an option for these workers who must monitor sand movers and conveyer belts. Although the booths themselves can be 90 percent efficient (or more) in excluding dust (OSHA SEP Inspection Report 300523396; NIOSH RI 9689, 2012), OSHA estimates that the workers might need to spend as much as 50 percent of their time making adjustments and corrections to equipment outside the booth. Therefore, the booths will reduce worker's exposure levels by 45 percent, rather than the full 90 percent. This control option will reduce the exposure level of workers currently exposed up to 1,400 μ g/m³ to a level of 770 μ g/m³ or less, from which point a combination of the misting/spray system and partial enclosure with LEV can bring exposures to the current PEL. Once reduced to this extent, the fracturing sand worker exposures can be reduced to the level of the proposed PEL (50 μ g/m³), or less using thief hatch emissions controls as described above.

OSHA finds that the available information presented in this analysis suggests that, using these control methods, levels of $50~\mu g/m^3$ or less might not be achieved for the 6 percent of fracturing sand workers (3 out of 51 samples) that currently have exposures in excess of 1,440 $\mu g/m^3$, unless they are able to spend more than 50 percent of their time in the control booth. When combined with the other controls presented here, the resulting exposure level for the most highly exposed worker in this job category (with an exposure of 2,570 $\mu g/m^3$) would be 89 $\mu g/m^3$ (see section (3)(vi) of this chapter for details of this calculation). Although above the proposed PEL of 50 $\mu g/m^3$, this level is well within the MUC for respirators that have an APF of 10 (e.g., a half-face piece elastomeric respirator with P-100 filters).

OSHA preliminarily concludes that the proposed PEL of 50 μ g/m³ can be achieved for 94 percent of fracturing sand workers. The remaining 6 percent (with exposures above 1,440 μ g/m³ and up to 2,570 μ g/m³) will require respirator protection until such time as enhanced controls are available for this operation. Thus OSHA's preliminary finding is that the proposed PEL is feasible for most fracturing sand operations most of the time.

Where practical, further reductions can be achieved by using 0.1 percent to 1.5 percent water to moisten the proppant on conveyer belts and drop points (NIOSH HF-Site 6, 2011; NIOSH RI 9689, 2012). However, additional information is needed to confirm that this method does not interfere with the water ratio in the hydraulic fracturing slurry. As an alternative, an exposure level of $50 \, \mu g/m^3$ can be achieved for all fracturing sand workers by using an alternate non-silica proppant instead of silica sand. Another option for eliminating all exposure between the sand delivery truck and the sand blender involves replacing the sand moving equipment with a pneumatic sand transport system. An LEV emission control (similar to that proposed for thief hatches) would still be needed at the point where dusty air from the pneumatic system is released at the blender. However, this method would likely reduce the rate of sand transfer into the blender, increasing the amount of time it takes to prepare a hydraulic fracturing site.

Feasibility Finding for Ancillary Support Workers

Based on the best available information, OSHA estimates that the proposed PEL of 50 $\mu g/m^3$ or less can be achieved for all ancillary support workers. Exposures of 50 $\mu g/m^3$ or below have already been achieved, based on the exposure profile, for 50 percent of workers in this category. For the 50 percent of ancillary support workers who currently experience elevated exposures (above $100~\mu g/m^3$), the proposed PEL will be achieved when employers implement the additional controls described above (those which reduce the exposure of fracturing sand workers from 770 $\mu g/m^3$ to less than 50 $\mu g/m^3$). Ancillary support workers are primarily exposed to dust drifting into their work areas from the central fracturing sand zone, as shown in Table A-11. OSHA estimates that the steps employers take to control silica concentrations in the fracturing sand zone will affect ancillary support workers similarly, reducing their highest exposure level from 770 $\mu g/m^3$ to below $50~\mu g/m^3$.

Following the control process outlined above for fracturing sand workers, all workers with exposure levels of 770 $\mu g/m^3$ or less will have their exposure levels reduced by an estimated 63 percent (to 285 $\mu g/m^3$) when site misting is applied, and by another estimated 66 percent (to 96 $\mu g/m^3$) by LEV applied to conveyors, transfer belts, drop points, and hoppers. Exposures will be reduced by an additional 50 percent (to 48 $\mu g/m^3$) through effective LEV on thief hatches. If these estimates prove to be correct, no additional controls will be necessary for ancillary support workers.

The exposure of a single ancillary support worker exceeding 770 $\mu g/m^3$ (a hydration worker with a sample result 820 $\mu g/m^3$, more than three times greater than any other worker performing the same job) is presumed to have been influenced by either an assignment to work with fracturing sand workers, an upset condition, or work practices. OSHA anticipates that this worker would be provided with a respirator if upset conditions were to contribute to future exposure, or instructed to spend more time working in low dust areas if work practices contributed to the exposure (even 6 percent lower exposure would mean that a level of 50 $\mu g/m^3$ or less could be achieved for this worker).

OSHA preliminarily concludes that employers can reduce exposures below $50~\mu g/m^3$ for the 50 percent of ancillary support workers who require additional controls using the same combination of engineering controls as described for fracturing sand workers. These controls would include ventilated equipment for conveying and transferring proppant in sand movers, conveyors, transfer belts, and blender hoppers. Wet site-misting methods will also be required. Thus OSHA's preliminary finding is that the proposed PEL is feasible for most ancillary support operations most of the time.

Feasibility Finding for Remote/Intermittent Support Workers

Based on the best available information, OSHA estimates that the proposed PEL of $50~\mu g/m^3$ can likely be achieved for all remote/intermittent support workers. Exposures of $50~\mu g/m^3$ or below have already been achieved for 50 percent of workers in this category. For the 50 percent of remote/intermittent support workers who require additional controls, OSHA preliminarily concludes that employers can reduce exposures below $50~\mu g/m^3$ by using the same combination of engineering controls as described for fracturing sand workers.

Such controls include wet site-misting as well as ventilated equipment for conveying and transferring proppant in sand movers, conveyors, transfer belts, and blender hoppers. Effective LEV needs to be installed on thief hatches. This combination of controls will reduce the exposure of the most highly-exposed worker in this job category from 630 $\mu g/m^3$ to levels below 50 $\mu g/m^3$. OSHA notes that the exposure levels of all workers exposed at or below 770 $\mu g/m^3$ can be reduced to exposures of 50 $\mu g/m^3$ or less. As such, OSHA believes that even the highest exposed worker in this job category can achieve levels of 50 $\mu g/m^3$ or less. Given these estimates, OSHA's preliminary finding is that the proposed PEL of 50 $\mu g/m^3$ is feasible for most remote/intermittent support operations most of the time.

COSTS

OSHA estimated the cost to the hydraulic fracturing industry in three steps. OSHA first estimated the total number of employees in the industry, their job classifications and existing exposures. OSHA then estimated the costs of the necessary engineering controls. Finally, OSHA applied the costing methodologies, respirator unit costs, and program unit costs developed in Chapter 5 of this PEA to the exposure profile to develop estimates of the program costs and then added the total engineering control cost to these program costs to estimate total costs to the hydraulic fracturing industry.

Employment and Exposure Profile

The first step in developing the estimates of costs for the hydraulic fracturing industry was to determine how many workers are exposed to silica at what levels. To do this, OSHA first estimated the number of workers in various job categories and then applied the exposure data presented in the technological feasibility section of this appendix to estimate the number of workers subjected to various levels of silica exposure.

