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Democratizing Policy Analytics with AutoML 

Danilo Freire 

Introduction 

Machine learning has made steady inroads into the social sciences. Although causal inference 

designs have become the standard methodology in economics and political science (Angrist and 

Pischke 2008), machine learning is increasingly used to tackle “prediction policy problems,” in 

which high forecasting accuracy is more important than unbiased regression coefficients 

(Kleinberg et al. 2015). For instance, scholars have employed algorithmic modeling to predict 

civil wars (Muchlinski et al. 2016; Ward, Greenhill, and Bakke 2010), mass killings (Freire and 

Uzonyi 2018; Ulfelder 2013), and state repression (Hill and Jones 2014). Supervised machine 

learning also helps governments devise local public policies, such as allocating fire inspection 

teams or directing patients for medical treatment (Athey 2017). Therefore, computer algorithms 

can improve social welfare by making state interventions more effective. 

Despite the popularity of predictive analytics, building machine learning models remains a 

labor-intensive task. Practitioners apply several preprocessing steps just to prepare their data, and 

many modeling decisions, such as algorithm selection or parameter optimization, are still largely 

based on trial and error (Elshawi, Maher, and Sakr 2019). As a result, areas that could benefit 

from predictive algorithms do not reach their full potential owing to implementation challenges 

or lack of technical expertise (Amershi et al. 2019; Truong et al. 2019; Yang et al. 2018). In this 

regard, methods that simplify the machine learning pipeline can have significant academic and 

policy impacts (Ahmed, Mula, and Dhavala 2020; Healy, McInnes, and Weir 2017). 

Automated machine learning (AutoML) aims to fill this gap. AutoML is an emerging 

framework that automatically chooses and optimizes machine learning algorithms. More 
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specifically, AutoML provides data-driven tools to minimize human effort in the machine 

learning workflow, automating steps such as feature engineering, model selection, 

hyperparameter tuning, and model interpretation (Elshawi, Maher, and Sakr 2019). AutoML not 

only frees machine learning specialists from tedious and error-prone tasks but also makes state-

of-the-art algorithms accessible to regular users. According to its proponents, AutoML promotes 

a true democratization of artificial intelligence (Hutter, Kotthoff, and Vanschoren 2019, ix; 

Shang et al. 2019). Also, AutoML approaches have been very successful in prediction 

challenges, and they consistently reach the top 5 percent in public machine learning competitions 

(Prasanna 2020; Lu 2019). 

In this paper, I introduce three Python AutoML algorithms that policy analysts may consider 

in their work. In the following section, I describe the main functionalities of AutoKeras (Jin, 

Song, and Hu 2019), H2O AutoML (H2O.ai 2021), and TPOT (Olson and Moore 2016). All of 

the algorithms are open source, actively maintained, and easy to use. Then, I replicate two 

analyses that employ expert-coded machine learning models and show that AutoML can achieve 

comparable or better predictive performance with only a few lines of code. Lastly, I discuss how 

users can make their AutoML scalable and reproducible with Docker containers. Docker allows 

researchers to create an image of their complete working environment, thus all AutoML 

specifications and dependencies are automatically embedded in the Docker file. Although 

Docker has been widely employed in business applications, its use in academia remains limited. I 

provide a simple tutorial so that readers can upload their AutoML setup to a website and share 

their Docker containers with coauthors and referees. 

A Brief Introduction to AutoML Algorithms 

Automated algorithms are a recent addition to the machine learning field. Thornton et al. (2013) 
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proposed the first method to jointly address the problems of algorithm selection and parameter 

optimization, and their results show that automated solutions often outperform baseline models. 

Since then, the literature has grown significantly. Today, there are a multitude of AutoML 

algorithms available for nonexpert users, which are not only able to predict numeric data but are 

also able to classify objects, translate text, annotate videos, and perform sentiment analysis in 

social media with few instructions (Liu et al. 2020). 

