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Regulatory Review Time and Pharmaceutical R&D 

Anna Chorniy, James Bailey, Abdulkadir Civan, and Michael Maloney 

Introduction 

We expect that pharmaceutical companies, like any economic agent, respond to incentives. In 

this paper, we look at the pharmaceutical industry’s research and development (R&D) behavior 

in response to the US Federal Food and Drug Administration (FDA) policies on drug approval. 

We examine the correlation between the time it takes the FDA to review and approve drugs 

and the number of drugs that currently are in manufacturers’ development pipelines, classified 

by disease category. The maintained hypothesis is that in ailment categories where it takes the 

FDA longer to approve drugs, fewer drugs will be developed. The magnitude of the extent to 

which pharmaceutical companies react to the regulatory delay in their choice of which 

conditions to target is an important policy question. 

The FDA and its counterparts in other countries face a tradeoff between preventing entry 

of unsafe drugs to the market and facilitating the entry of safe and effective drugs. Owing to the 

complex nature of pharmaceuticals and the limited accumulated knowledge of human 

physiology, determining whether a certain drug is safe is a challenging task. Assessing the 

efficacy of the drugs is even more so. This is why the FDA requires pharmaceutical companies 

to conduct costly and lengthy studies before drugs are allowed on the market. 

If the FDA applies stringent rules on safety and efficacy, many patients will be 

unnecessarily deprived of potentially successful treatment. On the other hand, if the rules are 

loose, unsafe and ineffective drugs are likely to enter the market and cause potentially fatal 

damage. Finding the optimum balance between those two effects is challenging. 



4 

The FDA is criticized from both sides of the field. Many argue that the FDA is too lax in 

regulating pharmaceutical companies and that it does not require them to undertake the necessary 

amount of clinical trials, potentially allowing too many unsafe drugs to the market. Others argue 

that the FDA requirements are too stringent and that the agency does not allow enough 

potentially beneficial drugs to the market owing to relatively minor side effects. Another critique 

is that the FDA requires excessive clinical trials and a prolonged period of approval processing 

of these drugs so that, in the meantime, many patients lose their lives or suffer unnecessarily (for 

example, Philipson et al. 2008). 

In this paper, we concentrate on measuring the responsiveness of pharmaceutical 

companies to the time taken by the regulatory process. We use a dataset of all prescription drugs 

approved by the FDA between 1999 and 2005. For each new drug application (NDA), we collect 

information on the time it took the FDA to approve it. To test our hypothesis on the 

responsiveness of drug manufacturers to review time, we sort NDAs into categories by their 

medical indications and link them to categories from the drug development pipeline data. 

Additionally, we look at the relationship between the burden of diseases (health consequences) 

and the R&D efforts. The hypothesis is that mortality and morbidity approximate the size of the 

market (Lichtenberg 2001, Blume-Kohout and Sood 2013). That is, the more lives lost and the 

more suffering a condition causes, the more incentive there is to develop a drug for the condition, 

all else constant. Finally, to control for the financial incentives of drug manufacturers, we use 

drug prices and all-payer spending for existing drugs as a rough proxy for potential 

market revenues. 

We find evidence that, in disease categories where the FDA has taken longer to approve 

drugs in the past, fewer drugs are currently in the development pipeline. Where review times 
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were three months longer, there is, on average, one fewer drug in development in that drug 

category. This suggests that pharmaceutical firms are responsive to this margin of regulation. 

Although it does not follow from our research that the review process should be shortened 

without further consideration, our conclusion should not be ignored in the policy debate. 

Drug Approval Process and Prior Research 

Under current regulatory structure, developing drugs and proving their safety and efficacy 

require substantial financial resources and time. Following a drug discovery, medications-to-be 

must go through preclinical trials. In this stage, the drug manufacturer develops potential 

remedies and tests them on animals. Preclinical trials last from one to six years (DiMasi, 

Hansen, and Grabowski 2003). If the results of those tests seem promising, the company 

submits an investigational NDA to the FDA. In case the application is approved, the company 

starts clinical trials on humans, which last approximately 10 years. The manufacturer then 

applies to the FDA for final market approval of the drug. If the drug is deemed both safe and 

effective by the FDA, it will be granted an approval. Otherwise, the FDA can request 

additional clinical trials or reject the application altogether. The FDA review time may be as 

short as two months, but it can also last five years or more. 

Several changes in the FDA legislation have provided opportunities for researchers to 

study the effects of the FDA review process. The first significant change occurred in response to 

the thalidomide tragedy of the late 1950s. Thalidomide was taken by pregnant women to treat 

morning sickness, and it was later discovered to cause birth defects in many children whose 

mothers had taken it during pregnancy. This episode greatly increased concerns among 

policymakers and the public about the safety and efficacy of drugs. Sam Peltzman (1973) 
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provides an excellent quotation by a former drug company’s medical director that summarizes 

this view on the drug industry: 

Industry spokesmen would have us believe that all research is on wonder drugs or better 
medicinal products. They stress that there are many failures for each successful drug. 
This is true. . . . The problem arises out of the fact that they market so many of their 
failures. . . . Most [industries] must depend on selling only their successes . . . [but] with a 
little luck, proper timing, and a good promotion program a bag of asafetida with a unique 
chemical side chain can be made to look like a wonder drug. The illusion may not last, it 
frequently lasts long enough. By the time the doctor learns what the company knew at the 
beginning it has two new products to take the place of the old one. (Administered Prices: 
Drugs 1961.) 

