
QuantGov: An Overview

Patrick A. McLaughlin, Oliver Sherouse, and Stephen Strosko

March 2019

THE QUANTGOV ARCHITECTURE 

Goals
The architecture used to create QuantGov has been designed to be modular, flexible, and exten-
sible, targeting both the programmer and the academic. We want a system where it is not only 
possible but straightforward to add in or swap out either collections of text or machine learning 
algorithms to create new and innovative projects. To encourage others to build on our system, 
we have decided to adopt an open-source strategy. In addition, our code is inspired by the Unix 
philosophy, which encourages the writing of small programs that work together.

Three Components
There are three components in the QuantGov architecture:

1. A corpus is the file structure and scripts that retain and manage a collection of text docu-
ments. A corpus will clean and organize text, generate metadata that describes the text, 
and provide a driver that scripts can use to read through the text in an ordered way. Some 
corpora also feature a download script that fetches the documents in an automated fashion 
from a website or a nonlocal source.

2. An estimator is the file structure and scripts that retain and manage a classification, regres-
sion, or unsupervised learning task. Estimators should evaluate and tune candidate algo-
rithms, train the chosen candidate, and provide a script that can perform an estimation 
on a given corpus.

3434 Washington Blvd., 4th Floor, Arlington, VA, 22201 • 703-993-4930 • www.mercatus.org

The views presented in this document do not represent official positions of the Mercatus Center or George Mason University.

http://www.mercatus.org
http://www.mercatus.org


2
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

3. A project combines corpora and estimators together to create a dataset. Projects provide a 
single point from which to run a corpus and estimator, and they may perform some finish-
ing or cleanup work on the final product.

For example, the RegData 3.0 project uses two corpora (one representing the US Code of Federal 
Regulations [CFR] for analysis and one representing the Federal Register to train the candidate 
algorithms) and five resulting estimators (one for each level of North American Industry Clas-
sification System [NAICS]).

Snakemake for Workflow Management
Corpora, estimators, and projects all use the program Snakemake to manage workflow. Snake-
make allows us to write rules that define how to create output files from input files. In addition, 
Snakemake allows users to create clear separation of tasks without mentally keeping track of every 
moving part—making the program perfect for managing QuantGov workflows.

Most importantly, Snakemake ties together the pieces of a project without having to hard-code 
information that connects the pieces. Therefore, Snakemake files can easily be generalized and 
used for multiple projects. In practice, Snakemake files for QuantGov projects tend to read in 
Python scripts that download and clean text while outputting the cleaned documents, resulting 
metadata, and analysis results.

The Snakemake files in the standard project are fully commented and can be taken as examples 
and used for custom projects. The Snakemake documentation also provides convenient tutorials.1 

Snakemake can be installed using pip or conda commands.

THE QUANTGOV CORPUS

Basic Structure
A corpus represents a set of documents and implements the corpus driver interface. The root 
directory for a corpus should contain the following:

• A makefile to manage the workflow of the corpus (Snakemake is recommended).

• A module named “driver.py” that implements the corpus driver interface (see below).

• A subdirectory named “scripts” containing the scripts needed to obtain, organize, and prepare 
the documents that make up the corpus, as well as to generate any metadata for the corpus.

• A subdirectory named “data” that holds any intermediate data generated during prepara-
tion of the corpus.



3
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

One file that each corpus should generate is a CSV file in the data directory named “metadata.csv.” 
This file should contain any additional information about individual documents that may be relevant. 
For example, the metadata.csv generated by the CFR corpus includes which agency and depart-
ment authored each individual CFR part, as well as the restriction and word count for each part. In 
essence, the metadata file contains any relevant data that are not determined by an estimator.

The Corpus Driver Interface
Each corpus should contain a python module named “driver.py.” This driver serves two important 
functions. First it specifies how the corpus should be indexed. An index is one or more values that, 
taken together, uniquely identify each document in the corpus. An index can be as simple as an ID 
number, or it can be more descriptive. For the CFR corpus, each document, representing a single 
subdivision called a part, is represented by three pieces of metadata: the year of the CFR edition 
that contains it, the title that contains it, and the part number.

The names of the components of the index are stored in a module-level constant named INDEX 
and are always a tuple,2 even when the index only has one component. Thus, for the CFR, INDEX = 
(‘year’, ‘title’, ‘part’), and for a simple corpus using a document numbering system, INDEX = (‘id’,). 