Based on data from the NIOSH site visits and discussions with several industry contacts, ERG estimated the distribution of workers at a representative hydraulic fracturing job site.

Table A-12 summarizes this representative job site by the number of workers performing various tasks and the workers' locations relative to dust exposures. As indicated, the workers most likely to have primary silica exposures, the operators of the sand moving, conveyance, and blending equipment, total 8,480 workers, or just over 50 percent of crew members nationwide.

The other fracking crew members generally can perform their functions without spending extended periods of time close to the sand moving and blending machinery – the site of the highest levels of respirable silica exposure. During the active (pumping) phases of hydraulic fracturing, which generally last two or three hours at a time, many of the fracking crew (as well as other oilfield workers present at the well site) can distance themselves from the immediate work vicinity and will typically congregate in control equipment or in trailers on site, well apart from (and preferably upwind) of the well pad.

Table A-12. Distribution of a Typical Hydraulic Fracturing Crew by Function

Estimated No. of Workers Per Site	Percent of Total	Primary Function	Classification Used in NIOSH Sampling Work	Aggregate Number of Workers
5	31.3%	Sand mover operator	Fracturing Sand Worker in the Central Area	5,300
1	6.3%	Conveyor belt tender	Fracturing Sand Worker in the Central Area	1,060
2	12.5%	Blender tender	Fracturing Sand Worker in the Central Area	2,120
1	6.3%	Hydration unit operator	Ancillary Support Worker	1,060
2	12.5%	Water/chemical hands	Ancillary Support Worker	2,120
3	18.8%	Pump operator technicians	Ancillary Support Worker	3,180
1	6.3%	Supervisor	Remote/Intermittent Worker	1,060
1	6.3%	Ground guide (Sand Remote/Intermote Coordinator) Worker		1,060
16	100.0%	Total—Frack	ing Crew	16,960

Table A-13 combines data on exposure from the technological feasibility section of this appendix with the data in Table A-12 to provide the estimated total number of workers currently at risk from respirable silica exposure in the hydraulic fracturing industry, as well as the estimated number of workers at risk of silica exposure at or above 25 $\mu g/m^3$, above 50 $\mu g/m^3$, and above 100 $\mu g/m^3$. An estimated 15,385 workers currently have silica exposures at or above the proposed action level of 25 $\mu g/m^3$; an estimated 11,964 workers currently have silica exposures above the proposed PEL of 50 $\mu g/m^3$; and an estimated 10,792 workers currently have silica exposures above 100 $\mu g/m^3$ (the principal alternative to the proposed PEL under consideration by OSHA).

Table A-13. Number of Hydraulic Fracturing Workers Exposed to Silica, by Exposure Level

	Number of	Numbers of	Affected Workers	s Exposed to Silic	a by Level
Category	Affected Employees	>0 µg/m³	≥25 µg/m³	>50 μg/m³	>100 μg/m³
Support Activities for Oil and Gas Operations	16,960	16,960	15,385	11,964	10,792
1) Hydraulic Fracturing Worker	s				
Sand Mover Operators	5,300	5,300	5,141	4,828	4,362
Conveyor Belt Tenders	1,060	1,060	1,060	1,060	1,060
Blender Tenders	2,120	2,120	2,120	1,836	1,130
2) Ancillary Workers					
Hydration unit operator	1,060	1,060	883	530	530
Water/chemical hands	2,120	2,120	1,766	1,060	1,060
Pump operator technicians	3,180	3,180	2,649	1,590	1,590
Supervisor	1,060	1,060	883	530	530
Sand coordinator	1,060	1,060	883	530	530
Remote/Intermittent Support Workers	8,480	8,480	5,868	4,893	1,306

Costs of Engineering Controls

To determine the costs of the engineering controls necessary to go from the existing general industry requirement of a PEL of 100 $\mu g/m^3$ to a PEL of 50 $\mu g/m^3$, OSHA first examined what engineering controls would be necessary to go from the existing exposure baseline shown in Table A-13 to a PEL of 50 $\mu g/m^3$. OSHA determined that a combination of wet methods and partial enclosure and LEV controls would be sufficient to meet a PEL of 100 $\mu g/m^3$. The engineering control costs of going from100 $\mu g/m^3$ to 50 $\mu g/m^3$ are then the costs of LEV controls at thief hatches and operator enclosures. These engineering control costs are shown in Tables A-14, A-15 and A-16 for large, medium, and small fleets, respectively (the full derivation of the results in these tables can be found in ERG, 2013). OSHA emphasizes that there is considerable uncertainty in the

cost estimates because most of the relevant engineering controls have not yet been deployed in oil fields or on the types of mobile equipment used in oil fields.

Table A-14. Summary of Costs of Controls for Large Fleets

			Baseline	0.4	Cost/Cost Factor	Per Well or Sand Mover or Fracturing Fleet	Total Capital Cost	Aggregate Per Year; With Annualized Capital Costs	
Cost Element	Cost	Units	Compliance	Cost Factor	Explanation		Extrapolated Va	alue	Comment
LEV Controls at Thief Hato	ches								
NOV APPCO Baghouse Add-On to Sand Mover Equipment	\$45,000	Per Sand Mover	10%	4	Unit cost based on mid-point of \$40,000 to \$50,000 cost range. Cost factor—number sand movers per fleet.	\$180,000	\$33,480,000	\$4,766,799	\$40K to 50K depending on the machine (Galindo, 2012). The estimated cost is the installed cost.
Operating and Maintenance Cost	\$4,500		10%	4	Estimated at 10% of the equipment cost	\$18,000	\$3,348,000	\$3,348,000	
NOV APPCO Baghouse Add-On - Total Cost						\$198,000	\$36,828,000	\$8,114,799	
Dust Booths		I		Т	T	Γ	1	T	
Dust booth for highly exposed workers	\$10,605.49		0%	1	A booth per sand mover is allocated	\$42,422	\$7,890,485	\$1,123,428	Cost per booth estimated by ERG, based on Cecala, et al., 2005; BLS, 2012a; BLS, 2012b; and BLS, 2012c.
Operating and Maintenance Cost	\$1,060.55		0%	1	Estimated at 10% of the equipment cost	\$4,242	\$789,049	\$789,049	

Table A-14. Summary of Costs of Controls for Large Fleets (continued)

			Baseline	Cost	Cost/Cost Factor	Per Well or Sand Mover or Fracturing Fleet	Total Capital Cost	Aggregate Per Year; With Annualized Capital Costs	
Cost Element	Cost	Units	Compliance	Factor	Explanation		Extrapolated V	ı	Comment
Cost per well to deploy	\$37.25		0%	14,251	Applied to new and			\$2,123,453	Total refractured wells (5,718) and
booths					refractured deep				new fractured wells (35,000) were
					wells per year				distributed across fleet size by
									percentage for each size category.
									Thus, for large fleets, 35%
									(=186/530) of total refractured wells
									(2,001 fleets) plus 35% of new
									fractured wells (12,250 fleets) sum to
									14,251 as the cost factor shown.
									The percentages applied for small
									and medium fleets were,
									respectively,19% (=100/530) and
									46% (=244/530), producing cost
									factors of 7,736 (small fleets) and
									18,730 (medium fleets).
Dust Booths - Total Cost								\$4,035,929	

