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Optimal vaccination and herd 
immunity1

Stefano Bosi,2 Carmen Camacho3 and David Desmarchelier4

Date submitted: 25 July 2020; Date accepted: 26 July 2020

Herd immunity is a central concept in epidemiology. It refers to a situation 
where the amount of recovered and immune individuals is high enough 
to protect susceptibles from contracting the disease. Herd immunity 
can be obtained naturally when individuals recover from the disease, 
or artificially after the administration of an appropriate vaccine. The 
present paper addresses the question of the amount of public spending 
in medical research to obtain a vaccine which maximizes welfare. Public 
spending is assumed to reduce the waiting time to discover a vaccine 
against an infectious disease evolving according to a SIR model. Both 
linear and logarithmic preferences are considered with and without time 
discounting. Worth to note, we show that if an economy has a sufficiently 
performing technology, then the government should invest as much as 
the initial public budget allows.

1 Stefano Bosi acknowledges the .nancial support of the E3 project funded by the Paris-Saclay University.
2 Full Professor of Economics, EPEE, Paris-Saclay University.
3 Senior Researcher in Economics, Paris School of Economics, Paris Jourdan Sciences Economiques.
4 Associate Professor of Economics, University of Lorraine, University of Strasbourg, CNRS, BETA. 
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1 Introduction

Herd immunity is the indirect protection conferred to susceptible individuals
when there is a suffi ciently large proportion of immune individuals (Randolph
and Barreiro, 2020). Herd immunity can be attained either naturally or through
a vaccination program, when and if a vaccine is available. When the recent
COVID-19 became a pandemic in March 2020, most governments imposed a
temporary and severe lockdown, aiming at slowing down the virus propagation.
Others, on the contrary, did not impose any type of confinement aiming at at-
taining natural herd immunity as soon as possible. Whatever the temporary
strategy, nothing seems to prevent this virus from spreading and causing thou-
sands of deaths. As a consequence, governments and pharmaceutical firms have
entered a race to discover a vaccine to artificially attain herd immunity. As
reported by Callaway (2020), by April 2020 more than 90 vaccines were under
study.
However, as the contemporary reader may have learned, a vaccine takes

months to be discovered, tested, produced and commercialized. Hence, given
the merciless advance of the COVID-19, policy makers may wonder whether and
under which circumstances it is worth investing in a vaccine. Kwok et al. (2020)
provide some elements to address the first question, estimating the minimum
proportion of COVID-19 recovered individuals to attain herd immunity. This
proportion ranges from 11.5% for Singapore to more than 80% for Spain, Den-
mark, Slovenia or Bahrain. For the USA, Sweden, Germany, Switzerland, Brazil
and the Netherlands the share is around 70%; 59% for Italy and 65% for the UK.
Assuming a mortality rate varying from 0.25% to 3%, the death toll that would
ensure natural herd immunity seems diffi cult to accept. To complete this moral
judgment, the present paper aims to study the questions of herd immunity and
investment in vaccine research from an economic perspective. More precisely,
we consider a simple economic model where the amount of public spending in
medical research is chosen in order to maximize an intertemporal measure of
welfare taking into account the SIR dynamics of an infectious disease. It is as-
sumed that only healthy individuals are able to work and that production serves
to finance both consumption and public spending. Moreover, public spending
is assumed to increase the probability to discover a vaccine and all susceptibles
are vaccinated as soon as the vaccine becomes available at no extra cost.
The literature on optimal vaccination is obviously not new. Let us mention

Hethcote and Waltman (1973), which studies the optimal vaccination strategy
that minimizes a cost function when an infectious disease evolves according to
the SIR dynamics. Barrett and Hoel (2007) consider a closely related question
but under SIS dynamics, where the only way to become immune is through
vaccination. Brito et al. (1991) study the optimality of compulsory vaccination.
In particular, they show that the market allocation is always better than com-
pulsory vaccination. Indeed, if the agent does not care about whether others are
vaccinated or not, she does not internalize the possible herd immunity, avoiding
the possible free-rider problem. Note that the possibility to free-ride is a strong
argument to implement a public compulsory vaccination campaign. Geoffard
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and Philipson (1997) point out that despite the significant number of vaccines
on the market, only smallpox has been eradicated. The authors explain this
surprising outcome by the fact that vaccines imply a drop of infected individ-
uals, entailing a drop in the demand for vaccines, which allows for a return of
the infectious disease.
The present paper is closely related to Hethcote and Waltman (1973) and

Barrett and Hoel (2007), although there are three major differences: (1) we
consider a general equilibrium framework, (2) we assume that the vaccine has to
be discovered, and (3) because of the interplay between the epidemic dynamics
and public spending viewed as a control variable, the problem is non-convex.
For this reason we consider that public spending is constant over time until
the vaccine is discovered. This framework allows to discuss something new in
the literature on optimal vaccination: the optimal public spending in medical
research taking into account that the date of natural herd immunity depends
on research investment and that it is a known probabilistic function.
Many infectious diseases evolve according to SIR dynamics. Hethcote (1976)

pointed out that this is particularly the case for viral agent diseases such as
measles, chicken pox, mumps, influenza and smallpox. More recently, Roda et
al. (2020) have shown that the SIR model is also well suited to represent the
spread of COVID-19.
In the SIR model, population is divided in three classes: susceptibles, in-

fectives and recovered individuals. Susceptibles can contract the disease after
a contact with an infected individual. After a given lapse of time, the infected
individual recovers from the disease and develops a permanent immunity. Inter-
estingly, as the share of recovered individuals increases, the probability that a
susceptible meets an infected diminishes. If the share of recovered individuals is
suffi ciently high, then the share of infectives decreases over time and eventually,
herd immunity results.
The present unified framework lies at the crossroad between economics and

epidemiology, and serves to study the problem of a policy maker under linear and
logarithmic preferences, with and without time discounting. When preferences
are linear and the policy maker cares equally about the future and the present,
we prove that it is always optimal to invest in vaccine research. Moreover,
optimal public spending is higher when natural herd immunity occurs from the
beginning. This interesting result obtains because when natural herd immunity
occurs, labour supply increases over time, augmenting in turn the public budget
and the vaccine spending possibilities. Somehow in contrast, when preferences
are linear and time is discounted, or when preferences are logarithmic with no
time discount, then it is optimal to engage in medical research if and only if
research activities are suffi ciently productive. This is equivalent to saying that
policy makers should invest in the search for the vaccine if and only if the waiting
time for the vaccine discovery is short enough.
The rest of the paper is organized as follows. Section 2 presents the SIR

model. The market economy is presented in section 3. Sections 4 and 5 study
the Ramsey criterion and the discounting criterion. Section 6 concludes the
paper. All proofs are gathered in the appendix.
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2 The SIR epidemiological model

This section presents and characterizes the SIR epidemiological model, which
is used to explain the dynamics of a non-lethal disease. Population is divided
into susceptible individuals (S), who have not contracted the illness yet; infected
individuals (I) who are ill, and recovered individuals (R) who caught the disease
in the past and who are now cured. Recovered individuals gain permanent
immunity. Let us assume that population is constant and equal to N so that

S (t) + I (t) +R (t) = N

and
S′ (t) + I ′ (t) +R′ (t) = 0 (1)

The shares of susceptibles, infectives and recovered individuals can be writ-
ten as

s (t) ≡ S (t)

N (t)
, i (t) ≡ I (t)

N (t)
, r (t) ≡ R (t)

N (t)
(2)

Obviously, the sum of the shares is always one: s (t) + i (t) + r (t) = 1. As
usual, the initial number of infectives, susceptibles and recovered are known and
we can compute

s (0) = s0, i (0) = i0, r (0) = r0

Besides, since the shares add to 1, s0 + i0 + r0 = 1.
The key assumption here is that at every time t, each susceptible meets an

infective with probability i (t). If β measures the transmissibility rate, then the
number of new infectives at time t is given by βi (t)S (t). Furthermore, letting
ρ be the recovery rate, then the number of recovered individuals at time t is
ρI (t). With these in hand, we can describe the SIR dynamics:

Proposition 1 (SIR dynamics) Under condition (1), the SIR epidemiologi-
cal model can be written as

s′ (t)

s (t)
= −βi (t) (3)

i′ (t)

i (t)
= βs (t)− ρ (4)

with r′ (t) = ρi (t). Therefore, s′ (t) < 0, r′ (t) > 0 and

i′ (t) < 0⇔ s (t) <
ρ

β
(5)

for any t.

Proof. See Appendix A.

Notice that the number of susceptible individuals always decreases with time
and that of recovered always increases. The number of infected increases while
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the share of susceptibles is high enough. When s(t) falls below the threshold
ρ/β, then, the share of infected decreases. Note that when s(t) = ρ/β, then the
share of recovered equals the share of infected. Hence, any non-lethal disease
will always spread and contaminate a maximum of individuals. After the peak,
the share of infected will decrease although the disease will still propagate.
The following proposition provides equivalent, but independent, dynamics

for r and s.

Proposition 2 (independent dynamics) The SIR model in (3)-(4) is equiv-
alent to the following pair of independent equations for r and s:

r′ (t) = ρ
[
1− r (t)− s0e

β
ρ [r0−r(t)]

]
(6)

s′ (t) = βs (t)

[
r0 + s (t)− 1−

ρ

β
ln
s (t)

s0

]
(7)

There exists a critical value for s, s1, verifying that 0 < s1 < s0, and s1 < ρ/β.
s(t) decreases monotonically from its initial value s0 to s1. Noteworthy, the
disease is eradicated in the long run.

Proof. See Appendix B.

Proposition 2 can also be read in terms of herd immunity. Indeed, since
the disease completely disappears in the long run, we can compute the date
of natural herd immunity which corresponds to the moment in time when the
share of infectives starts decreasing.

Proposition 3 (natural herd immunity date) Consider the SIR model stud-
ied in Proposition 2. The critical date of natural herd immunity, t1, depends on
the initial amount of infected:
(1) If s0 ≤ ρ/β, then the share of infectives decreases forever. That is,

natural herd immunity is attained at t1 = 0.
(2) If s0 > ρ/β, then the share of infectives increases for t < t1 = s−1 (ρ/β)

and decreases after. Furthermore the epidemics reaches a maximum at t1 with

i (t1) = 1− r
(
s−1 (ρ/β)

)
− ρ/β (8)

Proof. See Appendix C.

Proposition 3 shows that the trajectory of the share of infectives is a single-
peaked curve, increasing first from 0 to t1 and decreasing thereafter. Any public
policy designed to control and eradicate the disease tries to flatten the curve by
lowering this peak.
The following corollary underlines the link between infectiveness and the

immunity date:

Corollary 4 (comparative statics) The more infective the disease, the later
the date of natural herd immunity.
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Proof. See Appendix D.

The more infective the disease, the higher the share of recovered we need to
ensure herd immunity and the longer it takes.

2.1 An approximated solution

We are unable to provide with the analytical solution of the dynamic system
(6)-(7). However, using the information we have already obtained, we shall
opt for an approximation which is extremely close to the exact solution of the
system under certain assumptions. We know that r increases from r0 to r1 and
s decreases from s0 to s1. At the same time, i moves continuously from i0 to
0. According to Proposition 3, if s0 < ρ/β, then i decreases forever. If, on the
contrary, s0 > ρ/β, then i increases first and from a given date on, it decreases
steadily until it reaches its asymptotic value 0. As a result and according to (5),
s1 ≡ limt→∞ s (t) = s1 < ρ/β.
Take the logarithm of infectives and approximate it with a first order Taylor

polynomial

ln i (t) ≈ l0 + l1t

Note that l0 and l1 can be computed using the initial condition i0 and
limt→∞ i (t) = 0, so that the log-linear approximation of i obtains

i (t) ≈ i0e−δt ≡ iδ (t) (9)

where δ ≡ −l1 > 0.
The log-linear approximation is particularly well fit when the share of infec-

tives decreases forever, that is, when s0 ≤ ρ/β. In this case, the approximated
rate of decline of infectives is a negative constant:

i′ (t)

i (t)
= −δ < 0

Given the quality of the fit when s0 ≤ ρ/β, and whenever necessary, we will
consider the log-linear approximation (9). In particular, our approximation is
well founded when the recovery rate is larger than the transmissibility rate, i.e.
when ρ ≥ β.
Note that in order to complete the log-linear approximation of i, we still

need to identify δ. Proposition 5 below solves this problem using the asymptotic
result r1 + s1 = 1.

Proposition 5 (log-linear SIR dynamics) Under the log-linear approxima-
tion for i given in (9), the SIR model consists in

s (t) ≈ s0e
β
δ i0(e

−δt−1) (10)

i (t) ≈ i0e
−δt

r (t) ≈ r0 −
ρ

δ
i0
(
e−δt − 1

)
(11)
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where δ is the solution to

r0 +
ρ

δ
i0 + s0e

− βδ i0 = 1 (12)

Proof. See Appendix E.

To illustrate the pertinence of the approximation, we numerically compare
the approximated and the actual trajectories for the share of infectives, iδ (t)
and i (t), respectively. For this exercise, we calibrate the model’s parameters
using quarterly data (see Table 1 below).

A Scale parameter 1
β Transmissibility rate 17/2
ρ Recovery rate 6
r0 Initial share of recovered 1/6
s0 Initial share of susceptibles 1/6

Table 1. Calibration.

Using (12), we compute the value of δ associated to the previous calibration:
δ = 1.96335. Figure 1 shows that indeed the log-linear approximation is close
to i.

Fig. 1. Log-linear approximation.

2.2 Vaccine

Let us assume that the government considers to dedicate public funds to the
discovery of a vaccine against the disease behind the epidemics. The vaccine
will confer permanent immunity and all susceptibles will be vaccinated as soon
as it becomes available at no additional cost. More precisely, we assume that
the government spends a constant amount G from t = 0 until the moment T
the vaccine is discovered. From date T on, the number of infectives decreases
according to (30), where β will be 0 because the vaccine reduces the transmis-
sibility to zero. Hence, substituting β = 0 in (4) we obtain I ′ (t) = −ρI (t) or,
equivalently,

I (t) = I (T ) eρ(T−t) (13)
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The probability of finding the vaccine at time t follows a Poisson process and
it depends on the amount invested. Intuitively, higher public spending increases
the probability of discovering the vaccine. Accordingly, the probability of not
finding the vaccine between time t and t + dt will be e−p(G) for some function
p. For simplicity reasons, we assume that public spending has a linear effect on
p:
Assumption 1 p (G) = πG with π > 0.

The probability that the vaccine is not discovered by time t is

e
∫ t
0
ln e−πGdt = e−πGt

Note that research investment G equals Ng, where g denotes research invest-
ment per capita. Then, with an abuse of notation, we can write p as a function
of g, that is p(g) = πNg = γg with γ = πN ∈ (0,∞). γ is the research effi ciency
of the economy, which depends in turn on the research technology itself, π, and
the country’s population size, N .
As advanced, observe that the average research time to discover a vaccine is

a function of g:

T (g) =

∫ ∞
0

te−γgt
(
1− e−γg

)
dt =

1− e−γg

(γg)
2 (14)

For later purposes, it is convenient to approximate this average research
time. The simplest Taylor approximation for e−p is the linear approximation:

e−p =

∞∑
n=0

(−p)n

n!
≈ 1− p

Hence, e−γg ≈ 1− γg. Using this approximation, we also obtain an approx-
imation for the research time:

T (g) ≈ 1− 1 + γg
(γg)2

=
1

γg
(15)

Figure 2 shows that this simple first-order Taylor approximation is an ex-
traordinary good fit for two values of γ, 1/2 and 12.
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Fig. 2. T and Tg. Left panel: γ = 1. Right panel: γ = 12.

Derivating T (g) using (14), it is easy to prove that T ′ (g) < 0. Unsurpris-
ingly, the waiting time for a vaccine decreases with the public research effort.
The following lemma provides us with an upper bound for public investment

when the disease is initially suffi ciently spread.

Lemma 6 (research constraints) Consider the critical date t1 of natural herd
immunity given by (6). Fix an arbitrary level of public spending per capita in
research g. This given level of g also determines also the waiting time for a
vaccine T (g) and must satisfy the following constraints of non-negativity of
consumption.
(1) If s0 ≤ ρ/β, the constraints of non-negativity of consumption (c (t) ≥ 0)

on the interval [0, T (g)) are equivalent to g ≤ A (1− i0).
(2) If s0 > ρ/β, then t1 = s−1 (ρ/β). There are two cases.
(2.1) If t1 ≤ T (g), the constraints c (t) ≥ 0 on the interval [0, T (g)) are

equivalent to
g ≤ A

[
1− r

(
s−1 (ρ/β)

)
− ρ/β

]
(2.2) If t1 > T (g), the constraints c (t) ≥ 0 on the interval [0, T (g)) are

equivalent to
g ≤ A [1− i (T (g))]

Proof. See Appendix F.

3 Market economy

After describing firms and consumers, we describe the objective of the policy
maker who will decide whether and how much to invest in the search of a vaccine
taking into account overall welfare.
In this economy there are many identical firms indexed by j with no market

power, that is they are price-takers. For mathematical tractability, we assume
that all firms use the same linear production function.

9
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 1
-2

7



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Assumption 2 The production function of firm j is a linear function of
labor demand, for all j.

Letting Yj denote output of firm j, Lj its labor demand and A the common
economy’s total factor productivity, we can write by Assumption 1 that Yj =
ALj . Each firm maximizes its profits ALj (t) − w (t)Lj (t), which implies that
at equilibrium w (t) = A.
Let us assume that workers are fully insured against the potential illness, so

that they receive the same wage, ω, whether they are healthy or ill. Hence, at
equilibrium w (t)L (t) = ω (t)N .
Their disposable income is given by

c (t) = y(t) =

 ω (t)− g = w(t)L(t)
N − g = AL(t)

N − g, if 0 ≤ t < T

ω (t) = w(t)L(t)
N = AL(t)

N , otherwise
(16)

where from the consumer perspective, g ≡ G/N is the individual lump-sum tax
used to finance public research to discover the vaccine.
The labor force is the number of healthy individuals, that is, N−I (t). Thus,

according to (13)

L (t) =

{
N − I (t) , if 0 ≤ t < T

N − I (T ) eρ(T−t), otherwise

Therefore, replacing L(t) in (16), consumption can be written as

c (t) =


A[N−I(t)]

N − g = A [1− i (t)]− g, if 0 ≤ t < T

A[N−I(T )eρ(T−t)]
N = A

[
1− i (T ) eρ(T−t)

]
, otherwise

(17)

Equation (17) demonstrates that there is a sudden rise of consumption at
time T from c (T−) = A [1− i (T )]−g to c (T+) = A [1− i (T )]. This stems from
the fact that the research cost is not smoothed over time and that consumers
must pay the cost of research while research is undertaken. In other words, the
government cannot get indebted to enter the vaccine race.
In this setup, all households are identical, of constant size and they live

forever. As a result, the welfare maximization problem of the government is
equivalent to maximizing household’s intertemporal utility. Accordingly the
government maximizes the following utility functional with respect to the public
spending in research

U (g) ≡
∫ ∞
0

e−ηθt [u (c (t))− (1− η)u (A)] dt (18)

with η ∈ {0, 1}. θ is the subjective discount rate and u = u (c) describes
the household’s instantaneous utility. According to (17), A is the asymptotic
consumption per capita

A = lim
t→∞

(
A
[
1− i (T ) eρ(T−t)

])
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Thus, u (A) is our reinterpretation of the bliss point considered in Ramsey
(1928). Although the bliss point is a stationary state for Ramsey, it is here an
asymptotic value.
Using (17) we can rewrite U(g) as

U (g) ≡
∫ T

0

e−ηθt [u [A (1− i (t))− g]− (1− η)u (A)] dt

+

∫ ∞
T

e−ηθt
[
u
[
A
(
1− i (T ) eρ(T−t)

)]
− (1− η)u (A)

]
dt

(19)

Let us make the following standard assumption regarding the utility func-
tion.
Assumption 3 The utility function u is strictly increasing and concave.

A standard functional form to measure utility is

u (c) ≡ K c1−
1
ε

1− 1
ε

(20)

defined for c > 0. This form has the appealing property of a constant elasticity of
intertemporal substitution: ε (c) = −u′ (c) / [cu′′ (c)] = ε > 0. We can normalize
the constant K to one since argmaxg U (g) does not depend on K.
In the remaining of the paper, the behavior of two policy makers is analyzed.

The first policy maker values identically all moments in time, meaning that the
future welfare of the population is to her as important as the present. We will
characterize this policy maker as Ramsey in his 1928 paper, and compare the
research effort of this policy maker with the choice of a second policy maker
who discounts the future assigning higher value to present welfare than to the
future’s. In particular we consider the following two cases:
(1) The Ramsey criterion with η = 0. Here, agents do not discount future

and the bliss point u (A) is taken into account: U (g) ≡
∫∞
0
[u (c (t))− u (A)] dt.

(2) The discounting criterion with η = 1: U (g) ≡
∫∞
0
e−θtu (c (t)) dt. Con-

trary to case (1), agents discount the future without referring to a bliss point:
the welfare functional boils down to the standard utility functional. Notice that
in this simplified context, we do not consider the accumulation of capital as in
the seminal models with discounting (Cass, 1965; Koopmans, 1965).
In each case, we solve the government’s problem considering two different

functional forms to describe household’s preferences. Linear preferences will
provide us with the explicit optimal research policy. On the downside, linear
preferences are an extreme representation of the preferences of the individual
over consumption. With these remarks in mind and for the two types of policy
maker, we solve the linear problem obtaining the exact amount to invest in the
search of a vaccine. Then, a more standard logarithmic case is analyzed, and
optimal spending is characterized. We conclude that although linear preferences
may distort to a certain extent the description of consumers’ behavior, they
provide a fairly accurate optimal policy regarding research investment.
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4 Ramsey criterion

The government chooses the optimal research investment per capita, g, which
maximizes the overall utility functional (19), that is

U (g) =

∫ T (g)

0

[u (c (t))− u (A)] dt+
∫ ∞
T (g)

[u (c (t))− u (A)] dt

=

∫ T (g)

0

[u (A [1− i (t)]− g)− u (A)] dt

+

∫ ∞
T (g)

[
u
(
A
(
1− i (T (g)) eρ[T (g)−t]

))
− u (A)

]
dt

(21)

subject to the epidemics dynamics in (6), (7) and the non-negativity of con-
sumption, which according to (16) implies that for every t between 0 and T (g)

c (t) = A [1− i (t)]− g ≥ 0, if 0 ≤ t < T (g)

4.1 Linear preferences

In the following proposition, there are two important dates t1 and t2. First, t1
is the natural herd immunity date, and it was defined in (8): t1 ≡ s−1 (ρ/β).
Second, t2 is the minimal solution to the following equation

t = T (A [1− i (t)]) (22)

with t ≥ 0. We can prove that a minimal positive solution to equation (22)
exists. Indeed, t increases from 0 to ∞, and T (A [1− i (t)]) is a continuous and
bounded function with 0 < T (A) < T (A [1− i (t)]) ≤ T (A [1− i (t1)]). Thus,
the set of solutions to (22) is a compact set of positive real numbers with a
minimum, which is positive.

Proposition 7 (linear utility) The welfare functional (21) is given by

U (g) =
A

ρ
[r0 + s (T (g))− 1]− gT (g)

(1) If s0 < ρ/β, then the number of infectives decreases forever, optimal
public spending is g∗ = A (1− i0) and the optimal research time to discover a
vaccine

T ∗ =
1− e−γA(1−i0)

[γA (1− i0)]2
(23)

(2) If s0 > ρ/β there is a peak of infectives associated to a natural herd
immunity: i (t1) = 1− r (t1)− ρ/β, with t1 ≡ s−1 (ρ/β).
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(2.1) If t1 ≤ t2, then optimal public spending is g∗ = A [1− i (t1)] and the
optimal waiting time is

T ∗ =
1− e−γA[1−i(t1)]

(γA [1− i (t1)])2
≥ t2 ≥ t1 (24)

(2.2) If t1 > t2, optimal public spending is g∗ = A [1− i (t2)] and the optimal
waiting time is

T ∗ =
1− e−γA[1−i(t2)]

(γA [1− i (t2)])2
= t2 < t1 (25)

Proof. See Appendix G.

In cases (1) and (2.1) of Proposition 7 the optimal time T ∗ to obtain the
vaccine decreases in the effi cacy of research γ since

∂T ∗

∂ (γA)
< 0

T ∗ also decreases in A because the upper bound for public spending increases
in the labor productivity A. Hence a higher A allows the government for a larger
investment, which improves research and speeds up the discovery of the vaccine.
Suppose that herd immunity is already attained at the beginning. Propo-

sition 7 shows that even if herd immunity will naturally make decrease the
number of infectives, it is optimal to invest to discover the vaccine. Indeed, a
vaccine will speed up the recovery rate, increasing labor supply and as a result,
consumption and production. However, note that g∗ decreases with the initial
number of infectives, i0, because the larger i0, the smaller labor, production and
the public budget.
Proposition 7 approaches optimal investment according to the initial value

of susceptibles. Alternatively, one can also analyze g∗ as a function of the initial
extent of the disease as measured by i0. For a given i0, and leaving constant all
other parameters, optimal research investment is higher in case (1), where the
number of susceptibles is low. Recall that in case (1) herd immunity is achieved
from t = 0, the number of infectives decreases monotonically and labor supply
increases. Then, why investing more than in the case when the disease is more
severe? First, because the government has a larger budget to invest and second,
because finding a vaccine will accelerate the cure and the recovery of the labor
force. In contrast, in case (2.1), labor supply starts decreasing and it continues
decreasing until t1. Obviously, the spending possibilities are in this case lower
than in case (1).
Comparing cases (2.1) and (2.2), optimal public spending is higher in case

(2.2) when artificial herd immunity happens before natural herd immunity. In-
deed, public investment is fostered by the possibility of increasing labor supply
at the earliest.
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4.2 Logarithmic preferences

Under logarithmic preferences the welfare functional (21) becomes

U (g) =

∫ ∞
0

[ln c (t)− lnA] dt

=

∫ T (g)

0

ln
[
1− i (t)− g

A

]
dt+

∫ ∞
T (g)

ln
(
1− i (T (g)) eρ[T (g)−t]

)
dt

Proposition 8 (logarithmic utility) Let us consider the approximations for
i(t) and T (g) provided by (9) and (15). If the research productivity γ is suffi -
ciently low, then the optimal investment in research is zero, i.e. g∗ = 0. If on
the contrary γ is suffi ciently high, then g∗ is positive but it remains bounded by
initial output, that is 0 < g∗ < y0 = A (1− i0).

Proof. See Appendix H.

In our model, the government can never get indebted, even if it was expecting
a great economic growth outburst in the future. The constant amount g∗ is
bounded by the initial output and it will be continuously invested until the
vaccine is discovered. In the logarithmic case, if g tends to y0, then initial
consumption c0 goes to zero and its marginal felicity, u′ (c0) , to −∞.
In the logarithmic case, research is undertaken only beyond a productivity

threshold (Proposition 8). Indeed, when the research productivity is low, the
research effort has a significant opportunity cost in terms of consumption.
In order to verify that our approximations do not alter qualitatively the

main results and that quantitatively speaking they are accurate enough, let us
plot in Figure 3 actual welfare as a function of g for two distinct values of the
productivity of medical research, namely γ = 1/2 and γ = 12. The remaining
parameters of the model are calibrated as in Table 1.

Fig. 3. U (g) under the Ramsey criterion and logarithmic preferences.

Our simulations corroborate Proposition 8. g∗ = 0 when γ is small, as
in the left panel of Figure 3. On the contrary, when γ is large (right panel),
then g∗ > 0. For γ = 12 we obtain g∗ = 0.639 which is indeed smaller than
y0 = 0.833.
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5 The discounting criterion

In this section we study the second type of policy maker who discounts the
future exponentially. The intertemporal utility function (19) becomes

U (g) =

∫ T (g)

0

e−θtu (c (t)) dt+

∫ ∞
T (g)

e−θtu (c (t)) dt

=

∫ T (g)

0

e−θtu (A [1− i (t)]− g) dt+
∫ ∞
T (g)

e−θtu
(
A
(
1− i (T (g)) eρ(T (g)−t)

))
dt

(26)

subject to the epidemics dynamics as described in (6), (7) and the positivity
constraint for consumption

c (t) = A [1− i (t)]− g ≥ 0, if 0 ≤ t < T (g)

As in section 4, we shall study the policy maker’s problem under two different
descriptions of the household’s preferences.

5.1 Linear preferences

Let u (c) = c and ρ > δ, then

Proposition 9 (linear utility) Under the approximation for i(t) given in (9),
welfare is a function of g and it is given by

U (g) =
A− g
θ
− Ai0
δ + θ

+
g

θ
e−θT (g) +

(
1

δ + θ
− 1

ρ+ θ

)
Ai0e

−(δ+θ)T (g)

Under the approximation for T (g) in (15), we find that

lim
g→0+

U ′ (g) ≈ −1
θ
< 0

Therefore, it is never optimal to invest in the vaccine research below a threshold.
Finally, if the constant

C ≡ θ ρ− δ
ρ+ θ

γAi0

(δ + θ)
2 > 0

is suffi ciently large and

θ

δ + θ

ρ− δ
ρ+ θ

i0
1− i0

e
− δ
γA(1−i0) > e

θ
γA(1−i0) − 1 (27)

θ

γA (1− i0)

[
1 +

ρ− δ
ρ+ θ

i0
1− i0

e
− δ
γA(1−i0)

]
> e

θ
γA(1−i0) − 1 (28)

then the optimal public spending is g∗ = A (1− i0).

15
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 1
-2

7



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Proof. See Appendix I.

Recall that the approximation for i(t) in (9) is only accurate when s0 < ρ/β.
Under this premise, we can compare the optimal policy of the time discount-
ing policy maker in Proposition 9 with the altruistic policy maker in case (1) of
Proposition 7, being both endowed with linear preferences. The most important
and common point is that if engaging in medical research is optimal, then the
amount invested g∗ is identical in both cases independently of how the policy
maker treats the future. However, while investing in medical research is always
optimal under the Ramsey criterion, it is not the case under time preference.
Indeed, according to Proposition 9, the effi cient spending requires the constant
C to be large enough. This happens when γ is large, that is, when the research
sector is highly productive. According to approximation (15), the more produc-
tive is medical research, the shorter the waiting time for a vaccine. Thus, when
agents are impatient and they discount the future, engaging in medical research
is optimal only if the waiting time for a vaccine is suffi ciently short. If the
vaccine is expected to arrive in a relatively far future, governments will never
engage in research independently of the effects and characteristics of the dis-
ease. A government who does not discount the future will always invest (when
s0 < ρ/β) even if the vaccine takes a long time to arrive.
As in section 4, we proceed next to illustrate Proposition 9 and to verify

that our approximations do not alter qualitatively the main results. Let us plot
in Figure 4 the actual welfare function using the original equations (6), (7) and
(26) for the linear utility and two distinct values of the productivity of medical
research, γ = 1/2 and γ = 12. Parameters are calibrated as shown in Table 1.

Fig. 4. U (g) under the discounting criterion and linear preferences.

According to Proposition 9, if the policy maker invests in research, then it
should invest beyond a certain minimum threshold. We find out that when the
research sector is not very productive, then there is no investment in research
and g∗ = 0 (see the left panel of Figure 4). According to Proposition 9, when
C is suffi ciently large, then the policy maker will invest the maximum that is
possible at t = 0. Since C increases with γ, we can identify the case γ = 12
with the case in which C is suffi ciently high. In this regard, the right panel
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of Figure 4 shows that when γ is high, then the optimal decision is to invest
g∗ = y0 = 0.833. To complete the picture, let us mention that when γ = 12,
parameter δ = 1.9633 in i’s approximation, and C = 0.0034.

5.2 Logarithmic preferences

Next, let us consider u (c) = ln c. The welfare functional (26) is given by

U (g) =

∫ T (g)

0

e−θt ln (A [1− i (t)]− g) dt

+

∫ ∞
T (g)

e−θt ln
(
A
(
1− i (T (g)) eρ[T (g)−t]

))
dt

This time, U (g) cannot be computed explicitly, and we cannot obtain any
insight using fair approximations. As a result, we shall proceed to compute
numerically optimal research investment. Figure 5 shows our results for γ = 1/2
and γ = 12. The time discount parameter θ is set to 1/100 and the remaining
parameters take the same values as in section 4.
Figure 5 looks impressively close to Figure 3, when the policy maker did not

discount the future. The behavior of a policy maker endowed with logarithmic
preferences and who uses the true evolution of the epidemics is identical to the
behavior of an altruistic policy maker who uses a good approximation. More
precisely, it is optimal to engage in medical research only if productivity is
suffi ciently high. This is equivalent to saying that it is optimal to engage in
medical research if and only if the time until the vaccine is discovered is short
enough.

Fig. 5. U (g) under the discounting criterion and logarithmic preferences.