The second important feature of the driver is that it provides a function named “stream.” The 
stream function should return an iterable—in most cases, a generator—that emits the index value 
(or values) and text of each document in the corpus. Thus, the first item emitted by driver.stream() 
in the CFR corpus might be (1975, 1, 1), “Text of the 1975 CFR, Title 1, Part 1”.

Drivers may implement other features (such as only streaming a subset of documents based on 
the index), but these types of features are nonstandard, and estimators should not expect them 
as a matter of course.

Corpus Metadata
Relevant metadata will vary from corpus to corpus. Metadata can be generated from one of two 
sources: from the text itself or from additional external information. In the first case, the best 
practice is to write scripts that understand the corpus driver interface and can therefore be used 
in other corpora. An example of this approach can be seen in the “get_wordcount.py” and “get_
restriction_count.py” in the QuantGov generic corpus. In the second case, the external resources 
should be stored in a databank kept separate from the corpus itself, which the corpus scripts treat 
as read-only. An example of this approach is the agency attribution in the CFR corpus, which relies 
on a set of documents separate from the main CFR text.



4
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

Writing a New Corpus
The easiest way to write a new corpus is to fork the most similar official corpus (see below) and 
modify it to represent the relevant body of text. There are three principal problems to solve in the 
creation of a new corpus:

1. How can the text be obtained and, if necessary, translated to plain text? Plain text is text 
that is not computationally tagged, specially formatted, or written in code. It is normally 
stored in a TXT file.

2. What is the logical unit of analysis for the corpus?

3. How can the text be organized to most usefully reflect the unit of analysis?

The first problem will determine the scripts needed for downloading or otherwise obtaining and 
cleaning the text from its published format. The second will determine the index for the corpus 
and identify what makes an individual document appropriate to be served through the driver. The 
third will determine how the driver is actually implemented.

Official QuantGov Corpora
Official QuantGov corpora are branches of the corpus repository, available on GitHub.3 The generic 
QuantGov corpus is listed on the QuantGov platform page.4

Submitting a New Official Corpus
Complete corpora may be considered to be added as official QuantGov corpora. If accepted, a new 
branch will be created to which a pull request can be made on GitHub. Additions to the official 
corpora are at the sole discretion of the QuantGov team. Please email info@quantgov.org with any 
questions about adding a corpus to the official QuantGov corpora.

THE QUANTGOV ESTIMATOR

Basic Structure
An estimator is the file structure and scripts that retain and manage a classification, regression, 
or unsupervised learning task. The root directory of an estimator should contain the following:

• A subdirectory named “data” containing the results from the evaluation and training of 
the estimator, alongside any intermediate data. 
 

mailto:info@quantgov.org


5
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

• A subdirectory named “scripts” containing the scripts needed to evaluate candidate mod-
els, train the selected candidate using a trainer corpus, and analyze a target corpus using 
the trained model. 

• A snakefile to manage the workflow of the estimator. The snakefile should implement the 
estimator interface (see next section).

The Snakefile Interface
The snakefile for an estimator should use the following variables, defined in the “config.yaml” file 
(located in the root directory alongside snakefile):

• “trainer_corpus” should be a path to the corpus needed to evaluate and train the estimator.

• “folds” should be the number of times to fold the training data for testing.

• “scoring” should be the method for testing the trained estimator.

Writing a New Estimator
The easiest way to write a new estimator is to fork the most similar official estimator (see below) 
and modify it for the relevant task. Generally, the tasks for writing an estimator are the following: 

• Extract features from the training document.

• Test one or more algorithms for the estimation task, possibly tuning a set of parameters 
for each algorithm.

• Select an algorithm from the candidates tested and train it using the full trainer corpus.

• Construct a pipeline for feature extraction and analysis of other corpora, using the corpus 
driver interface.

• Additional help on training a custom estimator can be found in the official QuantGov docu-
mentation.5 It should be noted that while making a custom estimator may seem challeng-
ing, the QuantGov Python library and platform can automate most of the steps.

Official QuantGov Estimators
Official QuantGov estimators are branches of the estimator repository, available on GitHub.6 The 
generic QuantGov estimator is listed on the QuantGov platform page.7

Submitting a New Official Estimator
Complete estimators may be considered to be added as official QuantGov estimators. If accepted, a 
new branch will be created to which a pull request can be made. Additions to the official estimators 



6
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

are at the sole discretion of the QuantGov team. Please email info@quantgov.org with any questions 
about adding an estimator to the official QuantGov estimator.