Table A-15. Summary of Costs of Controls for Medium-Sized Fleets

			Baseline	Cost	Cost/Cost Factor	Per Fleet	Total Capital Cost	Aggregate Per Year; With Annualized Capital Costs	
Cost Element	Cost	Units	Compliance	Factor	Explanation		Extrapolated V	alue	Comment
LEV Controls at Thief Ha	tches		•				•		
NOV APPCO Baghouse Add-On to Sand Mover Equipment	\$45,000	Per Sand Mover	10%	3	Unit cost based on mid-point of \$40,000 to \$50,000 cost range. Cost factor—number sand movers per fleet.	\$135,00	\$29,646,000	\$4,220,923	\$40K to 50K depending on the machine (Galindo, 2012). The estimated cost is the installed cost.
Operating and Maintenance Cost	\$4,500		10%	1	Estimated at 10% of the equipment cost	\$13,500	\$2,964,600	\$2,964,600	
NOV APPCO Baghouse Add-On - Total Cost						\$148,50	\$32,610,600	\$7,185,523	
Dust Booths			-				-	•	
Dust booth for highly exposed workers	\$10,605.49		0%	1	A booth per sand mover is allocated	\$31,816	5 \$7,763,219	\$1,105,308	
Operating and Maintenance Cost	\$1,060.55		0%	1	Estimated at 10% of the equipment cost	\$3,182	\$776,322	\$776,322	
Cost per well to deploy booths	\$37.25		0%	18,730	Applied to new and refractured medium-depth wells per year			\$2,093,118	See Table A-14 for explanation of cost factor calculation.
Dust Booths - Total Cost								\$3,974,748	

Table A-16. Summary of Control Costs for Small Fleets

			Baseline	Cost	Cost/Cost Factor	Per Fleet/Per Well	Total Capital Cost	Aggregate Per Year; With Annualized Capital Costs	
Cost Element	Cost	Units	Compliance	Factor	Explanation	Ext	trapolated Value	P	Comment
LEV Controls a			Сотришее	1 uctor	Lapluluion		trupoluteu vuru		Comment
NOV APPCO Baghouse Add-On to Sand Mover Equipment	\$45,000	Per Sand Mover	10%	1	Unit cost based on mid-point of \$40,000 to \$50,000 cost range. Cost factor—number sand movers per fleet.	\$45,000	\$4,050,000	\$576,629	\$40K to 50K depending on the machine (Galindo, 2012). The estimated cost is the installed cost.
Operating and Maintenance Cost	\$4,500		10%	1	Estimated at 10% of the equipment cost	\$4,500	\$405,000	\$405,000	
NOV APPCO Baghouse Add-On - Total Cost						\$49,500	\$4,455,000	\$981,629	
Dust Booths									
Dust booth for highly exposed workers	\$10,605.49		0%	1	A booth per sand mover is allocated	\$10,605	\$1,060,549	\$150,998	
Operating and Maintenance Cost	\$1,060.55		0%	1	Estimated at 10% of the equipment cost	\$1,061	\$106,055	\$106,055	
Cost per booth to deploy to well	\$37.25		0%	7,736	Applied to new and refractured shallow wells per year			\$288,183	See Table A-14 for explanation of cost factor calculation.
Dust Booths- Total Cost								\$545,236	

Total Costs

This section summarizes the total engineering and program costs for hydraulic fracturing establishments using discount rates of 0%, 3% and 7% respectively. Program costs are disaggregated into five categories – respirator costs, exposure monitoring, medical surveillance, training, and regulated areas. ERG noted that current respirator use for hydraulic fracturing establishments was very high and estimated current respirator compliance rates to be 98 percent (ERG, 2013, p. 6-14). With the exception of respirator usage and other fracking-specific inputs as noted in ERG (2013), costs were estimated by applying the methods and estimates presented in Chapter 5 for program costs to the industrial profile and exposure profile data presented in this appendix for the hydraulic fracturing industry. The total cost for reducing worker exposures from the current silica dust Permissible Exposure Limit (PEL) to the proposed PEL is \$28.6 million per year at 7% discount rate. Table A-17 presents the combined control and program costs. The table shows that program costs are the highest for exposure monitoring, followed by medical surveillance, regulated areas, training, and respirator costs, in that order. The combined engineering control and program costs range from \$24.9 million per year to \$28.6 million per year depending on the discount rate selected. Table A-18 presents, over a ten-year period, the undiscounted stream of compliance costs for hydraulic fracturing establishments.

Table A-17. Total Costs for Hydraulic Fracturing Establishments Affected by the Proposed Silica Standard

	Rate						
Items	0%	3%	7%				
Engineering Control Costs	\$21,282,804	\$22,728,276	\$24,837,864				
Program Costs							
Respirator Costs	\$6,732	\$7,312	\$8,158				
Exposure Monitoring	\$2,616,582	\$2,635,204	\$2,662,381				
Medical Surveillance	\$397,877	\$415,845	\$442,936				
Training	\$182,647	\$190,251	\$201,349				
Regulated Areas	\$414,194	\$415,613	\$417,683				
Total	\$24,900,837	\$26,392,500	\$28,570,371				

Table A-18: Compliance Costs in Hydraulic Fracturing by Year
After Promulgation of the Silica Standard (over10-Year
Period): Undiscounted Values

Year	Fu nin a nin a Ocustuala	Program	Tatal
	Engineering Controls	Requirements [a]	Total
1	\$96,784,033	\$6,150,807	\$102,934,840
2	\$12,893,779	\$3,145,522	\$16,039,301
3	\$12,893,779	\$3,145,522	\$16,039,301
4	\$12,893,779	\$3,879,585	\$16,773,364
5	\$12,893,779	\$3,217,315	\$16,111,094
6	\$12,893,779	\$3,217,315	\$16,111,094
7	\$12,893,779	\$3,402,773	\$16,296,552
8	\$12,893,779	\$3,255,149	\$16,148,928
9	\$12,893,779	\$3,255,149	\$16,148,928
10	\$12,893,779	\$3,348,686	\$16,242,465
[a] Include	s costs for respirators and	respirator programs.	

ERG, 2013.

BENEFITS AND NET BENEFITS

Introduction

Earlier in this Appendix, OSHA estimated the number of workers exposed to silica at various exposure levels currently in the hydraulic fracturing industry. In the cost section, OSHA derived the estimated costs of reducing respirable crystalline silica exposures from the existing PEL of 100 to 50 mcg, as required by the proposal. In this section of this appendix, the Agency applies the benefits models described in Chapter VII, Benefits, and estimates the benefits specific to lowering exposures to fracking operations. The Agency then estimates the net monetized benefits of the rule for this industry (the monetized benefits minus the costs).

Fatalities and Cases Avoided

Applying the risk models introduced in the Benefits chapter, the Agency estimates that between 9 and 14 lives will be saved, and 41 silicosis morbidity cases prevented annually as a result of the proposal. The results are presented in Table A-19. OSHA notes that these estimates are based on an assumption of a 45-year working life and thus do not reflect the point made in the ERG report that "long-term exposures to silica during

fracking might be mitigated to some extent by the mobility of the workforce" (ERG, 2013, p. 4-14). 50

Table A-19
Estimated Avoided Fatal & Nonfatal Illnesses, by PEL, Resulting from a Reduction in Exposure to Crystalline Silica Exposure of At-Risk Workers over a 45-Year Working Life Due to Proposed PEL of 50 µg/m³

01 30	49/111	1
	Total Avoided Cases	Annual Avoided Cases
Lung Cancers		
High	225	5.0
Midpoint	130	2.9
Low	34	0.8
Silicosis & Other Non-Malignant Respiratory Diseases	285	6.3
Renal Disease	103	2.3
Total Number of Fatal Illnesses Prevented		
High	613	14
Midpoint	518	12
Low	423	9
Total Number of Silicosis Morbidity Cases Prevented*	1,836	40.8

^{*}Assessed at 2/1 or higher X-ray, following ILO criteria Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Standards and Guidance, Office of Regulatory Analysis.