The intuition behind AutoML algorithms is simple. First, the algorithm splits the original 

data into training and test datasets and applies different models to the training partition. Then the 

algorithm selects the model that achieves the best performance in a given evaluation metric, such 

as the mean squared error or classification accuracy. Having selected the algorithm that 

minimizes the chosen metric, the next step is to find the set of hyperparameters that further 

improves the model’s predictive ability. The selection method here is the same. The algorithm 

tests many combinations of parameters and chooses the one that produces the best results 

according to the estimation metric. Finally, the results are compared against the test dataset to 

see how the model performs with new data. If necessary, users can add their own configurations 

to the AutoML algorithm or test the machine learning pipeline with other data splits. 

Many AutoML libraries also perform feature engineering tasks without human intervention. 

Feature engineering is the process of recoding variables to improve the performance of machine 

learning algorithms. Common tasks include creating dummy variables from categorical 

indicators, filling missing data, standardizing numeric covariates, and removing correlated 

features to avoid multicollinearity (He, Zhao, and Chu 2021; Truong et al. 2019). AutoML takes 

a data-driven approach here too and selects those data transformations that improve forecasting 

scores the most. 
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AutoKeras 

AutoKeras is an AutoML algorithm based on Keras (Keras 2021), an interface for Google’s 

TensorFlow machine learning platform (Abadi et al. 2015). AutoKeras focuses exclusively on 

deep neural networks, and it performs classification and regression tasks on images, texts, and 

tabular data. Neural networks require extensive tuning to increase prediction accuracy, but 

AutoKeras uses neural architectural search (NAS) to automatically optimize the network 

hyperparameters. In this sense, users can train complex deep learning algorithms with little to no 

machine learning experience. One only needs to write four lines of code to run a classification 

task in AutoKeras: 

import autokeras as ak # load library 
model = ak.StructuredDataClassifier() # build model for tabular data 
model.fit(X_train, y_train) # fit model with training data split 
predictions = model.predict(X_test) # predictions 

 

In the example above, X is the set of predictors and y is the response variable. Scholars just 

need to split the dataset into training and test partitions and separate the independent from the 

dependent variables. After that, AutoKeras will estimate a series of neural networks to predict y. 

Users can also pass many parameters to the ak.StructuredDataClassifier() function, including the 

metric they want to minimize or maximize (such as accuracy or area under the ROC curve), set 

the number of networks that the model will create, and limit the time reserved for each task. 

Please refer to https://autokeras.com to know more about AutoKeras’s model parameters and 

how to use the software for image or text classification and regression. 

H2O AutoML 

The second algorithm I discuss here is H2O AutoML. Developed by H2O.ai, a company based in 
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Silicon Valley, H2O AutoML is a free and open-source automated machine learning solution. 

Thus, individuals and firms can use it at no cost, and they can also inspect and modify the 

original code if they want to. Another advantage of H2O AutoML is that it provides a graphic 

interface that helps beginners get started with the platform. H2O.ai offers its AutoML software 

for both R and Python, and the packages use the same functions and arguments in both of those 

languages. Users need only specify the dependent and independent variables, the training and 

test datasets, and the prediction task they want to run. The algorithm will automatically find the 

model that best fits the training data, evaluate the model’s performance on the test dataset, and 

report model statistics. Example code for binary classification tasks in Python is as follows: 
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import h2o # load library 
from h2o.automl import H2OAutoML # load AutoML functions 
h2o.init() # start the module 
  
train = h2o.import_file(“path/to/training_data”) # load training data 
test = h2o.import_file(“path/to/test_data”) # load test data 
  
x = train.columns # independent variables 
y = “dependent_variable_name” # dependent variable 
x.remove(y) # remove dependent variable from matrix 
  
model = H2OAutoML(max_models=30, 
seed=1234) 

# run 30 machine learning models 

model.train(x=x, y=y, training_frame=train) # estimate model 
predictions = model.predict(test) # get predictions 

 

H2O AutoML also provides a large collection of model functions with explanatory power. 

