

Democratizing Policy Analytics
with AutoML

Danilo Freire

MERCATUS WORKING PAPER

All studies in the Mercatus Working Paper series have followed a rigorous process of academic evaluation,
including (except where otherwise noted) at least one double-blind peer review. Working Papers present an
author’s provisional findings, which, upon further consideration and revision, are likely to be republished in an
academic journal. The opinions expressed in Mercatus Working Papers are the authors’ and do not represent

official positions of the Mercatus Center or George Mason University.

Danilo Freire, “Democratizing Policy Analytics with AutoML,” Mercatus Working Paper, Mercatus
Center at George Mason University, Arlington, VA, March 2021.

Abstract

Machine learning methods have made significant inroads in the social sciences. Computer algorithms now
help scholars design cost-effective public policies, predict rare social events, and improve the allocation of
funds. However, building and evaluating machine learning algorithms remain labor-intensive, error-prone
tasks. Thus, areas that could benefit from modern computer algorithms are often held back owing to
implementation challenges or lack of technical expertise. In this paper, I show how scholars can use
automated machine learning (AutoML) tools to preprocess their data and create powerful estimation
methods with minimal human input. I demonstrate the functionalities of three open-source, easy-to-use
AutoML algorithms, and I replicate a well-designed forecasting model to highlight how researchers can
achieve similar results with only a few lines of code.

JEL Codes: C52, C53, C87

Keywords: automated machine learning, AutoML, computational social science, policy analysis, research
methods, teaching

Author Affiliation and Contact Information

Danilo Freire
Independent researcher
https://danilofreire.github.io
danilofreire@gmail.com

© 2021 by Danilo Freire and the Mercatus Center at George Mason University

This paper can be accessed at https://www.mercatus.org/publications/regulation/democratizing-policy
-analytics-automl.

https://www.mercatus.org/publications/regulation/democratizing-policy-analytics-automl
https://www.mercatus.org/publications/regulation/democratizing-policy-analytics-automl

 3

Democratizing Policy Analytics with AutoML

Danilo Freire

Introduction

Machine learning has made steady inroads into the social sciences. Although causal inference

designs have become the standard methodology in economics and political science (Angrist and

Pischke 2008), machine learning is increasingly used to tackle “prediction policy problems,” in

which high forecasting accuracy is more important than unbiased regression coefficients

(Kleinberg et al. 2015). For instance, scholars have employed algorithmic modeling to predict

civil wars (Muchlinski et al. 2016; Ward, Greenhill, and Bakke 2010), mass killings (Freire and

Uzonyi 2018; Ulfelder 2013), and state repression (Hill and Jones 2014). Supervised machine

learning also helps governments devise local public policies, such as allocating fire inspection

teams or directing patients for medical treatment (Athey 2017). Therefore, computer algorithms

can improve social welfare by making state interventions more effective.

Despite the popularity of predictive analytics, building machine learning models remains a

labor-intensive task. Practitioners apply several preprocessing steps just to prepare their data, and

many modeling decisions, such as algorithm selection or parameter optimization, are still largely

based on trial and error (Elshawi, Maher, and Sakr 2019). As a result, areas that could benefit

from predictive algorithms do not reach their full potential owing to implementation challenges

or lack of technical expertise (Amershi et al. 2019; Truong et al. 2019; Yang et al. 2018). In this

regard, methods that simplify the machine learning pipeline can have significant academic and

policy impacts (Ahmed, Mula, and Dhavala 2020; Healy, McInnes, and Weir 2017).

Automated machine learning (AutoML) aims to fill this gap. AutoML is an emerging

framework that automatically chooses and optimizes machine learning algorithms. More

 4

specifically, AutoML provides data-driven tools to minimize human effort in the machine

learning workflow, automating steps such as feature engineering, model selection,

hyperparameter tuning, and model interpretation (Elshawi, Maher, and Sakr 2019). AutoML not

only frees machine learning specialists from tedious and error-prone tasks but also makes state-

of-the-art algorithms accessible to regular users. According to its proponents, AutoML promotes

a true democratization of artificial intelligence (Hutter, Kotthoff, and Vanschoren 2019, ix;

Shang et al. 2019). Also, AutoML approaches have been very successful in prediction

challenges, and they consistently reach the top 5 percent in public machine learning competitions

(Prasanna 2020; Lu 2019).