Monetized Benefits and Net Benefits

Monetizing the benefits shown above, using the approach described in Chapter VII of the PEA, the Agency estimates that the proposal will provide annualized benefits from avoided silica-related mortality and morbidity in the fracking industry of between \$39 and \$171 million, with a mid-point annualized value of \$105 million, employing a 3 percent discount rate.

⁵⁰ For a discussion of working lives, see this PEA's Chapter VII: Benefits and Net Benefits.

As shown in Table A-20, the Agency also estimated the benefits using four other discount rate functions. Applying the cost estimate of \$26.4 million at a 3 percent discount rate described earlier in this appendix, the Agency also derived the net benefits of the proposal for this industry. Under any of the five discount rate scenarios estimated, the proposal generates net benefits. As shown in Table A-20, at the 3 percent discount rate, this implies net benefits of \$79 million at the midpoint. Table A-21 presents undiscounted monetized benefits by year for the sixty-year time horizon after promulgation of the standard. These benefits reach a steady-state peak of \$236.5 million in the 60th year.

Table A-20
Total Annual Monetized Benefits and Net Benefits Associated with a Reduction in Exposure to Crystalline
Silica Due to Proposed PEL OF 50 μg/m³

		Incremental	
		Monetized	Net Benefit
		Benefit	
	Low	\$51,971,217	\$27,070,380
Undiscounted (0%)	Midpoint	\$140,337,272	\$115,436,435
	High	\$228,703,326	\$203,802,490
Discounts dist 20/ with a support of increase in	Low	\$47,725,658	\$21,333,158
Discounted at 3%, with a suggested increase in monetized benefits over time	Midpoint	\$128,437,316	\$102,044,815
monetized benefits over time	High	\$209,148,973	\$182,756,473
	Low	\$39,465,202	\$13,072,701
Discounted at 3%	Midpoint	\$105,429,325	\$79,036,825
	High	\$171,393,448	\$145,000,948
Discounted at 7%, with a suggested increase in	Low	\$32,340,540	\$3,770,169
monetized benefits over time	Midpoint	\$85,737,078	\$57,166,708
	High	\$139,133,617	\$110,563,247
Discounts d at 70/	Low	\$28,525,979	(\$44,392)
Discounted at 7%	Midpoint	\$75,070,378	\$46,500,008
	High	\$121,614,777	\$93,044,407

Source: U.S. Department of Labor, Occupational Safety and Health Administration, Directorate of Standards and Guidance, Office of Regulatory Analysis.

Table A-21: Benefits in Hydraulic Fracturing by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Undiscounted Values

Year	Undis	counted Value o	of Cases Preve	nted by Year Aft	er Promulgation	(\$M)
After Promul- gation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total
1	\$0.0	\$1.5	\$0.6	\$2.1	\$2	\$4.4
2	\$0.0	\$3.0	\$1.1	\$4.1	\$5	\$8.8
3	\$0.0	\$4.5	\$1.7	\$6.2	\$7	\$13.2
4	\$0.0	\$6.0	\$2.3	\$8.3	\$9	\$17.7
5	\$0.0	\$7.5	\$2.9	\$10.4	\$12	\$22.1
6	\$0.0	\$9.0	\$3.4	\$12.4	\$14	\$26.5
7	\$0.0	\$10.5	\$4.0	\$14.5	\$16	\$30.9
8	\$0.0	\$12.0	\$4.6	\$16.6	\$19	\$35.3
9	\$0.0	\$13.5	\$5.2	\$18.7	\$21	\$39.7
10	\$0.0	\$15.0	\$5.7	\$20.7	\$23	\$44.1
11	\$0.0	\$16.5	\$6.3	\$22.8	\$26	\$48.6
12	\$0.0	\$18.0	\$6.9	\$24.9	\$28	\$53.0
13	\$0.0	\$19.5	\$7.5	\$27.0	\$30	\$57.4
14	\$0.0	\$21.0	\$8.0	\$29.0	\$33	\$61.8
15	\$0.0	\$22.5	\$8.6	\$31.1	\$35	\$66.2
16	\$0.8	\$24.0	\$9.2	\$34.0	\$37	\$71.5
17	\$1.7	\$25.5	\$9.8	\$36.9	\$40	\$76.7
18	\$2.5	\$27.0	\$10.3	\$39.9	\$42	\$82.0
19	\$3.4	\$28.5	\$10.9	\$42.8	\$44	\$87.2
20	\$4.2	\$30.0	\$11.5	\$45.7	\$47	\$92.5
21	\$5.0	\$31.5	\$12.1	\$48.6	\$49	\$97.8
22	\$5.9	\$33.0	\$12.6	\$51.5	\$51	\$103.0
23	\$6.7	\$34.5	\$13.2	\$54.4	\$54	\$108.3
24	\$7.6	\$36.0	\$13.8	\$57.4	\$56	\$113.5
25	\$8.4	\$37.5	\$14.4	\$60.3	\$59	\$118.8
26	\$9.3	\$39.0	\$14.9	\$63.2	\$61	\$124.0
27	\$10.1	\$40.5	\$15.5	\$66.1	\$63	\$129.3
28	\$10.9	\$42.0	\$16.1	\$69.0	\$66	\$134.6
29	\$11.8	\$43.5	\$16.7	\$71.9	\$68	\$139.8
30	\$12.6	\$45.0	\$17.2	\$74.8	\$70	\$145.1
31	\$13.5	\$46.5	\$17.8	\$77.8	\$73	\$150.3
32	\$14.3	\$48.0	\$18.4	\$80.7	\$75	\$155.6
33	\$15.1	\$49.5	\$19.0	\$83.6	\$77	\$160.8

34

Table A-21: Benefits in Hydraulic Fracturing by Year After Promulgation of the Silica Standard (60-Year Time Horizon): Undiscounted Values (continued)