6 Conclusion

This paper considers a unified framework at the crossroad between economics
and epidemiology, whose purpose is to study optimal public spending in medical
research to obtain a vaccine against an infectious disease evolving according
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to a SIR dynamics. Exact optimal policies obtain when policy makers value
equally all generations and they have linear preferences. In this case, it is always
optimal to invest in medical research independently of the research productivity.
Optimal public spending is higher when natural herd immunity has already been
attained at the beginning of the planning period. This surprising result comes
from the fact that natural herd immunity makes increase labor supply implying
a larger public budget. In all other cases, analytical results are obtained using
an approximation for the share of infected individuals.
Note that approximations are only legitimate when natural herd immunity

is already attained at the beginning. This means that our policy maker starts
considering the vaccine problem after the disease sprouts and it is suffi ciently
well spread. Both numerically and theoretically we find that even if herd immu-
nity is attained, technologically advanced economies should optimally invest in
medical research to accelerate the recovery of the population and the economy.
Noteworthy, we show numerically that the optimal investment decision of a pol-
icy maker using an accurate approximation for the evolution of the epidemics,
logarithmic preferences, and caring equally about the present and the future,
is similar to that of a policy maker using the true evolution of the epidemics,
and that of a policy maker who additionally discounts the future. That is, if an
economy has a suffi ciently performing technology, they should invest as much
as their initial budget allows them to.

Appendix

A. Proof of Proposition 1
According to the assumptions of the SIR model, the three categories of population

evolve in time according to:

S′ (t) = −β I (t)

N (t)
S (t) (29)

I ′ (t) = β
I (t)

N (t)
S (t)− ρI (t) (30)

R′ (t) = ρI (t) (31)

Note that (29)-(31) satisfy (1) since S′ (t) + I ′ (t) +R′ (t) = 0.
In order to reach equations (3) and (4) from the previous system, one needs to

compute the time derivatives of the shares defined in (2), replace S′, R′ and I ′ using
equations (29) to (31), and finally take into account that s (t) + i (t) + r (t) = 1. We
obtain that r′ (t) = ρi (t), s′ (t) = −βs (t) i (t) and

i′ (t) = −r′ (t)− s′ (t) = [βs (t)− ρ] i (t) (32)

B. Proof of Proposition 2
Since s is monotonic, we can define r (t) = r̃ (s (t)) = r

(
s−1 (s)

)
, where t = s−1 (s)

is the inverse function of s = s (t). Clearly, r′ (t) = r̃′ (s) s′ (t). Using r′ (t) = ρi (t)
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and equation (3), we obtain

r̃′ (s) =
r′ (t)

s′ (t)
= − ρ

β

1

s

Integrating both sides of the expression above between 0 and t, that is between s0
and s (t), we obtain that∫ s(t)

s0

r̃′ (s) ds = − ρ
β

∫ s(t)

s0

1

s
ds

r̃ (s (t))− r̃ (s0) = − ρ
β

[ln s (t)− ln s0]

r (t) = r0 +
ρ

β
ln s0 −

ρ

β
ln s (t) (33)

Therefore, replacing this expression for r (t) in (3), we obtain the single differential
equation (7). Moreover, (33) implies that

s (t) = s0e
β
ρ
[r0−r(t)] (34)

Finally, using that r′ (t) = ρi (t), we obtain (6).
We prove next that s(t) decreases from s0 to a given critical value that we also

compute. Let us define function φ as φ (s) ≡ q + βs − ρ ln s, where q ≡ ρ ln s0 −
β (1− r0) < 0. Then, the dynamic equation (7) can be written as

s′ (t) = s (t)φ (s (t)) (35)

Equation φ (s) = 0 has exactly two solutions s1 and s2 with 0 < s1 < s0 < s2 and
φ (s) < 0 if s1 < s ≤ s0. Observe that φ is a continuous and strictly convex function
on (0,+∞). Indeed,

φ′′ (s) =
ρ

s2
> 0

Moreover, limt→0+ φ (s) = +∞, limt→+∞ φ (s) = +∞ and

φ (s0) = −βi0 < 0

Then, φ crosses the horizontal axis once on the left and once on the right of the
point s = s0. Note that s1 < 1 because s0 < 1 and s1 < s0.

According to (35) and the previous results, if s1 < s (t) ≤ s0, then s′ (t) < 0. Thus,
s (t) decreases over time and converges to s1. Since r′ (t) = ρi (t), r (t) increases over
time and converges to r1 ≤ 1 − s1 with limt→∞ r

′ (t) = 0. If r1 < 1 − s1, we obtain
limt→∞ r

′ (t) = ρ (1− r1 − s1) > 0, which is a contradiction.
The share of infectives in total population is given by i (t) ≡ I (t) /N (t) = 1 −

r (t)− s (t). Since the population is constant over time, we obtain

lim
t→∞

I (t) = N
[
1− lim

t→∞
r (t)− lim

t→∞
s (t)

]
= N (1− r1 − s1) = 0
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Finally, let us prove that the share of susceptibles falls below ρ/β. We know that
the disease is eradicated in the long run, that is limt→∞ i (t) = 0. Hence, there exists
a date τ such that i̇ (τ) < 0. Therefore,

i′ (τ) = [βs (τ)− ρ] i (τ) < 0

that is s (τ) < ρ/β. As shown above s (t) is always decreasing, which implies that
s1 < ρ/β.

C. Proof of Proposition 3.
According to Proposition 1, i (t) increases if s (t) > ρ/β and decreases if s (t) < ρ/β.

Since ṡ (t) < 0 and s1 < ρ/β, if s0 > ρ/β, we have that s (t) first decreases from s0 to
ρ/β and, then, from ρ/β to s1. In this case, if t1 denotes the critical date such that
s (t1) = ρ/β, and since i′ (t) = [βs (t)− ρ] i (t), we have that the share of infectives
i (t) always increases from 0 to t1 and always decreases (to zero) from t1 to infinite.
We call t1, the date of herd immunity and s (t1) the critical share.

If s0 > ρ/β, s∗ ≡ s (ρ/β) is the critical share of susceptibles for a natural herd
immunity and the peak of infectives is given by i (t1) = 1 − r (t1) − s (t1) = 1 −
r
(
s−1 (ρ/β)

)
− ρ/β.

Summarizing our results, herd immunity is attained at t1, where

t1 =


0, if s0 ≤ ρ/β

s−1
(
ρ
β

)
> 0, otherwise

D. Proof of Corollary 4.
A more infective disease means a lower ratio ρ/β. We observe that

∂t1
∂ (ρ/β)

=
1

s′ (t1)
< 0

because s (t) is always decreasing.

E. Proof of Proposition 5.
According to (3) and (9), we have

s′ (t)

s (t)
≈ −βi0e−δt

Integrating on both sides,∫ t

0

[ln s (τ)]′ dτ ≈ −βi0
∫ t

0

e−δτdτ

ln
s (t)

s0
≈ β

δ
i0
(
e−δt − 1

)
that is (10). Replacing (10) in (33), (11) obtains.
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Finally, we notice that

r1 = lim
t→∞

r (t) ≈ r0 +
ρ

δ
i0 (36)

s1 = lim
t→∞

s (t) ≈ s0e−
β
δ
i0 (37)

Since limt→∞ [r (t) + s (t)] = 1, then r1 + s1 = 1 and, replacing (36) and (37), we
get equation (12).

F. Proof of Lemma 6.
According to (17), the non-negativity of consumption is equivalent to c (t) =

A [1− i (t)]− g ≥ 0 for any t ∈ [0, T (g)). That is

g ≤ A min
t∈[0,T (g))

[1− i (t)] = A

[
1− max

t∈[0,T (g))
i (t)

]

(1) Consider the case s0 ≤ ρ/β. In this case, the date of natural herd immunity
is t1 = 0 and the number of infectives always decreases: i′ (t) < 0 for any t > 0.
Since T (g) ≥ t1 = 0, the non-negativity of consumption in the interval [0, T (g)) is
equivalent to g ≤ A [1− i (t1)] = A (1− i0).

(2) Consider the case s0 > ρ/β, that is t1 = s−1 (ρ/β).
(2.1) If t1 ≤ T (g), the vaccine is discovered after t1. Then, the non-negativity

of consumption in the interval [0, T (g)) is equivalent to

g ≤ A [1− i (t1)] = A [1− r (t1)− s (t1)] = A
[
1− r

(
s−1 (ρ/β)

)
− ρ/β

]
(2.2) If t1 > T (g), the vaccine is discovered before the date of natural herd

immunity t1. Since i′ (t) > 0 for any t ≤ T (g) (< t1), then the non-negativity of
consumption in the interval [0, T (g)) is equivalent to g ≤ A [1− i (T (g))].

G. Proof of Proposition 7.
Using (17) we have

U (g) =

∫ ∞
0

[c (t)−A] dt

= −
∫ ∞
T (g)

Ai (T (g)) eρ[T (g)−t]dt−
∫ T (g)

0

[Ai (t) + g] dt

= −A
ρ
i (T (g))−

∫ T (g)

0

[Ai (t) + g] dt

Focus on the last integral. Since r′ (t) = ρi (t), we obtain

−
∫ T (g)

0

[Ai (t) + g] dt = −A
ρ

∫ T (g)

0

ṙ (t) dt−
∫ T (g)

0

gdt

=
A

ρ
[r0 − r (T (g))]− gT (g)
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Thus, we find

U (g) =
A

ρ
[r0 − r (T (g))]− gT (g)− A

ρ
i (T (g))

=
A

ρ
[r0 + s (T (g))− 1]− gT (g)

Note that

U ′ (g) =
A

ρ
s′ (T (g))T ′ (g)−

[
T (g) + gT ′ (g)

]
> 0

because s′ (T (g)) < 0, T ′ (g) < 0 and

T (g) + gT ′ (g) =
(1 + γg) e−γg − 1

(γg)2
< 0

Notice that T (g) + gT ′ (g) < 0 implies T ′ (g) < 0.
We know from (17) that

c (t) =


A [1− i (t)]− g, if 0 ≤ t < T

A
[
1− i (T ) eρ(T−t)

]
, otherwise

Since U ′ (g) > 0, g should be such that c (t) ≥ 0 for any t. Note that c (t) > 0
for any t ≥ T (g). Therefore, c should verify that c (t) = A [1− i (t)] − g ≥ 0 for
any t ∈ [0, T (g)).

(1) According to (4), i′ (t) /i (t) = βs (t) − ρ. Thus, if s0 < ρ/β, the share of
infectives decrease forever, optimal public spending is given by g∗ = A (1− i0) and
according to (14), the optimal waiting time for a vaccine is given by (23).

(2) If s0 > ρ/β, then there is a peak of infectives associated to a natural herd
immunity: i (t1) = 1− r (t1)−ρ/β with t1 ≡ s−1 (ρ/β). We consider two sub-cases:

(2.1) If t1 ≤ t2, then T ∗ ≡ T (g∗) ≥ t2 ≥ t1. Indeed, i (t2) ≤ i (t1), g∗ =
A [1− i (t1)] ≤ A [1− i (t2)] and T (g∗) = T (A [1− i (t1)]) ≥ T (A [1− i (t2)]) =
t2 ≥ t1. According to (14), the optimal waiting time is given by (24).

(2.2) If t1 > t2, then T (g∗) = t2 < t1. Indeed, we are looking for the
maximal g∗ compatible with g ≤ A [1− i (t)]. The maximal g∗ corresponds to
the minimal T (g∗) such that T (g∗) ≥ T (A [1− i (t)]) for any t ≤ T (g∗) that is
to the fixed point T (g∗) = T (A [1− i (T (g∗))]) = t2. Therefore, g∗ = T−1 (t2) =

T−1T (A [1− i (t2)]) = A [1− i (t2)] is the optimal public spending, while the optimal
waiting time for a vaccine is given by (25).

H. Proof of Proposition 8.
U ′ (g) is computed applying Leibniz’rule:

U ′ (g) = T ′ (g) ln

[
1− g

A [1− i (T (g))]

]
−
∫ T (g)

0

1

A [1− i (t)]− g dt

−T ′ (g)V (g) i (T (g)) (38)
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where

V (g) ≡
∫ ∞
T (g)

ρ+ i̇(T (g))
i(T (g))

eρ[t−T (g)] − i (T (g))
dt

Using (4), V (g) writes as

V (g) =

∫ ∞
T (g)

βs (T (g))

eρ[t−T (g)] − i (T (g))
dt

=

∫ ∞
T (g)

βs (T (g)) eρT (g)

eρt − a dt =
βs (T (g)) eρT (g)

aρ

[
ln
(
eρt − a

)
− ρt

]∞
T (g)

where a ≡ eρT (g)i (T (g)). Then

V (g) =
βs (T (g)) eρT (g)

aρ

[
lim
t→∞

[
ln
(
eρt − a

)
− ρt

]
− ln

(
eρT (g) − a

)
+ ρT (g)

]∞
T (g)

=
βs (T (g)) eρT (g)

aρ

[
lim
t→∞

ln eln(e
ρt−a)−ρt − ln [1− i (T (g))]

]
Noticing that

lim
t→∞

ln eln(e
ρt−a)−ρt = ln lim

t→∞

[
e−ρteln(e

ρt−a)
]

= ln lim
t→∞

[
e−ρt

(
eρt − a

)]
= ln lim

t→∞

(
1− ae−ρt

)
= ln 1 = 0

we obtain

V (g) = −s (T (g))
β

ρ

ln [1− i (T (g))]

i (T (g))

Replacing V (g) in (38), U ′(g) can be written as

U ′ (g) = T ′ (g)

(
ln

[
1− g

A [1− i (T (g))]

]
+
β

ρ
s (T (g)) ln [1− i (T (g))]

)
−
∫ T (g)

0

1

A [1− i (t)]− g dt

Note that the first term is positive, while the second term with the integral is
negative.

Under the approximation for i(t) in (9)∫ T (g)

0

1

A [1− i (t)]− g dt ≈
∫ T (g)

0

1

A− g −Ai0e−δt
dt

=

[
1

(A− g) δ
ln

[
1− (A− g) eδt

Ai0

]]T (g)
0

=
1

(A− g) δ
ln

(A− g) eδT (g) −Ai0
A (1− i0)− g

Finally, noticing that i (T (g)) ≈ i0e−δT (g),

U ′ (g) ≈ T ′ (g)

[
ln

(A− g) eδT (g) −Ai0
AeδT (g) −Ai0

+
β

ρ
s (T (g)) ln

[
1− i0e−δT (g)

]]
− 1

(A− g) δ
ln

(A− g) eδT (g) −Ai0
A− g −Ai0
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where i0 = i(0).
Replacing the approximation for T (t) in (15):

U ′ (g) ≈ 1

γg2

[
ln

Ae
δ
γg −Ai0

(A− g) e
δ
γg −Ai0

− β

ρ
s

(
1

γg

)
ln
(

1− i0e−
δ
γg

)]

+
1

(A− g) δ
ln

A− g −Ai0
(A− g) e

δ
γg −Ai0

(39)

The term between the brackets is positive while the term on the second line is
negative, and the sign of U ′ (g) is a priori ambiguous.

To understand the role of research productivity γ, we compute the limits limγ→0+ U
′ (g)

and limγ→∞ U ′ (g) for all values of g. Consider first limγ→0+ U
′ (g). Since s (T (g))< s0,

U ′ (g) <
1

γg2

[
ln

A−Ai0e−
δ
γg

A− g −Ai0e−
δ
γg

− β

ρ
s0 ln

(
1− i0e−

δ
γg

)]
+

1

(A− g) δ
ln

(A− g −Ai0) e−
δ
γg

A− g −Ai0e−
δ
γg

=

 1

(A− g) δ
+

ln A−Ai0e
− δ
γg

A−g−Ai0e
− δ
γg

− β
ρ
s0 ln

(
1− i0e−

δ
γg

)
γg2 ln A−g−Ai0

A−g−Ai0e
− δ
γg

− δg

 ln
(A− g −Ai0) e−

δ
γg

A− g −Ai0e−
δ
γg

Thus,

lim
γ→0+

U ′ (g) ≤ 1

Aδ

[
1

1− g
A

+
ln
(
1− g

A

)
g
A

](
ln
A− g −Ai0

A− g − lim
γ→0+

δ

γg

)

It is easy to prove that

1

1− g
A

+
ln
(
1− g

A

)
g
A

> 0 for
g

A
∈ (0, 1)

lim
g→0+

[
1

1− g
A

+
ln
(
1− g

A

)
g
A

]
= 0

Therefore limγ→0+U
′ (g)= −∞, for any g > 0.

Consider now limγ→∞ U
′ (g). Since s (T (G)) > s1

U ′ (g) >
1

γg2

[
ln

A−Ai0e−
δ
γg

A− g −Ai0e−
δ
γg

− β

ρ
s1 ln

(
1− i0e−

δ
γg

)]
− 1

(A− g) δ
ln

A− g −Ai0e−
δ
γg

(A− g −Ai0) e−
δ
γg

=


ln A−Ai0e

− δ
γg

A−g−Ai0e
− δ
γg

− β
ρ
s1 ln

(
1− i0e−

δ
γg

)
g

A−g

(
1− γg

δ
ln A−g−Ai0

A−g−Ai0e
− δ
γg

) − 1

 1

(A− g) δ
ln

A− g −Ai0e−
δ
γg

(A− g −Ai0) e−
δ
γg

(40)
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Observe that

lim
γ→∞

[
g

A− g

(
1− γg

δ
ln

A− g −Ai0
A− g −Ai0e−

δ
γg

)]
=

g

A− g −Ai0

Therefore

lim
γ→∞


ln A−Ai0e

− δ
γg

A−g−Ai0e
− δ
γg

− β
ρ
s1 ln

(
1− i0e−

δ
γg

)
g

A−g

(
1− γg

δ
ln A−g−Ai0

A−g−Ai0e
− δ
γg

) − 1

 = −A (1− i0)− g
g

[
ψ (g) +

β

ρ
s1 ln (1− i0)

]

(41)
where

ψ (g) ≡ g

A−Ai0 − g
+ ln

A−Ai0 − g
A−Ai0

Since g < A (1− i0), the limit (41) is positive if and only if

ψ (g) < −β
ρ
s1 ln (1− i0) (> 0) (42)

Moreover
lim
g→0+

ψ (g) = 0 and ψ′ (g) =
g

(A−Ai0 − g)2
> 0

Hence there exists a critical value of g, ḡ ∈ (0, A (1− i0)), which does not depend
on γ, and such that (42) is satisfied, that is, the limit (41) is positive.

Notice that
1

(A− g) δ
ln

A− g −Ai0e−
δ
γg

(A− g −Ai0) e−
δ
γg

> 0

Reconsidering (40), there exists a suffi ciently high γ such that U ′ (g) > 0 for any
g ∈ (0, ḡ). This implies that, for a suffi ciently high γ, g∗ > 0.

Finally, note that the optimal amount g∗ satisfies that g∗< A (1− i0). Indeed,
consumption non-negativity requires that g ≤ A (1− i0) and, according to (39),

lim
g→A(1−i0)−

U ′ (g) ≈ Z +
1

Aδi0
lim

g→A(1−i0)−
ln [A (1− i0)− g] = −∞

where

Z ≡ 1

γA2 (1− i0)2

[
ln

e
δ

γA(1−i0) − i0
i0e

δ
γA(1−i0) − i0

− β

ρ
s

(
1

γA (1− i0)

)
ln
[
1− i0e−

δ
γA(1−i0)

]]

−
ln (Ai0) + ln

[
e

δ
γA(1−i0) − 1

]
Aδi0

is a finite real number.

I. Proof of Proposition 9.
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Using the approximation for i(t) in (9)

U (g) ≈
∫ T (g)

0

(A− g) e−θtdt−
∫ T (g)

0

Ai0e
−(δ+θ)tdt

+

∫ ∞
T (g)

Ae−θtdt−
∫ ∞
T (g)

Ai (T (g)) eρT (g)−(ρ+θ)tdt

= −A− g
θ

[
e−θT (g) − 1

]
+

Ai0
δ + θ

[
e−(δ+θ)T (g) − 1

]
+
A

θ
e−θT (g) − Ai (T (g))

ρ+ θ
e−θT (g)

=
A− g
θ
− Ai0
δ + θ

+
g

θ
e−θT (g) +

(
1

δ + θ
− 1

ρ+ θ

)
Ai0e

−(δ+θ)T (g)

because i (T (g)) ≈ i0e−δT (g).
If T (g)≈ 1/ (γg), U (g) becomes

U (g)≈1
θ

(
A− g + ge−

θ
γg

)
+
Ai0
δ + θ

(
ρ− δ
ρ+ θ

e−
δ+θ
γg − 1

)
(43)

Its derivative is given by

U ′ (g) ≈ 1

θ
[v1 (g) + Cv2 (g)− 1] (44)

where

C ≡ θ ρ− δ
ρ+ θ

γAi0

(δ + θ)
2 > 0

and

v1 (g) ≡
(

1 +
θ

γg

)
e
− θ
γg and v2 (g) ≡

(
δ + θ

γg

)2
e
− δ+θ
γg

Note that
U ′′ (g) ≈ 1

θ

[
v′1 (g) + Cv′2 (g)

]
Moreover, v1 (g) ∈ [0, 1) and limg→0+ v1 (g) = limg→0+ v2 (g) = 0, which implies

limg→0+ U
′ (g) = −1/θ < 0.

Thus, if C is suffi ciently large,

U ′′ (g) ≈ C

θ
v′2 (g)

v2 (g) is a single-peaked function, increasing from 0 to maxg v (g) > 0, and then,
decreasing asymptotically towards 0 with a maximum at

ĝ ≡ δ + θ

2γ

Hence, if C is suffi ciently large, U (g) is convex for g < ĝ and concave thereafter,
approximately.

Summing up, the set of suffi cient conditions for g∗= A (1− i0) to be optimal when
C is suffi ciently large, are

U (A (1− i0)) > U (0)

U ′ (A (1− i0)) > 0
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This paper reviews the literature on incorporating behavioural elements 
into epidemiological models of pandemics. While modelling behaviour 
by forward-looking rational agents can provide some insight into the 
time paths of pandemics, the non-stationary nature of Susceptible-
Infected-Removed (SIR) models of viral spread makes characterisation of 
resulting equilibria difficult. Here I posit a shortcut that can be deployed 
to allow for a tractable equilibrium model of pandemics with intuitive 
com- parative statics and also a clear prediction that effective 
reproduction numbers (that is, R) will tend towards 1 in equilibrium. 
This motivates taking ^R = 1 as an equilibrium starting point for 
analyses of pandemics with behavioural agents. The implications of 
this for the analysis of widespread testing, tracing, isolation and 
mask-use is discussed.
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1 Introduction

The workhorse model for the modelling of epidemics is the SIR (Susceptible-Infected-Removed)

model of (30). It has been adopted to inform policy-makers in the management of the

COVID-19 pandemic. The model is mechanistic in that people in the model do not make

decisions that are reactive to current and predicted prevalence of an infectious disease in

the population. As a key parameter, the basic reproduction number, R0, (a measure of the

expected number of infections generated by a single infected person) is driven by people’s

choices regarding physical interactions. For this reason, the lack of behavioural elements has

been a persistent source of criticism of such models.

This paper argues that, while a full behavioural model of pandemics is difficult to analyse

as there is an element of non-stationarity in dynamic outcomes, there is value to be gained by

analysing models that generate predictions that, for considerable lengths of time, the equi-

librium reproduction number, R̂ is equal to 1 implying that the prevalence of an infectious

disease/virus is constant over time with the number of those newly infected approximately

equaling the number of those newly recovered in a given time period. For COVID-19, such

outcomes have been observed empirically beyond the initial stages of outbreaks across many

regions (see Figure 1).1

Models that can generate an R̂ = 1 equilibrium exist in the literature. For the SIR

model whereby infectious individuals who recover are removed from the susceptible pool,

I show that an R̂ = 1 outcome requires a special set of assumptions that are unlikely to

generally hold. This is because individuals may base their behaviour on prevalence (i.e., the

number of infected people they are likely to encounter) rather than on the ever falling set

of susceptibles. That set, however, does impact on the reproduction number. Nonetheless,

for the SIS model, whereby infectious individuals who recover remain susceptible to future

infections, the R̂ = 1 outcome is a natural equilibrium. This suggests that, when prevalence

is relatively low, even for the SIR model, the number of susceptibles will not change at a

rapid pace and thus, an R̂ = 1 outcome provides an approximate outcome that may explain

observed behaviour.

In what follows, I first present the standard (non-behavioural) SIR model. I then review

various behavioural models that have been utilised in the literature deriving. I provide a

graphical approach to describe the resulting equilibrium outcomes. A final section offers

some predictions from this approach.

1Moreover, there is plenty of evidence that people act to mitigate their own infection risk apart from
those mandated by governments. See (Farboodi et al.) and (26)).

29
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 2
8-

51



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 1: Estimated Rt for US States (COVID-19) from epiforecasts.io

2 The Standard SIR Model

Let {S(t), I(t), R(t)} denote the shares (and levels) of the population (normalised to be of

size 1 over a continuum of agents) who are either susceptible to the virus, infected with the

virus or removed (i.e., recovered or dead) from the virus at time t ≥ 0. It is assumed that

time is discrete. In the SIR model, these variables are assumed to evolve according to the

following dynamic equations:

S(t+ 1)− S(t) = −βS(t)I(t)

I(t+ 1)− I(t) = (βS(t)− γ)I(t)

R(t+ 1)−R(t) = γI(t)

Here γ is the probability that an infected person will be removed in any given period while

β is the probability that a susceptible person will become infected by an infected person in

a given period. Observe that the number of infections in the population will be falling (i.e.,
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I(t+1) < I(t)) if β
γ
S(t) < 1 and will be rising (i.e., I(t+1) > I(t)) if β

γ
S(t) > 1. The LHS of

these inequalities is the effective reproduction number, Rt. Since S(0) ≈ 1, then R0 = β
γ
. R0

is the basic reproduction number which has the interpretation as the total expected number

of infections one infectious person will create over the life of their infection.

A few remarks about this model. First, there are two relevant state variables {I(t), S(t)}
and they co-evolve according to:

I(t) = 1− S(t) +
1

R0

log(S(t))

.

where it is assumed that {I(0), S(0)} = {0, 1}. Second, the share of the population that is

eventually infected, i ≡ 1− S(∞), is given by:

R0 = − log(1− i)
i

.

Third, temporary changes to β can influence the eventual share of infected people, i, although

regardless i ≥ 1
R0

, the ‘herd immunity’ threshold. Fourth, the peak prevalence arises when

S̄ = 1
R0

and involves, at that point:

Ī ≡ 1− 1 + log(R0)

R0

This all implies that, for R0 > 1, (a) an equilibrium with S = 1 is locally unstable and (b)

with temporary interventions that decrease β or increase γ, the absorbing states for i are

characterised by S(∞) = [S, 1
R0

] where S is defined by R0 = − log(S)
1−S ; that is, either infections

are kept at zero or they evolve to a point beyond the ‘herd immunity’ threshold.2

The standard SIR model is useful in that it relates the evolution of a pandemic according

to R0 and how the underlying parameters associated with it may be impacted upon over

the life of the pandemic. This can be useful for analysing the impact of non-pharmaceutical

interventions that impact those underlying parameters. However, if, as is likely, those un-

derlying parameters are not fixed but vary according in ways that relate to the underlying

state variables, the standard SIR model will face challenges in being of predictive value.

2See (37) for details.
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3 The Behavioural SIR Model

The fact that the standard SIR model lacked behavioural elements has not been lost on

epidemiologists. In particular, it has been recognised that people might observe current

prevalence (that is, I(t)) and modify their own behaviour so as to reduce infection risk.

However, the mathematical epidemiologists have typically taken what economists would call

a ‘reduced-form’ approach to this. For instance, they might posit a variable, x ∈ [0, 1], that

is a filter reducing the impact of β on new infections. That variable is then assumed to be

a decreasing function of I(t); e.g., x(I(t)).3 A similar approach was used by (11).4

3.1 Literature Review

Work in economics to include behavioural elements in models of epidemics started in earnest

with the study of the spread of AIDS. Following (36), (21) examined an SI model, whereby

people can transition from susceptible to infected but cannot recover or become non-infectious,

and examined the way in which increased prevalence would change the behaviour of a

forward-looking rational agent. They showed that the incentives of infected agents – e.g.,

whether they altruistic or not – played an important role.5 This line of research has continued

with a mapping to empirical models by (27).

The pioneering treatment that first introduced forward-looking, rational economic agents

into epidemiological models that could provide insights on COVID-19 was provided by (24).

They examined SIR (in addition to SIS and SID models) to explore the different effects that

prevention versus a treatment might have on the dynamics of epidemics. In doing this, they

were able to clarify the externalities that may be present and the efficacy of various forms

of interventions (including taxes and subsidies) to improve social welfare.6 This approach

inspired other analyses developing variants of their behavioural model including (38) who

showed that agents will socially distance more when R0 is high (as they fear becoming

infected) and (18) who showed that non-targeted lockdown policies may be worse than a

3See for example, (15) who also explore assumptions where x(I(t), R(t)) is decreasing in both variables,
that they argue is a model of ‘long-term awareness’ in contrast to ‘short-term awareness’ where x is a function
of I(t) alone.

4This might be termed an ‘old-timey’ macro approach.
5(31) also included behavioural elements in an SI model but his focus was on equilibrium outcomes in a

broader matching game.
6(9) uses an SIR model where agents can reduce their physical interactions and infected agents may be

debilitated and so interact less. He focuses on myopic agents and analyses the impact of different matching
functions on the resulting equilibrium outcomes.
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decentralised behavioural outcome in terms of overall utility.7.,8,9

A recent literature on COVID-19 has similarly built on these behavioural foundations

with forward-looking rational agents including (14) (and by extension (32)) who provide

a model of endogenous social distancing in a macroeconomic model; (Farboodi et al.) who

examine how altruistic preferences (that capture the degree to which individuals choose to

self-isolate if they know they are infected) impact on behaviour; (28) use a macro-model and

highlight a ‘fatalism’ effect whereby, when prevalence is high, people do not socially distance

as they are likely to become infected anyway; (4) who look at what optimal policies look

like when the planner has a high degree of information regarding who is infected and who

has recovered; (5) examine behavioural elements combined with frictions in spatial diffusion

something also done by (3) using a structural model; (34) provides a finite time model but

focuses on the case where agent value from economic activity depends on the activity of

others introducing a complementarity and the possibility of multiple equilibria; (13) who

look at the impact of limited information provided to agents and (6) do a variety of policy

experiments.10 The most careful analyses in this regard of the microeconomic foundations of

the SIR model come from (42) and (37) who provide analyses that show the conditions under

which endogenous social distancing will be too little, and potentially, too much compared

with what might be socially optimal.

3.2 Model Setup

At the core of each of these models is a conception of a behavioural agent. An agent, n,

chooses their level of activity, xn ∈ [0, 1], which can be interpreted as their risk of interacting

with another agent or preventative measures (such as wearing a mask). That activity gives

them value in utility terms of un(xn) in each period where un(.) is increasing, concave and

independent across time periods. Agents have a common discount factor of δ < 1. If an

agent becomes infected, they incur an additional loss, L, in utility unless they die in which

7There is a literature that has examined behavioural SIS models with rational agents including (8) looks
at how the provision of information impacts on agent’s incentives to minimise risks of infection in an SIS
model. When prevalence is low, agents may take more risks and make eradication impossible. (41) uses an
SIS model where agents bear costs of reducing interactions. Agents are forward looking and understand the
SIS dynamics. He examines the impact on a treatment that reduces transmission rates on social welfare and
finds potential for a welfare-reducing rebound effect. (39) examines the appropriate mix of prevention and
treatment while (25) looks at vaccine pricing where epidemiological effects are anticipated and influenced

8There is also a literature that focuses on incentives to be vaccinated using behavioural foundations. (19)
uses an SIR model to consider an agent’s choice of when to vaccine and finds that the market is efficient. (22)
and (10) relaxes those conditions and finds inefficiency especially if individuals can independently acquire
immunity

9See (35) and (23) for reviews.
10See (20) for further discussion of this literature.
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case they can incur no utility thereafter. An infected agent has a probability, γ of becoming

no longer infectious in each period they are infected. At that point, with probability ρ, they

survive and become immune. Otherwise, they die. Either way they are part of R, the set of

removed agents.

An agent’s activity choices at t are determined by the condition, {S, I, R}, they are in at

that time. If they are part of R and have not died, they are no longer infectious or at risk.

Hence, they will set their activity, xn,R = 1 and will earn an expected present discounted

payoff of un(1)
1−δ . In this, there is an implicit assumption that a recovery means a full recovery

to the utility they would earn had the epidemic not emerged.

3.3 Infected Agent Activity

For an infected agent (a member of I), they are infectious and sick. Their instantaneous

utility is un(xn,I)− L and their expected discounted payoff is:

Vn,I(t) = un(xn,I(t))− L+ δ(γVn,R + (1− γ)Vn,I(t+ 1))

where here Vn,R = ρun(1)
1−δ . Note that, being self-interested, infected agents set xn,I(t) = 1 in

each period and, thus, their expected discounted payoff becomes:

Vn,I =
un(1)− L+ δ(1− γ)ρun(1)

1−δ

1− δγ
This captures, in a stark way, a key externality that arises for infectious diseases when an

infected person does not perceive a personal risk from social interactions. Of course, various

factors could alter this stark result including that infected people may not be capable of or

desire the same level of activity if they were healthy and that such activity may not be as

valuable because others may avoid them if they knew they were infectious. For COVID-19,

this was complicated by the fact that many of the infected were asymptomatic or pre-

symptomatic and did not know they were infectious. In this situation, an agent may act as

if they were still susceptible.