In 1962, the Kefauver Harris Amendment to the Federal Food, Drug, and Cosmetic Act required 

premarket approval of all drugs by the FDA; the agency was made responsible for ensuring the 

safety and efficacy of the drugs in the market. The main rationale for the amendment was that 

pharmaceutical companies’ practice of developing minor variants of existing drugs and selling 

those at higher prices was an act of patent protection that was believed to result in deadweight 

loss in the form of higher R&D and marketing costs. The amendment required pharmaceutical 

companies prove that new drugs are “effective” in addition to being “safe.” This new 

requirement significantly increased premarketing costs to drug companies owing to higher levels 

of information requirements, which must be obtained from costly clinical trials. It also prolonged 

the FDA approval times. These effects were found to be welfare reducing. For example, 

Peltzman finds that the effectiveness standard leads to reduced innovation and that this cost to 

consumers greatly exceeds the benefit of preventing ineffective drugs from entering the market 

(Peltzman 1973). He concludes that the amendment reduced social welfare by slowing 

down innovation. 

A more recent statute, in contrast, shortened the regulatory review process. The 

Prescription Drug User Fee Act (PDUFA) of 1992 required the FDA to speed up its procedures 

in exchange for user fees paid by pharmaceutical firms. The PDUFA was renewed in 1997, 2002, 
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and 2007, with minor changes. Philipson and his coauthors (2008) find that the 1992 and 1997 

versions of the PDUFA reduced review times by 6 to 7 percent and 3 to 4 percent per year, 

respectively. A substantial portion of these cuts in the length of the review time was because of 

the availability of increased FDA resources from user fees (Olson 2004). These payments 

currently fund 40 percent to 50 percent of the agency’s new drug reviews (Olson 2013). 

However, there have been some concerns about the agency’s integrity given its new financing 

structure. Many believe that an FDA dependent on industry user fees would ease up on approval 

standards; or, even if there was no intentional easement on the standards, speeding up the process 

would naturally increase the number of erroneous decisions (Olson 2002). 

Several studies look at the effect of the PDUFA on drugs safety. Michael Friedman and 

his coauthors (1999) analyze four drug withdrawals from the market after the PDUFA became 

effective and reject the hypothesis that reduced review processing time was the reason for the 

drugs’ removal. Ernst Berndt and his coauthors (2005) also find no effect of the PDUFA on the 

rate of drug withdrawals. K. I. Kaitin (2005) reaches a similar conclusion. 

Since drug withdrawals take place only in extreme cases, some researchers analyzed 

other proxies for the safety of the drugs as well. The FDA maintains a database of adverse drug 

reactions. Physicians and patients can report adverse drug reactions to the FDA, and the agency 

uses that information for withdrawal or label change decisions. Thus, data on adverse drug 

reactions may potentially represent drug safety. Henry Grabowski and Y. Richard Wang (2006) 

do not find any relationship between FDA review speed and adverse effects; however, in a series 

of papers, Mary Olson (2002, 2004, and 2008) concludes that faster reviews are associated with 

increased adverse drug reactions. 
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On the other hand, benefits of increased speed of the FDA review process are not well 

studied. Shortened review procedures have static and potentially dynamic gains. Static gains are 

straightforward in the sense that performing drugs enter the market sooner; patients have access 

to those beneficial drugs earlier, so consumer surplus rises. Moreover, since the pharmaceutical 

companies can start marketing earlier, their cash flow is positively affected. Taking the cost of 

capital in pharmaceutical markets as 11 percent (Grabowski et al. 2002), gaining market access 

even several months earlier can affect manufacturer profit substantially. Increases in producer 

surplus may encourage new R&D and result in additional novel drug introductions. This would 

increase the consumer surplus even further. Even relatively small increases in drug R&D can 

improve social welfare substantially (Lichtenberg 2006, Lichtenberg 2011, and Civan and 

Maloney 2009). 

The first comprehensive study on the benefits of reduced review time was carried out by 

Philipson and his coauthors (2008). Using US drug sales data, they estimate the life-cycle sales 

projections to evaluate private and social surpluses associated with pharmaceutical drugs. They 

calculate a welfare effect of the PDUFA using earlier work by Berndt and his coauthors (2005) 

that showed that the PDUFA reduced the review period by 5 percent to 6 percent per year. 

Philipson and his coauthors (2008) find that the PDUFA improved consumer welfare by $7 

billion to $20 billion, producer surplus by about $7 billion to $11 billion, and social welfare by 

$14 billion to $31 billion. Their estimate of the upper bound of damages owing to unsafe drugs 

slipping into the market after the PDUFA was enacted is substantially smaller than the estimated 

benefits. Note that Philipson and his coauthors (2008) analyze static gains only. Numerous 

papers have shown that increases in the potential profits boost R&D investments as well (Blume-

Kohout and Sood 2013). 
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The research closest to ours was done by John Vernon and his coauthors (2009). They 

analyze the influence of FDA approval times on pharmaceutical companies’ R&D investments, 

taking advantage of the speed-up in review times following the passage of the PDUFA in 1992. 