	Undiscounted Value of Cases Prevented by Year After Promulgation (\$M)									
Year After Promul- gation	Lung Cancer	Lung Diseases Other Than Cancer	End-Stage Renal Disease	Total	Value of Morbidity Cases Prevented	Grand Total				
35	\$16.8	\$52.5	\$20.1	\$89.4	\$82	\$171.3				
36	\$17.7	\$54.0	\$20.7	\$92.3	\$84	\$176.6				
37	\$18.5	\$55.5	\$21.3	\$95.3	\$87	\$181.9				
38	\$19.4	\$57.0	\$21.8	\$98.2	\$89	\$187.1				
39	\$20.2	\$58.5	\$22.4	\$101.1	\$91	\$192.4				
40	\$21.0	\$60.0	\$23.0	\$104.0	\$94	\$197.6				
41	\$21.9	\$61.5	\$23.6	\$106.9	\$96	\$202.9				
42	\$22.7	\$63.0	\$24.1	\$109.8	\$98	\$208.1				
43	\$23.6	\$64.5	\$24.7	\$112.8	\$101	\$213.4				
44	\$24.4	\$66.0	\$25.3	\$115.7	\$103	\$218.7				
45	\$25.2	\$67.5	\$25.9	\$118.6	\$105	\$223.9				
46	\$26.1	\$67.5	\$25.9	\$119.4	\$105	\$224.8				
47	\$26.9	\$67.5	\$25.9	\$120.3	\$105	\$225.6				
48	\$27.8	\$67.5	\$25.9	\$121.1	\$105	\$226.4				
49	\$28.6	\$67.5	\$25.9	\$122.0	\$105	\$227.3				
50	\$29.5	\$67.5	\$25.9	\$122.8	\$105	\$228.1				
51	\$30.3	\$67.5	\$25.9	\$123.6	\$105	\$229.0				
52	\$31.1	\$67.5	\$25.9	\$124.5	\$105	\$229.8				
53	\$32.0	\$67.5	\$25.9	\$125.3	\$105	\$230.6				
54	\$32.8	\$67.5	\$25.9	\$126.2	\$105	\$231.5				
55	\$33.7	\$67.5	\$25.9	\$127.0	\$105	\$232.3				
56	\$34.5	\$67.5	\$25.9	\$127.8	\$105	\$233.2				
57	\$35.3	\$67.5	\$25.9	\$128.7	\$105	\$234.0				
58	\$36.2	\$67.5	\$25.9	\$129.5	\$105	\$234.9				
59	\$37.0	\$67.5	\$25.9	\$130.4	\$105	\$235.7				
60	\$37.9	\$67.5	\$25.9	\$131.2	\$105	\$236.5				
Total – 60 Ye	ars		\$4,418	\$4,002	\$8,420.2					

Annualized over 60 years:

\$140.3

Economic Feasibility and Regulatory Flexibility Findings

Economic Feasibility

This section presents the total costs of the proposed silica standard on establishments and entities as a percentage of their revenues and as a percentage of their profits. The estimated costs are presented in Table A-22 at a discount rate of 7%.

As noted in the industry profile, OSHA judged that there are virtually no firms with fewer than 10 employees performing hydraulic fracturing. The Agency also judged that the firms in the second smallest employee size category, those with 10 to 19 employees, comprised the totality of the firms that would be sufficiently small as to fall under the Small Business Administration (SBA) definition of a small entity for the industry – defined as a firm with \$7 million or less in annual revenues. Thus, ERG estimated, and OSHA concurred, that these two groups of firms – those with 10 to 19 employees and those that meet the definition of an SBA-defined small entity - were the same. OSHA estimated that nearly all firms with over 20 employees were generating over \$7 million per year in the current market conditions and therefore would not be considered to be small entities based on SBA definitions.

OSHA calculated that, if the control technologies that have been used in other industries can be successfully transferred to the hydraulic fracturing setting, the compliance costs would equal less than one percent of average revenues and less than five percent of average profits for recent years for the hydraulic fracturing sector as a whole and for small entities. Costs of this magnitude are small enough that, as explained in the economic feasibility section, there will be no significant impact on the economic viability of firms in this sector. Specifically, any price increases or output reductions resulting from compliance with this standard would not be of a magnitude sufficient to threaten the survival of a significant number of affected entities.

The demand for hydraulic fracturing services is derived from the demand for oil and gas production. Hydraulic fracturing firms are hired by oil and gas lease holders and production companies to facilitate the recovery of oil and gas. As such, the benefits of hydraulic fracturing services are often quite large, namely the flow of production or the enhanced flow of production from the well. In this context, the expected value of the hydraulic fracturing services is quite large and provides substantial surplus value to upstream production companies in light of the enormous energy reserves released at modest cost.

Industry contacts noted that hydraulic fracturing firms would generally be able to pass the costs of silica dust control on to their customers, the oil and gas producers. The large bulk of the hydraulic fracturing work is occurring as part of the completion of large oil and gas drilling operations. The incremental cost of the hydraulic fracturing work is very small in the context of the overall well completion costs, which frequently run from \$1 million to

\$3.5 million. This range corresponds roughly to the cost of hydraulic fracturing services for 10 to 25 stages at a total cost of \$100,000 to \$140,000.

Table A-22: Costs as a Percentage of Revenues and Profits for Hydraulic Fracturing (at 7% Discount Rate)

NAICS All Establishm	Industry	Total Costs	Total Affected Establishments	Cost per Affected Estab.	Revenues per Estab. [a]	Profit Rate [b]	Profits per Estab.	Cost as % of Rev.	Cost as % of Profits		
213112	Support Activities for Oil and Gas Operations	\$28,570,371	444	\$64,348	\$18,513,145	10.31%	\$1,908,705	0.3%	3.4%		
SBA Entities											
213112	Support Activities for Oil and Gas Operations	\$2,723,820	100	\$27,238	\$5,475,000	10.31%	\$564,473	0.5%	4.8%		

[[]a] Revenues inflated from 2006 to 2009 dollars based on the GDP implicit price deflator.

[b] IRS, 2002 to 2006

Source: ERG 2013

Regulatory Flexibility Findings

OSHA conducted a SBREFA panel and presented an initial regulatory flexibility analysis in the PEA. For regulatory flexibility purposes, OSHA defines costs in excess of one percent of revenues or 5 percent of profits as constituting a significant economic impact. OSHA thus determines that the proposed rule would not have significant economic impacts on small entities in the hydraulic fracturing industry. Nevertheless, OSHA considered the regulatory flexibility issues for the industry and modified the proposed general industry rule with respect to regulated areas to allow a more flexible approach that may be better suited to the changing nature of the fracturing worksite.

Though the costs do not represent a significant impact on small firms in the hydraulic fracturing industry, small firms in the industry commonly do very small re-frac jobs on the most marginal oil and gas properties. As was noted above, some small hydraulic fracturing operators have much smaller budgets and the re-frac, while useful to restore or enhance existing production, will generate much smaller returns to the oil and gas producer. It is possible that some of the incremental costs in this context might not be as recoverable as for larger firms. OSHA welcomes additional information on very small fracturing firms and any comments on this issue.

REFERENCES

- Addo, J.Q., and T.G. Sanders, 1995. Effectiveness and environmental impact of road dust suppressants. Mountain-Plains Consortium Report No. 95-28A. **OSHA-2010-0034-0516**
- ACGIH, 2010. Industrial Ventilation: A Manual for Recommended Practice for Design, 27th Edition. Chapter 13. **OSHA-2010-0034-0515**
- ALL Consulting, LLC. 2008. Evaluating the environmental implications of hydraulic fracturing in shale gas reservoirs. Presented at International Petroleum and Biofuels Environmental Conference. November 11-13, 2008. Albuquerque, New Mexico.
 - http://ipec.utulsa.edu/Conf2008/Manuscripts%20&%20presentations%20received/Arthur_73_presentation.pdf. **OSHA-2010-0034-1549**
- ALL Consulting, LLC. 2010. NYDEC Information Requests. Project No. 1284. Prepared for the Independent Oil & Gas Association of New York. Available from http://catskillcitizens.org/learnmore/20100916IOGAResponsetoDECChesapeake_IOGAResponsetoDEC.pdf. OSHA-2010-0034-1550
- American Foundrymen's Society, 1985. Foundry Ventilation Manual. Inc., Des Plaines, IL. **OSHA-2010-0034-0517**
- API, 2009. Hydraulic fracturing operations Well construction and integrity guidelines. API Guidance Document HF1. First Edition, October 2009. **OSHA-2010-0034-1552**
- API, 2012. Shires, Terri and Miriam Lev-On. "Characterizing Pivotal Sources of Methane Emissions from Unconventional Natural Gas Production Summary and Analysis of API and ANGA Survey Responses" American Petroleum Institute. URS Corporation and the LEVON Group. June 1st, 2012. http://www.iogawv.com/resources/Docs/API-ANGA%20Study%20on%20Methane%20Emissions.pdf OSHA-2010-0034-1553
- Bahrami et al., 2008. Determination of exposure to respirable quartz in the stone crushing units at Azendarian west of Iran. Industrial Health. 46:404-408. **OSHA-2010-0034-1325**
- Beamer, 2005. Beamer, Brian R. et al. "Evaluation of Misting Controls to Reduce Respirable Silica Exposure for Brick Cutting", April 21st, 2005.