Critics have pointed out that many machine learning methods are “black boxes,” in the sense that 

they display little information about the estimation stage (Molnar 2020). This obscurity has 

serious consequences in fields where decision mechanisms are relevant per se, such as judicial 

sentencing or healthcare allocation. H2O AutoML addresses this issue by offering explanation 

methods that describe how the general model performs and how it explains each individual 

observation.1 The algorithm also shows the forecasting importance of every predictor (Grömping 

2009), SHAP values (Lundberg et al. 2020), and partial dependence plots (Friedman and 

Meulman 2003). 

 
 
1 Please visit http://docs.h2o.ai/h2o/latest-stable/h2o-docs/explain.html for more information on H2OAutoML’s 
model explainability functions. 
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TPOT 

The last algorithm I introduce in this section is TPOT, or the Tree-based Pipeline Optimization 

Tool. It is one of the oldest AutoML solutions for Python, and its authors have won several 

awards for their work.2 TPOT uses a genetic search algorithm to find the best model for a given 

dataset (Olson and Moore 2016). The principle borrows ideas from evolutionary biology and 

consists of three steps. First, the algorithm estimates a baseline model. Then, it makes small 

random changes to the original computations. After that, it selects those variations that achieve 

high prediction scores. TPOT repeats this process until it cannot increase forecasting accuracy or 

until it reaches the maximum computation time defined by the user. 

TPOT uses the scikit-learn (Pedregosa et al. 2011) Python library to estimate the models, 

but in contrast with the original package, it does so with minimal human input. TPOT supports 

GPU acceleration and has fast estimation times when compared to other tools. Users can create a 

classification model with the following example code: 

from tpot import TPOTClassifier # load library 
model = TPOTClassifier() # build model 
model.fit(X_train, y_train) # fit model 
print(model.score(X_test, y_test)) # print model evaluation 

 

Where X is a matrix of covariates and y is the response variable. TPOT has an export function 

that is useful for those who need to export the optimized model and deploy it in other settings. 

Users can also customize TPOT’s hyperparameters for classification and regression tasks. 

TPOT’s documentation is available at http://epistasislab.github.io/tpot/. 

 
 
2 A list of the awards is available at http://automl.info/tpot/. 
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As one can see, the code shown in the three examples is almost identical, though the 

functions are running different processes in the background. However, AutoKeras, H2O 

AutoML, and TPOT can all quickly estimate regression or classification models for numeric 

data. Since these are the two tasks policy analysts do most often, the three algorithms presented 

above can be easily integrated into their machine learning workflow. 

AutoML in Practice: Replication 

How do AutoML models compare with expert-coded machine learning? AutoML algorithms 

have frequently appeared among the top performers in Kaggle competitions, yet they face unique 

challenges when tested with political or economic data. Datasets in these fields are often much 

smaller and have more measurement error than sales datasets, which are the standard data in 

machine learning tournaments. Therefore, data from the social sciences are usually hard to 

predict, and computer algorithms may fare poorly when compared to experts. 

Here I replicate two analyses that use machine learning to forecast rare events. Ward, 

Greenhill, and Bakke (2010) evaluate the out-of-sample predictive power of the models 

described in Fearon and Laitin (2003) and Collier and Hoeffler (2004), the two most widely cited 

papers on the causes of civil war onset. The papers are suitable for my analysis because they 

describe a policy issue that is not only important but also notably difficult to forecast. Civil war 

onset is a rare event, and the causal relationships among variables are not well defined in the 

literature, so there is a good chance that many predictors are correlated or unnecessary. 

In this exercise, I estimate one model per AutoML algorithm using the default 

configurations. Thus, my results are a simple baseline that allows for modifications and 

extensions. The only data processing tasks I do are create a training dataset–test dataset split (75 

percent to 25 percent) before the estimation, as some libraries do not partition the data 
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automatically, and add five cross-validation folds to test the models’ prediction accuracy. To 

save space, I do not include the code in this paper, but the replication materials are available at 

https://github.com/danilofreire/mercatus-analytics-papers. 