3.4 Susceptible Agent Activity

For both the infected and recovered, their choice of economic activity is not impacted upon by

the state variables, {I(t), S(t)}. Thus, the key to the behavioural approach to epidemiology

are the choices of the susceptible. Their instantaneous utility is un(x(n, S)(t)) and their
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expected discounted payoff is:

Vn,S(t) = un(xn,S(t)) + δ(p(xn,S(t), I(t))Vn,I(t+ 1) + (1− p(xn,S(t), I(t)))Vn,S(t+ 1)

where p(xn,S(t), I(t)) is probability that n becomes infected at time t (the consequences of

which are felt at time t + 1). p(.) is generally increasing in both of its arguments; i.e., a

higher rate of infection in the population as well as a higher rate of activity by n raises the

probability that n becomes infected. If Vn,I(t + 1) < Vn,S(t + 1) this is not something that

n wants and, thus, the increased risk of becoming infected will constrain the agent’s choice

of activity.

The structure of p(xn,S(t), I(t)) depends upon how activity translates into an individ-

ual’s risk of infection. The standard SIR model assumes that susceptible individuals face a

probability, β, of becoming infected if they interact with an infected individual. What an ‘in-

teraction’ precisely is, however, is potentially rich. For instance, if an agent visits a location

where a number of other people are present, then β would be interpreted as the probability

that at least one those people are infected. If a virus lingers or is spread on surfaces, then

the probability that an agent becomes infected relates to the number of infected people who

may be at a place in the past.11

Typically, the standard epidemiological models consider simpler environments. The sim-

plest case assumes that an individual agent encounters one other member of the population

at random in each period. In this situation, xn,S(t), is interpreted as the probability that n

is matched with another person in period t who is infected with probability I(t). Thus, the

probability that n becomes infected is:

p(xn,S(t), I(t)) = xn,S(t)βI(t)

Of course, it is possible to imagine a slightly richer model whereby a susceptible understands

that β might differ between alternative activities or that they can choose different populations

with different I(t) probabilities to interact with.12 This structure presumes that xm,I(t) = 1

for infected agents, m ∈ I(t). If, for reasons of altruism or regulation, xm,I(t) < 1, then the

probability that n encounters an infected agent is 1
I(t)

∫ I(t)
0

xm,I(t)dm so that p(xn,S(t), I(t)) =

xn,S(t)β
∫ I(t)
0

xm,I(t)dm.

11(1) explore these issues by considering a variety of matching functions between susceptible agents and
infecteds in an SIR model.

12See (16) for a review of these richer environments.
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3.5 First-Order Effects

A susceptible individual, n, will choose xn,S(t) to maximise Vn,S(t) holding the state variables

and their future path as given. This gives rise to the marginal condition for the optimal choice

x̂n,S(t):

u′n(x̂n,S(t)) = βI(t)δ(Vn,S(t+ 1)− Vn,I) (OPT)

This leads to a myriad of insights.

• (Greater prevalence reduces susceptible activity) Holding Vn,S(t + 1) fixed, as

I(t) increases x̂n,S(t) falls. That is, the first-order effect of greater prevalence reduces

an agent’s activity as they forgo utility to reduce the risk of becoming infected.

• (A more infectious virus reduces susceptible activity) Holding Vn,S(t+1) fixed,

if the infectiousness of the virus (β) rises then x̂n,S(t) falls. As will be noted below,

this can reduce the rate of growth of the epidemic which stands in contrast to the

clear prediction of the standard SIR model that a higher β will lead to faster epidemic

spread and higher long term infections ((42)).

• (Greater activity from infecteds reduces susceptible activity) If, for some

infecteds, xm,I(t) < 1, it can be seen that x̂n,S(t) may be higher. Thus, there is

a strategic substitute between the activity choices of infected agents and susceptible

agents (as noted by (29)).

• (Activity is slower to return to normal as pandemic eases) The future path of

the epidemic is captured in the term, Vn,S(t + 1) − Vn,I . Note, in particular, that if

I(t+ 1) > I(t), then x̂n,S(t) ≤ x̂n,S(t− 1) while the opposite is true if I(t+ 1) < I(t).

This, as (37) shows, implies that a susceptible agent is going to engage in a smaller

reduction in activity at the beginning of an epidemic than at the end for the same

level of prevalence.13 That is, for, T < T̄ where I(T ) > I(T − 1), I(T̄ ) < I(T̄ − 1)

and I(T ) = I(T̄ ), x̂n,S(T ) > x̂n,S(T̄ ). Individuals will be more cautious at the end of

a pandemic as the relative on-going value of being susceptible is higher.

• (Complementarity between activity of susceptibles) The interaction between a

susceptible agent’s decision on their own activity and the activity of other susceptible

agents is potentially subtle. As will be described below, if susceptible agents reduce

their activity at t, then this will reduce the share of the population infected at t+1. For

13The notion that at the onset of a pandemic, agents who expect a higher growth in infections tend to
increase their activity and risk of infection is called the fatalism effect by (28).
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an individual agent, therefore, a reduction in expected activity by other susceptibles

increases Vn,S(t + 1) and hence, decreases their own choice of activity at time t as

there is a greater value to not being infected. Thus, for susceptibles, their activity are

strategic complements while at the same time constituting a negative externality on

one another.

• (Prospects for a vaccine or treatment have opposite effects on susceptible

activity) If a vaccine is expected at a future time, this increases Vn,S(t+1) and hence,

causes susceptible agents to reduce their activity; becoming more cautious so as to

obtain the vaccine and not become infected. By contrast, if a treatment is expected

at a future time, this, by either increasing ρ or decreasing L, causes Vn,I to be higher

and, thus, susceptibles to be less cautious of becoming infected and so increase their

activity.

These insights are all implications of the first-order effects of changes in the environment on

the behaviour of susceptible individuals. However, the full equilibrium effects can be harder

to derive.

3.6 Equilibrium Analysis

To see this, we need to explore the evolution of the state variables under the behavioural

assumptions that individual agents can influence their individual infection risk. Fortunately,

the simple specification for p(.) used above provides a natural way of aggregating into the

expected path for the state variables, {I(t), S(t)}.
Let XS(t) ≡

∫ S(t)
0

xn,S(t)dn. The expected number of new infecteds is equal to βXS(t)I(t)

while each period γI(t) infecteds are removed. Thus,

I(t+ 1)− I(t) = (βXS(t)− γ)I(t)

By construction, this also means the total number of susceptibles declines by:

S(t+ 1)− S(t) = −βXS(t)I(t)

Note that if xn,S(t) = 1 for all n ∈ S(t), then XS(t) = S(t) and the above two equations

become the same as the standard SIR model.

It can be seen here that the time path of {XS(t), ....} determines the net presented

expected value of continuing to be susceptible and, thus, the incentives to undertake activity

at time t. Thus, the equilibrium outcome would require solving for a multi-dimensional
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fixed even with commonly used simplifying assumptions such as all agents being symmetric

in preferences. Moreover, the set of susceptibles is being reduced in size over time at a

rate that is endogenous to the activity choices of susceptibles themselves. This means that

there is unlikely to be stationary equilibrium outcome that we usually look for in order to

conduct comparative statics. For this reason, most studies of behavioural SIR models have

used simulations to demonstrate potential outcomes rather than analytical solutions. For

this reason, I propose here, instead, taking a shortcut that will permit an analytical solution

albiet at the expense of not (usually) satisfying our usual equilibrium requirements.

4 An Analytical Shortcut

The analytical shortcut I propose here is to establish conditions under which I(t+ 1) = I(t)

for an interval of time. The condition is a simple one: S(t + 1) = S(t) = S for all t. It is

immediately is apparent that this condition violates the laws of motion of the SIR model

whenever γ > 0. As an accounting measure, it simply cannot be the case that some infected

individuals are recovered (or strictly speaking) removed and S(t) is not falling over time.

Of course, this state of affairs is possible for the SIS model which is perhaps why much

of the initial work integrating behavioural assumptions into epidemiology examined that

environment. However, because we want the incentives of agents to reflect the possibility

that they can be removed following an infection, I cannot simply follow the SIS model here.

Instead, I have just been inspired by it.

4.1 Equilibrium Solution

The focus is on the equations governing the relationship between XS(t) and I(t). The first

equation is behavioural.

X̂n,S(I(t)) =

∫ S

0

x̂n,S(I(t))dn (BEH)

This equation is how the aggregate activity of susceptible agents (now fixed at size S) is

a function of I(t) when individual agents are optimising. Note that X̂n,S(I(t)) is a non-

decreasing function of I(t) as discussed earlier.

The second equation comes from the SIR laws of motion.

I(t+ 1) = I(t) + (βXS(t)− γ)I(t)

The number of infected agents is an increasing function of the aggregate activity, XS(t), of
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those agents.

Essentially, these two equations describe a dynamic aggregate game involving choices of

susceptible agents but under an assumption that the set of those agents is now fixed. The

goal will be to characterise stationary Markov perfect equilibria of this game using a dynamic

programming approach.

From the law of motion, we have:

XS(t) =

I(t+1)−I(t)
I(t)

+ γ

β
(EPI)

Setting this equal to X̂S(I(t)) equilibria in which I(t + 1) = I(t) for all t can be explored.

When this condition is satisfied then x̂n,S(t + 1) = x̂n,S(t) for all t which carries over to,

X̂n,S(I(t)). Importantly, this means that:

I(t+ 1)− I(t) = 0 = (βX̂S(I(t))− γ)I(t) =⇒ X̂S(I∗) =
1

R0

(EQM)

Importantly, this implies that the equilibrium effective reproduction number,

R̂ = X̂S(I∗)R0 = 1

Thus, prevalence will neither rise nor decline in equilibrium and this pins down that equi-

librium steady state of infected agents.14

4.2 Graphical Analysis

The analytical shortcut has the advantage that it permits a (familiar to economists) graphical

analysis. Figure 2 shows the EPI and BEH lines in (XS, I) space. BEH shows how the

aggregate choice of activity level is determined by the prevailing share of infected agents

and, as shown, earlier is typically downward sloping as agent’s reduce activity more when

there is a greater chance of encountering an infected agent. EPI shows how the number of

infected agents relates to the aggregate choice of activity level by susceptibles. It is upward

sloping as a higher XS directly increases I(t+1) in a linear fashion in the SIR model. Where

the two curves intersect is the equilibrium outcome under the assumption that S is held

fixed.

14It can readily be seen that this equilibrium exists if R0 > 1. When I(t) = 0, all agents set x̂n,S = 1

so that X̂S(0) = 1. At this point XS(0) = 1
R0

which is less than 1. On the other hand, if I(t) = 1,

XS(1) =
1−I(t−1)
I(t−1)

+γ

β > 0 while X̂S(I(t))→ 0. As all of the relevant functions are continuous, there is a fixed

point where I(t) = I∗.
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Figure 2: Equilibrium

This graphical approach also shows why the equilibrium is stable. Suppose that I(t) < I∗.

Then X̂S(t) > 1
SR0

and I(t + 1) > I(t). By contrast, if I(t) > I∗, X̂S(t) < 1
SR0

and

I(t+ 1) < I(t). These processes only stop as I(t) = I∗.

This approach allows for intuitive comparative static analysis. Figure 3 shows what

happens if there is an increase in baseline infectiousness, β. Firstly, as is well known in

epidemiology, an increase in β means that more activity translates into higher infections at

a faster rate; shifting the EPI line to the right. Second, from the analysis of behavioural

responses, an increase in β causes susceptible agents to choose to be more careful and reduce

their activity. Thus, the BEH curve shifts to the left. An increase in β has a negative

equilibrium impact on aggregate activity from susceptibles but an ambiguous impact on

the equilibrium number of infected agents. Figure 3 is drawn to show the case where an

increase in β leads to a lower rate of infection in contrast to the standard epidemiological

prediction. However, if the behavioural response is weaker, then the opposite comparative

static is possible.

Interestingly, there are some unambiguous monotone comparative static results that can

be derived. For instance, a change that impacts on Vn,I only without changing anything
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Figure 3: Increase in Infectiousness

else – e.g., a treatment that increases ρ or a measure that makes being infected less costly

(i.e., reduces L) only impacts on BEH; shifting it up and to the right. Thus, the availability

of a treatment causes both a higher equilibrium activity and a higher equilibrium level of

infection.

4.3 Impact of Testing/Isolation

One policy that has received attention in COVID-19 is the increased use of testing (and

contact tracing) to identify infected individuals earlier and isolate them to prevent them

spreading the virus. This approach was adopted as a standard practice by many countries

and appeared to be successful in reducing the scale of the COVID-19 pandemic. (See (20),

Chapter 7 for more details). However, some recent work in economics has raised the possibil-

ity of unintended behavioural consequences from increased testing including testing giving

infected people confidence to engage in activity because they can’t get more infected ((40)

and (12)), a reluctance to be tested for fear of being quarantined ((14) to the potential for

a rebound effect that increases activity choices ((2)). The model presented here permits the
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examination of these consequences.

The focus here is on the situation where tests immediately trigger isolation (say, because

they are done by a public authority with enforcement power or have subsidies that induce

isolation).15 The first impact of testing (along with isolation) is one that is intended: it

reduces the probability that a susceptible encounters an infected agent. This impacts on

both the EPI and EPI equations. The epidemiological response is to shift the EPI curve to

left as it directly reduces the probability that a susceptible agent will encounter and infected

agent. However, this also leads to a shift outwards of the BEH curve. The reduction in the

probability of encountering an infected agent, increases the incentives of susceptible agents

to engage in activity for given level of prevalence. This is the effect identified by (2).16 Thus,

examining this impact alone, we would find a similar ambiguous comparative static as that

for infectious but in the opposite direction to the movements depicted in Figure 3.

There is, however, a second impact of testing – and specifically, isolation – that has

not been examined in the literature. Testing followed by isolation reduces the utility from

becoming infected as an agent would not expect to be able to freely choose their activity

level in that event. Formally, their utility becomes un(0) rather than un(1) in that case.

While (14) focused on how agents may avoid tests altogether, if agents are tested, those

tests themselves will cause the impact identified here. Specifically, with a reduction in the

utility of becoming infected, agents will become more cautious. This will shift the BEH

curve to the left countering the impact of increased testing on the likelihood of encountering

an infected person.

Putting the two impact mechanisms together, we can explore further whether the am-

biguity may be removed if BEH, on net, shifted to the left. To explore this, let α be the

probability that an infected agent is isolated as a result of testing regime. Given this, we

have:

p(xn,S(t), I(t)) = xn,S(t)β(1− α)I(t)

Vn,I =
(1− α)un(1) + αun(0)− L+ δ(1− γ)ρun(1)

1−δ

1− δγ
Note that:

15The situation where people may keep test outcomes private or not obtain tests is captured by the α
below but the analysis does not inform on the issue created by that possibility as to whether it is desirable
to have a testing regime relative to leaving individuals uninformed as to their infectiousness. The approach
here could be used to analyse such cases but that is left to future work.

16They use a network rather than SIR model and so implicitly adopt the analytical shortcut proposed
here.
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Vn,S − Vn,I =
(1− δγ)u(xn,S)− (1− δ)((1− α)un(1) + αun(0)− L)− δ(1− γ)ρun(1)

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

(OPT) becomes:

u′n(x̂n,S)− β(1− α)I∗δ (Vn,S − Vn,I) = 0

Taking the derivative of the LHS of (OPT) with respect to α we have:

βI∗δ (Vn,S − Vn,I)− β(1− α)I∗δ
∂(Vn,S − Vn,I)

∂α

The first term is the marginal benefit to more risk as a result of testing while the second

term is the marginal benefit to more caution. Note that:

∂(Vn,S − Vn,I)
∂α

=
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I) + (1− δ)(un(1)− un(0))

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

which is positive for Vn,S ≥ Vn,I . Putting the two effects together, the impact of α on the

marginal return to activity is positive if:

Vn,S − Vn,I ≥ (1− α)
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I) + (1− δ)(un(1)− un(0))

(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

Notice that as α→ 1, this always holds. By contrast for α→ 0, this becomes:

(1− δγ)(Vn,S − Vn,I)α=0 ≥ un(1)− un(0)

which may not hold. Thus, while it is possible, for low α, that there may be an unambiguous

comparative static that testing will reduce equilibrium infections, for high α, ambiguity

remains. In this case, an increase in α (i.e., the effectiveness of testing and isolating) leads

to a shift upwards in the BEH curve. In this model, therefore, as testing increases the

relative safety of interactions this causes activity to rise by more than the effect driven by

the decrease in the utility of the infected. Hence, the ambiguity remains for this comparative

static.

4.4 Mandated masks

Encouraging the use of masks has been a strategy increasingly deployed and even mandated

for dealing with COVID-19. In some medical circles there is debate regarding whether

mandated masks would encourage less social distancing and potentially have a immiseration
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effect on infection rates ((33)). As was the case with testing, the analytical approach here

can be used to provide insight on that potential.

Suppose that, if all but recovered agents wear masks, the probability that the virus infects

a susceptible person in an interaction with an infected one is 1−α; that is, a higher α means

that a susceptible has more protection. Mask wearing is costly to individuals and, thus, it

is assumed that all susceptible and infected agents, n, bear a cost, cn, for each period they

wear a mask. In this situation, the only difference between the impact of masks is this cost

as well as the fact that infected people are not restricted in their activity and thus earn un(1)

while infected.

Thus, as was the case with testing, more effective masks (i.e., a higher α) leads to an

increase in the returns to risky activity as well as a cautionary effect. The overall effect of

masks is the impact of both. Note that, the impact of more effective masks on activity is

positive if:

Vn,S − Vn,I ≥ (1− α)
δxn,sβI

∗(1− δγ)(Vn,S − Vn,I)
(1− δγ)(1− δ(1− xn,Sβ(1− α)I∗))

=⇒ 1 ≥ δ

where the last implication assumes that Vn,S ≥ Vn,I . Thus, masks will always move the BEH

curve to the right meaning that, given that they move the EPI curve to the left, there is no

unambiguous comparative static result with respect to masks. Compared with testing and

isolation, the returns to being infected are higher with mask wearing and so this reduces one

driver of caution.

5 The R̂ = 1 Prediction

The analytical shortcut, whereby an equilibrium is analysed based on an assumption that

S is fixed, gives rise to a prediction that R̂ = 1. As noted earlier, this comports with the

trends associated with the first few months of COVID-19 in a variety of countries that failed

to suppress the pandemic. The question is: given that it is obtained using an analytical

short-cut, how seriously should we take this prediction?

The potential error that arises from the short-cut can be seen by examining Figure 2.

Note that rather than being constant, the share of susceptibles, S, will fall overtime. Indeed,

if the level of infected persisted at I∗, S would fall by γI∗ in each period. This means that

the realised aggregate level of activity by susceptibles, XS, would be expected to fall. This

would not change the EPI curve as this change would be a movement along that curve.

However, it would have an impact on the BEH curve. This is because the maximum value

of XS that can be generated by that relationship is S. Thus, a reduction in S may cause the
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feasibility constraint to bind. Without modelling how agents take into account the change

in S in their own decisions – through expectations of a lower I in the immediate future –

this curve, as derived, is only an approximation of what might occur.

That said, there is one special case for which a full equilibrium of the environment (sans

the analytical shortcut) coincides with the limited equilibrium outcome examined thusfar.

(42) assumes that all agents are identical and that their activity choice x ∈ 0, 1. This gives

rise to BEH as depicted in Figure 4. When I(t) < I∗, all agents choose x̂ = 1 and when

I(t) > I∗, they choose x̂ = 0. He shows that I∗ is independent of the share of susceptibles.

The equilibrium arises when I(t) = I∗ and agents pursue a mixed strategy between {0, 1}.
The total choosing x̂ = 0 averages 1

SR0
. Thus, R̂t = SR0 = 1.

In Figure 4, it can be seen that as S falls, this reduces the maximum of BEH but otherwise

leaves the line, and hence, equilibrium outcome in terms of infections and reproduction rate

unchanged. This, of course, does not continue indefinitely. As (42) shows eventually SR0 < 1

in which case, the equilibrium moves down the EPI line until the pandemic eventually ends.

Thus, compared with the standard SIR model, in this model, the pandemic emerges and hits

a ceiling of infecteds at I(t) = I∗ and stays that way until S < 1
R0

. Thus, the curve is not

so much flattened as ‘pancaked’ at I∗.

This at least provides comfort that the R̂ = 1 prediction is the outcome of a possible

full equilibrium model. It also gives insight as to why the simulations of (11) and (29) were

able to generate outcomes whereby a Rt = 1 outcome was observed for considerable periods

of time when calibrated with parameters based on COVID-19. Put simply, during the early

months of the pandemic S was so large compared to I that it would not be expected to

change very much meaning that Rt appeared to be relatively constant over time and close

to 1 especially relative to SIR simulations that did not include a behavioural element.

6 Conclusions

Standard epidemiological models of pandemics often do not consider how susceptible, in-

fected and recovered people will change their behaviour over the life cycle of the pandemic.

Economists have made progress in building behavioural elements into these models but the

non-stationarity that is a key part of viral epidemics such as COVID-19 has prevented an easy

characterisation of equilibrium paths of pandemics and the potential impact of interventions.

This paper argues that some analytical progress can be made on behavioural SIR models

by taking inspiration for epidemiological models that do have stationary characteristics. In

so doing, an equilibrium outcome is derived that allows intuitive comparative static outcomes

on key variables such as infection rates and aggregate activity choices while at the same time
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Figure 4: Binary Choice and Symmetric Agent Equilibrium

generating a prediction that during much of a pandemic, without intervention, the effective

reproduction number,Rt will tend towards 1. At this point, the infection rate is neither rising

nor falling. This is consistent with the outcomes in many regions with respect to COVID-

19. Nonetheless, the model here falls short of the usual requirements for a full equilibrium

outcome. It does, however, have the benefit of being upfront about this limitation and what

precisely we are getting in return in terms of tractibility and potential insight.

In doing this, this paper makes the case for treating R̂t = 1 to be an expected outcome

that can be used to evaluate, for both policy analysis and empirical predictions regarding

pandemics. While being upfront regarding its ‘cargo cultish’ logic (i.e., based on observa-

tions of effective reproduction numbers hovering around 1 rather than fully from primitive

assumptions), as a shortcut it can provide some insight that might inform debates. For

instance, (7) has argued that R being just below 1 should be a constraint that is met by

policies that impose lockdowns and other behaviour during pandemics. However, if the ex-

pectation is that, absent interventions, that goal would be mostly achieved anyway, that

target is arguably of limited use compared, say, to a target of achieving I = 0 prior to what

would otherwise be the natural course of pandemics. Moreover, with regard to lockdowns,
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the expectation that non-targeted lockdown activities may be adjusted to generate R̂t = 1

requires us to not simply look at the epidemiological consequences of interventions (as (1)

do) but also to whether the non-targeted activities are such that they would be unable to

adjust so that R̂t = 1 was feasible. In other words, the criteria for lockdowns is not simply

about spread but about the scope for behavioural adjustment.

Nonetheless, this analysis here remains purely normative. While it is tempting to con-

clude that if testing or mask use led to more infections this would be welfare-reducing, we

must also remember the purpose of those interventions is precisely to allow activity to be

safer and hence, allow for more of these at the margin. Thus, even though it is possible to

draw some possible welfare conclusions from the fact that the BEH curve does not take into

account external effects and so likely lies above a suitably derived social curve, the reality is

more nuanced and requires an embrace of dynamic impacts. In particular, as (37) has shown

the cumulative nature of pandemic impacts suggest that a focus on instantaneous external

effects is unlikely to provide the correct insight into optimal policy-making.
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1 Introduction

Research on Covid-19 has focused on the macroeconomic impacts of the pandemic and on deriving optimal

policies. There has been comparatively little research from a political economy perspective.1 We highlight

the simple trade-off at the heart of policymaking during a pandemic: the trade-off between health and the

economy. We propose a novel political economy explanation for the different policies taken by different

governments in response to the pandemic.

Policies such as early, prolonged, or severe lockdowns may limit disease contagion but impose economic

costs. To the extent that politician-policymakers are accountable to citizens, equilibrium pandemic policy

depends on citizens’ preferences, which are likely to be heterogeneous. We demonstrate that the politically

optimal pandemic policy will be most responsive to the preferences of the least loyal, or most pivotal,

members of the ruling coalition.

There were striking differences across countries in their initial policy responses to Covid-19. Some

countries imposed severe lockdowns relatively early on. Others waited until confirmed deaths from Covid-

19 were in the hundreds or higher. To illustrate, Figure 1 plots the stringency index calculated by OxCGRT

against total Covid-19 deaths for Austria compared to Sweden and Italy compared to UK. Both Austria

and Italy were more aggressive in implementing lockdowns, closing schools and non-essential businesses.

Similar patterns are evident for other countries.

Figure 2 highlights this heterogeneity in lockdown policy still more starkly. It plots the stringency index

for nine countries at the point at which they reached 100 total Covid-19 deaths.2 There is considerable

variation between the aggressive pandemic response of Denmark and Israel compared to the United States

and Japan. What explains these sharp differences in policy responses?

We apply the selectorate theory of Bueno de Mesquita, Morrow, Siverson, and Smith (2003) to provide a

rigorous yet simple explanation of this variation. In this framework, the political survival of the incumbent

politician-policymaker depends on the loyalty of a coalition of supporters drawn from the ‘selectorate’.

We then specify how selectorate members generate income and, in particular, posit that pandemic policy

affects income in two ways – by suppressing potential productivity, but also increasing the probability that

the productivity is realized by mitigating the severity of the pandemic. The net effect of the policy on

selectorate members’ income differs, as some are more sensitive to economic conditions while others are

more susceptible to the disease. This heterogeneity then affects the profile of coalition members, which

ultimately determines the incumbent’s policy response.

To motivate our analysis we highlight the following stylized facts. First, the heterogeneity in risk

1One exception is Pulejo and Querubın (2020) who find that reelection concerns are associated with a less stringent
response to Covid-19.

2In the online appendix we report the stringency index for other countries and for different death thresholds.
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Figure 1: Contrasting Pandemic Policies

Contrasting pandemic policies in Austria and Sweden. Both scaled to 4000 total Covid-19 deaths. Data:
(Max Roser and Hasell 2020).

Contrasting pandemic policies in Italy and UK Both scaled to 40000 total Covid-19 deaths. Data: (Max Roser
and Hasell 2020).

exposure is stark. Individuals under the age of 30 without preexisting conditions, are extremely unlikely to

develop a severe infection. However, the case fatality rate for individuals aged over 70 or with comorbidities

is high. Thus we can distinguish between those with a high health vulnerability and those with a low health

vulnerability to the pandemic.

Second, the economic risk engendered by Covid-19 is also highly dichotomous. Many small businesses

have been forced to close and face the threat of collapse whereas many low-skilled workers, particularly in

the service sector, have been made unemployed.3 Dingel and Neiman (2020) find that approximately 37%

of jobs can be done from home. However, these tend to be high skilled jobs in corporate management,

journalist, academia, law, and the technology sector. In contrast, workers in the service sector or in

construction or manufacturing require the economy to remain open in order to keep their livelihoods. This

3Similiarly the Daily Telegraph notes “The great class divide is now between those who can work remotely (Heath 2020).
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Figure 2: A snapshot of the stringency index at the point when 100 deaths were reached. Data:
(Max Roser and Hasell 2020).

provides a sharp distinction between individuals who have high economic exposure to the pandemic and

those who have a comparatively low economic exposure to the pandemic.

For tractability, the framework we propose is static. Thus it abstracts away from modeling the dynamics

of the disease—which is the focus of models that combine a macroeconomic model of the economy with

a Susceptible Infectious Recovered (SIR) model of disease spread. Nevertheless, our model provides a

framework for conducting simple comparative statics with respect to new information about disease severity

or the cost of pandemic policies. Future research can also incorporate other variables such as cultural

attitudes (individualism versus collectivism) that might affect compliance to pandemic policies.

2 The Model

Consider a population, the ‘selectorate’, of size S =
∑

i Si, i ∈ {K}, that is composed of K groups, each

of type i. The government needs to maintain the support of a coalition of selectorate members of size

W ⊆ S. Let wi denote the number of i-type members in the coalition, such that
∑

iwi = W , and let i

also index the size of these groups such that w1 > w2 > ...wK .

To keep the loyalty of the coalition, the government provides a combination of transfers and public

policy – in this context, pandemic policy. The policy affects all of the selectorate, while the transfers

are given only to coalition members. The disposable income of a selectorate member of type i during a
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pandemic is

yi = (1− τ)[ρiYρi + (1− ρi)Ȳ ] +
ti
wi
1W , (1)

where τ is the tax rate, Yρi is type i’s potential income, ρi the probability that she realizes the potential

income, Ȳ the minimum level of income received if she is unable to realize potential income, Yρi > Ȳ , ti is

total transfers to coalition members of type i, which is distributed equally among wi, and 1W an indicator

variable that takes on one if the selectorate member is in the coalition.

Denote pandemic policy as p > 0, with larger values associated with more aggressive policy, e.g. earlier

lockdowns. Pandemic policy has heterogeneous effects across selectorate types. In particular, ρi is a

function ρi ≡ ρ(p, ηi
∑
i(Siρi)

S
), ηi ≥ 0, while Yρi is a function Yρi ≡ Yρ(p, εi

∑
i(Siyi)), εi ≥ 0. Letting partial

derivatives with respect to p be ∂ρi
∂p

> 0 and
∂Yρi
∂p

< 0, then ρi can capture the health of i (enabling her to

realize potential output Yρi), which is directly (positively) influenced by a more aggressive pandemic policy,

and indirectly through some contagion effect, which we simply capture by average health
∑
i(Siρi)

S
of the

selectorate, scaled by a ‘health vulnerability’ parameter ηi. Meanwhile, potential output Yρi is negatively

impacted by more aggressive pandemic policy, directly and indirectly through total income
∑

i(Siyi) of the

selectorate, scaled by an ‘economic vulnerability’ parameter εi.

Optimal pandemic policy and transfer amounts are thus determined from the following game that is

played at each time t = 1, 2, ...∞.

1. The incumbent government I forms a coalition of size W composed of K groups, each of size wi. The

size of each type in the coalition is fixed at w1 > w2 > ...wK . A political challenger C nominates her

own coalition, also of size W , with wi ∀ i ∈ {K} the same size as in I’s coalition, and at least one

member belonging to I’s coalition. I and C propose pandemic policy p and transfers ti to each type

in the coalition.

2. Each selectorate member chooses between I and C. I is deposed if at least one member of her

coalition chooses C.

3. The pandemic policy of the chosen leader is implemented, her transfers allocated, and incomes taxed

at rate τ .

We characterize a stationary equilibrium in which the incumbent stays in power.

First, note that each selectorate member would prefer a pandemic policy and level of transfer

that would maximize her disposable income yi. Thus, the best that any challenger C can offer to

her nominated coalition is to choose p and ti as though she herself were simultaneously maximizing

each member’s disposable income, subject to the government budget constraint, which we specify as

τ
[∑

i(Si[(ρiYρi) + (1 − ρi)Ȳ ]
]

+ R = κp +
∑

i(witi), where τ
[∑

i(Si[(ρiYρi) + (1 − ρi)Ȳ ]
]

is total tax
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revenues, R is other revenues, κ is the cost of implementing pandemic policy p, and
∑

i(witi) is total

transfers.

C offers to each coalition member of type i, policy p and transfer ti
wi

that solve

Max
p,
ti
wi

(1− τ)[ρiYρi + (1− ρi)Ȳ ] +
ti
wi

;

s.t. τ
[∑

i

(Si[(ρiYρi) + (1− ρi)Ȳ ]
]

+R = κp+
∑
i

(witi) .

Re-writing the budget constraint as ti = τ
wi

[∑
i(Si[(ρiYρi) + (1− ρi)Ȳ ]

]
+ 1

wi

[
R− κp−

∑
−i(w−it−i)

]
and

plugging into the maximand turns the problem into an unconstrained one:

Maxp(1− τ)[ρiYρi + (1− ρi)Ȳ ] +
τ

w2
i

[∑
i

(Si[(ρiYρi) + (1− ρi)Ȳ ]
]

+
1

w2
i

[
R− κp−

∑
−i

(w−it−i)
]

(2)

Thus, focusing on interior solutions, in equilibrium, C proposes pandemic policy pC and transfers tiC to

wi ∀i ∈ {K} that simultaneously satisfy K FOCs, each of the form:

Fi ≡
[dρi
dp

(Yρi − Ȳ ) +
dYρi
dp

ρi

][
(1− τ) +

τSi
w2
i

]
+

τ

w2
i

[∑
−i

(S−i[
dρ−i
dp

(Yρ−i − Ȳ ) +
dYρ−i
dp

ρ−i])
]

(3)

− κ

w2
i

= 0.