df OSHA-2010-0034-1524

0034-1556

1555

http://annhyg.oxfordjournals.org/content/49/6/503.full.pdf OSHA-2010-0034-

- Bhatia, A., no date. Continuing Education: Pneumatic conveying systems. Continuing Education and Development, Inc./CED Engineering. Stony Point, NY. Available online at:

 http://www.cedengineering.com/upload/Pneumatic%20Conveying%20Systems.p
- Blotter, 2012. Blotter, Rick. "Elbert County Needs to Adopt Oil Exploration & Production Regulations." Accessed on November 26th, 2012. http://www.elbert-grab.com/Arc/ECNeedsRegulations.html OSHA-2010-
- BLS, 2012a. Occupational Outlook Handbook. Bureau of Labor Statistics.

 Accessed November 20, 2012.

 http://www.bls.gov/ooh/Production/Metal-and-plastic-machine-workers.htm
 OSHA-2010-0034-1557
- BLS, 2012b. Bureau of Labor Statistics. U.S. Department of Labor. *Occupational Employment Statistics Survey, May 2011*. Accessed online at http://www.bls.gov/oes/tables.htm.
- BLS, 2012c. Bureau of Labor Statistics. Employer Costs for Employee Compensation, December 2011. Available at http://www.bls.gov/news.release/archives/ecec_03142012.htm
- Carbo Ceramics, 2011. "Carbo Ceramics: Shiny And Smooth, But Costly." December 6th, 2011. http://seekingalpha.com/article/312083-carbo-ceramics-shiny-and-smooth-but-costly OSHA-2010-0034-1561
- Carmeuse Industrial Sands, Inc., 2009. Material Safety Data Sheet for Sand. Carmeuse Industrial Sands, Inc.: Pittsburgh, PA. **OSHA-2010-0034-1525**
- Cattron-Theimig, Inc., no date. Radio remote controls for ballast car unloading. Available at:

 http://www.cattron.com/dnn/Portals/0/pdf/brochures/Ballast%20car%20unloading.pdf OSHA-2010-0034-0584/OSHA-2010-0034-1626
- Cecala, A.B., J.A. Organiscak, J.A. Zimmer, W.A. Heitbrink, E.S. Moyer, M. Schmitz, E. Ahrenholtz, C.C. Coppock, and E.A. Andrews, 2005. Reducing enclosed cab drill operator's respirable dust exposure with effective filtration and pressurization techniques. Journal of Occupational and Environmental Hygiene 2:54-63. **OSHA-2010-0034-0590**
- Census Bureau, 2002. Statistics of U.S. Businesses, 2002. **OSHA-2010-0034-1173**

- Census Bureau. 2006a. County Business Patterns, 2006. OSHA-2010-0034-0586
- Census Bureau, 2006b. Statistics of U.S. Businesses, 2006. OSHA-2010-0034-1566
- Census Bureau, 2007. Industry Statistics Sampler, 2007. http://www.census.gov/econ/industry/products/p213112.htm OSHA-2010-0034-1194
- CollegeGrad, 2012. CollegeGrad. Oil and Gas Extraction Industry. Accessed November 26th, 2012. http://www.collegegrad.com/industries/farmi04.shtml **OSHA-2010-0034-1567**
- Company A, 2012. Company A. Telephone conversation between John Eyraud and Anita Singh of ERG and Company A, October 15th, 2012. **OSHA-2010-0034-1568**
- Dun & Bradstreet, 2013. The Million Dollar Database. Accessed by ERG on February 12, 2013. **OSHA-2010-0034-1569**
- Dynamic Air, Inc., 2011. Product literature for Dynamic Air, Inc., Conveying Systems: 16 Pneumatic Conveying Concepts. Available online: http://www.dynamicair.com/pdf/9906-8.pdf OSHA-2010-0034-1526
- Edwards, 2009. Edwards, Lynn. Email conversation between Whitney Long of ERG and Lynn Edwards, Mining Dust Control Specialist at Midwest Industrial Supply, Inc. November 30, 2009. **OSHA-2010-0034-1571**
- EIA, 2010. Energy Information Administration. "United States Total 2009 Distribution of Wells by Production Rate Bracket." December 29th, 2010. http://www.eia.gov/pub/oil_gas/petrosystem/us_table.html OSHA-2010-0034-1572
- EIA, 2011a. Annual energy outlook 2011 with projections to 2035. Washington, DC. http://www.eia.gov/forecasts/archive/aeo11/pdf/0383(2011).pdf. OSHA-2010-0034-1573
- EIA. 2011b. Technology drives natural gas production growth from shale gas formations. http://www.eia.gov/todayinenergy/detail.cfm?id=2170>. **OSHA-2010-0034-1604**
- EIA, 2012. "Crude Oil and Natural Gas Exploratory and Development Wells."

 Accessed June 25, 2012.

 http://www.eia.gov/dnav/ng/ng enr wellend s1 a.htm OSHA-2010-0034-1574
- EIA, 2013. Number of Producing Gas Wells. Accessed May 17, 2013.

- http://www.eia.gov/dnav/ng/ng_prod_wells_s1_a.htm.
- EPA, 2004. Evaluation of impacts to underground sources of drinking water by hydraulic fracturing of coalbed methane reservoirs. EPA 816-R-04-003. Washington, DC. **OSHA-2010-0034-1575**
- EPA, 2011a. Plan to study the potential impacts of hydraulic fracturing on drinking water resources. EPA/600/R-11/122. Washington, DC. **OSHA-2010-0034-1576**
- EPA, 2011b. Draft investigation of ground water contamination near Pavillion, Wyoming. EPA 600/R-00/000. Washington, DC. **OSHA-2010-0034-1577**
- ERG, 2003. Support for a Revised Economic Analysis of a Proposed OSHA Standard for Assigned Protection Factors for Respirators: Final Report. Prepared for OSHA, Office of Regulatory Analysis. May 16, 2003. **OSHA-2010-0034-1612**
- Eastern Research Group, Inc. 2013. Hydraulic Fracturing and Worker Exposure to Silica: Final Report. Prepared for OSHA, Office of Regulatory Analysis. March 25, 2013
- Eastern Research Group, Inc. Industrial Commission of Ohio, Division of Safety and Hygiene. Case File #OH-1460. **OSHA-2010-0034-1421**
- Esswein et. al, 2012. Eric J, Michael Breitenstein, and John Snawder. 2012. NIOSH field effort to assess chemical exposures in oil and gas workers: Health hazards in hydraulic fracturing. Presented at Workshop on the Health Impact Assessment of New Energy Sources: Shale Gas Extraction, April 30 May 1, 2012. Institute of Medicine, Washington, DC.