THE QUANTGOV PROJECT

Basic Structure
A QuantGov project brings together corpora and projects to create a new dataset. The root direc-
tory for a project should contain the following:

• A subdirectory named “data” that holds data generated in the creation of the dataset.

• A subdirectory named “scripts” containing any scripts needed to clean, combine, or polish 
metadata and analyses from the corpora and estimators.

• A snakefile to manage the workflow of the project.

Writing a New Project
The easiest way to write a new project is to fork the most similar official project (see next section) 
and modify it for the relevant task. The snakefile for a project should make use of the estimator 
interface and of the corpus feature of providing a combined metadata file in the “file data/metadata 
.csv.” Projects should use the snakefile modularization to ensure that the desired files are created 
and up to date before putting them in their final formats.

Official QuantGov Projects
Official QuantGov projects are branches of the project repository, available on GitHub.8 The 
generic QuantGov project is listed on the QuantGov platform page.9

Submitting a New Official Project
Complete projects may be considered to be added as official QuantGov projects. If accepted, a new 
branch will be created to which a pull request can be made. Additions to the official projects are 
at the sole discretion of the QuantGov team. Please email info@quantgov.org with any questions 
about adding a project to the official QuantGov project.

mailto:info@quantgov.org
mailto:info@quantgov.org


7
MERCATUS CENTER AT GEORGE MASON UNIVERSITY

ABOUT THE AUTHORS
Patrick A. McLaughlin is the director of Policy Analytics and a senior research fellow at the Mer-
catus Center at George Mason University. His research focuses primarily on regulations and the 
regulatory process. McLaughlin created and leads the RegData and QuantGov projects, deploying 
machine learning and other tools of data science to quantify governance indicators found in fed-
eral and state regulations and other policy documents. The resulting database is freely available 
at QuantGov.org and has facilitated pioneering empirical research by numerous third-party users 
on the causes and effects of regulation.

Oliver Sherouse is a regulatory economist in the Office of Advocacy at the US Small Business 
Administration. He was previously the Policy Analytics lead in the Program for Economic Research 
and Regulation at the Mercatus Center. 

Stephen Strosko is a Python developer and project coordinator for Policy Analytics at the Mercatus 
Center. He specializes in regulatory research and, notably, has worked on the RegData, Quantgov, 
FRASE, and RegData Canada projects.

NOTES
1. Snakemake, “Installation,” accessed March 14, 2019, https://snakemake.readthedocs.io/en/stable/getting_started 

/installation.html.

2. W3Schools, “Python Tuples,” accessed March 14, 2019, https://www.w3schools.com/python/python_tuples.asp.

3. GitHub, “QuantGov / corpus,” accessed March 14, 2019, https://github.com/QuantGov/corpus.

4. QuantGov, “The QuantGov Platform,” accessed March 14, 2019, https://quantgov.org/tools/.

5. QuantGov Documentation, “Tutorial: Training Your First Estimator,” accessed March 14, 2019, http://docs.quantgov.org 
/tutorial/first_estimator/.

6. GitHub, “QuantGov / estimator,” accessed March 14, 2019, https://github.com/QuantGov/estimator.

7. QuantGov, “The QuantGov Platform.”

8. GitHub, “QuantGov / project,” accessed March 14, 2019, https://github.com/QuantGov/project.

9. QuantGov, “The QuantGov Platform.”

https://snakemake.readthedocs.io/en/stable/getting_started/installation.html
https://snakemake.readthedocs.io/en/stable/getting_started/installation.html
https://www.w3schools.com/python/python_tuples.asp
https://github.com/QuantGov/corpus
https://quantgov.org/tools/
http://docs.quantgov.org/tutorial/first_estimator/
http://docs.quantgov.org/tutorial/first_estimator/
https://github.com/QuantGov/estimator
https://github.com/QuantGov/project

	THE QUANTGOV ARCHITECTURE
	Goals
	Three Components
	Snakemake for Workflow Management

	THE QUANTGOV CORPUS
	Basic Structure
	The Corpus Driver Interface
	Corpus Metadata
	Writing a New Corpus
	Official QuantGov Corpora
	Submitting a New Official Corpus

	THE QUANTGOV ESTIMATOR
	Basic Structure
	The Snakefile Interface
	Writing a New Estimator
	Official QuantGov Estimators
	Submitting a New Official Estimator

	THE QUANTGOV PROJECT
	Basic Structure
	Writing a New Project
	Official QuantGov Projects
	Submitting a New Official Project