These give pC which, when plugged into the budget constraint, solves for tiC ∀i ∈ {K}. The value of C’s

offer for a member of type i is therefore:

V i
C = yi(pC ,

tiC
wi

) + δ
[wi
S
V i
I + (1− wi

S
)V i

o

]
, (4)

where δ is the discount rate, wi
S

is the probability that a selectorate member of type i is included in the

coalition of whoever is the incumbent, in which case she obtains the value V i
I =

yi(pI ,
tiI
wi

)

1−δ , with pI the

pandemic policy of the incumbent, and V i
o = yi(pI ,0)

1−δ is the value of being outside the incumbent’s coalition,

in which case i is subject to the incumbent’s pandemic policy, but no transfers are received.4 Since the

same pandemic policy is implemented for all selectorate members, whether or not they are in the coalition,

4In the canonical selectorate framework in which members are homogeneous, the probability that any one member is

included in the coalition is W
S . Here, with W composed of heterogeneous groups,

∑
i wi

S = W
S , with W

S still capturing the
type of regime, with values close to one-half approximating more democratic regimes.
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then in equilibrium, pC = pI = p.

For the incumbent to stay in power, she has to match the value V i
C from the challenger, i.e. V i

I = V i
C ,

which means V i
I = yi(pC ,

tiC
wi

) + δ
[
wi
S
V i
I + (1 − wi

S
)V i

o

]
. Imposing pC = pI = p, substituting the above

expressions for V i
I and V i

o , and re-arranging obtain:

yi(p,
tiI
wi

)

1− δ
−
( 1

1− δwi
S

)[
yi
(
p,
tiC
wi

)
+
(
1− wi

S

)
(
yi
(
p,

tiI
wi

)
1− δ

)
]

= 0. (5)

It is straightforward to show that the incumbent gives transfers that are less than what the challenger

would give. That is, re-writing the above as
yi(p,

tiI
wi

)

1−δ

[
1−
(

1

1− δwi
S

)(
1− wi

S

)]
=
(

1

1− δwi
S

)
yi(p,

tiC
wi

), it is obvious

that yi(p,
tiI
wi

) ≤ yi(p,
tiC
wi

) since:

( 1

1− δwi
S

)[ 1− δ[
1−

(
1

1− δwi
S

)(
1− wi

S

)]] > 1

or, simplifying, S > wi.

More relevant for our analysis is the level of pandemic policy that the incumbent implements. Since the

incumbent, to stay in power, would have to provide pandemic policy that is the same as what a challenger

would provide, the optimal policy is given by the conditions Fi = 0 ∀i ∈ {K}. The following results can

then be obtained.

Theorem 1 The politically optimal pandemic policy (POPP) chosen by the incumbent government

considers the effect of the policy on each group in its coalition, weighing them according to group size.

Specifically, in equilibrium, for any pair (i, j) of groups in the coalition, where Pi ≡ dρi
dp

(Yρi− Ȳ )+
dYρi
dp
ρi

and Pj ≡ dρj
dp

(Yρj − Ȳ ) +
dYρj
dp
ρj denote the total marginal effect of the policy on i and j, respectively,

w2
iPi = w2

jPj.

All proofs are in the appendix.

Theorem 2 The effect of the POPP on each group in the incumbent’s coalition is decreasing in group size

– wK is most, while w1 is least, affected.

Let the pair of parameters (ηi, εi) denote the Health Vulnerability-Economic Vulnerability (HV–EV)

profile of a selectorate member of type i.

Theorem 3 The POPP most closely reveals the HV–EV profile of the least loyal group in the incumbent’s

coalition.

58



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Economic Vulnerability

Low High

Low
Moderate pandemic Least stringent

Health Vulnerability
policy pandemic policy

High
Most stringent Moderate pandemic
pandemic policy policy

Table 1

The model predicts that the least loyal members of the ruling coalition – those with the smallest

probability of remaining in the coalition, determine pandemic policy. For this group, the total marginal

effect P of the policy is largest. From the proofs of Theorems 1 and 3, one can write P ≡
(
∂ρ
∂p

+

η
∂(

∑
i Siρi
S

)

∂p

)
(Yρ − Ȳ ) +

(
∂Y ρ
∂p

+ ε
∂(

∑
i Siyi)

∂p

)
ρ. Thus, when the health vulnerability of the least loyal group is

high, while its economic vulnerability is low, then pandemic policy would be aggressive, as this would induce

larger total health effect
∂(

∑
i Siρi
S

)

∂p
which, when weighted by high η, would generate large P . Conversely, if

the group’s health vulnerability is low, while its economic vulnerability is high, a less aggressive pandemic

policy would induce larger aggregate economic effect
∂(

∑
i Siyi)

∂p
which, when weighted by high ε, would

induce large P . Table 1 summarizes the predicted relationship between the health-economic vulnerability

(HV-EV) profile of the least loyal members of the coalition and the politically optimal pandemic policy

(POPP).

3 Applications

We now employ our model to explore cross-country variation in pandemic policy. The model predicts

that pandemic policy is responsive to the preferences of the least loyal members of the coalition. As the

taxonomy in Table 1 illustrates, if such members are have high health vulnerability but low economic

vulnerability, the incumbent will choose more stringent policies. If such members are relatively more

concerned about economic outcomes, that is they have low health vulnerability and high economic

vulnerability, the incumbent will choose less stringent policies.

As there is no unified database that would permit us to conduct an econometric investigation, we rely on

detailed case studies to operationalize the concept of least loyal or pivotal coalition members. Specifically,

we first compare otherwise similar countries such as Brazil and Argentina, and Denmark and Sweden, who

choose very different pandemic policies, before applying our model to the UK and the United States which

59



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

have comparable policies.5 Several caveats are in order before proceeding. First, in no cases do we attempt

to explain the entirety of the variation in pandemic policies; other factors both cultural and idiosyncratic

are also clearly relevant. Second, identifying the most pivotal members of the incumbent coalition is not

always obvious and relies on a degree of country-specific knowledge. Thus in all cases, we regard our

analysis here as a starting point for further work.

Argentina and Brazil Argentina under Alberto Fernández adopted an aggressive pandemic policy. A

full lockdown was imposed on March 19, at which point Argentina had only 128 official Covid-19 cases. This

was kept in place until July 17th. The result has been that (thus far) the outbreak has been contained—

-87,030 cases and 1,694 confirmed deaths as of July 9. In contrast, Brazil was slow to impose major

restrictives and the federal government sought to limit local lockdown measures. President Bolsanaro fired

two health ministers and opposed local attempts to impose lockdowns, for instance, by the mayor of San

Paulo (see Appendix Figure 4). .

Existing explanations of this policy divergence point to the personality of Javier Bolsanaro and also

to his lack of a party base. For instance, the Guardian notes that “Bolsonaro split with the party that

brought him to power, whereas Fernández is a product of one of Latin America’s most enduring and

powerful national movements” (Goñi 2020).Another relevant factor was that Bolsanaro’s policy response

was shaped by the desire of opposing the lockdown policies of two prominent governors: of the State of Sao

Paulo (Joao Doria), and of the State of Rio de Janeiro (Wilson José Witzel). But to better understand this

divergence it is more informative to look at the respective coalitions that elected Bolsanaro and Fernández.

Bolsanaro was elected following a sharp recession. He was able to win power from the Workers’ Party

by bidding away the support of working class voters. The voters who swung the electors to Bolsanaro

were non-ideological working class voters who voted on grounds of the economy and law and order (see

Hunter and Power 2019).6 These voters would be highly vulnerable to the economic consequences of a

stringent pandemic policy (i.e. high EV). Our model suggests that Brazil’s sluggish response to Covid-19

is a response to the concerns of the group that were pivotal in his election.

In contrast, Fernández was elected by a leftwing coalition. The working class poor—those with the

highest EV—were already likely to vote for Everyone’s Front–which comprised various social democratic,

Peronist, and Communist parities. Our model predicts that the Fernández government simply does not

have to respond to their demands. Rather policies will more responsive to more marginal members of the

coalition who were more vulnerable to the pandemic itself. In the case of Everyone’s Front, these may

5Note we focus on the initial response to Covid-19. We do not consider the speed at which countries reopened as these
policies are likely endogenous to the number of cases.

6Specifically, while affluent voters in Brazil have long been concerned with crime in the 2018 election “Poorer segments,
who not only lack access to such options (e,g. gated communities) but also typically reside in areas of greater crime, sought
credible promises of protection as well” (Hunter and Power 2019, 74).
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have been voters with Peronist learnings, who tend to be older than the other members of the Everyone’s

Front coalition.

Denmark and Sweden Both Denmark and Sweden are governed by left-wing coalitions that won power

in 2019. Both are Scandinavian social democracies with high trust in government and high levels of social

capital. While there are social and cultural differences between these two countries, these do not seem

strong enough to explain the very different responses to Covid-19.

Denmark shutdown on March 11 2020—the second country in Europe to do so. This was only twelve

days after the first confirmed case was announced on February 27. On March 13 Denmark closed its

borders. In contrast, Sweden refrained from imposing an official lockdown, instead issuing guidance on

social distances and risk avoidance. Schools, cafes, and restaurants remained open (see Appendix Figure

5).

Our model provides an explanation of this divergence. In Sweden, the smallest group in the governing

coalition is the Green Party. The voters of the latter skew young. Hence they have a low HV but

they are likely to have a relatively high EV. Other explanations of Swedish policy rest on the discretion

given to the Public Health Agency of Sweden (Folkhälsomyndigheten) and Anders Tegnell.7 Nonetheless,

this explanation does not explain why there was little pressure on the Public Health Agency from the

government and why criticism for not adopting a more aggressive pandemic policy has come from parties

on political right.8 Future developments will allow us to further falsify or validate our model.

The UK and USA The UK stands out from Figure 2 as having been slow to implement lockdown

policies. The per capita fatality rates from Covid in the UK are also among the highest in the world. In

the press, the reluctance to impose a strict lockdown early on has been attributed to the liberal political

preferences of Prime Minister Boris Johnson. While these factors may have been relevant, our model points

to the importance of the new electoral coalition that was responsible for providing the Johnson government

with its large majority in December 2019.

Johnson’s victory rested on voters in the north of England who traditionally voted Labour. In the words

of the Economist: “The party of the rich buried Labour under the votes of working-class northerners and

Midlanders.” (“Victory for Boris Johnson’s all-new Tories” 2019). From the perspective of our model,

northern working class voters are the newest and most pivotal part of the current governing coalition.

Indeed in his election results speech, Johnson acknowledged: “You may only have lent us your vote and

you may not think of yourself as a natural Tory . . . And if that is the case, I am humbled that you have put

7Importantly, this discretionary authority is protected in the constitution and as such may seem to be outside the
considerations of our model (Jonung 2020).

8See Lindeberg (2020).
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your trust in me, and that you have put your trust in us. And I, and we, will never take your support for

granted. And I will make it my mission to work night and day, flat out, to prove you right in voting for me

this time, and to earn your support in the future.”9 These voters are particularly sensitive to downturns in

the economy. Any lockdown policy imposed by Johnson had to carry the support of this key constituency.

As a result, even had he been more alert to the threat posed by the pandemic, it is unlikely he would have

been able to impose an earlier, more severe, lockdown policy.

The case of the United States is similar (see Appendix Figure 6). President Donald Trump was relatively

slow to acknowledge the case of the threat posed by COVID-19. While this has been attributed to his

personality, it also reflects his focus on the economy for the 2020 election. Indeed our model suggests

that this focus on the economy is driven by concern over the least loyal members of the Trump electoral

coalition.

Our framework can account for otherwise puzzling observations. For instance, a much remarked upon

finding in the United States is that Covid-19 is more likely to kill Republicans than Democrats, as the

former are older on average and more likely to have significant comorbidities. The Washington Post carried

the headline “Republicans are endangering their own supporters and destroying Trump’s electoral map” 10

Indeed Johnson, Pollock, and Rauhaus (2020) hypothesized that predicted fatalities from Covid-19 could

swing elections in favor of the Democrats.

However, our model explains why Trump’s policies have tended to favor reopening the economy despite

fears of a second-wave. The incumbent should be most responsive, not to the concerns of his or her base—

elderly, conservative, Republican voters in Southern states are unlikely to defect to the Democrats—but to

the concerns of the most pivotal members of the coalition. Viewed through this lens, it is entirely rational

for Trump’s policies to mirror the concerns of blue-collar workers in states such as Wisconsin, Ohio, and

Pennsylvania who were critical to his 2016 election win.

Numerous other arguments have been proposed to explain variation in the pandemic response. For

example, it has been claimed that populist leaders have been especially slow in their response. But while

this claim fits the examples of Bolsanaro and Trump, it does not fit other populist leaders like Rodrigo

Duterte in the Philippines who reacted aggressively (Billing 2020). Moreover, this explanation does not

explain why populist leaders would be slow to react. Our model suggests that part of the answer may lay

in their electoral base, particularly, in the relative HV-EV vulnerability of the most pivotal supporters.

The electoral concerns we have discussed here can also apply to the decision to open up following a

lockdown, and the nature of the economic stimulus passed in response to the pandemic. We leave an

analysis of these policies to subsequent research.

9https://www.news24.com/news24/columnists/guestcolumn/transcript-boris-johnsons-election-victory-speech-in-full-
20191213.

10see Rubin (2020) and Cadelago (2020).
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4 Concluding Comments

We have developed a model of the tradeoffs facing an incumbent leader facing a pandemic. Responding to

the pandemic imposes heterogeneous costs on members of the incumbent’s ruling coalition. Specifically,

policies like lockdowns impose economic costs that are disproportionately bourn by some groups. The

benefits of these policies disproportionately benefit those individuals most at risk to disease. We show

that the incumbent’s chosen is most responsible to the most pivotal members of the incumbent’s ruling

coalition. We discuss how this model sheds lights on variation in pandemic policies across otherwise similar

countries.
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A Appendix (Not For Publication)

Proofs

Proof of Theorem 1

Proof Condition (3) can be expressed as Fi ≡ Pi

[
(1 − τ) + τSi

w2
i

]
+ τ

w2
i
[
∑

−i(S−iP−1)] − κ
w2
i

= 0, where

Pi ≡ dρi
dp

(Yρi− Ȳ ) +
dYρi
dp
ρi is the total marginal effect of the pandemic policy p on coalition member of type

i. This implies that, for, say a pair of members with types 1 and 2, P1[w2
1(1− τ) + τS1] + τ [S2P2 +S3P3 +

...SKPK ] = P2[w2
2(1− τ) + τS2] + τ [S1P1 +S3P3 + ...SKPK ]. This reduces to P1[w2

1(1− τ)] = P2[w2
2(1− τ)],

or w2
1P1 = w2

2P2. More generally, for any pair (i, j) of coalition members of type i and j, w2
iPi = w2

jPj.

Proof of Theorem 2

Proof The proof of Theorem 1 also implies that w2
1P1 = w2

2P2 = ... = w2
KPK . Since w1 > w2 > ...wK ,

it must be that P1 < P2 < ...PK , with Pi denoting the total marginal effect of the pandemic policy on a

member of group wi.

Proof of Theorem 3

Proof By Theorem 2, PK − P1 is largest, and P1/PK closest to zero, than other pairs of total marginal

effects. Set P1/PK ≈ 0 and 1
PK
≈ 0. Then 1

dρK
dp

(YρK−Ȳ )+
dYρK
dp

ρK
≈ 0, which is implicit in (ηK , εK), since

dρK
dp

= ∂ρK
∂p

+ ηK
∂(

∑
i Siρi
S

)

∂p
and dY ρK

dp
= ∂Y ρK

∂p
+ εK

∂(
∑
i Siyi)

∂p
are functions of ηK and εK .
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B Additional Figures

Figure 3: The stringency index for selected countries at 10, 100, 200, and 500 deaths respectively.
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Figure 4: The contrasting pandemic policy of Argentina and Brazil.

Figure 5: The contrasting pandemic policy of Denmark and Sweden.
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Figure 6: The similar pandemic policy of the UK and USA.
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COVID-19 pandemic
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The goal of this paper is to study the impact of the lockdown policy on 
voting behaviour, during the COVID-19 pandemic. We focus on France, 
where a differential lockdown was implemented across departments, 
based on the local diffusion of the disease. In particular, the country has 
been divided in two areas, red and green, subject to a “hard” and a “soft” 
lockdown, respectively. To measure voting behaviour, before and after 
the policy, we rely on 2020 French municipal elections: the first round 
took place before the introduction of the restrictions, while the second 
round was delayed after the end of the lockdown. We estimate a Spatial 
Regression-Discontinuity-Design model comparing the difference in 
outcomes between the two electoral rounds, at the border of red and green 
areas. The main results suggest that lockdown regulations significantly 
affected electoral outcomes. First, in localities under a harder lockdown, 
the incumbent's vote share is higher as well as the consensus for Green 
parties. Second, voter turnout is larger where more stringent restrictions 
are adopted. These results suggest that lockdown measures strongly lead 
citizens to rally around the local incumbent politicians.

1 Postdoctoral researcher, ETH Zurich.
2 Postdoctoral researcher, ETH Zurich.
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1 Introduction

The COVID-19 pandemic represents an unprecedented global crisis and poses massive chal-
lenges to contemporary democracies. Governments are faced with a global health problem that
threatens the life of millions of people in the world and seriously undermines economic devel-
opment. A common reaction to the insurgence of the pandemic has been the implementation
of a set of social containment measures, known as the “lockdown”, with the goal of limiting
the spread of the disease.1 On the one hand, these measures represent an effective tool to
contain the diffusion of the virus, on the other hand, they limit individual liberty and constrain
economic activity (Fetzer et al., 2020).

There is already evidence that these unparalleled restrictions affect individuals political
preferences, as they raise the support for the incumbent (Bol et al., 2020; De Vries et al., 2020),
as well as social trust and confidence towards the institutions (Amat et al., 2020; Esaiasson et al.,
2020). Nevertheless, due to the impossibility of hosting electoral events during the pandemic,
very little is still known on how lockdown measures impact voting behaviour. Studying the
relation between lockdown restrictions and electoral outcomes is of vital importance in order
to understand who will be in charge of managing the post-pandemic period and, consequently,
which policies will be implemented.

To fill this gap in the literature, this paper studies the short-term effects of lockdown
measures on voting behaviour and electoral outcomes. We rely on a natural experiment taking
place in France during the COVID-19 outbreak. Similarly to the other European countries,
France was severely affected by the pandemic with 173,304 confirmed COVID-19 cases and
30,120 total casualties, on July 15th 2020. The French government introduced the lockdown
before the surge of the pandemic, on March 17th. This consisted of a series of restrictions
which include the closure of most public establishments, such as schools and universities, and
the ban of non necessary movements. After the pandemic reached the contagion peak in April,
the government decided to start loosening the restrictions but the relaxation was not uniform
across French departments. In particular, the French territory was divided into two areas, a
green one and a red one, depending on the local severity of the pandemic. Assignment to either
areas was based on an arbitrary threshold defined by four local health criteria.2 Departments
in the green zone experienced a faster relaxation – “soft” lockdown – than those in the red

1Lockdown measures have been implemented by many European countries: Italy (March 9), Spain (March
15), Austria (March 17), France (March 17), Denmark (March 18), Germany (March 22), Greece (March 23),
the Netherlands (March 24), and the United Kingdom (March 24). Moreover, the recent resurgence of the
disease in specific areas, e.g., Atlanta, Barcelona, two German Kreis, has forced governments to reintroduce
lockdown measures.

2The four criteria are: (i) number of cases per 100,000 inhabitants, (ii) rate of positive virologic tests, (iii)
reproduction number, R0, (iv) hospital bed occupancy rate.
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one – “hard” lockdown. In the green zone, movements within 100 Km were allowed again and
the economic activity restarted, while in the red zone, the standard restrictions remained in
force. This division remained effective from May 11th to June 2nd. Figure 1 shows the map of
France with the border between the red area, North-Eastern France, and the green area. By
focusing on municipalities around the lockdown border, we are able to analyze the impact of
restriction measures on electoral outcomes in areas with a similar local health situation. We
do not observe, indeed, significant differences in the number of cases or deaths by COVID-19
in those departments –in the two zones– that are closely located to the border.3

Figure 1: Differential lockdown from May 11th to June 2nd, 2020

Border
50km bandwidth
Departmental borders
Zone under faster relaxation of lockdown
Zone under slower relaxation of lockdown
Municipalities

¯

0 400200 Kilometers

Notes: The yellow bold line represents the border between the red and the green area, subject to different
lockdown policies. Black borders represent departments and grey ones indicate municipalities. Dotted yellow
lines represent the 50 Km bandwidths from the border.

3More precisely, we formally test for this assumption by looking at the data on the number of cases and
deaths by COVID-19 during the periods preceding the first and second round of elections at the departmental
level. We do not observe large differences in the severity of the health crisis between the two zones for the
departments close to the border. Given that the disease spreads locally in a smooth manner, the absence of
observed differences at the departmental level likely indicates that municipalities at the border indeed experience
similar health situations. Therefore, in the sample of municipalities under consideration, the treatment mostly
captures the difference in lockdown and we can interpret the main results as, primarily, due to the different
containment measures. For more details, see Section 2.
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To measure voting behaviour of French citizens before and after the lockdown, we rely on
the 2020 French municipal elections, whose implementation was interrupted by the pandemic.4

The first round of the polls took place on March 15th, while the introduction of the lockdown
two days after the elections, on March 17th, impeded the conduct of the second round, that
was delayed until the conclusion of the restrictions, on June 28th. This unique setting allows
us to evaluate the voting behaviour of French voters just before –first round– and just after
–second round– the introduction of the lockdown. Furthermore, we naturally control for fixed
local characteristics and, given the short time span between the two rounds and the limit on
mobility, we deem implausible the presence of endogenous spatial sorting as a response to the
lockdown.

Overall, this institutional setting gives rise to two sources of variation we can exploit in
order to estimate the causal effect of lockdown restrictions on electoral outcomes. On the one
hand, the spatial variation between the red and the green zone allows us to study the effect of
the severity of lockdown measures in areas with a similar local health situation; on the other
hand, the time variation between the first and the second round can be used to assess the
impact of the introduction of these restrictions, accounting for fixed local characteristics. Our
identification strategy is structured as a spatial Regression-Discontinuity-Design (RDD), where
the distance to the border represents our forcing variable and the dependent variable is the
difference in outcomes between the two electoral rounds. Therefore, our strategy is based on
the comparison between cities located across the border, and then subject to different rules,
before and after the implementation of the lockdown.

The main results suggest that the severity of the lockdown significantly affects electoral
outcomes and voting behaviour. First, we find that localities subject to “hard” restrictions
have significantly different voting patterns compared to those under “soft” measures. Cities in
the red zone, indeed, support more the local incumbent, whose vote share is between 2 and 4.5
percentage points higher. The higher visibility of the mayors in the red zone and the multiple
contacts with the citizens may have contributed to increase their local popularity and electoral
success. This result is also in line with the “rally around the flag hypothesis” (Baum, 2002;
Mueller, 1970), claiming that the trust in leaders tends to raise in the wake of disasters: voters
in the areas with longer restrictions may either feel safer or be more aware of the health crisis,
and therefore grateful for the policy.5 Moreover, we find that “hard” lockdown measures lead

4The first round of the municipal elections took place after a vivid debate. On the days before the first
round, several parliament members publicly asked to postpone the first round due to contagion risks. However,
on March 12th (i.e., three days before the elections), President Macron consulted the presidents of the main
French political parties who all agreed to maintain the first round on March 15th as initially planned. The
Union of French Mayors also publicly advocated in favor of maintaining the initial calendar.

5Chanley (2002) shows an important example of the “rally around the flag hypothesis” documenting that in
the days following the 11 September 2001 attacks, trust in the U.S. government rose to levels not seen since the
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to stronger support to Green parties, suggesting that a higher awareness of the health crisis
persuade voters to be more concerned about environmental issues, potentially connected with
the pandemic (Grant and Tilley, 2019). Second, we find that the enforcement of the “hard”
lockdown raises political participation, measured with voter turnout. Being subject to a longer
lockdown seems to mobilize voters, motivated to choose the right leader, rather than discourage
them to participate, in fear of the disease.6

This paper relates to several strands of literature. First, we contribute to the recent liter-
ature on the political effect of lockdown measures during the COVID-19 pandemic. Bol et al.
(2020) rely on an online survey covering 15 Western European countries and show that the
lockdown led to higher consensus -vote intention- for the national incumbent, trust in the gov-
ernment and satisfaction with democracy. De Vries et al. (2020) find similar conclusions looking
at the introduction of restrictions abroad. Moreover, Sibley et al. (2020) use experimental data
to show that restrictive measures increased trust in science, politicians and police as well as
patriotism in New Zeland.

More generally, our paper is related to the fast growing literature on the effect of the
COVID-19 pandemic on political outcomes. Merkley et al. (2020) show that the pandemic led
to an increase in consensus for the government in Canada (see also Harell (2020)). Leininger
and Schaub (2020) study the local elections of the German state of Bavaria at the beginning
of the pandemic –before the introduction of the lockdown– and find that the incidence of the
disease advantaged the incumbent party. Moreover, Adam-Troian et al. (2020) study the first
round of 2020 French municipal elections and find that areas more afflicted by the pandemic
showed higher support for conservative parties. At last, there is evidence that the health crisis
positively affected social trust and confidence toward institutions (Esaiasson et al., 2020) as
well as the support for authoritarian and technocratic government (Amat et al., 2020).

Finally, we relate to the contributions studying the impact of natural disasters and catas-
trophic events on political outcomes. A set of studies analyzes the effect of recent epidemics on
political preferences and electoral results: there is evidence on the Ebola outbreak (Beall et al.,
2016; Campante et al., 2020; Maffioli, 2018) and on the HIV/AIDS epidemic (Mansour et al.,
2020). Furthermore, many papers focus on the impact of natural disasters such as earthquakes
and hurricanes. This literature suggests that the policy response is vital in determining the
impact on incumbent’s support: if the reaction is considered to be inadequate, voters tend to
punish the leaders (Akarca and Tansel, 2016; Eriksson, 2016), while a positive response leads
to an increase in their consensus (Bechtel and Hainmueller, 2011; Healy and Malhotra, 2009).

1960s.
6In these regards, Zeitoun et al. (2020) show that there is no association between the level of participation

to the (first round of) 2020 municipal elections in France and the subsequent spread of the disease at the local
level.
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To the best of our knowledge, we are the first to study the causal impact of the COVID-19
lockdown on electoral outcomes, making use of electoral –post lockdown– data rather than
survey or experimental evidence. Moreover, we advance the literature as, thanks to this unique
setting, we study within-country differences in lockdown measures and we are able to assess
the impact of the severity of these restrictions on electoral outcomes. Finally, we are among
the first to focus on local incumbents, rather than on national politicians.

The remainder of the paper is structured as follows. Section 2 describes the institutional
setting and the data. Section 3 presents the empirical strategy. Section 4 discusses the main
results and the robustness checks and Section 5 concludes.

2 Institutional background and data

2.1 COVID-19 pandemic in France and lock-down measures

In France, the daily number of confirmed COVID-19 cases started to increase significantly in
the first days of March. Figure 2 display the evolution of the COVID-19 in France from January
1st to July 15th, 2020. Following this increase, the French government announced, on March
16th (i.e., one day after the first round of the municipal elections), a strict lock-down starting on
March 17th at 12am. Individuals were only allowed outside of their homes for specific reasons,
(e.g., grocery shopping), most of public establishments have been closed as well as schools and
institutes of higher education and most of religious gatherings have been forbidden. Police
forces controlled the respect of the lock-down, and non-compliance was fined.7

Thanks to the lockdown measures, the pandemic peak was reach in early April. However,
whereas the situation was mostly under control in the South-West half of France, the number
of cases was still high in the North-Eastern half of the country. Figure 1 displays the two zones.
Consequently, the government decided to relax the lockdown deferentially as of May 11th. The
zones were defined using four indicators at the department level (NUTS3 region): (i) number
of cases per 100,000 inhabitants, (ii) rate of positive virologic tests, (iii) reproduction number,
R0, (iv) hospital bed occupancy rate. The blue vertical lines, in Figure 2, show the evolution
of the lockdown policy over time.

In the green zone, movements were allowed within 100km of one’s residential location and
the economic activity started again. In the red zone, on the contrary, all the restrictions
remained in force and, except for Paris, the lock-down was relaxed only on June 2nd. In Paris’
region, the lockdown was lifted on June 22nd: between June 2nd and June 22nd, the lock-down
in this region only slightly loosened relative to before, and the region was attributed a yellow

7In the standard case, amount of the fine was e135.

74
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 6
9-

99



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Figure 2: Evolution of Covid-19 confirmed cases in France

Notes: The plot shows the total number of confirmed COVID-19 cases in
France starting from January 1st 2020. The red lines indicate the dates of
2020 local elections (first round -March 15th-, runoff -June 28th-), the blue
lines indicate the dates of the modification in the lockdown policy (introduction
of the lockdown -March 17th-, first relaxation of the lockdown -May 11th-).
The source is the French Government data portal (https://www.data.gouv.
fr/fr/).

color by the Health Ministry (Figure 5, Appendix A).

2.2 Municipal election

French municipal elections allow local constituents to elect the city council, with the mayor
chairing the council. Elections take place every six years. The voting procedure differs by
municipality size. On the one hand, in municipalities with less than 1,000 inhabitants, a two
rounds block vote with panachage (or majority-at-large voting) takes place. All candidates
that received more than 50% of the votes are elected to the council. Those that did not reach
this threshold compete in a second round for the remaining seats. On the other hand, in
municipalities with more than 1,000 inhabitants, a proportional representation with a premium
for the majority takes place. Voters choose between different lists and can neither add nor
remove candidates from the lists. If a list obtains the absolute majority from the first round,
no second round takes place. Otherwise, lists that have obtained at least 10% of the vote
remain for a second round. The first half of the seats is attributed to the lists with the most
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vote, whereas the remaining one is attributed proportionally to all lists that received at least
5% of the votes. Due to the highly personalized nature of the elections in municipalities with
less than 1,000 inhabitants (which leads to many candidates being elected in the first round)
and to the substantial differences in the two electoral systems, we focus in this paper only on
municipalities with 1,000 inhabitants or more.

Based on the decision by the Ministry of the Interieur on July 16th, 2019, the 2020 French
municipal elections had been scheduled on March 15th for the first round, and on March 22nd
for the runoff. Regardless of the development of the pandemic in France, the first round was
maintained and took place as planned on March 15th, one day before the lockdown started.
However, given the COVID-19 outbreak, the second round was postponed after the lockdown
on June 28th. All candidates elected during the first round took office immediately, whereas
incumbents remained in power when runoffs were required. Overall, a runoff took place in 14%
of all polling stations, and in 20% of all polling stations located in municipalities with 1,000 or
more inhabitants. The red vertical lines, in Figure 2, show the timeline of the 2020 municipal
elections.

At the time of the first round, the COVID-19 situation was very similar across the future
differential lockdown border, as revealed in Panel a of Figure 3. Except clusters in the north
of Paris and in Alsace, the number of deaths was relatively small (i.e., between 1 and 9 deaths
per 100,000 inhabitants).8 Hence, even if voters could possibly expect the pandemic to de-
velop across the country, they could not reasonably anticipate that France would be divided in
differential lockdown zones; and even less so, forecast the location of the boundary.

Panel b of Figure 3 displays, then, the number of deaths per 100,000 inhabitants by COVID-
19 during the full period between mid-March and mid-July. As one would expect, given that
lockdown zones were defined based on the local evolution of the pandemic, the North-Eastern
half of France is significantly more impacted by the virus. However, although the departments
on the north side of the lockdown border are indeed more impacted, the difference in the number
of deaths per 100,000 inhabitants remains relatively small if we consider departments located
around the border. This observation is worth noting to interpret our results, as it implies that
the health situation did not differ largely around the border, at the time of the second round.
Hence, pure COVID-19 rational, aside from the lockdown, could not reasonably explain large
differences in voting outcomes around the border and we can interpret the main results of this
analysis as, mostly, due to the different lockdown policies.

8Looking at the departmental hospitalization rate per 100,000 inhabitants, instead of the death rate, we
obtain a qualitatively similar picture.
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Figure 3: Number of deaths by COVID-19 (by department)

(a) End of March

Border
Death per 100,000

0 - 9
10 - 19
20 - 28
29 - 38
39 - 47

¯

0 400200 Kilometers

(b) March to July

Border
Death per 100,000

1 - 29
30 - 57
58 - 85
86 - 112
113 - 140

¯

0 400200 Kilometers

Notes: Death count is reported per 100,000 inhabitants. “End of March” corresponds to the period from March
19th until March 31st, whereas “March to July”jee refers to the period from March 19th until July 14th, 2020.
Source: French Ministry of Health.

2.3 Data

The sample in analysis consists in all municipalities that host a runoff in 2020 French munici-
pal elections, with 1,000 or more inhabitants. The data used in this paper comes from mostly
three sources. All elections data is provided by the French centralized public data platform
(https://www.data.gouv.fr/fr/). Election data is recorded at the polling station level. In-
formation about the differential lockdown and health outcomes is obtained from the open data
platform of the Health Ministry (https://www.santepubliquefrance.fr/). Finally, all eco-
nomic and demographic municipal information is provided by the National Institute of Statistics
and Economic Studies (https://www.insee.fr/en/accueil). Based on this data, we use the
geographic information software ArcGIS to derive all spatial information.

Table 6, in the Appendix A, shows the descriptive statistics. Panel A shows the electoral
outcomes expressed in difference between the two electoral rounds: the average difference in
incumbent’s vote share is 6.7%, while the one in turnout is -2.8%. Moreover, the average
difference in margin of victory and number of white votes is 6.4% and 2.4%, respectively.