In this paper, I introduce three Python AutoML algorithms that policy analysts may consider

in their work. In the following section, I describe the main functionalities of AutoKeras (Jin,

Song, and Hu 2019), H2O AutoML (H2O.ai 2021), and TPOT (Olson and Moore 2016). All of

the algorithms are open source, actively maintained, and easy to use. Then, I replicate two

analyses that employ expert-coded machine learning models and show that AutoML can achieve

comparable or better predictive performance with only a few lines of code. Lastly, I discuss how

users can make their AutoML scalable and reproducible with Docker containers. Docker allows

researchers to create an image of their complete working environment, thus all AutoML

specifications and dependencies are automatically embedded in the Docker file. Although

Docker has been widely employed in business applications, its use in academia remains limited. I

provide a simple tutorial so that readers can upload their AutoML setup to a website and share

their Docker containers with coauthors and referees.

A Brief Introduction to AutoML Algorithms

Automated algorithms are a recent addition to the machine learning field. Thornton et al. (2013)

 5

proposed the first method to jointly address the problems of algorithm selection and parameter

optimization, and their results show that automated solutions often outperform baseline models.

Since then, the literature has grown significantly. Today, there are a multitude of AutoML

algorithms available for nonexpert users, which are not only able to predict numeric data but are

also able to classify objects, translate text, annotate videos, and perform sentiment analysis in

social media with few instructions (Liu et al. 2020).

The intuition behind AutoML algorithms is simple. First, the algorithm splits the original

data into training and test datasets and applies different models to the training partition. Then the

algorithm selects the model that achieves the best performance in a given evaluation metric, such

as the mean squared error or classification accuracy. Having selected the algorithm that

minimizes the chosen metric, the next step is to find the set of hyperparameters that further

improves the model’s predictive ability. The selection method here is the same. The algorithm

tests many combinations of parameters and chooses the one that produces the best results

according to the estimation metric. Finally, the results are compared against the test dataset to

see how the model performs with new data. If necessary, users can add their own configurations

to the AutoML algorithm or test the machine learning pipeline with other data splits.

Many AutoML libraries also perform feature engineering tasks without human intervention.

Feature engineering is the process of recoding variables to improve the performance of machine

learning algorithms. Common tasks include creating dummy variables from categorical

indicators, filling missing data, standardizing numeric covariates, and removing correlated

features to avoid multicollinearity (He, Zhao, and Chu 2021; Truong et al. 2019). AutoML takes

a data-driven approach here too and selects those data transformations that improve forecasting

scores the most.

 6

AutoKeras

AutoKeras is an AutoML algorithm based on Keras (Keras 2021), an interface for Google’s

TensorFlow machine learning platform (Abadi et al. 2015). AutoKeras focuses exclusively on

deep neural networks, and it performs classification and regression tasks on images, texts, and

tabular data. Neural networks require extensive tuning to increase prediction accuracy, but

AutoKeras uses neural architectural search (NAS) to automatically optimize the network

hyperparameters. In this sense, users can train complex deep learning algorithms with little to no

machine learning experience. One only needs to write four lines of code to run a classification

task in AutoKeras:

import autokeras as ak # load library
model = ak.StructuredDataClassifier() # build model for tabular data
model.fit(X_train, y_train) # fit model with training data split
predictions = model.predict(X_test) # predictions

In the example above, X is the set of predictors and y is the response variable. Scholars just

need to split the dataset into training and test partitions and separate the independent from the

dependent variables. After that, AutoKeras will estimate a series of neural networks to predict y.

Users can also pass many parameters to the ak.StructuredDataClassifier() function, including the

metric they want to minimize or maximize (such as accuracy or area under the ROC curve), set

the number of networks that the model will create, and limit the time reserved for each task.

Please refer to https://autokeras.com to know more about AutoKeras’s model parameters and

how to use the software for image or text classification and regression.

H2O AutoML

The second algorithm I discuss here is H2O AutoML. Developed by H2O.ai, a company based in

 7

Silicon Valley, H2O AutoML is a free and open-source automated machine learning solution.

Thus, individuals and firms can use it at no cost, and they can also inspect and modify the

original code if they want to. Another advantage of H2O AutoML is that it provides a graphic

interface that helps beginners get started with the platform. H2O.ai offers its AutoML software

for both R and Python, and the packages use the same functions and arguments in both of those

languages. Users need only specify the dependent and independent variables, the training and

test datasets, and the prediction task they want to run. The algorithm will automatically find the

model that best fits the training data, evaluate the model’s performance on the test dataset, and

report model statistics. Example code for binary classification tasks in Python is as follows:

 8

import h2o # load library
from h2o.automl import H2OAutoML # load AutoML functions
h2o.init() # start the module

train = h2o.import_file(“path/to/training_data”) # load training data
test = h2o.import_file(“path/to/test_data”) # load test data

x = train.columns # independent variables
y = “dependent_variable_name” # dependent variable
x.remove(y) # remove dependent variable from matrix

model = H2OAutoML(max_models=30,
seed=1234)

run 30 machine learning models

model.train(x=x, y=y, training_frame=train) # estimate model
predictions = model.predict(test) # get predictions

H2O AutoML also provides a large collection of model functions with explanatory power.