They use survey data on firm-level R&D expenditures of seven large US-based pharmaceutical 

companies from 1990 to 1999. They find that a 10 percent decrease in FDA approval times 

results in an increase in R&D spending of 0.9 percent to 1.7 percent. Vernon and his coauthors 

(2009) average the FDA approval times for the entire set of drugs in a given year. As a result, 

their analysis is based on a very small number of observations (nine). 

We contribute to the earlier research by focusing on a cross-sectional rather than time-

series variation. Previous work took advantage of plausibly exogenous policy changes that 

slowed down (Peltzman 1973) or sped up (Vernon et al. 2009) FDA review times. But these 

papers look at how a single change in policy affected the total number of drugs in the pipeline, 

making it difficult to pin down whether changes in subsequent drug development were truly 

owing to changes in review times rather than other changes that happened to occur around the 

same time. By using cross-sectional data on review times and the drug pipeline across hundreds 

of drug categories, we bring to bear new information that exploits the variation in the time the 

FDA takes to review drugs in different disease categories, controlling for an average amount of 

effort firms put into proving that a drug is safe and effective.  

To do so, we collect novel information on the length of the drug application paperwork 

that includes details on safety and efficacy reviews as provided by the FDA. A concern 

undermining our empirical strategy is the possibility that there might be unobserved underlying 

reasons for companies to develop fewer drugs in a given category that also require the FDA to 

review these drugs for a longer time period. We believe the complexity and amount of NDA 
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paperwork allows us to approximate the cost of drug development and to alleviate the 

endogeneity problem. 

Methodology 

This paper investigates the effects of the delay caused by the regulatory process on 

pharmaceutical R&D. We measure R&D by counting the drugs in the development pipeline. 

Drugs in the development pipeline are then organized by medical indications, or the conditions 

these drugs are supposed to treat. We match medical conditions from the pipeline data to the 

conditions indicated for the approved drugs. Regulatory review time, or delay from the drug 

manufacturers’ standpoint, is the time NDAs were under review by the FDA for the drugs 

approved between 1999 and 2005. 

Although regulatory delay occurs at various stages of the drug development process, we 

focus on the time between the day a drug manufacturer filed an NDA and the day the drug was 

approved by the FDA. This period follows Phase III of trials, when most drug tests are concluded 

and the company has amassed sufficient evidence that its new molecule is safe and has beneficial 

therapeutic effects. This period of time is entirely within the purview of the FDA. Figure 1 shows 

the process timeline.  



Figure 1
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Data on drugs in the development pipeline come from the Adis R&D Insight database by 

Wolters Kluwer Health (2006). This database includes medications currently in clinical trials or 

at the FDA for review, and it allows search by indication and by status for drugs in the FDA 

application process. Drugs reported in Adis R&D Insight first appear in the data with the early 

laboratory reports and continue through to world market launch.2 For the drugs in the pipeline 

measure, we include drugs in Phase I through Phase III of clinical trials and for which an NDA 

was filed. Our use of 2006 data allows some time for firms to incorporate earlier (1999–2005) 

review times in their decisions about which candidate drugs to push forward.  

We collapse some of the categories to facilitate the match of the pipeline data to the 

current drugs data. For instance, the database shows five different indications for HIV-related 

health conditions: HIV infections, HIV infections treatment, HIV-1 infections, HIV-2 infections, 

and HIV-associated nephropathy. We sum all the drugs listed in these categories. As a result, we 

end up with a dataset of 721 indication categories and 4,621 drugs in the pipeline. The condition 

categories exhibit the vagaries of drug development. Some categories are sweepingly general: 

cancer (102 drugs in development), solid tumors (267). Others are fairly specific: breast cancer 

and prostate cancer (each 106). Some are even more specialized: acute hypoxia (1). 

The FDA approves drugs for specific indications. Both our datasets, drugs in the pipeline 

and existing drugs, list these indications, often more than just one. These indications do not map 

directly into any single comprehensive list of medical conditions. They are descriptive categories 

lacking a formal coding system. To standardize the descriptive indications and match them 

                                                 
2 The Adis R&D Insight database is described in an earlier paper (Civan and Maloney 2009). The database is 
compiled from information collected from many sources: direct contact with companies involved with research and 
development; information collected from drug and therapeutic literature published in medical and biomedical 
journals; attendance at international meetings and conferences; company annual reports; news services; and press 
releases. Highly regarded, the Adis R&D Insight database is one of the leading data sources for professionals and 
researchers in pharmaceutical R&D, universities, and healthcare institutions. 
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between the pipeline data and existing drugs data, we turn to one of the most comprehensive lists 

of medical conditions: ICD-10 codes. ICD-10 codes have multiple levels, where conditions are 

aggregated into broader categories when possible. Specifically, all medical conditions are 

classified into 22 “chapters.” These are the broadest categories. For example, the “G” chapter has 

all “Diseases of the Nervous System,” while chapter “J” has all “Diseases of the Respiratory 

System.” These chapters, in turn, have multiple blocks that define more narrow conditions.  