3 Empirical approach

In this section, we detail the identification strategy used to identify the causal effect of the
lockdown measures on voting outcomes.
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3.1 Estimation strategy

Consider p ∈ P polling stations within i ∈ I municipalities. All polling stations within a
municipality are assigned the same location relative to the border.9 Location of polling stations
within a municipality are defined by the infinite set of municipal border points, L. Further,
consider B as the infinite set of border points constituting the border between the differential
lockdown zones. Let us then define the subsets L ∈ L andB ∈ B of border points lpi = (lxpi, l

y
pi)

and bi = (bx, by), such that the euclidean distance to the lockdown border dpi = ||lpi − bi|| is
minimized. Hence, this distance will be equal to 0 for polling station in a municipality at the
border. Finally, define two zones A+ and A− as the treatment and the control areas.

Location relative to the border acts as the forcing variable. Assignment into treatment is
then a function of a municipality’s location relative to the border. Formally, treatment status
Tpi of polling station p in municipality i is defined as Tpi = 1

[
Lpi ∈ A+

]
. To account for all fixed

characteristics of polling station, and by extension of municipalities, we study the difference in
outcomes between the two electoral rounds, which we denote with ∆Y . We then focus on the
discontinuity of the expected outcomes at the geographical border:

τ(d) ≡ E[∆Y1 −∆Y0|dp = 0] = lim
d→0

[∆Y |lp ∈ A+]− lim
d→0

[∆Y |lp ∈ A−]. (1)

Parametric specification — We approach the spatial RD design in both a parametric and
non-parametric way. In the parametric approach, we define the conditional expectations in (1)
as E[∆Y0|d] = α+f(d) and E[∆Y1|d] = α+τ +f(d), where f(d) refers to flexible polynomials
of shortest distance to the border. Allowing for asymmetric control distance functions insures
that a kink is not misinterpreted as a discontinuity Lee and Lemieux (2010). The regression
model is then:

∆Y = α + T τ + f(d) + ε (2)

The credibility of the model rests on the valid specification of the control functions. There-
fore, we run various specifications with different order of polynomials and with different band-
width sizes.

Non-parametric specification — For the non-parametric specification, we estimate local-
polynomial regression-discontinuities with robust confidence intervals and optimal bandwidth
selection following Calonico et al. (2014). The performance of standard local polynomial esti-
mators may be seriously limited by their sensitivity to the specific bandwidth employed. Hence,

9Given the average size of French municipalities, i.e., approx. 5km2, this assumption is expected to have a
little impact, if at all, on the spatial distribution of polling stations relative to the border.
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we employ mean squared error optimal bandwidths, which are valid given the robust approach
in Calonico et al. (2014).

3.2 Validity of the approach

Causal identification in Regression Discontinuity designs rest on two key assumptions: (i) no
selective sorting takes place, (ii) all underlying variables – besides treatment – vary smoothly
at the border. The spatial RD design is a special case as assignment to treatment is very
difficult to manipulate for municipalities as regional borders are very stable over time. Plus,
the suddenty and unpredictableness of the spread of the COVID19 made it very unlikely for
individuals and municipalities to anticipate and strategically react to the pandemic.

We approach the second assumption in two ways. First, in this paper, our main outcomes of
interest are variable differences between the first and the second round of 2020 French municipal
elections across the lockdown border. Hence, all fixed municipal characteristics are differenced
out by design. Over extensive exploratory balance tests, this approach offers the key advantage
that all fixed characteristics are accounted for as opposed to all observed fixed characteristics.

Second, smoothness tests are nonetheless required to insure the smooth variation of the
underlying voting variables. Two key concerns arise. First, are runoff more likely to occur in
either treatment or control zones? Second, are incumbent more likely to be present in the first
and second rounds on either side of the border? A positive answer to any of these questions
would endanger our estimation strategy. To answer these questions, we run smoothness tests
around the border using 1km and 2km bins symmetrically on both side of the border. Results
are displayed in Table 1. Overall, we observe no significant difference around the border in
the density of runoffs, in the density of incumbent running for reelection, and in the density
of incumbent present in the runoff. As always absence of evidence is not evidence of absence;
however, these results are in line with the assumption of smooth underlying variables.

Table 1: Smoothness tests

Runoff Incumbent runs Incumbent in runoff
Bin size 1km 2km 1km 2km 1km 2km
RD Estimate 6.598 12.313 12.157 13.983 12.462∗ 15.740

(11.452) (24.156) (7.904) (14.461) (7.407) (14.269)
Obs. 88 49 70 47 71 47

Notes: The unit of analysis are bands of 1km or 2km width within 50km of the border
on either side.
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4 Results

4.1 Spatial regression discontinuity design analysis

We start by presenting the results of the spatial RD analysis of incumbent’s vote share and
turnout.10 Following the identification strategy presented in Section 3.1, we compare the dif-
ference in outcomes between the two rounds of the election on both sides of the lockdown
border.

Table 2, Panel a, presents the results for incumbent’s vote share. The sample focuses on
those municipalities where the incumbent runs in the first and in the second round. However,
as tested in Section 3.2, no differences in the likelihood of the incumbent being present in either
the first or second rounds of the election are observed around the lockdown border. Three main
specifications are displayed. Columns (1-3) focus on the parametric estimation of the lockdown
effect without controlling for covariates and using different polynomial orders. Columns (4-6)
adopt a similar strategy but include economic, demographic and geographic municipal covari-
ates.11 It also includes a dummy equal to unity for Paris region, i.e., the “yellow zone” (Figure
5, in Appendix A). The AIC is used to compared the different parametric specifications. Fi-
nally, columns (7-8) present the results of a non-parametric approach à la Calonico et al. (2014)
without and with municipal covariates, respectively. Overall, incumbent’s vote share appears
between 2 and 4.5 percentage points higher in the zone with the longer lockdown. Controlling
for municipal covariates appears to increase the magnitude of the effect. To assess the robust-
ness of the parametric results to the choice of the bandwidth, Table 7 (Appendix A), Panel a,
reports results under the parametric specification using a wider range of bandwidth sizes. The
bandwidth choice appears to have minor impacts on both the estimated coefficients and the
significance levels derived. These results may derive from the higher visibility that the mayors
in the red zone received as well as the multiple contacts with the citizens during the health
crisis. Moreover, these findings argue in favor of the “rally around the flag hypothesis” (Baum,
2002; Mueller, 1970), as trusts in the local incumbent appears to increase in the wake of the
pandemic. In this setting voters subject to longer restrictions could either feel safer or be more
aware of the health crisis, and therefore grateful to the administration for the policy.

Table 2, Panel b, focuses on the voter turnout. Overall, both the parametric and non-
parametric approaches point at a positive effect of lockdown on voter turnout. An estimated
causal effect between 1.5 and 3 percentage points is observed. Controlling for covariates does

10We also studied the local margin of victory and the share of white votes. The lockdown appears to have
had no significant effects on these outcomes. The analysis of these outcomes is available upon request.

11In particular, the following covariates are included: number of old people (those in the age groups 60-74, 75-
89, more than 90), number of female individuals, population growth rate between 2011 and 2016 (in percentage)
and median income in 2017. We also include department fixed effects.
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Table 2: Spatial RD design analysis of turnout

(1) (2) (3) (4) (5) (6) (7) (8)
Approach Parametric Parametric Non-parametric
Bandwidth 50 50 50 50 50 50 Opt. Opt.
Polynomial order 2 3 4 2 3 4 Opt. Opt.
Covariates No No No Yes Yes Yes No Yes

(a) Incumbent’s vote share
Treatment 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗ 4.592∗∗∗ 2.947∗

(0.716) (1.106) (1.597) (1.209) (1.439) (1.888) (1.753) (1.704)
Adj. R2 0.04 0.10 0.12 0.22 0.29 0.29 - -
AIC 11,084 10,969 10,940 10,742 10,603 10,588 - -
Obs. 1,645 1,645 1,645 1,645 1,645 1,645 2,586 2,586

(b) Voter turnout
Treatment 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗ 1.985∗∗ 3.841∗∗∗

(0.373) (0.550) (0.716) (0.543) (0.715) (0.829) (0.827) (0.756)
Adj. R2 0.09 0.09 0.09 0.26 0.26 0.26 - -
AIC 22,504 22,505 22,482 21,664 21,658 21,657 - -
Obs. 4,009 4,009 4,009 4,009 4,009 4,009 5,998 5,998
Notes: Unit of analysis is the polling station. Table 7 (Appendix) reports results under the parametric
specification using a wider range of bandwidth sizes.

not appear to have any systematic impact on the estimated coefficients. As for incumbent’s
vote share, we assess the robustness of the parametric results to the choice of the bandwidth
in Table 7 (Appendix A), Panel b, by using a wider range of bandwidth sizes. The bandwidth
choice appears to have minor impacts on both the estimated coefficients and the significance
levels derived. This results further confirm the “rally around the flag hypothesis” in this setting,
suggesting that the longer lockdown seems to mobilize voters, motivated to choose the right
leader, rather than discourage them to participate, in fear of the disease.

Figure 4 present non-parametric discontinuity plots of incumbent’s vote share (Panel a)
and voter turnout (Panel b). A third order polynomial specification using a symmetric 50km
bandwidth is used. Bin size are selected using the IMSE-optimal evenly-spaced method with
spacing estimators. Confirming the results in Table 2, a positive jump at the lockdown border
is observed in both outcomes.
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Figure 4: Non-parametric discontinuity plots
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Notes: Third order polynomial with 50km bandwidth used. Bin size selected using the IMSE-optimal evenly-
spaced method with spacing estimators.

4.2 Evolution in vote share by political groups

In our analysis, we have set party considerations aside so far. We now investigate whether the
lockdown has affected parties’ performance heterogeneously. As our estimation strategy relies
on polling stations close to the lockdown border, we can only rigorously analyze parties with
a good spatial coverage in both the first and second round. Extreme left and extreme right
parties in France are highly concentrated in specific locations. The communist party is, for
example, present in former blue collar municipalities at the periphery of the Paris metropolitan
areas. Similarly, the “Rassemblement National”, i.e., the main extreme right nationalist party,
is mostly present in the North and South East of the country. President Macron’s party “La
République en Marche” (center right) is also characterized by a weak spatial coverage in the
2020 municipal elections for mostly two reasons. First, the party is very new as it was created
for the 2017 presidential elections. Second, it performed badly at the 2020 municipal elections
and in many cases was not present in the second round.

For these reasons, we focus on three political groups: (i) left-wing parties; (ii) Greens and
affiliated parties, (iii) right-wing parties.12 All three groups have proposed candidates in most
municipalities studied and have often been able to qualify for the second round. We test for

12“Left-wing” and “right-wing” parties refer to all parties categorized as “diverse left” and “diverse right”,
respectively, by the French Ministry of the Interieur. Green and affiliated refers to the Green party and the
lists labeled “Liste Union de la Gauche” (for which a direct translation would be: List of the United Left) which
regroups left-wing parties alongside the Green party.

82
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 6
9-

99



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

the smoothness of the presence of each party in the second round in Table 8 (Appendix A).
No significant difference is observed around the lockdown border. We also look at different
bandwidth sizes to test the robustness of the results to bandwidth selection. In Table 3, we
display results using 60 km and 50 km bandwidths.

The Green and affiliated parties appear to have gained the most from the lockdown. A
treatment effect between 11 and 22 percentage points is estimated.13 We interpret this very
substantial gains as the result of the perception of the pandemic as a natural disaster. The
possible link between the increased frequency of epidemics in the last 20 years and human
activity would substantiate this perception. Right-wing parties also appear to have gained
vote share between the two rounds. Discontentment against the health crisis may have induced
voters of the presidential party to move to the ideologically nearest party, i.e., right-wing parties.

Table 3: Evolution of the vote share by political groups

Bandwidth 60 60 60 50 50 50
Polynomial order 3 4 5 3 4 5

(a) Left-wing
Treatment 5.522∗∗∗ 5.380∗∗ 3.828 2.782 6.667∗∗ 5.993

(1.858) (2.399) (2.804) (2.601) (2.965) (3.707)
Adj. R2 0.062 0.061 0.062 0.151 0.169 0.187
AIC 15523.89 15527.00 15527.88 6194.26 6178.74 6161.65
Obs. 2,152 2,152 2,152 853 853 853

(b) Green and affiliated
Treatment 6.348 11.190∗∗∗ 22.667∗∗∗ 51.350∗∗∗ 55.147∗∗∗ 68.686∗∗∗

(4.149) (4.272) (5.203) (6.172) (5.245) (8.184)
Adj. R2 0.164 0.192 0.193 0.373 0.580 0.591
AIC 14764.93 14702.01 14701.43 1759.72 1653.38 1647.73
Obs. 1,916 1,916 1,916 271 271 271

(c) Right-wing
Treatment 3.894∗∗∗ 3.723∗∗∗ 3.070∗∗ 5.924∗∗∗ 6.514∗∗∗ 7.839∗∗∗

(1.180) (1.283) (1.367) (1.432) (1.402) (1.822)
Adj. R2 0.080 0.081 0.086 0.136 0.147 0.172
AIC 15625.44 15625.59 15614.78 6303.34 6294.70 6269.39
Obs. 2,188 2,188 2,188 895 895 895

Notes: Unit of analysis is the polling station. Results of smoothness test around the border
by party are displayed in Table 8.

13Preferred specification selected based on the AIC value. Overall, the large coefficient estimated using a
bandwidth of 50km appears to be mostly driven by outliers given the relatively small number of observations
analyzed. Hence, in this particular case, the use of a larger bandwidth appears reasonable.
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4.3 Additional analysis and robustness checks

Local Difference-in-Difference (DiD) analysis — As a robustness check, we run in
this section the main analysis with a local difference-in-differences strategy. More precisely, we
estimate two different models with the general goal of confirming the results obtained with the
spatial RDD analysis. Importantly, in both exercises we only consider municipalities close to
the border that marks the two policy areas.

As a first analysis, we estimate a standard difference-in-difference model relying on the
variation induced by the differential relaxation of the lockdown policy. Therefore, we compare
administrative units located in the red and the green area before -in the first round- and after -in
the runoff- the modification of the measures.14 This analysis allows us to include municipal fixed
effects in order to capture for municipal-specific and time invariant characteristics. Columns
1-3 of Table 4 show the corresponding results using three different bandwidths -50, 40 and 30
kilometers-: Panel a confirms the positive effect on the vote share to the incumbent, although
the effect is not always statistically significant. Further, Panel b reports the same results for
the variable voter turnout and we are not able to confirm the positive effect.15 As a second
analysis, we estimate an OLS model using as dependent variable the difference between the
value in the runoff and the value in the first round.16 The corresponding results are shown in
columns 4-6 of Table 4, Panel a and b: the positive effect of lockdown measures on incumbent’s
vote share is confirmed, while a positive, but weak, effect emerges when we consider voter
turnout as dependent variable.

Naive spatial regression discontinuity design — Instead of using the difference in
outcomes between the first and second round of the municipal elections, we now study the

14The estimated model is as follows:

ypir = βPostr + γRedpir ∗ Postr + δXpir + εpir (3)

where ypir represents the dependent variable, for instance, incumbent’s vote share, of polling station p, in munic-
ipality i in round r, Postr indicates the runoff and Redpir is the treatment dummy indicating the municipalities
in the red zone. Finally Xpir includes municipal fixed effects and a set of controls at the polling station level
(i.e. number of registered voters and turnout during the first round).

15It is important to mention that we obtain similar results if we include polling station fixed effects instead
of municipality fixed effects.

16The estimated model is as follows:

∆ypi = βRedpi + γXpi + ηpi (4)

where ∆ypi is the difference between the value in the runoff and the value in first round (ypi,2 − ypi,1), Redpi is
the treatment dummy indicating the municipalities in the red zone and Xpir includes a set of municipal-specific
or polling station-specific controls (municipal controls include: distance to the border, latitude/longitude, pop-
ulation, age structure, median income in 2017, characteristics of the mayor -gender, year of birth, job category-;
polling station controls include: number of registered voters and turnout during the first round).
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Table 4: Local Difference-in-difference analysis

Bandwidth 50 40 30 50 40 30
DiD OLS

(a) Incumbent’s vote share

Treatment 0.015 2.120∗ 2.306 1.473 2.943∗ 3.692∗∗∗
(1.967) (1.059) (1.794) (1.245) (1.506) (1.137)

N 3290 1602 1078 1645 801 539
R2 0.599 0.632 0.617 0.322 0.181 0.242

(b) Turnout

Treatment -0.781 -0.351 0.877 2.115∗∗∗ 0.521 0.095
(1.312) (0.759) (0.887) (0.672) (0.647) (0.563)

N 8018 2892 1750 3988 1443 875
R2 0.920 0.942 0.941 0.331 0.186 0.220
Municipality FE Yes Yes Yes - - -
Municipal controls Yes Yes Yes Yes Yes Yes

Notes: Unit of analysis is the polling station. The sample includes all French municipalities
that experienced a runoff in 2020 municipal election with population higher than 1,000 in-
habitants. In Panel A the sample is limited to cities where the incumbent runs in the first
round and in the runoff. Standard errors are clustered at the department level.

raw results of the second round around the border. To distinguish it from the spatial RDD
specification used above, we label this approach “naive” spatial RDD. As the raw second round
results are used, this approach is more prone to violate the smoothness identifying assumption
due to differences in fixed municipal characteristics. Nonetheless, it is informative to investigate
whether the results in the Table 2 hold under this specification, even if only to know whether
fixed municipal characteristics are indeed a concern in the present setting. Table 5 presents
the results. Two key results appear. First, the magnitude of the estimated coefficients increase
for both incumbent’s vote share and voter turnout relative to the results using the difference
between the election rounds. Second, the parametric approach of the effect of the lockdown on
incumbent’s vote share appears much less precisely estimated. This, however, is not the case
using the non-parametric approach.

Rolling regressions — To assess the robustness of our results to the exclusion of regional
units around the differential lockdown border, we run parametric rolling regressions. We use a
50km bandwidth and various polynomial orders while alternatively excluding all departments
around the border. Results are displayed in Appendices C and B. Overall, results appear robust
to the exclusion of any department.
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Table 5: Naive RD design analysis

Approach Parametric Parametric Non-parametric
Bandwidth 50 50 50 50 50 50 Opt. Opt.
Polynomial order 2 3 4 2 3 4 Opt. Opt.
Covariates No No No Yes Yes Yes No Yes

(a) Incumbent’s vote share
Treatment -2.794∗∗ 0.125 0.678 1.893 -1.424 2.734 17.632∗∗∗ 6.877∗∗

(1.215) (1.877) (2.796) (2.009) (2.619) (3.328) (4.096) (3.201)
Adj. R2 0.02 0.05 0.05 0.09 0.12 0.12 - -
AIC 13,078 13,034 13,037 12,964 12,913 12,909 - -
Obs. 1,675 1,675 1,675 1,675 1,675 1,675 2,616 2,616

(b) Voter turnout
Treatment 1.157 3.621∗∗∗ 6.046∗∗∗ 5.523∗∗∗ 7.419∗∗∗ 7.138∗∗∗ 6.241∗∗∗ 5.095∗∗∗

(0.858) (1.213) (1.528) (1.195) (1.538) (1.811) (1.391) (1.243)
Adj. R2 0.08 0.09 0.10 0.23 0.24 0.24 - -
AIC 28,509 28,497 28,420 27,819 27,743 27,743 - -
Obs. 4,009 4,009 4,009 4,009 4,009 4,009 5,998 5,998
Notes: Unit of analysis is the polling station.

Additional analysis — To complete our analysis of the lockdown effects on voting out-
comes, we present two complementary analysis in Table 9 (Appendix A). We first look at
incumbent’s vote share and turnout in all municipalities jointly (i.e., above and below 1,000
inhabitants). Estimated coefficient point in the same direction with similar magnitude as in
Table 2, however, results appear much less significant. Given the electoral rules in small mu-
nicipalities (i.e., two rounds block vote with panachage), this result is not surprising as many
candidates were already elected to the council in the first round. Second, we focus on electoral
outcomes in the yellow zone relative to the red zone. To do so, we consider as treated all mu-
nicipalities in the yellow zone, and as control all municipalities in the green zone within 50km
of the yellow zone. Overall, the lockdown effect in the yellow zone on incumbent’s vote share
and voter turnout is similar in sign and magnitude to the effect on the red zone. However, the
coefficient are less precisely estimated.

5 Concluding remarks

The COVID-19 outbreak represents an unprecedented global crisis which is likely to deeply
affect economic, social and political outcomes. Most governments faced the worst phases of
the pandemic imposing a set of social containment measures, the lockdown. In many countries
different forms of lockdown measures remained in force also after the peak, as the contagion
curve showed weak signs of abating. There are also cases in which these restrictions have
been reintroduced after an initial relaxation, as was recently the case in Atlanta, Barcelona
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or in specific areas of Germany, and we may expect these precautionary measures to be used
extensively in the near future in many areas.17 Nonetheless, despite the relevance of these
policies, very little is still known on their impact on voting behaviour.

This paper is among the first to provide a causal evidence of the impact of the introduction
of lockdown measures on voting and electoral outcomes. We focus on France which introduced
a differential lockdown, dividing the country between a red area, subject to a “hard” lockdown,
and a green area, subject to a “soft” one. Moreover, the occurrence of 2020 French municipal
elections allows us to measure voting behaviour before and after the implementation of the
restriction measures. Therefore, we can exploit this unique setting to estimate a spatial RDD
model using as dependent variable the difference in outcomes between the two electoral rounds:
what we compare are cities located across the border, subject to different rules, before and after
the implementation of the lockdown.

Our findings suggest that the severity of the lockdown significantly affects electoral outcomes
and voting behaviour. First, we find that areas subject to the longer lockdown display higher
support for the local incumbent, as well as for the Green party. Second, it emerges that
municipalities in the red area have a higher level of voter turnout. These results seem to
support the “rally around the flag” hypothesis: voters subject to the “hard” lockdown, indeed,
either feel safer or are more aware of the health crisis, and therefore grateful for the policy.
This reinforces local incumbents and mobilize voters at the polls.

The results of this paper show that voters experiencing containment measures increase their
loyalties for political institutions. This legitimates the imposition of such limitations and may
have important consequences in terms of political stability in the aftermath of the crisis. In
terms of external validity, lockdown policies have been imposed to millions of individuals in
many countries but the impact of these restrictions on the approval for governments clearly
depends on many local factors such as the management of the health crisis as well as the
policies implemented.

17The city of Atlanta was reopened at the end of May 2020, but a new surge
in Coronavirus cases led the administration to reintroduce the lockdown in mid
July (https://www.ft.com/content/255b99c1-c08c-3df9-874b-400a8cf27e04). Simi-
lar episodes happened in Barcelona (https://www.theguardian.com/world/2020/jul/15/
global-report-barcelona-facing-new-lockdown-as-tokyo-raises-alert-level) and in the district of
Guetersloh, in the state of North Rhine-Westphalia (https://www.bbc.com/news/world-europe-53217861).
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A Appendix: Supporting material

Figure 5: Differential lockdown from June 2nd to June 22nd, 2020
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Table 6: Descriptive statistics

Average value Standard deviation N
Panel A: Electoral outcomes (polling station)
Incumbent’s vote share (diff) 6.762 9.581 1,737
Turnout (diff) -2.892 6.334 4,462
Victory margin (diff) 6.436 12.062 4,376
White votes (diff) 2.446 6.287 4,462
Number candidates (diff) -4.417 3.309 4,462

Panel B: Controls variables (municipality)
Population (0-14) 69,713.4 117,554.6 4,525
Population (15-29) 114,806.3 197,925.7 4,525
Population (30-44) 107,374.4 188,941.2 4,525
Population (45-59) 87,667.5 154,789.4 4,525
Population (60-74) 66,597.3 118,610.3 4,525
Population (75-89) 31,981.1 55,902.7 4,525
Population (90+) 5,382.5 9,437.7 4,525
Female population 255,901.8 446,613.9 4,525
Pop. growth rate (2011-2016) 1.640 5.989 4,525
Median income (2017) 23,378.4 4,452.2 4,480

Notes: The sample under consideration includes municipalities with population higher or equal than 1,000
inhabitants that have a runoff in 2020 French municipal elections. The variables in Panel A are expressed
in difference between the two electoral round. The variable Incumbent’s vote share (diff) is only defined for
municipalities in which the incumbent runs in both rounds. Population variables are defined according to
2016 population census.

Table 7: Spatial RD design analysis of turnout

Approach Parametric
Bandwidth 60 60 60 50 50 50 40 40 40
Poly. order 2 3 4 2 3 4 2 3 4

(a) Incumbent’s vote share
Treatment 3.057∗∗∗ 1.541 3.658∗∗ 3.303∗∗∗ 3.534∗∗ 4.836∗∗ 2.436 4.597∗∗ 1.414

(0.987) (1.161) (1.574) (1.209) (1.439) (1.888) (1.590) (1.877) (2.215)
Adj. R2 0.21 0.23 0.24 0.22 0.29 0.29 0.11 0.12 0.14
AIC 13,156 13,099 13,081 10,742 10,603 10,588 5,195 5,187 5,176
Obs. 2,019 2,019 2,019 1,645 1,645 1,645 801 801 801
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes

(b) Voter turnout
Treatment 1.315∗∗∗ 1.999∗∗∗ 2.505∗∗∗ 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗ 1.500∗∗ -0.078 0.033

(0.453) (0.636) (0.763) (0.543) (0.715) (0.829) (0.682) (0.860) (0.954)
Adj. R2 0.22 0.22 0.22 0.26 0.26 0.26 0.09 0.10 0.10
AIC 27,389 27,375 27,375 21,664 21,658 21,657 7,900 7,880 7,884
Obs. 4,927 4,927 4,927 4,009 4,009 4,009 1,446 1,446 1,446
Covariates Yes Yes Yes Yes Yes Yes Yes Yes Yes

Notes: Unit of analysis is the polling station.
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Table 8: Smoothness test for presence in second round by party

Bin size 1km 2km
Political party Left-wing Greens Right-wing Left-wing Greens Right-wing
RD Estimate 14.541 -0.788 5.057 20.049∗ -3.728 4.425

(8.906) (39.632) (7.924) (10.715) (54.511) (12.023)
Obs. 53 28 61 36 22 42

Notes : The unit of analysis are bands of 1km or 2km width within 50km of the border on either
side.

Table 9: Additional anylsis

Approach Parametric Parametric Non-parametric
Bandwidth 50 50 50 50 50 50 Opt. Opt.
Polynomial order 2 3 4 2 3 4 Opt. Opt.
Covariates No No No Yes Yes Yes No Yes
Spatial RD design analysis in all municipalities

(a) Incumbent’s vote share
Treatment 2.563∗∗ 5.061∗∗∗ -1.411 0.349 -0.232 0.621 2.936 0.793

(1.231) (1.790) (2.492) (2.005) (2.313) (2.734) (2.923) (2.826)
Adj. R2 0.05 0.07 0.09 0.19 0.22 0.23 - -
AIC 12,697 12,665 12,622 12,353 12,288 12,268 - -
Obs. 1,737 1,737 1,737 1,731 1,731 1,731 2,794 2,783

(b) Voter turnout
Treatment 1.884∗∗∗ 1.187 -0.468 -1.527∗ -1.563 -1.782 1.980 1.137

(0.649) (0.949) (1.240) (0.890) (1.138) (1.329) (1.516) (1.427)
Adj. R2 0.01 0.02 0.02 0.13 0.13 0.13 - -
AIC 29,105 29,062 29,044 28,204 28,197 28,198 - -
Obs. 4,462 4,462 4,462 4,432 4,432 4,432 7,004 6,918
Spatial RD design analysis in the yellow zone

(a) Incumbent’s vote share
Treatment 1.075 6.308∗∗∗ -0.176 0.863 1.679 2.800∗ 7.614∗∗∗ 27.001∗∗∗

(0.703) (0.941) (1.185) (1.088) (1.220) (1.501) (2.539) (5.410)
Adj. R2 0.06 0.11 0.14 0.27 0.33 0.34 - -
AIC 9,639 9,553 9,516 9,272 9,159 9,138 - -
Obs. 1,444 1,444 1,444 1,444 1,444 1,444 2,268 2,268

(b) Voter turnout
Treatment 0.924∗∗ 0.884 -1.594∗∗ 1.989∗∗∗ 2.716∗∗∗ 1.263 0.370 0.486

(0.379) (0.549) (0.653) (0.617) (0.771) (0.880) (1.615) (1.564)
Adj. R2 0.09 0.09 0.10 0.27 0.27 0.28 - -
AIC 20,405 20,408 20,363 19,583 19,583 19,575 - -
Obs. 3,657 3,657 3,657 3,657 3,657 3,657 5,153 5,153
Notes: Unit of analysis is the polling station.
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B Appendix: Rolling regressions on incumbent’s vote share

Parametric regression on incumbent’s vote share (1)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 1 1.653∗∗ 5.903∗∗∗ 1.149 3.568∗∗∗ 3.311∗∗ 4.291∗∗
(0.739) (1.120) (1.584) (1.248) (1.464) (1.882)

Number: 3 1.096 5.057∗∗∗ 0.625 3.059∗∗ 2.259 3.532∗
(0.754) (1.135) (1.620) (1.206) (1.434) (1.848)

Number: 14 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 18 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 23 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 26 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 27 3.306∗∗∗ 7.695∗∗∗ 0.970 5.072∗∗∗ 5.142∗∗∗ 5.892∗∗∗
(0.789) (1.183) (1.723) (1.323) (1.518) (2.020)

Number: 28 0.667 5.287∗∗∗ 1.949 2.599∗∗ 3.061∗∗ 5.413∗∗∗
(0.708) (1.115) (1.607) (1.187) (1.439) (1.924)

Number: 36 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 38 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 39 1.456∗∗ 6.098∗∗∗ 1.502 3.045∗∗ 3.834∗∗ 4.875∗∗
(0.729) (1.171) (1.742) (1.349) (1.642) (2.162)
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Parametric regression on incumbent’s vote share (2)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 41 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 42 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 43 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 45 1.058 6.817∗∗∗ 1.927 4.666∗∗∗ 4.358∗∗∗ 5.028∗∗∗
(0.745) (1.152) (1.617) (1.330) (1.501) (1.948)

Number: 58 0.967 5.290∗∗∗ -0.505 1.918∗∗ 2.727∗∗∗ 3.126∗∗∗
(0.644) (0.838) (1.032) (0.892) (0.968) (1.202)

Number: 60 1.740∗∗ 6.023∗∗∗ 1.706 3.518∗∗ 3.786∗∗ 5.026∗∗
(0.721) (1.119) (1.628) (1.407) (1.659) (2.066)

Number: 61 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 62 1.606∗∗ 5.894∗∗∗ 1.546 3.050∗∗ 3.269∗∗ 4.722∗∗
(0.717) (1.107) (1.597) (1.220) (1.465) (1.894)

Number: 63 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 69 1.660∗∗ 4.548∗∗∗ 2.076 1.866 4.330∗∗∗ 4.400∗∗
(0.737) (1.147) (1.624) (1.177) (1.447) (1.905)

Number: 71 1.605∗∗ 6.049∗∗∗ 1.734 3.501∗∗∗ 3.580∗∗ 4.980∗∗∗
(0.725) (1.119) (1.613) (1.287) (1.475) (1.917)

Number: 72 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 73 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)
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Parametric regression on incumbent’s vote share (3)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 74 1.217∗ 4.919∗∗∗ 3.140∗ 3.820∗∗∗ 3.583∗∗ 5.182∗∗∗
(0.723) (1.109) (1.625) (1.271) (1.430) (1.884)

Number: 75 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 76 2.213∗∗∗ 6.646∗∗∗ 1.297 4.022∗∗∗ 3.580∗∗ 5.670∗∗∗
(0.744) (1.147) (1.678) (1.338) (1.601) (2.125)

Number: 77 1.345∗ 5.566∗∗∗ 1.538 2.900∗∗ 3.127∗∗ 4.988∗∗∗
(0.759) (1.161) (1.658) (1.250) (1.482) (1.932)

Number: 78 1.891∗∗ 6.422∗∗∗ 1.294 3.496∗∗∗ 3.718∗∗ 4.475∗∗
(0.820) (1.354) (1.862) (1.333) (1.629) (2.094)

Number: 80 1.630∗∗ 6.047∗∗∗ 1.647 3.374∗∗∗ 3.655∗∗ 4.950∗∗
(0.722) (1.123) (1.628) (1.225) (1.465) (1.924)

Number: 89 1.397∗ 5.844∗∗∗ 1.661 3.642∗∗∗ 3.464∗∗ 5.123∗∗∗
(0.745) (1.165) (1.642) (1.260) (1.510) (1.956)

Number: 91 1.763∗∗ 6.994∗∗∗ 2.647 3.320∗∗∗ 3.755∗∗ 5.339∗∗
(0.779) (1.260) (1.946) (1.199) (1.514) (2.141)

Number: 92 1.968∗∗∗ 5.247∗∗∗ 1.791 3.167∗∗∗ 2.793∗ 4.701∗∗
(0.724) (1.126) (1.608) (1.219) (1.479) (1.893)

Number: 93 1.585∗∗ 5.904∗∗∗ 1.543 3.303∗∗∗ 3.534∗∗ 4.836∗∗
(0.716) (1.106) (1.597) (1.209) (1.439) (1.888)