Critics have pointed out that many machine learning methods are “black boxes,” in the sense that

they display little information about the estimation stage (Molnar 2020). This obscurity has

serious consequences in fields where decision mechanisms are relevant per se, such as judicial

sentencing or healthcare allocation. H2O AutoML addresses this issue by offering explanation

methods that describe how the general model performs and how it explains each individual

observation.1 The algorithm also shows the forecasting importance of every predictor (Grömping

2009), SHAP values (Lundberg et al. 2020), and partial dependence plots (Friedman and

Meulman 2003).

1 Please visit http://docs.h2o.ai/h2o/latest-stable/h2o-docs/explain.html for more information on H2OAutoML’s
model explainability functions.

 9

TPOT

The last algorithm I introduce in this section is TPOT, or the Tree-based Pipeline Optimization

Tool. It is one of the oldest AutoML solutions for Python, and its authors have won several

awards for their work.2 TPOT uses a genetic search algorithm to find the best model for a given

dataset (Olson and Moore 2016). The principle borrows ideas from evolutionary biology and

consists of three steps. First, the algorithm estimates a baseline model. Then, it makes small

random changes to the original computations. After that, it selects those variations that achieve

high prediction scores. TPOT repeats this process until it cannot increase forecasting accuracy or

until it reaches the maximum computation time defined by the user.

TPOT uses the scikit-learn (Pedregosa et al. 2011) Python library to estimate the models,

but in contrast with the original package, it does so with minimal human input. TPOT supports

GPU acceleration and has fast estimation times when compared to other tools. Users can create a

classification model with the following example code:

from tpot import TPOTClassifier # load library
model = TPOTClassifier() # build model
model.fit(X_train, y_train) # fit model
print(model.score(X_test, y_test)) # print model evaluation

Where X is a matrix of covariates and y is the response variable. TPOT has an export function

that is useful for those who need to export the optimized model and deploy it in other settings.

Users can also customize TPOT’s hyperparameters for classification and regression tasks.

TPOT’s documentation is available at http://epistasislab.github.io/tpot/.

2 A list of the awards is available at http://automl.info/tpot/.

 10

As one can see, the code shown in the three examples is almost identical, though the

functions are running different processes in the background. However, AutoKeras, H2O

AutoML, and TPOT can all quickly estimate regression or classification models for numeric

data. Since these are the two tasks policy analysts do most often, the three algorithms presented

above can be easily integrated into their machine learning workflow.

AutoML in Practice: Replication

How do AutoML models compare with expert-coded machine learning? AutoML algorithms

have frequently appeared among the top performers in Kaggle competitions, yet they face unique

challenges when tested with political or economic data. Datasets in these fields are often much

smaller and have more measurement error than sales datasets, which are the standard data in

machine learning tournaments. Therefore, data from the social sciences are usually hard to

predict, and computer algorithms may fare poorly when compared to experts.

Here I replicate two analyses that use machine learning to forecast rare events. Ward,

Greenhill, and Bakke (2010) evaluate the out-of-sample predictive power of the models

described in Fearon and Laitin (2003) and Collier and Hoeffler (2004), the two most widely cited

papers on the causes of civil war onset. The papers are suitable for my analysis because they

describe a policy issue that is not only important but also notably difficult to forecast. Civil war

onset is a rare event, and the causal relationships among variables are not well defined in the

literature, so there is a good chance that many predictors are correlated or unnecessary.

In this exercise, I estimate one model per AutoML algorithm using the default

configurations. Thus, my results are a simple baseline that allows for modifications and

extensions. The only data processing tasks I do are create a training dataset–test dataset split (75

percent to 25 percent) before the estimation, as some libraries do not partition the data

 11

automatically, and add five cross-validation folds to test the models’ prediction accuracy. To

save space, I do not include the code in this paper, but the replication materials are available at

https://github.com/danilofreire/mercatus-analytics-papers.

Regarding the estimations, I use the area under the ROC curve as a score metric to make the

results comparable with those by Ward, Greenhill, and Bakke (2010). I limit the running time to

10 minutes per model so users can have a good idea of how AutoML algorithms perform within

a small time window. For reproducibility, I run all models with the same seed number generated

at random.org (8305).