Naturally, if we cross-walk all the indications from the drugs in the pipeline to the 

narrowest ICD-10 blocks, they are likely not to have an exact match among existing drugs. 

However, matching based on the narrower categories would be more precise. We select four-

digit codes as the most refined level at which to perform matching. For example, attention-deficit 

disorder with hyperactivity would be coded as F90.1; F90 (a less detailed code) would denote 

“Attention-deficit disorders” in general; and F90–F98 would stand for “Behavioral and 

emotional disorders with onset usually occurring in childhood and adolescence.” An ever more 

aggregated ICD-10 chapter in this case is “Mental, Behavioral, and Neurodevelopmental 

Disorders” (F01–F99). Suppose the drug pipeline contains a drug with an indication for 

“Oppositional defiant disorder.” The most detailed ICD-10 code for that is F91.3. Matching this 

code to existing ADHD drugs (F90.1) will not be possible. However, at a higher level of 

“Behavioral and emotional disorders with onset usually occurring in childhood and 

adolescence,” we will have a match of a drug in the pipeline to existing ADHD drugs market 

characteristics. In other words, using broader ICD-10 categories produces more matches but uses 

a more lax definition of the “market.” 

We code all these levels and create an indicator that shows on what level of detail the 

pipeline category matches an existing drug category. We assign each category the average 
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review time of the existing drugs in the category. The closer the match between the pipeline and 

existing drug category, the better, but using only perfect matches leaves us with fewer 

observations. Broader matches allow for the possibility that pharmaceutical companies consider 

review times for previous drugs with similar indications or with indications that are not the 

primary use of a drug, not only the exact same specific primary indication. For example, Abilify 

is counted only toward the schizophrenia category when using perfect matching, as this was the 

only indication it was originally approved for. When using broader matching, it may count 

toward related ICD-10 categories, such as schizoaffective disorder, or broader categories, such as 

psychotic disorders. 

We choose the three-digit ICD-10 level for our main results and report our summary 

statistics (table 1) using a relatively narrow match. Following our main analysis, we run 

robustness checks using all other levels of detail (results are provided in appendix table 1). 

Closer matches yield larger but less precisely estimated coefficients for the effect of review time 

on the number of drugs in development, while broader matches yield smaller but more precisely 

estimated coefficients, so that the level of the match has little effect on statistical significance. 

Larger point-estimates for closer matches suggest that drug manufacturers, indeed, are guided 

more by the review times in the specific indication category in which the drug is being 

developed. Following earlier work, we use proxies to control for the demand conditions that may 

influence R&D decisions. They include the number of existing drugs in each category; the 

severity of the medical condition as measured by morbidity and mortality; and drug prices and 

all-payer expenditures collected from the Medical Expenditures Panel Survey (MEPS) 

prescription drug files between 1999 and 2010. We also add a novel control variable to account 
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for the difficulty and cost of developing a drug in a particular category by collecting the 

information on the length of the drug application paperwork. 

Figure 2 shows the relationship between review times and number of drugs in the 

pipeline. It is negative, as expected; that is, indication categories with longer review times in the 

1999–2005 approval data show fewer drugs in the pipeline in 2006. This correlation is quite 

noisy, however, since many other factors likely influence the number of drugs in the pipeline, 

factors we aim to control for. 

Figure 2. Review Times 1999–2005 and the Drug Pipeline in 2006 

 

Sources: Pipeline data are from Wolters Kluwer Health, “Adis R&D Insight,” 2006, 
https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight. Review time data are from 
Center for Drug Evaluation and Research (US), Drugs@FDA (Washington, DC: Food and Drug Administration, 
2009), www.fda.gov/drugsatfda. 
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Data on drug prices are notoriously hard to obtain owing to the lack of transparency 

surrounding the issue. We use two very different sources in our attempts to get around this issue. 

First, we use Medco (now Express Scripts), which is the largest pharmacy benefit manager 

(PBM) in the United States and serves as PBM for many health insurance plans, including some 

universities. Insurance plans allow their enrollees to view the prices of drugs available under the 

plan. We collected retail prices for 144 of the 171 drugs in the FDA approval dataset. The 

process of assigning prices to drugs is somewhat complex given that frequency of use varies and 

many drugs come in multiple forms and strengths; those details are provided in the appendix. 

Second, we collect the average wholesale price from the Red Book, a product of Truven Health 

Analytics that contains the latest drug product pricing and packaging information on prescription 

and over-the-counter drug products. These prices, however, are not matched to the drug dosing 

and frequency-of-use information as is done for Medco prices (see the appendix). As an 

alternative to drug prices, we also gather data on total spending by drug from all payer sources 

(out-of-pocket, Medicaid, private insurance, etc.) from the MEPS in 1999–2010 to serve as 

proxy for the potential revenue that new drugs can fetch (Lichtenberg 2014). 