Number: 94 2.616∗∗∗ 4.878∗∗∗ 2.395 3.527∗∗∗ 3.676∗∗ 5.032∗∗∗
(0.718) (1.127) (1.620) (1.243) (1.447) (1.925)

Number: 95 0.903 6.234∗∗∗ 1.373 2.590∗∗ 3.895∗∗∗ 4.747∗∗
(0.737) (1.116) (1.622) (1.238) (1.500) (1.922)
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C Appendix: Parametric rolling regressions on voter turnout

Parametric regression on voter turnout (1)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 1 1.300∗∗∗ 1.471∗∗ 0.492 2.018∗∗∗ 2.970∗∗∗ 2.393∗∗∗
(0.390) (0.576) (0.746) (0.553) (0.731) (0.850)

Number: 3 1.299∗∗∗ 1.435∗∗ 0.347 1.880∗∗∗ 2.713∗∗∗ 2.097∗∗
(0.394) (0.584) (0.744) (0.548) (0.731) (0.842)

Number: 14 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 18 1.413∗∗∗ 0.987∗ -0.045 1.344∗∗ 1.771∗∗ 1.373∗
(0.361) (0.523) (0.648) (0.544) (0.709) (0.783)

Number: 23 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 26 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 27 0.476 0.645 0.728 1.274∗∗ 2.231∗∗∗ 2.688∗∗∗
(0.401) (0.590) (0.787) (0.560) (0.749) (0.895)

Number: 28 1.399∗∗∗ 1.619∗∗∗ 0.517 2.090∗∗∗ 3.085∗∗∗ 2.449∗∗∗
(0.404) (0.597) (0.795) (0.571) (0.764) (0.904)

Number: 36 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 38 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 39 1.189∗∗∗ 1.187∗∗ 0.001 1.719∗∗∗ 2.539∗∗∗ 1.869∗∗
(0.373) (0.552) (0.720) (0.558) (0.735) (0.845)
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Parametric regression on voter turnout (2)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 41 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 42 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 43 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 45 1.591∗∗∗ 1.789∗∗∗ 1.177 2.308∗∗∗ 3.447∗∗∗ 3.297∗∗∗
(0.407) (0.611) (0.800) (0.598) (0.821) (0.940)

Number: 58 1.450∗∗∗ 1.778∗∗∗ 0.730 2.343∗∗∗ 3.596∗∗∗ 3.125∗∗∗
(0.370) (0.540) (0.704) (0.534) (0.699) (0.809)

Number: 60 1.297∗∗∗ 1.419∗∗ 0.440 2.443∗∗∗ 3.435∗∗∗ 2.854∗∗∗
(0.373) (0.553) (0.721) (0.575) (0.762) (0.865)

Number: 61 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 62 1.336∗∗∗ 1.387∗∗ 0.440 1.714∗∗∗ 2.560∗∗∗ 2.135∗∗∗
(0.372) (0.550) (0.716) (0.535) (0.706) (0.827)

Number: 63 1.291∗∗∗ 1.437∗∗∗ 0.410 1.984∗∗∗ 2.917∗∗∗ 2.359∗∗∗
(0.373) (0.551) (0.716) (0.543) (0.715) (0.830)

Number: 69 1.338∗∗∗ 1.806∗∗∗ -0.367 1.858∗∗∗ 2.603∗∗∗ 1.453∗
(0.393) (0.586) (0.755) (0.561) (0.717) (0.869)

Number: 71 1.258∗∗∗ 1.483∗∗∗ 0.345 1.968∗∗∗ 2.979∗∗∗ 2.390∗∗∗
(0.377) (0.564) (0.742) (0.564) (0.750) (0.872)

Number: 72 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)

Number: 73 1.301∗∗∗ 1.438∗∗∗ 0.393 1.990∗∗∗ 2.919∗∗∗ 2.343∗∗∗
(0.373) (0.550) (0.716) (0.543) (0.715) (0.829)
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Parametric regression on voter turnout (3)

(1) (2) (3) (4) (5) (6)
Bandwidth 50 50 50 50 50 50
Polynomial order 2 3 4 2 3 4
Covariates No No No Yes Yes Yes
Excluded department number

Number: 74 1.427∗∗∗ 1.499∗∗∗ 0.280 2.369∗∗∗ 3.032∗∗∗ 2.044∗∗
(0.387) (0.554) (0.727) (0.626) (0.741) (0.846)

Number: 75 0.518 1.212∗∗ 1.231∗ 1.966∗∗∗ 2.985∗∗∗ 2.302∗∗∗
(0.375) (0.548) (0.716) (0.544) (0.718) (0.830)

Number: 76 1.414∗∗∗ 1.925∗∗∗ 0.126 1.343∗∗ 2.640∗∗∗ 1.095
(0.370) (0.556) (0.744) (0.534) (0.709) (0.851)

Number: 77 1.265∗∗∗ 1.278∗∗ 0.263 2.132∗∗∗ 2.819∗∗∗ 2.309∗∗∗
(0.378) (0.557) (0.724) (0.551) (0.721) (0.838)

Number: 78 1.825∗∗∗ 2.546∗∗∗ 1.084 2.181∗∗∗ 3.572∗∗∗ 2.991∗∗∗
(0.405) (0.620) (0.797) (0.580) (0.773) (0.903)

Number: 80 1.260∗∗∗ 1.371∗∗ 0.272 2.144∗∗∗ 2.860∗∗∗ 2.285∗∗∗
(0.378) (0.557) (0.720) (0.579) (0.731) (0.843)

Number: 89 1.198∗∗∗ 1.340∗∗ -0.197 1.828∗∗∗ 2.697∗∗∗ 1.729∗∗
(0.374) (0.553) (0.709) (0.548) (0.725) (0.830)

Number: 91 0.711∗ 1.441∗∗ 0.290 1.969∗∗∗ 3.243∗∗∗ 2.631∗∗∗
(0.389) (0.589) (0.766) (0.546) (0.740) (0.865)

Number: 92 1.392∗∗∗ 1.315∗∗ 0.427 1.659∗∗∗ 2.305∗∗∗ 2.262∗∗∗
(0.374) (0.554) (0.718) (0.540) (0.716) (0.829)

Number: 93 1.332∗∗∗ 1.385∗∗ 0.444 2.037∗∗∗ 2.897∗∗∗ 2.376∗∗∗
(0.372) (0.550) (0.716) (0.542) (0.715) (0.829)

Number: 94 1.451∗∗∗ 1.356∗∗ 0.277 1.975∗∗∗ 3.452∗∗∗ 2.134∗∗
(0.375) (0.557) (0.724) (0.556) (0.722) (0.830)

Number: 95 1.771∗∗∗ 1.200∗∗ 0.528 2.582∗∗∗ 2.993∗∗∗ 2.465∗∗∗
(0.376) (0.550) (0.717) (0.549) (0.731) (0.843)
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The stochastic reproduction rate 
of a virus1

Richard Holden2 and D.J. Thornton3

Date submitted: 30 July 2020; Date accepted: 30 July 2020

We consider an SIR model where the probability of infections between 
infected and susceptible individuals are viewed as Poisson trials. The 
probabilities of infection between pairwise susceptible-infected matches 
are thus order statistics. This implies that the reproduction rate is a 
random variable. We derive the first two moments of the distribution of 
Rt conditional on the information available at time t−1 for Poisson trials 
drawn from an arbitrary parent distribution with finite mean. We show 
that the variance of Rt is increasing in the proportion of susceptible 
individuals in the population, and that ex ante identical populations 
can exhibit large differences in the path of the virus. This has a number 
of implications for policy during pandemics. We provide a rationale for 
why shelter-in-place orders may be a better containment measure than 
mandating the use of masks because of their impact on the variance of 
the reproduction rate.

1 We are grateful to Robert Akerlof, Anup Malani and John Quiggin for helpful discussions and comments.
2 Professor of Economics, UNSW Sydney.
3 Senior Lecturer in Geography, UNSW Sydney.
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1 Introduction

The COVID-19 pandemic has shown that the effective reproduction rate of the virus Rt

is a crucial determinant not only if public health, but also of public policy. Social distanc-
ing, shelter-in-place and other containment measures aim to stop the spread of the virus,
essentially by attempting to push Rt below 1.

It has been clear to epidemiologists, public health officials, and economists that with
Rt > 1 the virus spreads exponentially—overwhelming health systems and leading to
substantial loss of life.

Despite the critical importance of the reproduction rate it is treated in epidemiological
models as a parameter, rather than as a random variable. Yet the primitives of so-called
SIR models are, from a behavioral perspective, the proportion of the population that is
infected and susceptible, the rate at which those sub-populations interact, and the proba-
bility that a given interaction leads an infected individual to infect a susceptible individ-
ual.

Those primitives determine the reproduction rate, yet Rt is typically modeled as an ex-
ogenous variable. The point-of-view we take in this paper is to derive Rt from primitives
and explicitly model the stochastic nature of those primitives. This leads one to the seem-
ingly obvious conclusion that Rt is a random variable—and as such it has an associated
probability distribution. An immediate consequence of this is that the rate of suscepti-
bility, infection, and recovery in a population are also random variables with their own
probability distributions.

The first main result we derive is that the variance of Rt at any point in time, condi-
tional on the information available that time, is increasing in the proportion of the popu-
lation that is susceptible at that time. This implies that early on in an epidemic–when the
susceptible proportion of the population is low–the variance of infection rates is the high-
est. This, in turn, implies that two ex ante identical jurisdictions could have very different
infection rates simply due to chance, and this can create persistent difference in the path
of the virus in those jurisdictions.

An optimal policy for controlling Rt must account for the complete distribution of Rt

and the amount of mass of its probability distribution that lies on the part of the support
above Rt = 1. All else equal the amount of mass in this “danger zone” is larger when
the proportion of the population that is susceptible is larger—i.e. at the onset of the virus.
This implies that the optimal containment policy is stricter earlier in the evolution of the
virus.

The remainder of the paper proceeds as follows. In section 2 we outline the statement

of the problem. Section 3 characterizes the first two moments of the distribution of Rt.
Section 4 derives a number of implications for decision-makers and concludes. Proofs of
results not contained in the text are relegated to an appendix.

2 The Model

2.1 Statement of the Problem

There are N agents that are infinitely lived. Time is discrete and indexed by t = 0, 1, 2, ....
At each time t an agent is in one of three states: susceptible, infected, or recovered. There are
St susceptible agents in the population, there are It infected agents, and the number of
recovered individuals is Rt = N − St − It, where St, It, Rt ∈ N.

Following the standard convention, we shall refer to It as the prevalence of the disease
at time t.

At time t each agent is pairwise random matched with φ = φ(N) other agents inde-
pendently with equal probability among agents irrespective of health status, where φ(N)

captures the intensity of social interactions in the population. We assume that φ : N → N
is an integer valued function satisfying 0 ≤ φ(N) ≤ N for all N ∈ N. This allows us to
consider both the simple case where φ(N) = d ∈ N for all N , and more complex cases
where for example φ(N) = ⌊log(N)⌋ (here, ⌊·⌋ denotes the floor function, though we rou-
tinely omit floor and ceiling signs for readability). For notational convenience later on
we also define here m = φ/N to be the proportion of the population that an individual
matches up with in a given time period.

An interaction structure in the population can be formed by considering the random
regular graph formed by the well known configuration model [6, 50] with N individuals or
vertices and degree sequence (d1, . . . dN) = (φ, . . . ,φ), conditioning on getting a simple
graph. In the limit of a large population size, and for small φ(N), matches formed by the
configuration model are approximately independent (this technique is used in [19] for
example). Some notes on the reproductive rate with the independence condition removed
are provided in the appendix.

If an infected agent j is matched with a susceptible agent k then with probability pj the
susceptible agent becomes infected. We assume that pj is drawn from a distribution D on
support [0, 1] with finite mean µ, and that the draw for each infected-susceptible match is
stochastically independent.

Recovered agents are assumed to be immune to infection and are not contagious, and
infected agents spontaneously recover with probability γ ≥ 0.
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of the problem. Section 3 characterizes the first two moments of the distribution of Rt.
Section 4 derives a number of implications for decision-makers and concludes. Proofs of
results not contained in the text are relegated to an appendix.

2 The Model

2.1 Statement of the Problem

There are N agents that are infinitely lived. Time is discrete and indexed by t = 0, 1, 2, ....
At each time t an agent is in one of three states: susceptible, infected, or recovered. There are
St susceptible agents in the population, there are It infected agents, and the number of
recovered individuals is Rt = N − St − It, where St, It, Rt ∈ N.

Following the standard convention, we shall refer to It as the prevalence of the disease
at time t.

At time t each agent is pairwise random matched with φ = φ(N) other agents inde-
pendently with equal probability among agents irrespective of health status, where φ(N)

captures the intensity of social interactions in the population. We assume that φ : N → N
is an integer valued function satisfying 0 ≤ φ(N) ≤ N for all N ∈ N. This allows us to
consider both the simple case where φ(N) = d ∈ N for all N , and more complex cases
where for example φ(N) = ⌊log(N)⌋ (here, ⌊·⌋ denotes the floor function, though we rou-
tinely omit floor and ceiling signs for readability). For notational convenience later on
we also define here m = φ/N to be the proportion of the population that an individual
matches up with in a given time period.

An interaction structure in the population can be formed by considering the random
regular graph formed by the well known configuration model [6, 50] with N individuals or
vertices and degree sequence (d1, . . . dN) = (φ, . . . ,φ), conditioning on getting a simple
graph. In the limit of a large population size, and for small φ(N), matches formed by the
configuration model are approximately independent (this technique is used in [19] for
example). Some notes on the reproductive rate with the independence condition removed
are provided in the appendix.

If an infected agent j is matched with a susceptible agent k then with probability pj the
susceptible agent becomes infected. We assume that pj is drawn from a distribution D on
support [0, 1] with finite mean µ, and that the draw for each infected-susceptible match is
stochastically independent.

Recovered agents are assumed to be immune to infection and are not contagious, and
infected agents spontaneously recover with probability γ ≥ 0.
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2.2 Discussion

This paper contributes to the literature on heterogeneity (or ’heterogeneous infection
rates’ if you prefer) in epidemic models, much in the spirit of the now classic [22]. In
the existing literature, studies have focused on heterogeneity at the group level [29, 9,
3, 14, 8, 45, 44] (subdividing a heterogeneous population into homogeneous groups) as
well as individual level [28, 42, 33, 23], whilst other authors have taken the approach of
incorporating exogenous shocks into their models. Such shock are usually modeled by
introducing discontinuities into the deterministic SIR (as well as SEIR, SIS, and SI) sys-
tems of differential equations via stochastic jumps or ’noise’ [46, 48, 53, 54, 35]. Several
studies built on variants of the SIR model have been applied directly to analysing the
Covid-19 epidemic [52, 44, 40, 17], with some recent models taking into account the eco-
nomic costs of various policy interventions (e.g. [1, 5, 11, 17, 13]). A significant amount
of work has been done to describe the behavior of epidemics on networks with heteroge-
neous individuals [34, 30, 4, 31, 20, 47, 51, 41, 7, 16, 18], often making use of results from
bond percolation or applying mean field approximations (e.g. see [36]).

Models which account for individual heterogeneity have become especially important
in light of the accumulating theoretical [29, 27, 25, 33, 7] and empirical [10, 49, 15, 21, 4, 32]
evidence that heterogeneity in a population strongly influences (and in particular, lowers)
the probability of epidemic invasion.

Most of the models in the literature–with the exception of a few [8, 41, 23, 7] involve
continuous time. In the way of discrete SIR models some work has been done (see [2] for
example), though the disease-spreading mechanism that we employ has, as far as we are
aware, not been considered in the epidemiological literature. Moreover, whilst many pa-
pers calculate the basic reproductive number R0 under their models, this parameter –and
consequently, the effective reproductive number Rt –often fail to accurately capture the
threshold properties of epidemics, and can vary dramatically according to the method by
which they are calculated [8, 24, 38]. For example, the observations of of super-spreading
events (SSE’s) which is well documented for the SARS outbreak of 2003 [39, 26, 43, 28, 12]
represent tail end draws from the (random) reproductive rate. Our main innovation is
the explicit focus on the reproductive rate as a random variable, and our novel modeling
approach of infected-susceptible matches as non-identical Bernoulli “trials”–or Poisson
trials [37]. The paper perhaps closest to ours is [28].

Before we proceed with the analysis we pause briefly to remark that our main result
about the variance of the reproduction rate at a particular point in time is stated as being
conditional on the information available to an observer at that time. There are two reasons
for this. The first is conceptual. Any policy maker should care about the variance at a

given time accounting for the information that she has. Calculating the unconditional
variance is to discard useful information. The second reason we focus on the conditional
variance is practical. One can analytically derive the unconditional variance, but it has
a somewhat unwieldy recursive structure. In any case, we view it as being of limited
interest for policy makers concerned with the evolution of a virus.

3 Analysis

3.1 The Distribution of the Reproduction Rate

We seek to characterize the distribution of the reproduction rate of the virus at time t,
which we denote Rt.

Notice that a given infected agent has φ pairwise random matches in the population
and that infections can only occur when they are matched with a susceptible agent (which
have proportion St/N in the population). Assuming there is independence between
matches (more on this assumption later), the expected number of susceptible matches
of a given infected individual is therefore φSt/N . Recalling that we defined m = φ/N we
can write this as mSt

Denote the probability that given such a match infection occurs as pj . We define Rt as
the random variable counting the number of people that are infected by a given infected
person at time t. That is, we have

Rt =
mSt!

j=1

Ij, (1)

where Ij is an indicator variable taking the value 1 if match j leads to an infection and
0 otherwise. That is, we define Ij by the conditional distribution

P(Ij = x | pj = p) = xp+ (1− x)(1− p).

Recalling that the mean of pj is finite and denoted by µ, we may calculate the expectation
of the indicator variable Ij by the law of iterated expectations as

E(Ij) = E
"
E(Ij | pj)

#
= E

"
P(Ij = 1 | pj)

#
= E(pj) = µ. (2)

We also ignore potential integer problems in the upper limit of the summation in the
definition of Rt, one could avoid this by explicitly taking ⌊mSt⌋ as the upper limit.
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given time accounting for the information that she has. Calculating the unconditional
variance is to discard useful information. The second reason we focus on the conditional
variance is practical. One can analytically derive the unconditional variance, but it has
a somewhat unwieldy recursive structure. In any case, we view it as being of limited
interest for policy makers concerned with the evolution of a virus.

3 Analysis

3.1 The Distribution of the Reproduction Rate

We seek to characterize the distribution of the reproduction rate of the virus at time t,
which we denote Rt.

Notice that a given infected agent has φ pairwise random matches in the population
and that infections can only occur when they are matched with a susceptible agent (which
have proportion St/N in the population). Assuming there is independence between
matches (more on this assumption later), the expected number of susceptible matches
of a given infected individual is therefore φSt/N . Recalling that we defined m = φ/N we
can write this as mSt

Denote the probability that given such a match infection occurs as pj . We define Rt as
the random variable counting the number of people that are infected by a given infected
person at time t. That is, we have

Rt =
mSt!

j=1

Ij, (1)

where Ij is an indicator variable taking the value 1 if match j leads to an infection and
0 otherwise. That is, we define Ij by the conditional distribution

P(Ij = x | pj = p) = xp+ (1− x)(1− p).

Recalling that the mean of pj is finite and denoted by µ, we may calculate the expectation
of the indicator variable Ij by the law of iterated expectations as

E(Ij) = E
"
E(Ij | pj)

#
= E

"
P(Ij = 1 | pj)

#
= E(pj) = µ. (2)

We also ignore potential integer problems in the upper limit of the summation in the
definition of Rt, one could avoid this by explicitly taking ⌊mSt⌋ as the upper limit.

Defining Rt in this way gives us something analogous to a discrete-time SIR model
which we will discuss how to specify shortly. By way of reference, we describe the classic
discrete-time SIR model here. Let ∆St+1 = St+1−St and define ∆It+1 and ∆Rt+1 similarly.
The classic discrete-time SIR model can be described as

∆St+1 = −βItSt (3)

∆It+1 = βItSt − γIt (4)

∆Rt+1 = Itγ, (5)

where β is the average rate of infection. Our model is substantially more complex than
this since we account for the distribution of Rt and not just the point estimate β. As such,
our rates of susceptibility, infection, and recover will also be random variables determined
by some initial state vector (S0, I0, R0).

Let Rpop
t denote the population-level reproductive rate, that is, a random variable

whose distribution is equal to the number of new infections in the population from time
t to time t + 1. We saw that in the calculation of Rt, the expected number of susceptible
matches of a given infected individual is mSt. Since there are It infected individuals in the
population at time t, and each infected-susceptible match is assumed to be independent,
we have

Rpop
t =

ItmSt!

j=1

Ij. (6)

Taking φ(N) = φ ∈ N is sufficient for the independence properties we require, henceforth
we assume φ ∈ N is a constant. As a result, our SIR equations become

∆St+1 = −
mItSt!

j=1

Ij. (7)

∆It+1 =
mItSt!

j=1

Ij − γIt (8)

∆Rt+1 = γIt. (9)

We suppress the dependence of the indicator variables on the time period t for notational
convenience, in reality each new time period yields a new set of indicator variables Ij
which are independent of those in any other time period. Notice by Wald’s identity we
have

E (Rpop
t ) = E

$
mItSt!

j=1

Ij

%
= E(mStIt)E(Ij) = mµE(StIt),
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Defining Rt in this way gives us something analogous to a discrete-time SIR model
which we will discuss how to specify shortly. By way of reference, we describe the classic
discrete-time SIR model here. Let ∆St+1 = St+1−St and define ∆It+1 and ∆Rt+1 similarly.
The classic discrete-time SIR model can be described as

∆St+1 = −βItSt (3)

∆It+1 = βItSt − γIt (4)

∆Rt+1 = Itγ, (5)

where β is the average rate of infection. Our model is substantially more complex than
this since we account for the distribution of Rt and not just the point estimate β. As such,
our rates of susceptibility, infection, and recover will also be random variables determined
by some initial state vector (S0, I0, R0).

Let Rpop
t denote the population-level reproductive rate, that is, a random variable

whose distribution is equal to the number of new infections in the population from time
t to time t + 1. We saw that in the calculation of Rt, the expected number of susceptible
matches of a given infected individual is mSt. Since there are It infected individuals in the
population at time t, and each infected-susceptible match is assumed to be independent,
we have

Rpop
t =

ItmSt!

j=1

Ij. (6)

Taking φ(N) = φ ∈ N is sufficient for the independence properties we require, henceforth
we assume φ ∈ N is a constant. As a result, our SIR equations become

∆St+1 = −
mItSt!

j=1

Ij. (7)

∆It+1 =
mItSt!

j=1

Ij − γIt (8)

∆Rt+1 = γIt. (9)

We suppress the dependence of the indicator variables on the time period t for notational
convenience, in reality each new time period yields a new set of indicator variables Ij
which are independent of those in any other time period. Notice by Wald’s identity we
have

E (Rpop
t ) = E

$
mItSt!

j=1

Ij

%
= E(mStIt)E(Ij) = mµE(StIt),

and hence

E(∆St+1) = −mµE(StIt).

E(∆It+1) = mµE(StIt) + γE(It)

E(∆Rt+1) = γE(It).

That is, our model coincides with the standard model in expectation, with average infec-
tion rate β = mµ.

Consider a policy maker who, at time t, knows the current state θt−1 = {St−1, It−1} of
susceptibility and infection in the population at all time periods before t. They will use
this information to inform their policy. The key parameters of interest therefore are the
mean and variance of Rt, conditioned on knowing the history θt−1. That is, we want to
find expressions for E(Rt | θt−1) and Var(Rt | θt−1).

We begin by calculating E(Rt | θt−1). By noting that St is independent of the infection
event captured by Ij for all t, j ∈ N, we can calculate the conditional expectation of Rt by
Wald’s identity and (2) as

E(Rt | θt−1) = E(mSt | θt−1)E(Ij | θt−1)

= mE(St | θt−1)E(Ij)

= mµE(St | θt−1). (10)

Therefore, the mean of Rt depends crucially on the mean of St, the number of susceptible
individuals in the population at time t. We now derive the mean and variance of St

conditional on knowing the history of susceptibility and infection. This will allow us to
derive the conditional mean and variance of Rt. We work towards the theorem below in
what follows.

Theorem 1 For all t ∈ N

1.
E(Rt | θt−1) = mµSt−1 +m2µ2It−1St−1.

2.
Var(Rt | θt−1) = mµ(1− µ)St−1 +m2µ2(1− µ)(1 +mµ)It−1St−1.

We use the next result several times in the proofs that follow, so we state it here as a
lemma.
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and hence

E(∆St+1) = −mµE(StIt).

E(∆It+1) = mµE(StIt) + γE(It)

E(∆Rt+1) = γE(It).

That is, our model coincides with the standard model in expectation, with average infec-
tion rate β = mµ.

Consider a policy maker who, at time t, knows the current state θt−1 = {St−1, It−1} of
susceptibility and infection in the population at all time periods before t. They will use
this information to inform their policy. The key parameters of interest therefore are the
mean and variance of Rt, conditioned on knowing the history θt−1. That is, we want to
find expressions for E(Rt | θt−1) and Var(Rt | θt−1).

We begin by calculating E(Rt | θt−1). By noting that St is independent of the infection
event captured by Ij for all t, j ∈ N, we can calculate the conditional expectation of Rt by
Wald’s identity and (2) as

E(Rt | θt−1) = E(mSt | θt−1)E(Ij | θt−1)

= mE(St | θt−1)E(Ij)

= mµE(St | θt−1). (10)

Therefore, the mean of Rt depends crucially on the mean of St, the number of susceptible
individuals in the population at time t. We now derive the mean and variance of St

conditional on knowing the history of susceptibility and infection. This will allow us to
derive the conditional mean and variance of Rt. We work towards the theorem below in
what follows.

Theorem 1 For all t ∈ N

1.
E(Rt | θt−1) = mµSt−1 +m2µ2It−1St−1.

2.
Var(Rt | θt−1) = mµ(1− µ)St−1 +m2µ2(1− µ)(1 +mµ)It−1St−1.

We use the next result several times in the proofs that follow, so we state it here as a
lemma.

Lemma 1 For all t ∈ N, we have

E(∆St | θt−1) = −mµIt−1St−1.

Proof. The result can be obtained by a single application of Wald’s identity. We thus have

E(∆St | θt−1) = E

$
−

mIt−1St−1!

j=1

Ij
&& θt−1

%

= −E(mIt−1St−1 | θt−1)E(Ij | θt−1)

= −mµIt−1St−1,

as desired.

We now prove Part 1. of Theorem 1.

Proof of Part 1. We can compute E(St | θt−1) directly by noting that St = St−1+∆St. This
gives us that

E(St | θt−1) = E (St−1 +∆St | θt−1)

= St−1 + E (∆St | θt−1) .

Now applying Lemma 1, we have

E(St | θt−1) = St−1 −mµIt−1St−1. (11)

Applying (10) yields the desired result.

We will need to establish a few more lemmas in order to prove Part 2. of Theorem 1.
We being by proving an equation for the conditional variance of Rt in terms of the condi-
tional expectation and variance of St.

Lemma 2 For all t ∈ N, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1). (12)
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Lemma 1 For all t ∈ N, we have

E(∆St | θt−1) = −mµIt−1St−1.

Proof. The result can be obtained by a single application of Wald’s identity. We thus have

E(∆St | θt−1) = E

$
−

mIt−1St−1!

j=1

Ij
&& θt−1

%

= −E(mIt−1St−1 | θt−1)E(Ij | θt−1)

= −mµIt−1St−1,

as desired.

We now prove Part 1. of Theorem 1.

Proof of Part 1. We can compute E(St | θt−1) directly by noting that St = St−1+∆St. This
gives us that

E(St | θt−1) = E (St−1 +∆St | θt−1)

= St−1 + E (∆St | θt−1) .

Now applying Lemma 1, we have

E(St | θt−1) = St−1 −mµIt−1St−1. (11)

Applying (10) yields the desired result.

We will need to establish a few more lemmas in order to prove Part 2. of Theorem 1.
We being by proving an equation for the conditional variance of Rt in terms of the condi-
tional expectation and variance of St.

Lemma 2 For all t ∈ N, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1). (12)
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Proof. First, we have

R2
t =

$
mSt!

j=1

Ij

%$
mSt!

l=1

Il

%

=
!

j=l

IjIl +
!

j ∕=l

IjIl.

=
!

j=l

Ij +
!

j ∕=l

IjIl.

There are (mSt)
2 terms in the expansion of R2

t . Exactly mSt of these fall under the sum
where j = l, and the remaining (mSt)

2 − mSt of them fall under the sum where j ∕= l.
Hence by Wald’s identity and (2), we have

E
"
R2

t | θt−1

#
= E

$
!

j=l

Ij | θt−1

%
+ E

$
!

j ∕=l

IjIl | θt−1

%

= E(mSt | θt−1)E(Ij | θt−1) + E
"
(mSt)

2 −mSt | θt−1

#
E(IjIl | θt−1)

= µE(mSt | θt−1) + µ2E
"
(mSt)

2 −mSt | θt−1

#

= mµ(1− µ)E(St | θt−1) +m2µ2E(S2
t | θt−1). (13)

Where we have used independence of indicator variables on the second sum. Hence
utilizing (10) and (13), the variance of Rt is given by

Var(Rt | θt−1) = E(R2
t | θt−1)− (E(Rt | θt−1))

2

= mµ(1− µ)E(St | θt−1) +m2µ2E(S2
t | θt−1)− (mµE (St | θt−1))

2

= mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1),

as required.

We require one more lemma before we complete the proof of Theorem 1.

Lemma 3 For all t ∈ N we have

E
"
(∆St)

2 | θt−1

#
= mµ(1− µ)It−1St−1 + (mµIt−1St−1)

2.

108
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 1
00

-1
28



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

Proof. The proof is similar to the proof of Lemma 2. We first note that

(∆St)
2 =

$
−

mIt−1St−1!

j=1

Ij

%$
−

mIt−1St−1!

l=1

Il

%

=
!

j=l

IjIl +
!

j ∕=l

IjIl.

=
!

j=l

Ij +
!

j ∕=l

IjIl.

There are (mIt−1St−1)
2 terms in the expansion of (∆St)

2. Exactly mIt−1St−1 of these fall
under the sum where j = l, and the remaining (mIt−1St−1)

2−mIt−1St−1 of them fall under
the sum where j ∕= l. Hence by (2), we have

E
"
(∆Sk)

2 | θt−1

#
= E

$
!

j=l

Ij | θt−1

%
+ E

$
!

j ∕=l

IjIl | θt−1

%
.

= µE(mIt−1St−1 | θt−1) + µ2E
"
(mIt−1St−1)

2 −mIt−1St−1 | θt−1

#

= mµ(1− µ)It−1St−1 + (mµIt−1St−1)
2, (14)

as required.

We now prove Part 2. of Theorem 1.

Proof of Part 2. We want to find a closed-form expression for Var(Rt | θt−1). We will
require (11) which we proved in Part 1. of Theorem 1. We recall this equation here as

E (St | θt−1) = St−1 −mµIt−1St−1.

Hence by Lemma 2 it only remains to calculate E (S2
t | θt−1). Noting that

S2
t = (St−1 +∆St)

2 = S2
t−1 + 2St−1∆St + (∆St)

2

we can use Lemma 1 and Lemma 3 to compute

E(S2
t | θt−1) = S2

t−1 + 2St−1E(∆St | θt−1) + E
"
(∆St)

2 | θt−1

#

= S2
t−1 + 2St−1 (−mµIt−1St−1) +

"
mµ(1− µ)It−1St−1 + (mµIt−1St−1)

2
#

= mµ(1− µ)It−1St−1 + S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2. (15)

Further, we have by (11) that

(E(St | θt−1))
2 = (St−1 −mµIt−1St−1)

2

= S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2 (16)

Now using (15) and (16) we can calculate

Var(St | θt−1) = E(S2
t | θt−1)− (E(St | θt−1))

2

=
"
mµ(1− µ)It−1St−1 + S2

t−1 − 2mµIt−1S
2
t−1 + (mµIt−1St−1)

2
#

−
"
S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2#

= mµ(1− µ)It−1St−1. (17)

Finally, combining (17) and (11) together with Lemma 2, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1)

= mµ(1− µ) (St−1 −mµIt−1St−1) +m2µ2 (mµ(1− µ)It−1St−1)

= mµ(1− µ)St−1 −m2µ2(1− µ)(1−mµ)It−1St−1,

completing the proof.

The first consequence of Theorem 1 is the following important Corollary.

Corollary 1 For sufficiently large N , the variance of Rt given θt−1 is increasing in St−1.

In particular the proof of Corollary 1 which we present below shows that the condi-
tional variance of Rt is increasing in St−1 when t is small, since at the beginning of the SIR
process, infection rates are low and susceptibility is high. This implies that if variance is
a concern to policy makers, then containment policies should be stricter earlier on in the
spread of the virus.

Proof. Note firstly that an immediate decrease in St−1 translates into a commensurate
increase in It−1, that is, an individual who is no longer susceptible must have gotten
infected. As such, it makes sense to think about an increase in St−1 as resulting from a
commensurate decrease in It−1. One can think of this as having an additional susceptible
individual at time t− 2 who did not get infected by any of the It−2 infected individuals at
that time period.