Regarding the estimations, I use the area under the ROC curve as a score metric to make the 

results comparable with those by Ward, Greenhill, and Bakke (2010). I limit the running time to 

10 minutes per model so users can have a good idea of how AutoML algorithms perform within 

a small time window. For reproducibility, I run all models with the same seed number generated 

at random.org (8305). 

I begin with the civil war data collected by Fearon and Laitin (2003). The data have 6,402 

country-year rows and 11 potential predictors of civil war onset. Ward, Greenhill, and Bakke 

(2010, 371) test the out-of-sample forecasting power of the model and find an area under the 

ROC curve of 0.738. The authors also assess the forecasting ability of Collier and Hoeffler’s 

(2004) main model. The latter authors have a different measurement for civil war onset, and their 

dataset has 688 country-years and nine independent variables. According to Ward, Greenhill, and 

Bakke (2010), the area under the ROC curve in this model is 0.823. These are the two 

benchmarks for my AutoML models. The results appear in table 1.  
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Table 1. Area under the ROC Curve from AutoML Learners 

Model Fearon and Laitin (2003) Collier and Hoeffler (2004) 

Ward, Greenhill, and Bakke (2010) 0.738 0.823 

AutoKeras 0.736 0.758 

H2O AutoML 0.783 0.703 

TPOT 0.715 0.825 

Note: Numbers in bold indicate better predictive performance than the baseline model. 

Overall, the AutoML classifiers do a good job at predicting civil conflicts. All results are 

close to the original benchmark, and in each task one of the algorithms has a better predictive 

performance than the baseline model (shown in bold type). Considering that civil conflicts are 

hard to predict and that the algorithms had limited modeling time, the results indicate AutoML’s 

strong forecasting accuracy even in adverse conditions. 

Sharing AutoML Models with Docker 

Once one has estimated AutoML models, how should he or she deploy or share them? My 

suggestion is to use Docker as a reproducibility tool.3 Docker is a virtualization platform that 

allows users to build, test, and share their software in standardized packages called containers. 

Each container has a lightweight version of an operating system—usually Linux—and users can 

add any other software or folders to the base Docker image. Instead of sharing just data and 

code, scholars can distribute their complete software environment to collaborators and reviewers, 

as is common practice in the social sciences. Thus, Docker guarantees that all computer libraries 

are identical to the ones in the original analysis, which ensures complete reproducibility and easy 

deployment to other machines. 

 
 
3 Please find the Docker documentation files at https://docs.docker.com. 



 13 

Docker is available for all major operating systems and requires only a few commands to 

work. In this section, I show how researchers can create a custom Docker container within 

minutes. First, download Docker Desktop at https://www.docker.com/products/docker-desktop 

and install it. Docker Desktop includes all necessary files to build and run Docker containers. 

Second, create a free account at Docker Hub (https://hub.docker.com/signup), which is a cloud-

based repository for Docker images. After that, one is ready to use Docker. 

One can create a Docker container in two ways, either by writing a Dockerfile (a 

configuration file with instructions on which packages to download and run in the Docker image) 

or by modifying an existing Docker container. I recommend the second method because it 

requires less coding. 

I start by pulling and running a prebuilt Ubuntu Linux image. Docker will start an Ubuntu 

session without changing any configuration in one’s computer. To install the container, I run the 

following code in my terminal: 

docker pull ubuntu # download the image from Docker Hub 
docker run -it ubuntu # run the image; -it to start the Docker container 

 

Upon doing so, I see a root session in the terminal (see figure 1). Then, I install Python, R, 

and the required AutoML libraries. 

apt update -y # update the system 
apt install python3 python3-pip r-base default-jre # required files 
pip3 install autokeras # AutoKeras 
pip3 install h2o # H2O AutoML 
pip3 install tpot # TPOT 
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Figure 1. Docker Container Running Ubuntu Linux. 