Some pipeline indication categories have multiple existing drugs approved for treatment. 

The number of existing drugs in a pipeline category arguably signals the size of the market for 

drugs of that kind. At the same time, the more existing drugs there are in a given category, the 

stronger the competitive pressure on price and the lower the price a new drug may fetch. How 

these forces balance out is an empirical question. Even so, the number of existing drugs in a 

pipeline category is likely to be related to the number of drugs in development. 

Finally, we measure the severity of health consequences of each disease category with the 

2004 World Health Organization (WHO) data on morbidity and mortality. WHO constructs data 
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for most of the countries of the world and for 128 disease categories. The matching process 

between WHO data and pipeline indication categories is not straightforward. WHO categories 

include war, mayhem, and accidents, which are largely not relevant for our purposes.3 Also, 

WHO categories do not perfectly match our pipeline categories even for illnesses linked to parts 

of the human anatomy. In general, WHO categories are broader. As a result, we find that many 

of the pipeline categories fit into the same WHO category. Also, some pipeline categories fit into 

multiple WHO categories. As a result, we match 85 WHO categories to 633 pipeline categories. 

In earlier research, we showed that drug development by disease is positively related to 

disease incidence only in the United States. Here, we include both measures provided by the 

WHO: morbidity and mortality. The WHO morbidity measure, called the disability-adjusted life 

year (DALY), captures the years of life lost to illness in addition to death. The WHO DALY 

statistic evaluates the number of years of life spent in illness. For instance, if the average 

migraine sufferer has six attacks a year that last three days each, that is 18 days per year of 

healthy life lost, or 5 percent of a person-year. Multiplying this by the number of people 

suffering from the disease obtains the total number of person-years lost. 

We analyze the determinants of the number of drugs in the development pipeline using a 

linear regression of the form 

NDrugsPipelinec = α + β*lnReviewTimec + Controlsc*γ + ec, 

where c represents predetermined pipeline categories (defined according to medical criteria of 

the diseases and conditions that drugs treat). Drugs in the pipeline is the dependent variable; it 

is the number of drugs that are undergoing clinical trials or that have an NDA submitted for 

review as of 2006. Available controls include mortality, morbidity, page length of FDA review 

                                                 
3 Things like accidents could be relevant, if the accident were related to a particular part of the human body. There 
are drugs to treat things like brain trauma and the like. However, the WHO accident categories are based on the 
cause of the accident, such as traffic or drowning. 
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paperwork, priority and orphan review status, and the number, price, and reported expenditures 

on the approved drugs.  

Figure 3 shows the kernel density graphs of the number of drugs in the pipeline and 

review times, before and after taking natural logs. Both variables are right skewed, implying 

that logs may be appropriate. In our main specification, we use the natural log of review time  

Figure 3. Distributions of Review Times and Number of Drugs in Pipeline 

 

 

Note: The figures use 216 pipeline categories matched to the existing drugs at the preferred quality match level; that 
is, the number of drugs in the pipeline distribution is conditional on there being any existing drugs in a condition 
category.  
Sources: Pipeline data are from Wolters Kluwer Health, “Adis R&D Insight,” 2006, 
https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight. Review time data are from 
Center for Drug Evaluation and Research (US), Drugs@FDA (Washington, DC: Food and Drug Administration, 
2009), www.fda.gov/drugsatfda. 
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but not the number of drugs in the pipeline, as we believe this is the easiest specification to 

interpret (how percentage changes in review time are associated with the number of drugs in the 

pipeline); log-log and level-level specifications yield qualitatively similar results. 

Data and Results 

Table 1 shows summary statistics for the dependent variable and the set of controls. The 

number of drugs in pipeline disease categories varies significantly. On average, for the 216 

included categories, there are about nine drugs being developed in a category. 

Table 1. Summary Statistics 

Variable 
Number of 
observations 

Mean 
Standard 
deviation 

Minimum  Maximum 

Number of drugs in 
pipeline 

216  9.6  17.8  1.0  107.0 

Review time, days  216  466.2  270.5  46.0  1,268.0 

Disability‐adjusted life 
year 

192  593.7  455.9  0.0  2,495.0 

Mortality  192  52.2  60.9  0.0  327.8 

Average Wholesale Price  214  2,070.0  4,695.0  15.0  25,055.0 

Spending (MEPS)  216  131,784.0  247,470.0  396.7  1,484,689.0 

Review paperwork, pages  213  604.2  230.6  148.0  1,271.0 

Sources: Author calculations using data from Wolters Kluwer Health, “Adis R&D Insight,” 2006, 
https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight; Center for Drug Evaluation 
and Research (US), Drugs@FDA (Washington, DC: Food and Drug Administration, 2009), 
www.fda.gov/drugsatfda; World Health Organization, The Global Burden of Disease: 2004 Update, 2008, 
https://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf; Medco, “Price a 
Medication,” 2010, https://www.express-scripts.com/medco/consumer/homearticle.jsp?pageid=JP_Medication 
_Pricing&lh=; Truven Health Analytics, “RED BOOK Online,” 2009, https://www.micromedexsolutions.com 
/micromedex2/4.34.0/WebHelp/RED_BOOK/Introduction_to_REDB_BOOK_Online.htm; and Medical 
Expenditure Panel Survey (MEPS) (Rockville, MD: Agency for Healthcare Research and Quality, 2018), 
https://www.ahrq.gov/data/meps.html. 