Now, suppose that we fix St−1 ∈ N and It−1 ∈ N with St−1 + It−1 ≤ N . Consider
what happens when the number of susceptible individuals at time t − 1 increases by 1.
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Further, we have by (11) that

(E(St | θt−1))
2 = (St−1 −mµIt−1St−1)

2

= S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2 (16)

Now using (15) and (16) we can calculate

Var(St | θt−1) = E(S2
t | θt−1)− (E(St | θt−1))

2

=
"
mµ(1− µ)It−1St−1 + S2

t−1 − 2mµIt−1S
2
t−1 + (mµIt−1St−1)

2
#

−
"
S2
t−1 − 2mµIt−1S

2
t−1 + (mµIt−1St−1)

2#

= mµ(1− µ)It−1St−1. (17)

Finally, combining (17) and (11) together with Lemma 2, we have

Var(Rt | θt−1) = mµ(1− µ)E(St | θt−1) +m2µ2 Var(St | θt−1)

= mµ(1− µ) (St−1 −mµIt−1St−1) +m2µ2 (mµ(1− µ)It−1St−1)

= mµ(1− µ)St−1 −m2µ2(1− µ)(1−mµ)It−1St−1,

completing the proof.

The first consequence of Theorem 1 is the following important Corollary.

Corollary 1 For sufficiently large N , the variance of Rt given θt−1 is increasing in St−1.

In particular the proof of Corollary 1 which we present below shows that the condi-
tional variance of Rt is increasing in St−1 when t is small, since at the beginning of the SIR
process, infection rates are low and susceptibility is high. This implies that if variance is
a concern to policy makers, then containment policies should be stricter earlier on in the
spread of the virus.

Proof. Note firstly that an immediate decrease in St−1 translates into a commensurate
increase in It−1, that is, an individual who is no longer susceptible must have gotten
infected. As such, it makes sense to think about an increase in St−1 as resulting from a
commensurate decrease in It−1. One can think of this as having an additional susceptible
individual at time t− 2 who did not get infected by any of the It−2 infected individuals at
that time period.

Now, suppose that we fix St−1 ∈ N and It−1 ∈ N with St−1 + It−1 ≤ N . Consider
what happens when the number of susceptible individuals at time t − 1 increases by 1.
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Formally, let S ′
t−1 = St−1 + 1 and let I ′t−1 = It−1 − 1, now consider what happens when

St−1 → S ′
t−1 and It−1 → I ′t−1. Letting θ′t−1 = {S ′

t−1, I
′
t−1}, we have

Var(Rt | θ′t−1) = mµ(1− µ)S ′
t−1 −m2µ2(1− µ)(1−mµ)I ′t−1S

′
t−1

= mµ(1− µ) (St−1 + 1)−m2µ2(1− µ)(1−mµ) (It−1 − 1) (St−1 + 1)

= Var(Rt | θt−1) +mµ(1− µ)−m2µ2(1− µ)(1−mµ) (It−1 − St−1 − 1) .

(18)

Now (18) tells us that Var(Rt | θt−1) is increasing in St−1 if and only if

mµ(1− µ)−m2µ2(1− µ)(1−mµ) (It−1 − St−1 − 1) > 0. (19)

Supposing m ∕= 0 such that meetings occur, and that µ ∕= 0, 1 such that the Poisson trials
are not degenerate, (19) holds if and only if

1−mµ(1−mµ)(It−1 − St−1 − 1) > 0. (20)

If It−1 = St−1 + 1 then this equation holds trivially. Else writing m = φ
N

and multiplying
throughout by N we can write this as

N > φµ

'
1− φµ

N

(
(It−1 − St−1 − 1). (21)

Noting that the right hand side of (21) is O(φ(N)) this inequality will hold for N suffi-
ciently large whenever φ(N) = o(N) (and in fact we have assumed that φ(N) is a con-
stant), completing the proof.

We also present a second corollary regarding the asymptotic conditional variance of
Rt.

Corollary 2 As N → ∞, we have Var(Rt | θt−1) → mµ(1− µ)St−1 −m2µ2(1− µ)It−1St−1.

Proof. The proof follows immediately from noting that

1−mµ = 1− φµ

N

which converges to 1 as N → ∞.

3.2 Poisson trials and Superspreaders

The Poisson trials framework we have used allows us to observe that as the population
size N grows, the realized distribution of infection probabilities converges to the parent
distribution.

Theorem 2 Let X1, . . . , XN be random variables drawn from an absolutely continuous distribu-
tion F , and let ξk = inf{x : F (x) ≥ k} denote the k-th quantile of F , for 0 < k < 1. Similarly, let
ξ̂Nk = inf{x : FN(x) ≥ k} denote the k-th quantile of the sample distribution X1, . . . , XN , where
FN(x) =

1
N

)N
i=1 I(Xi ≤ x), and I(A) is an indicator variable for the event A. Then

P(|ξ̂Nk − ξk| > ε) ≤ 2 exp(−2Nδ2ε ),

where δε = min{F (ξk + ε)− k, k − F (ξk − ε)}. That is, ξ̂Nk
P−→ ξk exponentially fast.

Proof. This is a well known fact but we provide a proof of one of the bounds for com-
pleteness. Let ε > 0, and note that

P(|ξ̂Nk − ξk| > ε) = P(ξ̂Nk > ξk + ε) + P(ξ̂Nk < ξk + ε).

By definition of the sample quantile ξ̂Nk, we have

P(ξ̂Nk > ξk + ε) = P(k > FN(ξp + ε))

= P

$
Nk >

N!

i=1

I(Xi ≤ ξk + ε)

%

= P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
.

Now let Yi = I(Xi > ξk + ε). Then

E(Yi) = P(Xi > ξp + ε) = 1− F (ξp + ε).

Hence

P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
= P

$
N!

i=1

Yi −N(1− F (ξk + ε)) > N(F (ξp + ε)− k)

%

= P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
,
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3.2 Poisson trials and Superspreaders

The Poisson trials framework we have used allows us to observe that as the population
size N grows, the realized distribution of infection probabilities converges to the parent
distribution.

Theorem 2 Let X1, . . . , XN be random variables drawn from an absolutely continuous distribu-
tion F , and let ξk = inf{x : F (x) ≥ k} denote the k-th quantile of F , for 0 < k < 1. Similarly, let
ξ̂Nk = inf{x : FN(x) ≥ k} denote the k-th quantile of the sample distribution X1, . . . , XN , where
FN(x) =

1
N

)N
i=1 I(Xi ≤ x), and I(A) is an indicator variable for the event A. Then

P(|ξ̂Nk − ξk| > ε) ≤ 2 exp(−2Nδ2ε ),

where δε = min{F (ξk + ε)− k, k − F (ξk − ε)}. That is, ξ̂Nk
P−→ ξk exponentially fast.

Proof. This is a well known fact but we provide a proof of one of the bounds for com-
pleteness. Let ε > 0, and note that

P(|ξ̂Nk − ξk| > ε) = P(ξ̂Nk > ξk + ε) + P(ξ̂Nk < ξk + ε).

By definition of the sample quantile ξ̂Nk, we have

P(ξ̂Nk > ξk + ε) = P(k > FN(ξp + ε))

= P

$
Nk >

N!

i=1

I(Xi ≤ ξk + ε)

%

= P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
.

Now let Yi = I(Xi > ξk + ε). Then

E(Yi) = P(Xi > ξp + ε) = 1− F (ξp + ε).

Hence

P

$
N!

i=1

I(Xi > ξk + ε) > N(1− k)

%
= P

$
N!

i=1

Yi −N(1− F (ξk + ε)) > N(F (ξp + ε)− k)

%

= P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
,

where δ1 = F (ξk + ε)− k. Hence by Hoeffding’s inequality, we have

P(ξ̂Nk > ξk + ε) = P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
≤ exp(−2Nδ21).

A similar method shows that

P(ξ̂Nk < ξk + ε) ≤ exp(−2Nδ21),

and putting the two together yields the desired result.

Suppose for a moment that infection probabilities are individual-specific rather than
match-specific. That is, each infected individual has the same probability of infecting any
susceptible individual that they meet. Corollary 1 implies that, if we denote a person
who has a very high probability of infecting other as being a superspreader, then however
one defines that in terms of the threshold probability of infecting a susceptible person,
the chance of a superspreader being present in a population grows exponentially in the
size of the population. More generally when probabilities are match-specific as we have
assumed, if we denote an event which causes a large number of new cases as being a
superspreading event, then the probability of a superspreading event is increasing expo-
nentially fast in the population size.

4 Implications and Conclusion

4.1 Path Dependence

An immediate implication that flows from our model is the possibility of path dependence,
where two ex ante identical populations have persistent differences in observed infection
rates over time. To see this, note the the infection rate evolves as follows.

Lemma 4 For all t ∈ N, we have

It = I0(1− γ)t −
t!

k=1

(1− γ)t−k∆Sk.

Proof. The proof is by induction. For t = 0, the result holds trivially. Now suppose the
equation holds for some t ≥ 0, and consider the t+1-th case. We have from Equations (7)
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where δ1 = F (ξk + ε)− k. Hence by Hoeffding’s inequality, we have

P(ξ̂Nk > ξk + ε) = P

$
N!

i=1

Yi −
N!

i=1

E(Yi) > Nδ1

%
≤ exp(−2Nδ21).

A similar method shows that

P(ξ̂Nk < ξk + ε) ≤ exp(−2Nδ21),

and putting the two together yields the desired result.

Suppose for a moment that infection probabilities are individual-specific rather than
match-specific. That is, each infected individual has the same probability of infecting any
susceptible individual that they meet. Corollary 1 implies that, if we denote a person
who has a very high probability of infecting other as being a superspreader, then however
one defines that in terms of the threshold probability of infecting a susceptible person,
the chance of a superspreader being present in a population grows exponentially in the
size of the population. More generally when probabilities are match-specific as we have
assumed, if we denote an event which causes a large number of new cases as being a
superspreading event, then the probability of a superspreading event is increasing expo-
nentially fast in the population size.

4 Implications and Conclusion

4.1 Path Dependence

An immediate implication that flows from our model is the possibility of path dependence,
where two ex ante identical populations have persistent differences in observed infection
rates over time. To see this, note the the infection rate evolves as follows.

Lemma 4 For all t ∈ N, we have

It = I0(1− γ)t −
t!

k=1

(1− γ)t−k∆Sk.

Proof. The proof is by induction. For t = 0, the result holds trivially. Now suppose the
equation holds for some t ≥ 0, and consider the t+1-th case. We have from Equations (7)
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and (8) that

It+1 = It +
mItSt!

j=1

Ij − γIt

= (1− γ)It +
mItSt!

j=1

Ij

= (1− γ)It −∆St+1.

Now applying the induction hypothesis yields

It+1 = (1− γ)

$
I0(1− γ)t −

t!

k=1

(1− γ)t−k∆Sk

%
−∆St+1

= I0(1− γ)t+1 −
t!

k=1

(1− γ)t+1−k∆Sk −∆St+1

= I0(1− γ)t+1 −
t+1!

k=1

(1− γ)t+1−k∆Sk.

Hence the lemma is true for t+ 1 and is therefore true for all t ∈ N by induction.
We can see from Lemma 4 that the realized number of infections (the number of “suc-

cessful” Poisson trials) at t = 1 has a persistent effect on the infection rate for all t > 1.
That is, a bad round of early draws has persistent effect on the path of infection. Indeed,
∆St depends crucially on ∆Sk for every k < t, and so by Lemma 4 It depends crucially
on Ik for k < t. This implies that a bad early realisation of trials from ∆s1 increases the
number of infected people in the population, making transmission more likely since the
probability of an infected-susceptible match in the population increases.

If the population is large enough, then the law of large numbers implies that the pro-
portion of successful draws from the Poisson trials will converge to the mean of the tri-
als. In particular, the number of new infected individuals in a given time period will be
roughly equal to the mean, which we gave in Lemma 1 as mµIt−1St−1.

If I0 = 1
N

, then standard branching process methods confirm that there are essentially
2 equilibria–either the infection persists forever in the population or it → 0 as N, t → ∞.

4.2 Containment Policy

An overarching message from our analysis is that it is incomplete to focus only on the
mean of the reproduction rate. Because a virus grows exponentially when R > 1 a policy

maker should consider the mass of the distribution of R above 1. It is this region that we
have referred to as the danger zone, which is depicted in the following figure.

µ 1
Rt

Figure 1: The danger zone.

We end this section with a suggestion for how one might measure the sensitivity the
SIR system to perturbations. Fix the time at t and the let td(φ) > t denote the first time
period at which the expected number of total infections is greater than 2It when the num-
ber of matchings per individual in each time period is φ > 0. That is, td(φ) denotes the
number of time periods it takes for the expected number of total infections to double. We
set td(φ) = ∞ if infections are never expected to double.

We define the stability index of the virus at time t as

St =
1

td(φ+ 1)
− 1

td(φ)
. (22)

The stability index measures how responsive the system is with respect to the number of
matches per time period. It is one way to account for the mass of Rt which lies above 1.

A stability index of 0 indicates that the expected increase in the number of infections
does not change substantially when the φ is increased by 1–in other words, the system is
very stable to small perturbations of the number of matchings per time period. On the
other hand, an index of 1 indicates that by increasing φ by 1, the number of infections is
expected to double in the very next period whereas as φ currently stands, the number of
infections is expected never to double. In other words the system is highly unstable to
small perturbations of the number of matchings per time period.

We compute the stability index numerically when the underlying distribution D for
the Poisson trials is U [0, 1] (so µ = 1

2
). In particular we look at the cases when N = 100, 000,

γ = 0.2, t = 1 and φ = 1, 2, 3. We find

(td(1), td(2), td(3) td(4)) = (∞,∞, 1, 1),

114
C

ov
id

 E
co

no
m

ic
s 4

1,
 3

 A
ug

us
t 2

02
0:

 1
00

-1
28



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

maker should consider the mass of the distribution of R above 1. It is this region that we
have referred to as the danger zone, which is depicted in the following figure.

µ 1
Rt

Figure 1: The danger zone.

We end this section with a suggestion for how one might measure the sensitivity the
SIR system to perturbations. Fix the time at t and the let td(φ) > t denote the first time
period at which the expected number of total infections is greater than 2It when the num-
ber of matchings per individual in each time period is φ > 0. That is, td(φ) denotes the
number of time periods it takes for the expected number of total infections to double. We
set td(φ) = ∞ if infections are never expected to double.

We define the stability index of the virus at time t as

St =
1

td(φ+ 1)
− 1

td(φ)
. (22)

The stability index measures how responsive the system is with respect to the number of
matches per time period. It is one way to account for the mass of Rt which lies above 1.

A stability index of 0 indicates that the expected increase in the number of infections
does not change substantially when the φ is increased by 1–in other words, the system is
very stable to small perturbations of the number of matchings per time period. On the
other hand, an index of 1 indicates that by increasing φ by 1, the number of infections is
expected to double in the very next period whereas as φ currently stands, the number of
infections is expected never to double. In other words the system is highly unstable to
small perturbations of the number of matchings per time period.

We compute the stability index numerically when the underlying distribution D for
the Poisson trials is U [0, 1] (so µ = 1

2
). In particular we look at the cases when N = 100, 000,

γ = 0.2, t = 1 and φ = 1, 2, 3. We find

(td(1), td(2), td(3) td(4)) = (∞,∞, 1, 1),
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and hence for φ = 1, St = 0, for φ = 2, St = 1, and for φ = 3, St = 0. The reason the
process takes off only when φ > 2 is because this implies φµ > 1 and so the infection
grows exponentially.

We can also compute the conditional mean and variance (as in Theorem 1) of the repro-
ductive rate numerically. Consider again the case when D = U [0, 1], φ = 2, and γ = 0.2.
We find

E(Rt | θt−1) =
1

N
St−1 +

1

N2
It−1St−1

Var(Rt | θt−1) =
1

4N
St−1 +

N + 1

8N3
It−1St−1,

Taking t = 20 and N = 100000 (for the purpose of this example), we have (St−1, It−1) =

(44860.3, 40686.1), therefore

E(R20 | θ19) = 0.631

Var(R20 | θ19) = 0.135,

Finally, in general, given a critical value c, numerical mean and variance calculations such
as the one above allow us to construct a “confidence interval” for Rt as

CI =
*
E(Rt | θt−1)− c

+
Var(Rt | θt−1),E(Rt | θt−1) + c

+
Var(Rt | θt−1)

,
,

giving us another measure for how much of the mass of Rt lies above 1. Taking c = 1

and using the example above we find CI = [0.264, 0.998] and so in this case the system
appears to be fairly stable.

4.3 Shelter-in-Place Orders versus Masks

Our model also speaks to the differential effectiveness of alternative containment policies.
Given that the variance of the reproductive rate is increasing in St−1, consider a policy
maker who seeks to implement a containment policy early in the spread of the virus. Such
a planner has two lines of attack. The first is to try and lower the number of meetings an
individual has per time period (φ), for example, by a shelter-in-place order. The second is
to try and lower the infectiousness of the virus (µ), perhaps by mandating the widespread
use of masks.

When t is small, It−1 is approximately 1, and St−1 is approximately N . Hence

(mµ)2It−1St−1 =
φµ

N2
It−1St−1 ≈

φ2µ2

N2
N,

which is close to 0 for large enough N . It follows that early on in the spread of the virus,

E(Rt | θt−1) ≈ mµSt−1 =
φµ

N
St−1,

and
V ar(Rt | θt−1) ≈ mµ(1− µ)St−1 =

φµ

N
(1− µ)St−1.

While lowering φ or µ both result in a lower expected reproductive rate, the effect of such
measures on the variance are less straightforward. The conditional variance of the repro-
ductive rate is increasing in φ and thus a reduction in φ will indeed lower the variance of
Rt.

However, the variance is increasing in µ up until µ = 1/2, at which point it is decreas-
ing in µ, leading to the perhaps counterintuitive result that the more contagious a virus
is, the less effective it is to lower its infectiousness. The reason for this is that efforts to
decrease µ may have the unintended result of also increasing the variance in the spread
of the virus. By contrast, φ does not suffer from this problem, so a reduction in φ (e.g.
shelter-in-place) will unambiguously result in a reduction in both the mean and variance
of the reproductive rate of the virus.

4.4 Conclusion

By modeling the reproduction rate as something that emerges from primitives of how in-
fections occur we have highlighted the importance of considering the whole distribution
of the reproduction rate for understanding the spread of a virus, and the optimal policy
response to it.
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When t is small, It−1 is approximately 1, and St−1 is approximately N . Hence

(mµ)2It−1St−1 =
φµ

N2
It−1St−1 ≈

φ2µ2

N2
N,

which is close to 0 for large enough N . It follows that early on in the spread of the virus,

E(Rt | θt−1) ≈ mµSt−1 =
φµ

N
St−1,

and
V ar(Rt | θt−1) ≈ mµ(1− µ)St−1 =

φµ

N
(1− µ)St−1.

While lowering φ or µ both result in a lower expected reproductive rate, the effect of such
measures on the variance are less straightforward. The conditional variance of the repro-
ductive rate is increasing in φ and thus a reduction in φ will indeed lower the variance of
Rt.

However, the variance is increasing in µ up until µ = 1/2, at which point it is decreas-
ing in µ, leading to the perhaps counterintuitive result that the more contagious a virus
is, the less effective it is to lower its infectiousness. The reason for this is that efforts to
decrease µ may have the unintended result of also increasing the variance in the spread
of the virus. By contrast, φ does not suffer from this problem, so a reduction in φ (e.g.
shelter-in-place) will unambiguously result in a reduction in both the mean and variance
of the reproductive rate of the virus.

4.4 Conclusion

By modeling the reproduction rate as something that emerges from primitives of how in-
fections occur we have highlighted the importance of considering the whole distribution
of the reproduction rate for understanding the spread of a virus, and the optimal policy
response to it.
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5 Appendix A

We make some remarks here about the matching technology when the independence as-
sumption of matches is violated. The main effect of losing the independence of matches
is that it invalidates Rpop

t . Recall that Rpop
t is defined as the population-level reproductive

rate, that is, a random variable whose distribution is equal to the number of new infec-
tions in the population from time t to time t+ 1. In general, we can define the changes in

St, It, and rt by the discrete Markov process:

∆St+1 = −Rpop
t (23)

∆It+1 = Rpop
t − Itγ (24)

∆Rt+1 = Itγ, (25)

We want to work out a general form for Rpop
t without independence of matchings. Sup-

pose we fix an interaction structure in the population at time t by the configuration model
or some other method. Let mk (k = 1, . . . , nt) denote the number of susceptible individu-
als who interact with exactly k different infected individuals. Then denoting by [l] the set
{1, 2, . . . , l}, we can write the population reproduction rate as

Rpop
t = St

-

../
m1!

j1=0

Ij1 +
m2!

ji=0
i∈[2]

Ij1∪j2 +
m3!

ji=0
i∈[3]

Ij1∪j2∪ + · · ·+
mnt!

ji=0
i∈[nt]

I!
k≤nt

jk

0

112 (26)

= St

nt!

l=1

ml!

ji=0
i∈[l]

I!
k≤l jk

. (27)

Note that for an arbitrary collection of events
3

k Ak, the indicator variable of their union
satisfies

I!
k Ak

= 1−
4

k

(1− IAk
). (28)

Which allows us to rewrite the above as

Rpop
t =

nt!

l=1

ml!

ji=0,i∈[l]

$
1−

4

k≤l

(1− Ijk)

%
St. (29)

It is clear that this makes the system of equations in Equations (23) to (25) particularly
difficult to work with let alone to solve in some kind of closed form. At this point it
is worth looking into the matching technology in the hope that Rpop

t can be simplified.
Indeed, under the assumption of a large N and a small φ(N) as outlined in Section 2.1,
matches are approximately independent. This means that mk → 0 for all k ≥ 2 It follows
that the number of infected-susceptible matches in the population is m1 = ItmSt, which
gives us

Rpop
t =

m1ItSt!

j=1

Ij,
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St, It, and rt by the discrete Markov process:

∆St+1 = −Rpop
t (23)

∆It+1 = Rpop
t − Itγ (24)

∆Rt+1 = Itγ, (25)

We want to work out a general form for Rpop
t without independence of matchings. Sup-

pose we fix an interaction structure in the population at time t by the configuration model
or some other method. Let mk (k = 1, . . . , nt) denote the number of susceptible individu-
als who interact with exactly k different infected individuals. Then denoting by [l] the set
{1, 2, . . . , l}, we can write the population reproduction rate as

Rpop
t = St

-

../
m1!

j1=0

Ij1 +
m2!

ji=0
i∈[2]

Ij1∪j2 +
m3!

ji=0
i∈[3]

Ij1∪j2∪ + · · ·+
mnt!

ji=0
i∈[nt]

I!
k≤nt

jk

0

112 (26)

= St

nt!

l=1

ml!

ji=0
i∈[l]

I!
k≤l jk

. (27)

Note that for an arbitrary collection of events
3

k Ak, the indicator variable of their union
satisfies

I!
k Ak

= 1−
4

k

(1− IAk
). (28)

Which allows us to rewrite the above as

Rpop
t =

nt!

l=1

ml!

ji=0,i∈[l]

$
1−

4

k≤l

(1− Ijk)

%
St. (29)

It is clear that this makes the system of equations in Equations (23) to (25) particularly
difficult to work with let alone to solve in some kind of closed form. At this point it
is worth looking into the matching technology in the hope that Rpop

t can be simplified.
Indeed, under the assumption of a large N and a small φ(N) as outlined in Section 2.1,
matches are approximately independent. This means that mk → 0 for all k ≥ 2 It follows
that the number of infected-susceptible matches in the population is m1 = ItmSt, which
gives us

Rpop
t =

m1ItSt!

j=1

Ij,
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as used in the paper.

6 Appendix B

A natural question is whether or not there exists a closed form expression for the un-
conditional mean and variance E(Rt) and Var(Rt). We present some results here which
indicate that whilst in theory such an expression exists, it is rather difficult to write down.
First, recall that the mean of Rt depends entirely on the mean of St. Our first lemma
establishes an equation for the mean of St in terms of lower order terms IkSk for k < t.

Lemma 5 For all t ∈ N,

E(St) = S0 +
m

2

t−1!

k=0

E(IkSk).

Proof. First, note that for all t ∈ N, we have

St =
t!

k=0

∆Sk, (30)

where we let ∆S0 = S0. Hence it follows that

E(St) = S0 +
t!

k=1

E(∆Sk). (31)

Note then that since ∆Sk+1 =
)mIkSk

k=1 Ij , we have by Wald’s identity that

E(∆Sk+1) = E(mIkSk)E(Ij) =
m

2
E(IkSk). (32)

Finally then substitution (32) into (31) and relabelling the index, we have

E(St) = S0 +
m

2

t−1!

k=0

E(IkSk), (33)

proving the lemma.
We can see from Lemma 5 that the expectation of St depends entirely upon the expec-

tation of ItSt.
We have from Lemma 4 an expression for It in terms of ∆Sk for k < t. This allows us

to find a closed form expression for ItSt from which we can calculate its mean. However,
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before we are ready to compute the expectation of ItSt, we need to know how to compute
E(∆Sk∆Sl) for both l = k and l ∕= k. We establish this with the following lemma.

Lemma 6 Let k, l ∈ N. Then

E(∆Sk∆Sl) =
(Nd)2

4
E (Ik−1Sk−1Il−1Sl−1) .

Proof. Notice firstly that ∆Sk and ∆Sl are not independent. Indeed, suppose l < k, then
Sk−1 appears in the upper limit of the sum for ∆Sk, and one has that Sk−1 =

)k−1
j=0 ∆sj .

We have

∆Sk∆Sl =

$
mIk−1Sk−1!

j=1

Ij

%$
mIl−1Sl−1!

q=1

Ij

%
.

Noting that this is a sum over (mIk−1Sk−1)(mIl−1Sl−1) products of independent indicator
variables, we apply Wald’s identity to get

E(∆Sk∆Sl) = E ((mIk−1Sk−1)(mIl−1Sl−1))E(IjIl) (34)

= (Nd)2E (Ik−1Sk−1Il−1Sl−1)E(Ij)E(Il) (35)

=
(Nd)2

4
E (Ik−1Sk−1Il−1Sl−1) , (36)

completing the proof.
We are now ready to provide a recursive formula for ItSt, which will allow us to com-

pute its expectation.

Lemma 7 The expectation E(ItSt) satisfies the recursive equation

E(ItSt) =
5
1− γ +

m

4

6
E(It−1St−1)−

(Nd)2

4
E
"
(It−1St−1)

2
#

− (Nd)2

4

t−1!

k=1

"
1 + (1− γ)t−k

#
E(St−1It−1Sk−1Ik−1).

Proof. Recall that in the proof of Lemma 4 we used the fact that It = (1 − γ)It−1 + ∆St.

Hence we may write

ItSt = ((1− γ)It−1 +∆St)

$
S0 +

t−1!

k=1

∆Sk +∆St

%

= (1− γ)It−1St−1 − S0∆St −∆St

t−1!

k=1

∆Sk − (∆St)
2 + (1− γ)It−1∆St.

Now using Lemma 4, we have

It−1 = I0(1− γ)t −
t−1!

k=1

(1− γ)t−k∆Sk,

and hence that

ItSt = (1− γ)It−1St−1 − S0∆St −∆St

t−1!

k=1

∆Sk − (∆St)
2

+ I0(1− γ)t∆St −∆St

t−1!

k=1

(1− γ)t−k∆Sk.

Which we can rewrite by collecting ∆St terms as

ItSt = (1− γ)It−1St−1 −
"
S0 + I0(1− γ)t

#
∆St − E

"
(∆St)

2
#
−

t−1!

k=1

(1 + (1− γ)t−k)E(∆St∆Sk).

Finally, applying Lemma 6 and (32), we have the desired result.
An alternative but less useful expression for E(ItSt) in terms of lower order terms

can be derived by using the following lemma. This lemma is a little more involved but
establishes ItSt in terms of Ik and Sk for k < t.

Lemma 8 For all t ∈ N we have

ItSt = S0I0(1− γ)t +
t!

k=1

"
I0(1− γ)t − S0(1− γ)t−k

#
∆Sk

−
t!

k=2

k−1!

l=1

7
(1− γ)t−k + (1− γ)t−l

8
∆Sk∆Sl −

t!

k=1

(1− γ)t−k(∆Sk)
2.

Proof. Recall from (30) that St = S0 +
)t

k=1 ∆Sk. Substituting this, and the equation we
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Hence we may write

ItSt = ((1− γ)It−1 +∆St)

$
S0 +

t−1!

k=1

∆Sk +∆St

%

= (1− γ)It−1St−1 − S0∆St −∆St

t−1!

k=1

∆Sk − (∆St)
2 + (1− γ)It−1∆St.

Now using Lemma 4, we have

It−1 = I0(1− γ)t −
t−1!

k=1

(1− γ)t−k∆Sk,

and hence that

ItSt = (1− γ)It−1St−1 − S0∆St −∆St

t−1!

k=1

∆Sk − (∆St)
2

+ I0(1− γ)t∆St −∆St

t−1!

k=1

(1− γ)t−k∆Sk.

Which we can rewrite by collecting ∆St terms as

ItSt = (1− γ)It−1St−1 −
"
S0 + I0(1− γ)t

#
∆St − E

"
(∆St)

2
#
−

t−1!

k=1

(1 + (1− γ)t−k)E(∆St∆Sk).

Finally, applying Lemma 6 and (32), we have the desired result.
An alternative but less useful expression for E(ItSt) in terms of lower order terms

can be derived by using the following lemma. This lemma is a little more involved but
establishes ItSt in terms of Ik and Sk for k < t.

Lemma 8 For all t ∈ N we have

ItSt = S0I0(1− γ)t +
t!

k=1

"
I0(1− γ)t − S0(1− γ)t−k

#
∆Sk

−
t!

k=2

k−1!

l=1

7
(1− γ)t−k + (1− γ)t−l

8
∆Sk∆Sl −

t!

k=1

(1− γ)t−k(∆Sk)
2.

Proof. Recall from (30) that St = S0 +
)t

k=1 ∆Sk. Substituting this, and the equation we
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established in Lemma 4 into the expression ItSt, we have for any t ∈ N,

ItSt =

$
I0(1− γ)t −

t!

k=1

(1− γ)t−k∆Sk

%$
S0 +

t!

l=1

∆Sl

%

= S0I0(1− γ)t − S0

t!

k=1

(1− γ)t−k∆Sk + I0(1− γ)t
t!

l=1

∆Sl −
t!

k=1

t!

l=1

(1− γ)t−k∆Sk∆Sl

= S0I0(1− γ)t +
t!

k=1

"
I0(1− γ)t − S0(1− γ)t−k

#
∆Sk −

t!

k=1

t!

l=1

(1− γ)t−k∆Sk∆Sl.

Now we work with the double sum to put it into the form given in the lemma. we have

t!

k=1

t!

l=1

(1− γ)t−k∆Sk∆Sl =
t!

k,l
k=l

(1− γ)t−k∆Sk∆Sl +
t!

k,l
k ∕=l

(1− γ)t−k∆Sk∆Sl

=
t!

k=1

(1− γ)t−k(∆Sk)
2 +

t!

k,l
k ∕=l

(1− γ)t−k∆Sk∆Sl.

Focusing on the second summation, we note that by summing over the upper and lower
triangles of an l × k matrix, we can write

t!

k,l
k ∕=l

(1− γ)t−k∆Sk∆Sl =
t!

k=2

k−1!

l=1

(1− γ)t−k∆Sk∆Sl +
t!

l=2

l−1!

k=1

(1− γ)t−k∆Sk∆Sl.

Then by swapping the labels l and k on the second sum, this gives

t!

k,l
k ∕=l

(1− γ)t−k∆Sk∆Sl =
t!

k=2

k−1!

l=1

(1− γ)t−k∆Sk∆Sl +
t!

k=2

k−1!

l=1

(1− γ)t−l∆Sk∆Sl

=
t!

k=2

k−1!

l=1

7
(1− γ)t−k + (1− γ)t−l

8
∆Sk∆Sl,

completing the proof.
Putting ItSt in the above form allows us to apply the expectation operator in a clean

way. In particular, applying Lemma 6 and (32), we can evaluate the expectation of ItSt
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using Lemma 8 as

E(ItSt) = S0I0(1− γ)t +
t!

k=1

"
I0(1− γ)t − S0(1− γ)t−k

# m
2
E(Ik−1Sk−1)

−
t!

k=2

k−1!

l=1

7
(1− γ)t−k + (1− γ)t−l

8
E(∆Sk∆Sl)

,−
t!

k=1

(1− γ)t−k 1

4

"
(mIk−1Sk−1 + (mIk−1Sk−1)

2
#
.
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While the coronavirus spreads, governments are attempting to reduce 
contagion rates at the expense of negative economic effects. Market 
expectations plummeted, foreshadowing the risk of a global economic 
crisis and mass unemployment. Governments provide huge financial 
aid programmes to mitigate the economic shocks. To achieve higher 
effectiveness with such policy measures, it is key to identify the industries 
that are most in need of support. In this study, we introduce a data-mining 
approach to measure industry-specific risks related to COVID-19. We 
examine company risk reports filed to the U.S. Securities and Exchange 
Commission (SEC). This alternative data set can complement more 
traditional economic indicators in times of the fast-evolving crisis as it 
allows for a real-time analysis of risk assessments. Preliminary findings 
suggest that the companies’ awareness towards corona-related business 
risks is ahead of the overall stock market developments. Our approach 
allows to distinguish the industries by their risk awareness towards 
COVID-19. Based on natural language processing, we identify corona-
related risk topics and their perceived relevance for different industries. 