I begin with the civil war data collected by Fearon and Laitin (2003). The data have 6,402

country-year rows and 11 potential predictors of civil war onset. Ward, Greenhill, and Bakke

(2010, 371) test the out-of-sample forecasting power of the model and find an area under the

ROC curve of 0.738. The authors also assess the forecasting ability of Collier and Hoeffler’s

(2004) main model. The latter authors have a different measurement for civil war onset, and their

dataset has 688 country-years and nine independent variables. According to Ward, Greenhill, and

Bakke (2010), the area under the ROC curve in this model is 0.823. These are the two

benchmarks for my AutoML models. The results appear in table 1.

 12

Table 1. Area under the ROC Curve from AutoML Learners

Model Fearon and Laitin (2003) Collier and Hoeffler (2004)

Ward, Greenhill, and Bakke (2010) 0.738 0.823

AutoKeras 0.736 0.758

H2O AutoML 0.783 0.703

TPOT 0.715 0.825

Note: Numbers in bold indicate better predictive performance than the baseline model.

Overall, the AutoML classifiers do a good job at predicting civil conflicts. All results are

close to the original benchmark, and in each task one of the algorithms has a better predictive

performance than the baseline model (shown in bold type). Considering that civil conflicts are

hard to predict and that the algorithms had limited modeling time, the results indicate AutoML’s

strong forecasting accuracy even in adverse conditions.

Sharing AutoML Models with Docker

Once one has estimated AutoML models, how should he or she deploy or share them? My

suggestion is to use Docker as a reproducibility tool.3 Docker is a virtualization platform that

allows users to build, test, and share their software in standardized packages called containers.

Each container has a lightweight version of an operating system—usually Linux—and users can

add any other software or folders to the base Docker image. Instead of sharing just data and

code, scholars can distribute their complete software environment to collaborators and reviewers,

as is common practice in the social sciences. Thus, Docker guarantees that all computer libraries

are identical to the ones in the original analysis, which ensures complete reproducibility and easy

deployment to other machines.

3 Please find the Docker documentation files at https://docs.docker.com.

 13

Docker is available for all major operating systems and requires only a few commands to

work. In this section, I show how researchers can create a custom Docker container within

minutes. First, download Docker Desktop at https://www.docker.com/products/docker-desktop

and install it. Docker Desktop includes all necessary files to build and run Docker containers.

Second, create a free account at Docker Hub (https://hub.docker.com/signup), which is a cloud-

based repository for Docker images. After that, one is ready to use Docker.

One can create a Docker container in two ways, either by writing a Dockerfile (a

configuration file with instructions on which packages to download and run in the Docker image)

or by modifying an existing Docker container. I recommend the second method because it

requires less coding.

I start by pulling and running a prebuilt Ubuntu Linux image. Docker will start an Ubuntu

session without changing any configuration in one’s computer. To install the container, I run the

following code in my terminal:

docker pull ubuntu # download the image from Docker Hub
docker run -it ubuntu # run the image; -it to start the Docker container

Upon doing so, I see a root session in the terminal (see figure 1). Then, I install Python, R,

and the required AutoML libraries.

apt update -y # update the system
apt install python3 python3-pip r-base default-jre # required files
pip3 install autokeras # AutoKeras
pip3 install h2o # H2O AutoML
pip3 install tpot # TPOT

 14

Figure 1. Docker Container Running Ubuntu Linux.

The pip3 command installs the Python libraries and their dependencies, so I already have all

the software I need to estimate my models. The next step is to add the data and scripts to Docker.

To do so, I close the connection with the container with the exit command and find the container

ID with docker ps -a, which lists all active Docker containers. I then copy the files with the

docker cp command.

 # In the Docker container:
exit # stop the container
 # In your regular terminal:
docker ps -a # list all available containers

When I exit the Docker image and type docker ps -a, I see something like what is shown in

figure 2.

The first column indicates the container ID. In this case, it starts with 5051. To copy the

files to that specific container, I just write the following lines in my terminal.

docker cp ~/path/to/file/automl.Rmd 5051:/automl.Rmd # copy script
docker cp ~/path/to/file/fl_data.csv 5051:/fl_data.csv # copy data
docker cp ~/path/to/file/ch_data.csv 5051:/ch_data.csv # copy data

 15

Figure 2. List of Available Docker Containers

Lastly, I need to save the changes I have made to the container and upload it to Docker Hub.