 
 
 
In the FDA-supplied data, the average review time for drugs approved after 1999 is 466 

days, or about 1.3 years, but there is wide variation in how quickly drugs are approved. In our 

https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight
https://www.who.int/healthinfo/global_burden_disease/GBD_report_2004update_full.pdf
https://www.express-scripts.com/medco/consumer/homearticle.jsp?pageid=JP_Medication_Pricing&lh=
https://www.express-scripts.com/medco/consumer/homearticle.jsp?pageid=JP_Medication_Pricing&lh=
https://www.micromedexsolutions.com/micromedex2/4.34.0/WebHelp/RED_BOOK/Introduction_to_REDB_BOOK_Online.htm
https://www.micromedexsolutions.com/micromedex2/4.34.0/WebHelp/RED_BOOK/Introduction_to_REDB_BOOK_Online.htm
https://www.ahrq.gov/data/meps.html
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data, it takes from 46 days (Eloxatin) to 1,827 days (Prialt) for a drug to complete the review 

process. Likewise, the average review is 604 pages long, but review length ranges from 148 

pages to 1,271. The average drug in the sample is about seven years old, as of December 2009. 

We collect prices for drugs that were in the market in 2009. As discussed, price is 

measured as the cost of a daily dose to the average patient (Medco prices) and as a raw wholesale 

price (Red Book). The mean price is $189, but this varies from a few cents per day to over 

$5,000 daily. The upper end of the distribution is populated by several cancer and HIV drugs. 

The most expensive drug in the sample is Fuzeon, an HIV treatment, which is $5,269 per day. 

The monthly, annual, or lifetime cost of the medication will vary by how often and how long the 

drug is administered. 

WHO data on morbidity and mortality are mapped into the pipeline disease categories. 

On average, there are 52,000 deaths and 593,000 DALYs lost to disease per category. 

Table 2 shows a partial list of drug-pipeline categories that can be matched to our 

approved drugs. The table shows the top 25 of 171 pipeline categories based on the number of 

drugs in development. As mentioned, the categories vary widely in terms of the specificity of the 

disease. The diseases in the top 25 are generally well known. 

Table 2. Drug Counts by Indication Categories 

Drug indication  Number of drugs 
 Pipeline 2006 Approved 1999–2005 

Type 2 diabetes mellitus 107 5 

Breast cancer 106 3 
Prostate cancer 106 2 
Cancer (general) 102 1 
Non-small cell lung cancer 99 2 

(continued on next page)  
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Drug indication Number of drugs 
Pipeline 2006 Approved 1999–2005 

Rheumatoid arthritis 77 1 
Colorectal cancer 67 1 
Alzheimer’s disease 65 3 
Asthma 56 1 
Multiple myeloma 53 1 
Acute myeloid leukemia 51 2 
HIV infections 46 8 
Renal cancer 46 1 
Schizophrenia 45 2 
Depression 41 1 
Chronic obstructive pulmonary disease 36 6 
HIV-1 infections 33 8 
Chronic lymphocytic leukemia 32 1 
Lymphoma 31 2 
Obesity 28 1 
Parkinson’s disease 28 2 
Type 1 diabetes mellitus 26 2 
Hypertension 25 2 
Migraine 25 3 
Myelodysplastic syndromes 24 1 

Note: The table shows the top 25 diseases by the number of drugs in the development pipeline.  
Sources: Pipeline data are from Wolters Kluwer Health, “Adis R&D Insight,” 2006, 
https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight. Approved drug data are from 
Center for Drug Evaluation and Research (US), Drugs@FDA (Washington, DC: Food and Drug Administration, 
2009), www.fda.gov/drugsatfda. 

 
 
 
Table 3 reports the main results. We regress the number of drugs in the pipeline by 

indication category on a set of covariates. The coefficient on the FDA review time is negative 

and statistically significant in all specifications. The negative coefficient estimate supports our 

hypothesis that drug manufacturers are sensitive in their R&D decisions to the length of the 

review process. A doubling of the review length is associated with approximately six fewer 

drugs in the development pipeline in that disease category. This implies that a one-sixth increase 

https://www.springer.com/gp/adis/products-services/adisinsight-databases/r-d-insight
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in review length is associated with approximately one fewer drug in development; with a mean 

review length of 466 days, this implies that each 78 extra days of review is associated with one 

fewer drug in development. Perhaps surprisingly, the control variables all tend to have no 

statistically significant association with the number of drugs in the pipeline.4 

Table 3. Predictors of the Number of Drugs in the Pipeline 

  (1)  (2)  (3)  (4)  (5)  (6) 

Ln (review time)  −6.39***  −5.72**  −6.47***  −6.66***  −8.23**  −6.97** 

  (2.37)  (2.31)  (2.44)  (2.36)  (3.64)  (3.25) 