The preliminary findings are summarised as an up-to-date online index. 
The CoRisk-Index tracks the industry-specific risk assessments related to 
the crisis, as it spreads through the economy. The tracking tool is updated 
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weekly. It could provide relevant empirical data to inform models on the 
economic effects of the crisis. Such complementary empirical information 
could ultimately help policymakers to effectively target financial support 
in order to mitigate the economic shocks of the crisis.
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1 | INTRODUCTION

With COVID-19 (“coronavirus”) reaching the level of a pandemic, governments and companies around the world are
also exposed to the resulting risks for the highly interconnected global economy. To slow down the spread of COVID-
19, governments in China, Europe, the US, and beyond are taking drastic measures, such as travel warnings, border
and store closures, regional lockdowns, and curfews.
These measures are having drastic consequences for personal freedom and the economy. Some sectors, such as

airlines or hotels, are facing a nearly complete breakdown of demand. As a first reaction to the expected economic
shocks, the global stockmarkets have collapsed (see Fig. 1B). In an attempt tomitigate the general economic downturn,
governments all over the world are providing considerable financial support. The US government, for example, is
preparing an aid package of 2.2$ trillion in response to the virus [1]. The German government plans to take up to 156
billion Euros of additional debt (equivalent to half of the federal budget for 2020) to support the economy [2].
Many of these immediate aid packages are not targeted to specific industries, but aremeant to support businesses in

all parts of the economy. While such general programmes can help to stabilise financial markets in the short term, it is
paramount for their long-term effectiveness to concentrate the support to those areas of the economy that aremost in
need. For this reason, governments have to identify the industries that are most severely affected by the coronavirus
pandemic. However, in the current situation, policymakers lack reliable and up-to-date empirical data, which would
allow to assess industry-specific economic risks in real-time. Such information would be crucial to effectively target
financial support as the crisis hits the economy and to mitigate the economic shocks.
The study presented here investigates a potential data source that could provide an empirical basis to identify

industry-specific economic risks related to COVID-19 and to inform models on the economic effects of the current
crisi. We examine company risk reports (10-K reports) filed to the U.S. Securities and Exchange Commission (SEC) and
introduce a data-mining approach to measure firms’ risk assessments.1 In collecting all reports published from 30th
January 2020— the day the term coronavirus first appeared in a 10-K report— we can assess and track the reported
risk perceptions related to COVID-19 for different industries.
Preliminary findings suggest that the company risk reports’ show a forward-looking awareness of potential economic

risks associatedwith the corona-crisis, which is leading stockmarket developments. Moreover, the awareness towards
COVID-19 differs substantially between industries. For example, while 78% of the firms in retail have mentioned the
coronavirus as a potential economic risk, only 23% of the businesses in financial services have done so. Thirdly, based
on natural language processing, we can identify specific corona-related risk topics and their perceived relevance for the
different industries. Lastly, our approach allows us distinguish the industries by their reported risk awareness towards
COVID-19. The empirical information provided could help to inform macro-economic models on the effects of the
corona-crisis [3, 4, 5] and, thus, help to inform policymakers to better target current economic support programmes to
industries that report most severe risks at the current phase of the crisis.The preliminary findings presented here are
summarised in one compound index. The CoRisk-Index2 tracks industry-specific risk assessments related to COVID-
19 in real-time. It is available on an interactive online dashboard.

1SEC filings represent financial statements of publicly listed companies including a risk assessment. SEC filings are imperative to comply with
legal and insurance requirements and therefore should contain the most relevant risks. As a result, companies have a strong incentive to
neither under- nor overestimate risks. Moreover, analysing the most recent two-month period of SEC filings represents a random sample of
all companies since companies are obliged to report to the SEC at a fixed, but randomly assigned date, independent of their industry.

2http://oxford.berlin/CoRisk
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F I GURE 1 (A ) S & P Global 1200 Stock Index from 30/01 – 30/06/2020. (B) Text ’Negativity’ (sentiment) in sentences

mentioning coronavirus of 10-k reports. The negative sentiment surges before the global stock market crash and peaks

before "Black Monday’s" most severe stock market losses.

This tool is constantly updated. It allows researchers, policymakers, and the public to estimate potential risk factors
of COVID-19 in individual sectors ofthe economy. As the risk filings database is updated on a daily basis, the online
tool will allow tracking the potential impact ofthe crisis as it unfolds and spreads through the economy. With more
firms providing risk reports that describe the potential or real impacts ofthe crisis, the tool will be refined to allow for
a more granular perspective on individual industries and sub-sectors.
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F IGURE 2 (A) Share of 10-K reports mentioning coronavirus over time: with the global spread of the crisis, the share of
firms that mention the pandemic as a risk factor increases sharply.(B) Number of 10-K reports filed since 30/01/2020 and
share of reports mentioning coronavirus. (C) Number of coronavirus mentions per report. (D) Heatmap of relevant economic
topics mentioned in 10-K reports related to coronavirus.

The study is structured as follows: The next section introduces relevant related research focusing on the economic
consequences of infectious diseases and risk assessment in highly interconnected economies. In section 3 we dis-
cuss our data and methods before presenting preliminary results in section 4. Lastly, we discuss policy implications,
methodological limitations, and planned extensions of our approach.
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F IGURE 3 The CoRisk-Index: the index is updated weekly. It is a compound measure of the share of corona-mentioning
firms per industry,the average number of corona-mentions per report and the industry-specific corona-sentence text negativity.

2 | RELATED WORK

In this section, we review related work on the economic consequences of COVID-19 and studies on previous epi-
demics. Moreover, we discuss the assessment of economic risks via reports such as the 10-K reports required by the
U. S. Securities and Exchange Commission (SEC).

2.1 | Studies on the economic effects of COVID-19

Global pandemics of infectious diseases are not a new phenomenon. Throughout the last century, the world expe-
rienced several global and regional outbreaks: Most severely, millions died during the spread of the Spanish flu in
1918-1920. More recently, smaller epidemics spread around many countries, such as SARS in 2002, the swine flu
in 2009 and Ebola in 2014. Nonetheless, the current coronavirus pandemic is, in recent history, unprecedented in
its global social and economic consequences. Governments are taking drastic measures while researchers attempt
to provide urgently needed policy advice. Much of the coronavirus-related social science and public health research
focuses on disease transmission, global spread, and different interventions (see for example [6, 7, 8, 9, 10]).
A rapidly growing body of literature investigates the (potential) economic consequences induced by the COVID-19

pandemic [3, 4, 5, 11, 12, 13].3 Many of these studies aim to assess the potential economic consequences in presenting

3At this point we want to highlight that it is not the aim of this study to provide a model of risk forecasting that is competing with established
macro-economic approaches as described in this section. In contrast, the data-driven methodology presented here aims to explore an alter-
native data source that could help to inform such economic models. The advantage of the data we provide here is the high time resolution.
More traditional sources of empirical information used to calibrate macro-economic models usually include, for example, unemployment
rates. While the value of such statistics is undisputed, they are reported with a time-lag. We perceive the purpose of the index provided here
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simulation-based macroeconomic models. For example, Dorn et al. [13] use scenario calculations to estimate the
economic costs of the pandemic for the case of Germany. The authors estimate the financial consequences for the
state budget and the employment effects depending on the length of the economic shutdown. Moreover, they include
differential adverse effects by sectors, based on press releases and the provisional Ifo business climate index forMarch
2020. They conclude that the travel and restaurant industry is likely to face a complete shutdown, whereas the
pharmaceutical, logistics and health sectors are likely to continue to operate at full capacity. Ludvigson et al. [5] aim
to estimate the macroeconomic consequences of the pandemic in investigating the impact of disasters in the recent
U. S. history. Baldwin andMauro [14, 12] collect a great variety of perspectives on the potential economic implications
of COVID-19. Topics range from impacts on trade, economic policy measures, monetary policy, and finance to labour
market effects. These contributions rely on simulations, scenarios, descriptive statistics and qualitative arguments.
Regarding the economic impact by sector, Gopinath [15] identifies manufacturing and the services sector as dis-

proportionately affected in China, based on the Purchasing Managers’ Index. Ramelli and Wagner [16] uses Google
search intensity to measure attention paid to COVID-19 and stock market data to reveal the economic impact by
sector. Their analysis shows that the energy, retail, and transportation sector experienced the largest losses in the
United States and China, whereas health care gained considerably in both countries. The analysis by Huang et al. [17]
(also based on stock market data) confirms that the services sectors seem to be the most severely affected in China,
and del Rio-Chanona et al. [3] provide quantitative predictions of first-order supply and demand shocks to the U. S.
economy on the level of individual industries.
In sum, the contributions presented in this section provide valuable insights, quantitative scenario calculations, and

timely policy recommendations. Most of the macroeconomic analyses are, however, based on assumptions-driven
simulations and models, as up-to-date empirical data to assess the immediate economic consequences or industry-
specific risks are lacking. These studies could benefit from the alternative data set we are exploring in this study.

2.2 | Historical pandemics

While research on recent epidemics are limited to simulations [18, 19], or specific sectors [20], the study of historical
pandemics might provide informative empirical assessments of pandemic-related economic effects. Studies on the
1918 Spanish Flu confirm the primordial effectiveness of non-pharmaceutical (such as, for example, social distancing)
interventions even if these come at the cost of economic slowdowns [21, 22]. Moreover, based on the historical data,
researchers find a correlation between mortality rates and declines in GDP, consumption and returns on stocks [23]
and an increase in poverty [24]. However due to the global scope of the crisis for the highly inter-connected world
economy of 2020, insights derived from past epidemics are of limited use in identifying the various industry-related
risks during the COVID-19 pandemic.
Both, the research on COVID-19 and the historical pandemics rely on stock market information to quantify the

economic effects of infectious diseases. However, stock market information comes with several drawbacks. Most
importantly, stock markets are prone to irrational herd behaviour and prices capture a variety of information signals
into one aggregated index. Examining current stockmarket dynamics reveals a general economic downturn, but it does
not allow to isolate the sector-specific COVID-19 risks. Therefore, we propose to use SEC reports which include risk
statements. We argue that these reports represent a promising real-time measure of industry-specific business risks.
Furthermore, the analysis of report statements discussing ’coronavirus’ allows to isolate the business risks exclusively
associated with the COVID-19 outbreak.

to be a complementary data source that could be compared with official statistics on the economic effects of the crisis over time.
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2.3 | Assessing economic risks via business reports

Since the great recession hit the world economy in 2008, risk has been a crucial topic in governance and finance.
While risk assessments of the financial system led to diverse measures to make the world economy less vulnerable to
economic shocks originating in the financial sector, a health crisis, such as the current pandemic, poses different risks
to the economy. While government measures against the spread of the disease hinder the population from working
and consuming, which results in businesses interrupting production, many economies face demand and supply shocks
at the same time. In particular, as different industries rely on distinct input factor compositions and supply chains, the
sectors of the economy react differently to shocks [25]. Regarding the COVID-19 crisis, we expect sectors whose
operations are more connected to supply from manufacturers in China to publicly report corona-related risk earlier
than others. These sectors are also highly connected and interdependent within the national economy and risk might
spread between sectors [26, 27].
Most risk assessment approaches focus on quantitative probability-based methods and financial data [28, 29]. The

data published in such quantified risk assessments is often made available retrospectively, which makes a real-time
evaluation of risks difficult. In contrast to such assessments, we investigate the annual 10-K reports filed to the U. S.
Securities and Exchange Commission (SEC), which provide verbal corporate risk disclosure and financial statements.
Besides, SEC filings are imperative for legal and insurance requirements and they need to contain the most relevant
risks to protect the company from legal liabilities. Depending on the volume of publicly traded stocks, companies
with a public float of over 700 million USD are obliged to report within 60, while smaller companies have 75 or 90
days after the end of the fiscal year. Furthermore, the reports inform investment decisions and risk governance at the
same time and, thus, companies, as rational agents, are likely to communicate moderate risk assessments [30]. In fact,
prior work has underlined the forward-looking nature of the reports, since they allowed a more effective prediction of
volatility on stock market returns than the compared approaches [31]. Correspondingly, we expect the 10-K reports
to also provide forward-looking information on risk assessments during the observed time period and in particular on
rising business risk in relation to the spread of COVID-19.
Moreover, the filing companies are categorised into sectors using the "Standard Industry Classifier", which allows

a real-time analysis of industry-specific risk developments. In this study we apply natural language processing to
extract corona-related risk information from the reports and analyse sector-specific differences in risk awareness and
disclosure (details in section 3 and in the appendix A).

2.4 | Hypotheses

Based on the literature on the potential economic effects of pandemics and on the information available in business
risks reports, we derive the working hypothesis4 of this study:

Working hypothesis: SEC 10-K reports contain corona-related information, which allow to track the industry-
specific economic risk assessments in near real-time as the economic crisis unfolds.

This working hypothesis is split into two operationalised hypotheses. A core assumption of the investigation of the
risk reports is that they contain economic meaningful information. Accordingly, the sentiment of the reports should
reflect overall market conditions:

4While the results provided in this working paper are largely descriptive, we present the research hypotheses, which have guided our data
exploration.
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H 1: 10-K risk reports contain economic relevant information on short-term market expectations, i. e. they
are related to overall stock market trends in the current crisis.

Industries are affected differently during the crisis, depending on their business model. As introduced in [32], the
economic crisis will unfold in several phaseswith different characteristics. Those sectors of the economy that aremore
vulnerable to supply chain interruptions and short-term collapses of consumer demand should be more affected in
the early phase of the crisis than other sectors:

H 2: Corona-related risk factors in 10-K reports differ between industries.

To test the hypotheses, we use web-mining techniques to collect data from SEC 10-K reports and conduct text
mining to extract information relevant for the individual hypotheses, as outlined in the next section. Section 4 presents
the results of the analysis.

3 | METHODS

The 10-K SEC filings, as legal reports to publicly communicate corporate risks and financial statements, provide a
valuable and innovative text data source for risk assessment.5

We use a web scraper to collect all 10-K filings published since 30/01/2020 from the SEC’s "Electronic Data Gather-
ing, Analysis and Retrieval System" (EDGAR) database. The filing documents contain the company names and central
index keys (CIK) as unique firm identifiers and the Standard Industry Classifier (SIC) that allow linking and comparing
the filings data with individual business and industry data. Each 10-K filing contains a Risk Factor section (Item 1A)
under which the reporting company is obliged to disclose all types of risks their business might be facing to adequately
warn investors. Companies are required to use "plain English" in describing these risk factors, avoiding overly technical
jargon that would be difficult for a layperson to follow. The text of each 10-k report builds the document by which a
company is represented in our analysis. The entire text is set to lower case for further analysis, before the occurrence
of the main two keyword tokens, ’corona’ and ’covid’, is counted. Any word containing one of the two main tokens
is likewise counted. Hereby the measure ’corona-keyword count per report’ is created. Similarly, each company that
reports one of the keywords at least once is included in the ’share of corona-mentioning firms per industry’.
After text pre-processing, we apply different Natural Language Processing tools to analyse the reports. Different

sectors are facing different challenges, therefore companies are reporting about different corona-related risks. We aim
to capture these risk topics via a keyword search on predefined topics. In order to explore possible topics, we used
Latent Dirichlet Allocation (LDA) for unsupervised topic modelling, similar to [33]. We only apply the topic model
to corona-related paragraphs in the risk sections. We additionally examine the most frequent words and bi-grams
in the documents. Using this exploratory analysis, we define a set of topics, which are specified by keywords. We
then conduct a keyword search to count how much these terms are mentioned in the different industries in order to
estimate the topic prevalence. The resulting topic heatmap (see section 4) reports the share of sentences per topic
per 1,000 corona-containing sentences for the different industries. Moreover, we measure the sentiment of corona-
related sentences via the share of negative words [34]. A more detailed description of the different methods can be
found in the appendix A.

5The data source explored here is not meant to replace any established macro-economic statistics, but rather to provide a complementary
alternative source of data to identify immediate industry-specific risk perceptions.
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4 | PRELIMINARY RESULTS

The main results of our analysis are displayed in Figure 1 as well as in Figure 2.6 The overall sentiment of the 10-K
reports becomes more negatively sharply (Fig. 1B), closely related to the collapsed stock markets after 15th February
(Fig. 1A), implying a forward-looking nature of the 10-K sentiment measure. The stock markets show a V-shaped
behaviour with a rapid decrease in February in March and fast increase since then, while the negative text sentiment
is characterised by an inverse V-shaped dynamic. Since its’ peak in March, it slowly went down towards levels of 5%,
which correspond to the overall share of negative words in 10-K reports.
Differences in corona-related risk assessment by industries are displayed in Figure 2. Overall, From the end of Jan-

uary 2020, an increasing number of 10-K reports refers to the coronavirus (Fig. 2A), indicating an increasing awareness
of COVID-19 as a potential economic risk. Not all sectors of the economy show a similar awareness of the potential
business impacts of the pandemic (Fig. 2B), which provides evidence in favour of hypothesis H 2. For example, while
70% of the firms in manufacturing mention corona-related risks, only 43% of the firms in the financial sector consider
such risk factors. Other sectors that show a high awareness of corona-related risks are retail (0.8%), or hospitality
(69%).7.
The firms, moreover, differ substantially with regards to the intensity with which they discuss the potential impacts

of the coronavirus to their businesses in the 10-K reports. As Fig. 2C shows, some firms, in particular in retail and
manufacturing, mention terms related to the pandemic (’corona’, ’coronavirus’, ’COVID’) substantially more often than
other firms.
The 10-K reports moreover provide information about specific types of risk perceptions. Fig. 2D provides a heatmap

with important topics per sector. The rows represent five relevant topics (demand, finance, production, supply, and
travel), which have been derived from unsupervised topic modelling and subsequent uni- and bi-gram search.8 The
cells of the heatmap are coloured according to the topic relevance, i. e. the number of topic-specific keywords per
industry. Additionally, we have applied a hierarchical clustering algorithm on the data to identify related topics and
sectors, which report about similar topics ( not displayed in the figure).
The figure reveals that most firms either report demand and financial risk factors or production and supply chain

risks.For example, supply chain problems represent the biggest reported risk component for firms in the retail industry,
while manufacturing firms report both supply and production risks, as well as finance and potential demand risks.
While reports of the mining industry consider demand-related issues as the biggest risk factor, other sectorsdo not
report extensively about any of the specific risk types.
These findings support hypothesis H 2—corona-related risk factors reported in 10-K reports differ between indus-

tries with regard to occurrence and topical context. The reports are, thus, a valid data source to identify sectors that
face particular risk factors in the current early phase of the crisis.
While a one-dimensional categorisation of risk assessments tends to over-simplify the crisis firms are facing, it

allows to compare the different industries and to identify those parts of the economy, which currently report more
or less severe effects due to the immediate economic consequences of the pandemic. The data-driven assessment

6At this point we want to highlight, again, that the results reported here are preliminary. With more data becoming available over the next
weeks and, hence, with a refined methodology, we expect to be able to report more in-depth analyses and conclusive findings. These will be
constantly updated on the online dashboard.
Moreover, we want to emphasise that all quantitative findings are build on data of U. S. firms. It remains to be seen in how far the findings
could be extrapolated to other economies.

7In some of the industries, only very few firms have provided risk reports in the current observation period. In particular in these groups, the
results are likely to change as more data become available.

8Details of the text mining approach and the final keywords that define the topics are provided in the appendix.
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reveals, in particular, that manufacturing and retail are among the industries that report to be most vulnerable to the
changing economic environment. Not only decreasing consumer demand but particularly problems along the supply
chain mark substantial risk factors for those industries. On the other hand, it is mostly firms from the information
and communication services sector, which are less dependent on the physical transport of goods, that are currently
reporting fewer risks.
The extent to which the industries are affected by corona-related business risks is likely to change over time. Ac-

cordingly, the risk categorisation presented here is a static measure that needs constant updating and refinement as
the crisis unfolds. To do this, the study is supplemented by an online dashboard, which tracks the main findings with
respect to the risk categorisation over time. A static visualisation of the tracking tool is displayed in Fig. 3. Due to
limited data availability, the time-tracking could, so far, only be conducted for the largest industries; all other indus-
tries are aggregated in ’other industries’. The CoRisk-Index is a compound measure (i. e. geometric mean) of the share
of firms that have reported corona-related risks (see Fig. 2B) the average number of corona-keywords per report (see
Fig. 2C) and the industry-specific text negativity (see Fig. 1A), aggregated weekly. The different industries can be din-
stiguished by their perceived risks they are reporting.With more reports being released over time, we will update and
refine the CoRisk-Index to allow for more fine-grained industry-specific analyses. The index starts with zero, indicating
no corona-related business risks in the reports. We will track the CoRisk-Index over the course of the corona crisis
until the index reaches zero again.

5 | CONCLUSION

5.1 | Summary

As the COVID-19 pandemic unfolds, governments are attempting to reduce contagion rates at the expense of per-
sonal freedom and negative economic effects. Sizeable cyclical and fiscal policy packages are prepared in order to
counterbalance the dooming global economic downturn. In order to ensure an effective usage of public crisis spend-
ing, it is paramount to understand in detail which industries are most affected by the pandemic and currently most in
need of support. This study introduces a data-mining approach to measure the reported business risks induced by the
current COVID-19 pandemic. We examine company risk reports filed to the U.S. Securities and Exchange Commission
(SEC). Harnessing this data set enables a real-time analysis of potential risk factors. Preliminary findings show that
the companies’ risk awareness is preempting stock market developments. While stock prices typically condense the
market’s multiple signals, the 10-K reports allow to isolates the company risk perceptions associated to the COVID-
19 outbreak. Moreover, this risk awareness differs substantially between industries, both in magnitude as well as in
nature. Based on natural language processing techniques, we can identify specific corona-related risk-topics and their
relevance for the different industries: supply chain- and production related issues seem to be mostly relevant for re-
tail and manufacturing, while several industries have reported demand- or finance related risk factors. We summarise
the corona-related business risk perceptions per industry in a compound index published online.9 The CoRisk-Index,
which will be updated constantly over the course of the crisis, provides an up-to-date database to identify the in-
dustries that report most substantial risk factors in the different phases of the unfolding economic crisis. The online
dashboard can provide a data source to inform economic models and to provide empirical information that could help
to assess potential policies, which aim to effectively target financial support and to mitigate the economic shocks of
the current crisis.
Governments are eager to counterbalance the dooming global economic crisis induced by the COVID-19 pandemic

9http://oxford.berlin/CoRisk
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with cyclical and fiscal policy packages of enormous volumes. Democratic accountability demands this public crisis
stimulus to be spend as effectively as possible. Our data-driven analysis of the 10-K SEC filings provides an alternative
data source, which could be used to calibrate macroeconomic models and thus help identifying industries that are
likely to be most severely affected by COVID-19. In particular the manufacturing and retail industries are currently
reporting most severe effects from the sharply decreasing consumer demand and interruptions of the supply chain,
and might face substantial problems through the unfolding of the crisis.10

Other parts of the economy, in particular information-processing service industries, are currently reporting less
severe corona-related risks. However, as the shock will transmit throughout the tightly inter-connected economy
over time, these industries are likely to face larger challenges at a later stage in time. Nonetheless, at the current
stage, their core businesses seem to be less directly affected by supply chain interruptions and collapsing consumer
demand than other industries.

5.2 | Methodological Limitations

Our approach is based on the risk assessments in the U. S. Securities and Exchange Commission (SEC) filing reports.
Thus, the value of the approach relies crucially on company self-reporting. While the firms are unlikely to provide a
risk prediction with a high forecasting accuracy, it might still be worth exploring the reports as alternative data source
to measure risk perceptions. As the reports serve as legal and insurance requirements against financial risks, but also
as a basis for investment decisions of investors, companies are implicitly encouraged to neither over- nor understate
the risks they are facing. Nevertheless, our results are limited to this self-assessment. As many of the implications
of the corona crisis are still uncertain, our approach thus reflects a way to approximate potential implications on
current estimations of experts in the different sectors, represented by the companies, and does not include risks
that are unforeseeable for themselves at a given point in time. Moreover, the data to assess the precision of these
estimations does not exist yet, as there has not been a pandemic with comparable global economic consequences in
recent time. In the future, we will evaluate our results by looking at employment data in different sectors. Moreover,
the pandemic continues to spread and will soon affect all industry sectors and all countries of the world. As more and
more companies will report on related risks, the count of corona mentions alone will lose its information-value as a
measure to differentiate between endangered industry sectors. Then, more granular measures, such as the identified
topic categories, will become more important to distinguish between different natures of risks.
The exploration of alternative data sources that are meant to complement or now-cast established economic statis-

tics always comes with uncertainty. For example, it is not yet clear how the short-term risks described by the different
industries will translate into long-term economic outcomes, such as bankruptcies. Nonetheless, we believe that the
reports could be a reliable source of empirical information about the issues faced by different industries in the current
situation, and they might be used to inform forecasting models on industry-specific economic effects of the crisis, as
they help fill a data gap. Models that incorporate alternative data sources such as the one presented here could then
be beneficial for developing economic support packages that are currently provided by governments.
All technical methods serve the higher purpose of providing timely and comprehensible insights into the industry-

specific effects caused by the global outbreak of the coronavirus. To mitigate susceptibility to errors and increase
reproducibility, we mostly draw from more basic technical methods. This can be seen in the discovery of Corona-

10At this point, wewant to emphasise again that the findings are preliminary andmight change over time, as more data becomes available and as
the researchmethodology is refined. Moreover, the risk categorisation presented in this study is not meant as a direct policy recommendation.
Instead, the tool is meant to provide an empirical source of information for real-time tracking of industry-specific risk perceptions, which can
help to inform policy makers in times of a fast-evolving economic crisis.
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relevant keywords which is based on the matching of regular expressions to avoid error-prone text pre-processing.
Reduction of technical complexity, however, comes at the cost of diminished modelling fidelity and potential accuracy
of results. For instance, the sentiment classifier has not been fine-tuned on text snippets discussing financial risks
in particular. Further, it may be questioned whether a generalist sentiment score yields a reliable measure for the
assessment of risks. Additionally, the LDA-based topic modelling approach lacks in interpretability and robustness,
andwe therefore only use it for exploration until now. The topics and keywordswe use for estimating topic prevalence
are therefore hand-coded which limits the detection of topics to predefined terms.

In general, the findings presented here should be considered as preliminary. Sensitivity checks are needed to validate
their robustness, and numerous extensions will help to better assess the potential value of the exploration of 10-K
reports as a complementary data source to measure industry-specific risk factors.

We expect some of these limitations to be mitigated with more reports to be analysed in the near future. Adjusted
results will be published on the online dashboard and in a refined version of the working paper.

5.3 | Future Work

The following impetus for future work builds directly on the identified methodological limitations and caveats men-
tioned throughout the paper. Rather than harnessing generalist sentiment analysis, future efforts should explore risk
classifiers trained on labelled financial risk assessments and entity sentiment analysis [34, 35, 36, 37].

The robustness of the results needs to be checked in more detail. In particular, we will compare historical and
unemployment data with risk measures (text negativity) extracted from 10-K reports to investigate the correlation
between risk reports and overall economic trends. Moreover, we will weight the index by firm size and compare the
composition of the index with the overall U. S. economy in order to investigate the representativeness of the sample.

Likewise, the content of other online platforms, such asWikipedia, as a source for risk assessment could be explored
[38, 39]. Disentangling international cooperation patterns [40, 41] and mining industry-specific key technologies [36]
will be highly beneficial. This could allow an estimation of operational risk channels and risk spillovers propagating
between industries and countries due to global supply chains and peer-tier co-operations. Considering more financial
data could include credit risks (financial exposures) of companies. Besides the comparison with additional financial
signals, we plan to include unemployment rates in our analysis as an exogenous variable to the SEC risk assessment.
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A | METHODOLOGICAL AND TECHNICAL APPENDIX

A.1 | Scraping of 10-K SEC Filings

We use web crawlers and scrapers written in the general programming language Python for finding and extracting
the relevant risk section in the 10k reports. Via the SEC online interface11 past SEC filings are queried since the first
emergence of ’coronavirus’ in a report on January 30th 2020. A web crawler allows to find the relevant risk factor
section in the 10-K reports and stores each paragraph for later text processing and analysis.

11https://searchwww.sec.gov/EDGARFSClient/jsp/EDGAR_MainAccess.jsp
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A.2 | Collection of Stock Market Data

The collection of stock market data follows the incentive to provide reference data for the company SEC filings. In
both, SEC filings and financial markets, each company is assigned a unique Central Index Key (CIK) and a ticker number.
Based on the CIK, we identified a list of 13,737 companies using the data registry provided by Rank and Filed [42].
This list was then filtered by the list of companies of which we obtained SEC filings. Using the Yahoo Finance API, we
finally retrieved stock prices for all remaining companies in the list [43].

A.3 | Discovery of Relevant Keywords

Since this study examines the attention attributed toCOVID-19 in the SECfilings, the discoverymechanismof relevant
COVID-19 mentions is of central importance. To mitigate susceptibility to errors due to word splitting, stemming and
other text preprocessing, we decided for the most simple approach based on the matching of regular expressions. We
scanned the reports for the two relatively unambiguous terms "corona" and "covid", also accounting for "coronavirus"
and "covid-19" without duplication.

A.4 | Sentiment Analysis on 10-K SEC Filings

Sentiment analysis on the SEC filings serves the purpose of a more contextualised semantic understanding of the
risk assessment concerning COVID-19. We selected the paragraph of the risk report, with the highest number of
coronavirus mentions and calculated the sentiment based on the TextBlob API [44] using the code developed in [35],

A.5 | Topic Modelling on 10-K SEC Filings

Weuse unsupervised learning techniques to identify themain topics that companiesmentionwhen describing coronavirus-
related risks. LatentDirichlet Allocation (LDA) is a Bayesian computational linguistic technique that identifies the latent
topics in a corpus of documents [45]. This statistical model falls into the category of generative probabilistic modelling:
a generative process which defines a joint probability distribution over the observed random variable, i.e. the words
of the documents, and the hidden random variables, i.e. the topic structure. In other words, LDA uses the probability
of words that co-occur within documents to identify sets of topics and their associated words [33]. The number of
topics has to be defined in advance. LDA is a frequently used technique to identify main topics in a corpus. Never-
theless, the interpretation of these topics can sometimes be difficult. We thus perform LDA for explorative purposes
in our research only. By additionally exploring the most common words and bi-grams we then define topics and the
defining keywords by hand. We then detect how often companies mention these keywords in the corona related risk
sections to estimate how important the topics are in different sectors. In particular, we perform the following steps:

Sample restriction
Referring to section A.3, we filter all sentences from the risk sections that mention either "corona" and "covid", thereby
also accounting for "coronavirus" and "covid-19".

Text preparation
Before we train the LDAmodel we prepare the documents to achieve better performance of the method. We remove
all common English stopwords, which are frequent words such as “is,” “the,” and “and” as well as those words which
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appear in at least 80% of the documents. These words are not useful in classifying topics as they are too frequent and
therefore decrease performance. Moreover, we delete all words that do not occur in at least 2 documents.

Topic modelling with LDA
We turn the documents into numerical “Bag of words” feature vectors, disregarding word order. We then use LDA to
extract the topic structure. Like any unsupervised topic model, this requires setting the number of topics a priori. We
selected this key parameter based on semantic coherence, evaluating a range of 2 to 8 topics leading to a final model
of 4 topics. The top 10 terms of each topic are displayed in Table 2.

Topic keyword frequencies
The derived topics give a good insight into the general narratives of risks used in the documents. Nevertheless, they
are hard to interpret, as early corona-related risk reports are still generic in that various risk factors are covered. We
make use of our insights from the topic modelling to define 5 main topics defined by keywords, displayed in Table
1. The choice of keywords is additionally informed by clustering the most frequently used words and bi-grams in the
documents. We then measure the frequency of these keywords per topic per industry in all of the documents to get
more insights into the nature of risks different sectors are facing due to the pandemic.

TABLE 1 Topics and keywords

Topic Keywords

Production business operation, business disruption, product, work stoppage, labor disruption, labor, work, man-
ufacturing operation, labor shortage, employee productivity, product development, business activ-
ity

Supply manufacturing facility, manufacture facility, contract manufacturer, service provider, logistic
provider, supply disruption, party manufacturer, supply disruption, facility, supply, transportation
delay, delivery delay, supplier, business partner, supply chain, material shortage

Travel air travel, travel, travel restriction, airline industry, travel disruption

Demand store closure, distribution channel, market condition, consumer spend, market acceptance, con-
sumer confidence, consumer demand, consume, store, customer, store traffic

Finance operating result, cash flow, stock price, estate value, credit availability, performance problem

TABLE 2 LDA with 4 topics.

Topic number Top 10 words

Topic 0: impact extent including outbreak uncertain future highly results developments depend

Topic 1: operations including health outbreak business supply products economic public result

Topic 2: outbreak spread countries impact including china business potential economic government

Topic 3: china outbreak novel covid adversely wuhan strain business december recent
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