 

The pip3 command installs the Python libraries and their dependencies, so I already have all 

the software I need to estimate my models. The next step is to add the data and scripts to Docker. 

To do so, I close the connection with the container with the exit command and find the container 

ID with docker ps -a, which lists all active Docker containers. I then copy the files with the 

docker cp command. 

 # In the Docker container: 
exit # stop the container 
 # In your regular terminal: 
docker ps -a # list all available containers 

 

When I exit the Docker image and type docker ps -a, I see something like what is shown in 

figure 2. 

The first column indicates the container ID. In this case, it starts with 5051. To copy the 

files to that specific container, I just write the following lines in my terminal. 

docker cp ~/path/to/file/automl.Rmd 5051:/automl.Rmd # copy script 
docker cp ~/path/to/file/fl_data.csv 5051:/fl_data.csv # copy data 
docker cp ~/path/to/file/ch_data.csv 5051:/ch_data.csv # copy data 
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Figure 2. List of Available Docker Containers 

 

Lastly, I need to save the changes I have made to the container and upload it to Docker Hub. 

I use docker commit [container_ID] [new_name] to commit the changes, where [container_ID] 

is the ID value given earlier (5051) and [new_name] is the name I want to give to the modified 

container. I also check if the container has been saved with docker image. 

docker commit 5051 mercatus-automl 
docker images 

 

The terminal output is shown in figure 3. 

Figure 3. Docker Images 

 

Now I need to push the image to Docker Hub. I go to https://hub.docker.com 

/repositories and create a new repository. Then I add my Docker Hub credentials to my local 

machine with docker login --username=your_username and create a tag for my container. Note 

that the container ID has been updated (602d). Finally, I type docker push 

my_username/repository_name to push my image to Docker Hub. Here’s some example code: 
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docker login --username=danilofreire # add credentials 
Password: # type your password 
  
docker tag 602d danilofreire/mercatus-automl:first # add tag 
docker push danilofreire/mercatus-automl:first # push image to Docker Hub 

 

Upon a successful upload, I see what is shown in figure 4. 

Figure 4. Container Uploaded to Docker Hub. 

 

And that completes this tutorial. The image has been successfully uploaded to Docker Hub, 

and researchers can download the file with docker pull danilofreire/mercatus-automl. As one can 

see, Docker offers a flexible and fully reproducible method of sharing machine learning models 

or other statistical analyses. It goes beyond current academic reproducibility practices and 

certifies the exact replication of the findings. 

Conclusion 

Computer scientists have applied machine learning to predict a myriad of outcomes, such as 
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shopping habits and kidney diseases. Algorithms now power email filters, translation software, 

satellite farming, self-driving cars, and many other devices. In the past few years, social 

scientists have also adopted machine learning tools to forecast political events and improve 

public policies. AutoML is a new class of algorithms that facilitates machine learning tasks and 

allows nonexperts to use sophisticated computer estimations in their work. Here I have provided 

a simple introduction to three Python AutoML libraries and shown that their prediction accuracy 

is on par with that achieved by area experts. Moreover, I have suggested that users should adopt 

Docker to share their machine learning models and achieve fully reproducible pipelines. 

AutoML is a dynamic field that is still in its infancy. The growing support from big 

technology firms such as Google, Amazon, and Microsoft indicates that one should expect a 

large number of new algorithms in the future. Fortunately, most AutoML tools remain free to 

use, so individuals are likely to benefit from these advances. Whereas nonexperts can use 

AutoML tools to produce good estimates with minimal coding experience, practitioners are able 

to automate labor-intensive tasks and focus on improving the predictive ability of their models. 

In sum, I hope AutoML becomes an important part of the machine learning toolkit and that 

automated models help policy analysts answer some of their most pressing questions. 
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