Morbidity  0.006    0.006  0.006  0.006  0.006 

  (0.005)    (0.005)  (0.005)  ((0.005)  (0.005) 

Mortality    0.03 
(0.03) 

       

Ln (Red Book price)      0.02    0.52  0.707 

      (0.86)    (0.11)  (1.09) 

Spending ($thousands)        0.009 
(0.008) 

   

Priority status          −4.21  −3.34 

          (5.32)  (5.07) 

Orphan status          −1.10  −2.12 

          (4.26)  (4.06) 

Review pages            −.008 
(.006) 

Intercept  44.6  42.9  44.9  17.5  54.8  50.7 

  (14.2)  (14.0)  (16.3)  (22.6)  (25.9)  (24.2) 

Number of observations  192  192  190  192   190   187 

Notes: The dependent variable is the number of drugs in pipeline. Morbidity is the WHO DALY measure divided by 
1000. Robust standard errors are in parentheses. ** represents p < 0.05; *** represents p < 0.01. 

 
 
 

                                                 
4 Table A2 considers some alternative control variables and finds that in some specifications, higher morbidity and a 
higher number of approved drugs in a disease category lead to more drugs in the pipeline.  
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One key limitation of these results is the possibility that FDA review times are 

endogenous to new drug development. We take some comfort from the DiMasi, Milne, and 

Tabarrok (2014) study of how FDA review times vary across divisions, showing that much of the 

variation is possibly owing to exogenous differences in staffing and efficiency.5 Because we are 

studying the effect of past review times on future drug development, we can at least rule out 

direct reverse causation of future drug development on past review times. However, it is possible 

that review times and drug development are jointly determined by a third variable, such as the 

scientific and technical complexity of a drug class. High complexity could lead to both longer 

reviews and fewer drugs in a category. Alternatively, if both drug companies and the FDA 

prioritize drugs that are expected to have a larger medical impact, this could lead to shorter 

reviews in categories with more drugs. We have attempted to account for these avenues of 

endogeneity by including covariates that measure medical importance (morbidity, mortality, and 

FDA priority status) and medical, pharmacologic, and clinical complexity (using the page length 

of the FDA review paperwork). Although our approach is limited in its ability to account for 

underlying endogeneity, we believe these factors constitute the most important ones that 

threaten identification. 

                                                 
5 As their introduction states, 

The Neurology division took the most time (nearly 600 days), almost three times as long as the approval 
period for the Oncology and Anti-Viral divisions, both of which clocked in at under 200 days. These 
differences are suggestive of big gaps in productivity, but a number of other factors could be at work to 
explain the wide disparity in timing. Speedier approvals might depend on one division having fewer 
problems with its applications, for instance, or more resources than another. But even when those factors, 
along with safety considerations, were taken into account, the reason for the gaps still appeared to be 
varying levels of productivity; that is, faster divisions used their time and resources in a more efficient and 
effective way than slower divisions did. 
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Conclusion 

We have investigated the effect of the regulatory delay on the propensity of companies to 

engage in pharmaceutical R&D for a given medical condition. We compare the number of 

drugs in the development pipeline to the time it took the FDA to approve existing drugs used to 

treat these conditions. Stratifying drugs by disease allows us to look at how existing drugs used 

to treat these diseases fare economically, as well as to gauge the potential size of the market. 

Controlling for other factors, we find a substantial and statistically negative relation between 

drug development and the time the FDA takes to process NDAs. Cross-sectional analysis of 

drug development by indication category enables us to make use of much greater variation in 

review times than previous time-series work could. This methodology contributes to the 

literature by introducing a novel measure of the cost and complexity of drug development by 

analyzing the paperwork submitted to the FDA as an NDA. It allows us, to some degree, to 

alleviate potential endogeneity problems. 

These results suggest that firms are sensitive to regulatory delay. If review time is 

prolonged by about three months, there is, on average, one fewer drug in development in each 

drug category. This alone does not constitute a policy recommendation. However, it indicates 

that the time efficiency of FDA review is not something to be ignored in policy debates. 
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Appendix: Constructing Price 

Drugs come in multiple forms and strengths, and our dataset contains 353 observations on 

price for 144 drugs. To average different prices for each drug and to compare prices across 

drugs, we normalize price based on the daily dose that is normally prescribed for the average 

patient.6 That is, if the reported price is $59 for 30 pills of 50mg, we calculate the price per 

milligram, which is 4 cents. We then find the recommended dose per day, say 200mg, and 

multiply our price per milligram by the daily dosage, which yields a price per day for the 

medication of $7.87. In other words, 

Price per package 
Price per day = × Daily dosage (1) 