 http://www.iom.edu/Activities/Environment/EnvironmentalHealthRT/2012-APR-30/Day-1/Session-3/1-Esswein.aspx OSHA-2010-0034-1578
- Esswein, E., 2012. October 3, 2012 Phone Call with Eric Esswein, NIOSH Senior Industrial Hygienist **OSHA-2010-0034-1538**
- Esswein E, Breitenstein M, Snawder J, Kiefer M, Sieber K., 2013. Occupational Exposure to Respirable Crystalline Silica During Hydraulic Fracturing. JOEH DOI:10.1080/15459624.2013.788352. **OSHA-2010-0034-1548**
- EWG, 2012. Environmental Working Group. "Free Pass for Oil and Gas: Environmental Protections Rolled Back as Western Drilling Surges: Oil and Gas Industry Exemptions." Accessed November 30th, 2012. http://www.ewg.org/reports/Free-Pass-for-Oil-and-Gas/Oil-and-Gas-Industry-Exemptions OSHA-2010-0034-1579
- Fisher, 2010. Fisher, Kevin. "Data Confirm Safety of Well Fracturing". July 2010. http://www.fidelityepco.com/Documents/OilGasRept_072010.pdf OSHA-2010-0034-1580

Flanagan, M.E., C. Loewenherz, and G. Kuhn, 2001. Construction: Indoor wet concrete cutting and coring exposure evaluation. Applied Occupational and Environmental Hygiene. 16(12):1097-1100. **OSHA-2010-0034-0675**

Foundry Engineering Group Project, LLC, 2000. Ventilation Controls Report and Interactive CD-ROM. Foundry Engineering Group Project, LLC; El Dorado Hills, California. **OSHA-2010-0034-1250**

FracFocus, 2010. FracFocus. "Hydraulic Fracturing: The Process" < http://fracfocus.org/hydraulic-fracturing-how-it-works/hydraulic-fracturing-process > OSHA-2010-0034-1581

FracFocus, 2012. FracFocus. GWPC & IOGCC.

[FracSand DC] Frac Sand Dust Control, LLC, 2012. Internet web site "Providing flexible solutions for frac sand dust collection. Frac Sand Dust Control, LLC; Indiana, Pennsylvania. Available online at: http://fracsanddc.com/index.php/solution OSHA-2010-0034-1527

FTS International, 2011. FTS International Services, LLC, FTS International Bonds, Inc. Annual Report, December 31st, 2011.

Galindo, 2012. Galindo, Rick. Telephone conversation between John Eyraud of ERG and Rick Galindo of NOV Appco, November 20, 2012. **OSHA-2010-0034-1584**

Gilleland, K., 2011. Hydraulic Fracturing – Game changing advances in stimulation and production technology are improving well economics. Hart Energy Publishing. Houston, Texas. **OSHA-2010-0034-1528**

Gottesfeld et al. 2008. Gottesfeld, Perry and et al. "Reduction of Respirable Silica Following the Introduction of Water Spray Applications in Indian Stone Crusher Mills." International Journal of Occupational and Environmental Health. Vol 14, No. 2. Page 94-103. April/June, 2008.

http://www.okinternational.org/docs/IJOEH%20gottesfeld.pdf OSHA-2010-0034-1585

Gupta et. al, 2011. Gupta, D.V. Satya and Baker Hughes. 2011. Unconventional fracturing fluids. Proceedings of the Technical Workshops for the Hydraulic Fracturing Study: Chemical & Analytical Methods, Arlington, Virginia. Publication No. EPA 600-R-11-066. **OSHA-2010-0034-1586**

Halliburton Energy Services, 2008. Material Safety Data Sheet for Frac Sand. Halliburton Energy Services: Duncan, OK. **OSHA-2010-0034-1529**

Hydraulic Fracturing, 2012. < http://www.hydraulicfracturing.com>. **OSHA-2010-0034-1588**

Henderson, 2012. Henderson, Rick. 2012. Telephone conversation between John Eyraud and Anita Singh of ERG and Rick Henderson, Field Supervisor, Michigan Office of Oil and Gas and Minerals. September 10th, 2012. **OSHA-2010-0034-1587**

ICF, 2009. Technical assistance for the Draft Supplemental Generic EIS: Oil, gas, and solution mining regulatory program, task 2. Prepared for NYSERDA, Albany, NY. http://www.nyserda.ny.gov/en/Publications/NYSERDA/ng/icf-task-2.ashx>. OSHA-2010-0034-1589

IRS. Various. Statistics of Income. IRS (SOI Tax Stats - Corporation Source Book: Data File). Average of profit rates from 2000 through 2008. **OSHA-2010-0034-0751**

[JJBodies] J&J Truck Bodies and Trailers, 2011. 2011 \$50,000 Shale Gas Innovation Contest Entry Form. Somerset Welding & Steel, Inc. DBA J&J Truck Bodies and Trailers: Somerset, PA.

Kelso, Matt. 2012. Kelso, Matt. "Unconventional Gas Activity in Pennsylvania." June 26th, 2012. http://www.fractracker.org/2012/06/unconventional-gas-activity-in-pennsylvania/

Komatsu America, 2010. Internet web site for Komatsu model BR380JG-1 mobile crusher [features, including remote control]. Available at: Maslowski, A., 2012. Where does frac sand come from? Well Servicing Magazine. Jan/Feb. Available online at: http://www.komatsuamerica.com/?p=equipment&f1=view&prdt_id=919 OSHA-2010-0034-0770

Minnich, 2009b. YouTube video: Minnich Manufacturing remote operated dowel drill unit. Retrieved August 13, 2009, from http://www.youtube.com/user/Buckeyeque#play/uploads/1/35lEtJk1EOM. **OSHA-2010-0034-1624**

Montgomery et al., 2010. Montgomery, Carl T. and Michael B. Smith. 2010. Hydraulic fracturing: History of an enduring technology. Journal of Petroleum Technology, December 2010.

http://www.spe.org/jpt/print/archives/2010/12/10Hydraulic.pdf>. OSHA-2010-0034-1593

NIOSH IC 9521, 2010. Best Practices for Dust Control in Metal/Nonmetal Mining. Available online at: http://www.cdc.gov/niosh/mining/works/coversheet192.html
OSHA-2010-0034-1539

NIOSH, 2012. Worker exposure to crystalline silica during hydraulic fracturing. http://blogs.cdc.gov/niosh-science-blog/2012/05/silica-fracking>. **OSHA-2010-0034-1594**

NIOSH HF-Site 1, 2010. Hydraulic Fracturing Report for Site 1, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1541**

NIOSH HF-Site 2, 2011. Hydraulic Fracturing Report for Site 2, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1542**

NIOSH HF-Site 3, 2011. Hydraulic Fracturing Report for Site 3, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1543**

NIOSH HF-Site 4, 2011. Hydraulic Fracturing Report for Site 4, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1544**

NIOSH HF-Site 5, 2011. Hydraulic Fracturing Report for Site 5, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1545**

NIOSH HF-Site 6, 2011. Hydraulic Fracturing Report for Site 6, National Institute for Occupational Safety and Health. **OSHA-2010-0034-1546**

[NIOSH ECTB 233-107c] National Institute for Occupational Safety and Health, 2000. Control technology and exposure assessment for occupational exposure to crystalline silica: Case 07 – A grey iron foundry operation. **OSHA-2010-0034-0268**

[NIOSH ECTB 233-124c] National Institute for Occupational Safety and Health, 2000. Control Technology and Exposure Assessment for Occupational Exposure to Crystalline Silica: Case 24 – Brick manufacturing. **OSHA-2010-0034-0239**

[NIOSH EPHB 334-11a] National Institute for Occupational Safety and Health, 2008a. In-depth survey: Preliminary evaluation of dust emissions control technology for dowelpin drilling at Minnich Manufacturing, Mansfield, Ohio. **OSHA-2010-0034-1625**

[NIOSH RI 9689] National Institute for Occupation Safety and Health, 2012. Dust Control Handbook for Industrial Minerals Mining and Processing. Available online at: http://www.msha.gov/NIOSH/RI9689DustControl.pdf OSHA-2010-0034-1540

[NIOSH 528] National Institute for Occupational Safety and Health, 2007. Recirculation filter is key to improving dust control in enclosed cabs. NIOSH 2008-100. Technology News 528:1-2. **OSHA-2010-0034-0844**

[NIOSH 2009-123] National Institute for Occupational Safety and Health, 2009. Reducing hazardous dust in enclosed operator cabs during construction. **OSHA-2010-0034-0839**

[NOV] National Oilwell VARCO, 2012. Product web page for DCS Quad Dust Collector. National Oilwell VARCO, Houston, Texas. Available online at: http://www.nov.com/Well_Service_and_Completion/Frac_Sand_Handling_Equipment/Accessories_and_Addons/DCS_Quad_Dust_Collector.aspx OSHA-2010-0034-1532

NYSDEC, 2011. New York State Department of Environmental Conservation (NYSDEC). 2011. Revised draft: Supplemental generic environmental impact statement on the oil, gas and solution mining regulatory program – Well permit issuance for horizontal drilling and high-volume hydraulic fracturing to develop the Marcellus Shale and other low-permeability gas reservoirs.

http://www.dec.ny.gov/data/dmn/rdsgeisfull0911.pdf>. OSHA-2010-0034-1595

OSHA, 1987. Dust Control Handbook for Minerals Processing (1987) http://www.osha.gov/dsg/topics/silicacrystalline/dust/dust_control_handbook.html
OSHA-2010-0034-1596

OSHA 3362-05, Occupational Safety and Health Administration, 2009. Controlling Silica Exposure in Construction. OSHA Publication 3362-05. http://www.osha.gov/Publications/3362silica-exposures.pdf OSHA-2010-0034-1533

OSHA-NIOSH Alert, 2012. Hazard Alert: Worker exposure to silica during hydraulic fracturing. Joint publication by OSHA and National Institute for Occupational Safety and Health. June. **OSHA-2010-0034-1534**

OSHA SEP Inspection Report 108772377. OSHA Special Emphasis Program Inspection Report 108772377. **OSHA-2010-0034-0018**

OSHA SEP Inspection Report 122040488. OSHA Special Emphasis Program Inspection Report 122040488. **OSHA-2010-0034-0130**

OSHA SEP Inspection Report 300523396, OSHA Special Emphasis Program Inspection Report 300523396. Includes pages from related inspections 300530805, 302005772, and 302547674. **OSHA-2010-0034-0161**

PacWest Consulting Partners. 2012. PacWest Consulting Partners. Press Release for 3rd quarter Pumping IQ report.

http://pacwestcp.com/2012/09/us-hydraulic-fracturing-market-will-be-oversupplied-by-nearly-3-6-million-horsepower-by-the-end-of-2012-says-report-from-pacwest-consulting-partners/ OSHA-2010-0034-1597

Pentek-Squirrel III, 1997. Product literature for Squirrel III model scabbler. Bulletin M-205 Pentek USA, Decontamination Division.Rader, K. 2012. Fracking: the Ins and Outs from an EHS Perspective. Presentation to the National Capital Chapter of the Alliance of Hazardous Materials Professionals. Columbia, MD. October 18. **OSHA-2010-0034-1276**

Rader, K. 2012. Fracking: the Ins and Outs from an EHS Perspective. Presentation to the National Capital Chapter of the Alliance of Hazardous Materials Professionals. Columbia, MD. October 18. **OSHA-2010-0034-1535**

Rise and Grind, 2012. Rise and Grind. Oilfield Workers- Recession Proof. Accessed Nov 23rd, 2012.

<<u>www.riseandgrind.com/2011/09/28/oilfield-workers-recession-proof/</u>>Snawder, 2012a. **OSHA-2010-0034-1598**

Smith, G.E. and L. E. Voges, no date. Loading locomotive sanding bins with your feet on the ground. Kennedy/Jenks Consultants; Choteau, Montana. Available online at: http://www.mcilvainecompany.com/Decision_Tree/subscriber/Tree/DescriptionT extLinks/Filtered% 20exhaust.pdf OSHA-2010-0034-1536

Snawder, John. Phone Conversation between ERG and Snawder. May 18th, 2012. **OSHA-2010-0034-1664**

- Snawder, 2012c. Snawder, John. Phone Conversation between ERG and Snawder. September 10th, 2012. **OSHA-2010-0034-1663**
- Spears, 2011. Richard Spears, Spears & Associates. Oilfield Market Report Update. 2011. < http://www.spearsresearch.com/OMR/OMRUpdate.htm OSHA-2010-0034-1599
- Spraying Systems, 2012. Spraying Systems Co. "A Guide to Spray Technology for Dust Control." < http://www.spray.com/Literature_PDFs/B652_Dust_Control.pdf>
 OSHA-2010-0034-1600
- STEPS. National STEPS Network, 2012. National STEPS Network Respirable Focus Group Minutes and Notes June 26, 2012. Humble, TX. **OSHA-2010-0034-1537**
- Strella, 2012. Strella, Steve. Telephone conversation between John Eyraud of ERG and Steve Strella, Inside Sales Manager, ASGCO, November 29, 2012. **OSHA-2010-0034-1601**
- Suba et. al. 2012. Suba, Tarek, Farrukh Mohsen, Brian Murphy, Michael Garry, and Brun Hilbert. 2012. White paper: Methanol use in hydraulic fracturing fluids. Prepared for the Methanol Institute, Alexandria, VA.

 http://www.methanol.org/Environment/Resources/Environment/Methanol-Fracking-Fluid-White-Paper-Aug-2011.aspx. OSHA-2010-0034-1602

- Taylor, 2012. Taylor, Brian. Telephone conversation between John Eyraud of ERG and Brian Taylor, Customer Service Manager, Valley Rubber, LLC. November 20, 2012. **OSHA-2010-0034-1603**
- U.S. EPA. 2011a. Plan to study the potential impacts of hydraulic fracturing on drinking water resources. EPA/600/R-11/122. Washington, DC. **OSHA-2010-0034-1576**
- UWS. 2008. Environmental response plan for field operations. **OSHA-2010-0034-1605**
- UWS, 2010. Universal Well Services, Inc. (UWS). 2010. An overview of hydraulic fracturing. Presentation by David Ross.

 https://extranet.osha.gov/oshapedia/mediawiki/images/6/69/General_Overview_of_Hydraulic_Fracturing.pdf OSHA-2010-0034-1606
- Van Rooij, G.M., and J. Klaasse, 2007. Effect of additive in spray water of asphalt milling machine on the dust and quartz exposure. Tijdschrift voor toegepaste Arbowetenschap 1:3-5. Presentation available at:

 http://www.arbeidshygiene.nl/UserFiles/File/symposium05/28-4%20sessie%202H%20Joost%20van%20Rooij.pdf. OSHA-2010-0034-1217