Total amount of active ingredient in package 

Our price measure represents the cost of a daily dose of the medicine. Other datasets 

provide information on drug prices for a 30-day supply, but this approach cannot be uniformly 

applied when the drug is not administered in such a fashion.7,8 

                                                 
6 All the information on dosages comes from Nursing 2008 Drug Handbook (2008) and RxList (2018). The latter is 
owned and operated by WebMD, an online medical resource dedicated to offering detailed and current 
pharmaceutical information on brand and generic drugs. Both sources provide information on dosages according to 
the severity of a disease, its stage, and particular characteristics of the patient (such as age, weight, etc.). We average 
the maximum dosage per day and minimum dosage per day if there is no “recommended target dose.” Otherwise, 
the target dose is used. For cases when calculation of a dose requires patient characteristics, we use those for an 
average person: average adult weight of 70kg and average body area of 1.82m2. We also specify average weights for 
relevant children ages. For drugs that are taken once a month on a monthly cycle, we divide by 30 to get the daily 
price. However, for drugs that are taken just once, we use the full price as the daily price. Some other assumptions 
include the calculation of the amount of a solution or cream applied each time. For example, for eyedrops we 
assume that one drop is equal to 0.05ml. 
7 If price data were not available from Medco, we searched other online price sources, such as drugstore.com, and 
used those prices if available. Some drug prices are not available because the drug is distributed only through 
hospitals. In other cases, the drug has been discontinued or otherwise taken off the market. 
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While this method gives a consistent measure of price per day across strengths and forms 

and even across drugs, drugs vary according to the frequency of their administration. Because 

our interest is in obtaining a proxy for the revenue stream associated with a drug, we assign 

drugs to four different groups based on the frequency with which they would be taken over the 

life of an average patient. Frequency I labels drugs that are taken for a very short period of time, 

such as drugs treating infections that rarely return. Frequency II is for drugs that are taken for a 

longer period of time but are not expected to be repeated. This group includes cancer drugs, for 

example. Frequency III is for drugs that are taken intermittently but consistently for a long period 

of time, such as allergy drugs and drugs for the treatment of asthma. Finally, Frequency IV 

includes drugs that are taken frequently, maybe daily, over the patient’s life. Diabetes drugs and 

some forms of heart medication fall into this group.  

The primary purpose of these groups is to expand the daily price information to obtain a 

sense of the revenue that may be obtained from a particular drug. Importantly, the frequency 

variable is not a categorical variable in this case. It serves as a cardinal relationship between each 

frequency type. We use this feature in building the regression; that is, a combination of price per 

day and frequency is our proxy for the revenue stream from an existing drug. 

                                                                                                                                                             
8 We compare our prices to those available from Medicare Part D data. Medicare reports data from Part D insurance 
plans on the “30-day” cost of each drug. We are able to match 161 of our 353 price observations to Medicare data. 
For these, there is a general similarity of prices. It appears that, by and large, Medicare prices assume that dosages 
are associated with strengths, which we do not, but this does not impact our analysis because we average over forms 
and strengths. It is also clear that Medicare prices are not “30-day” prices when the drug is not administered in this 
fashion, and when drugs come in different forms, the comparability of different Medicare prices for the same drug is 
questionable. While there are a few substantial differences between our prices and Medicare reported prices, we are 
confident that our methodology is fundamentally correct and that one must use care in employing the Medicare 
prices. 
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Table A1. Predictors of the Number of Drugs in the Pipeline with Narrower and Broader 
Drug Category Matching 

Broadness of match (1) (2) (3) (4) (5) (6) (7) 

Ln (review time)  −11.5  −10.5  −8.23**  −5.41**  −5.25**  −5.19**  −4.01** 

   (7.14)   (5.82)   (3.64)   (2.18)  (2.19)   (2.16)   (2.03) 

Number of observations     59     89   190    437  457       471      629 

Notes: The dependent variable is the number of drugs in the pipeline. Matching goes from narrowest on the left 
(only including definite matches) to broadest on the right. Broader matches yield more observations because they 
allow more drugs in the pipeline to be matched to an existing drug and so assigned a review time; insisting on a very 
narrow or precise match means that most pipeline drugs have no existing drug review time to match to and so are 
dropped. Results for control variables are omitted; controls included morbidity, price, and priority and orphan status. 
Morbidity is the WHO DALY measure divided by 1000. Robust standard errors are in parentheses. ** represents p < 
0.05. 

Table A2. Additional Predictors of the Number of Drugs in the Pipeline 

 (1) (2) (3) (4) (5) 

Ln (review time)  −4.36**  −5.44**  −8.91***  −8.36**  −8.85 

  (2.06)  (2.37)  (3.85)  (4.12)  (5.35) 

Morbidity    0.006  0.014**  0.013  0.013 

    (0.004)  (0.007)  (0.007)  (0.007) 

Number of approved drugs    4.23*** 
(1.30) 

  2.23 
(1.89) 

2.49 
(1.95) 

Ln (Medco price)      0.06  0.02  −0.26 

      (0.96)  (0.96)  (1.04) 

Priority status          −4.93 

          (9.00) 

Orphan status          0.02 

          (6.85) 

Review pages          −0.02 
(.014) 

Intercept  35.6  35.0  60.5  53.7  69.8 

  (12.9)  (14.4)  (24.3)  (27.1)  (37.0) 

Number of observations  216  192  96  96  93 

Notes: The dependent variable is the number of drugs in the pipeline. Morbidity is the WHO DALY measure 
divided by 1000. Robust standard errors are in parentheses. ** represents p < 0.05; *** represents p < 0.01. 
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