I use docker commit [container_ID] [new_name] to commit the changes, where [container_ID]

is the ID value given earlier (5051) and [new_name] is the name I want to give to the modified

container. I also check if the container has been saved with docker image.

docker commit 5051 mercatus-automl
docker images

The terminal output is shown in figure 3.

Figure 3. Docker Images

Now I need to push the image to Docker Hub. I go to https://hub.docker.com

/repositories and create a new repository. Then I add my Docker Hub credentials to my local

machine with docker login --username=your_username and create a tag for my container. Note

that the container ID has been updated (602d). Finally, I type docker push

my_username/repository_name to push my image to Docker Hub. Here’s some example code:

 16

docker login --username=danilofreire # add credentials
Password: # type your password

docker tag 602d danilofreire/mercatus-automl:first # add tag
docker push danilofreire/mercatus-automl:first # push image to Docker Hub

Upon a successful upload, I see what is shown in figure 4.

Figure 4. Container Uploaded to Docker Hub.

And that completes this tutorial. The image has been successfully uploaded to Docker Hub,

and researchers can download the file with docker pull danilofreire/mercatus-automl. As one can

see, Docker offers a flexible and fully reproducible method of sharing machine learning models

or other statistical analyses. It goes beyond current academic reproducibility practices and

certifies the exact replication of the findings.

Conclusion

Computer scientists have applied machine learning to predict a myriad of outcomes, such as

 17

shopping habits and kidney diseases. Algorithms now power email filters, translation software,

satellite farming, self-driving cars, and many other devices. In the past few years, social

scientists have also adopted machine learning tools to forecast political events and improve

public policies. AutoML is a new class of algorithms that facilitates machine learning tasks and

allows nonexperts to use sophisticated computer estimations in their work. Here I have provided

a simple introduction to three Python AutoML libraries and shown that their prediction accuracy

is on par with that achieved by area experts. Moreover, I have suggested that users should adopt

Docker to share their machine learning models and achieve fully reproducible pipelines.

AutoML is a dynamic field that is still in its infancy. The growing support from big

technology firms such as Google, Amazon, and Microsoft indicates that one should expect a

large number of new algorithms in the future. Fortunately, most AutoML tools remain free to

use, so individuals are likely to benefit from these advances. Whereas nonexperts can use

AutoML tools to produce good estimates with minimal coding experience, practitioners are able

to automate labor-intensive tasks and focus on improving the predictive ability of their models.

In sum, I hope AutoML becomes an important part of the machine learning toolkit and that

automated models help policy analysts answer some of their most pressing questions.

References

Abadi, Martín, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg
S. Corrado, et al. 2015. “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems.” Preliminary white paper, November 9. https://arxiv.org/pdf/1603
.04467.pdf.

Ahmed, Shakeel, Ravi S. Mula, and Soma S. Dhavala. 2020. “A Framework for Democratizing
AI.” Preprint, submitted January 6, 2020. https://arxiv.org/pdf/2001.00818.pdf.

Amershi, Saleema, Andrew Begel, Christian Bird, Robert DeLine, Harald Gall, Ece Kamar,
Nachiappan Nagappan, Besmira Nushi, and Thomas Zimmermann. 2019. “Software
Engineering for Machine Learning: A Case Study.” Paper presented at the 41st

https://arxiv.org/pdf/1603.04467.pdf
https://arxiv.org/pdf/1603.04467.pdf
https://arxiv.org/pdf/2001.00818.pdf

 18

International Conference on Software Engineering: Software Engineering in Practice,
Montréal, Canada, May. https://www.microsoft.com/en-us/research/uploads/prod/2019
/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf.

Angrist, Joshua D., and Jörn-Steffen Pischke. 2008. Mostly Harmless Econometrics: An
Empiricist’s Companion. Princeton, NJ: Princeton University Press.

Athey, Susan. 2017. “Beyond Prediction: Using Big Data for Policy Problems.” Science 355, no.
6324 (February): 483–85.

Collier, Paul, and Anke Hoeffler. 2004. “Greed and Grievance in Civil War.” Oxford Economic
Papers 56, no. 4 (October): 563–95.

Elshawi, Radwa, Mohamed Maher, and Sherif Sakr. 2019. “Automated Machine Learning: State-
of-the-Art and Open Challenges.” Unpublished manuscript, last revised June 11. PDF file.
https://arxiv.org/pdf/1906.02287.pdf.

Fearon, James D., and David D. Laitin. 2003. “Ethnicity, Insurgency, and Civil War.” American
Political Science Review 97, no. 1 (February): 75–90.

Freire, Danilo, and Gary Uzonyi. 2018. “What Drives State-Sponsored Violence?: Evidence
from Extreme Bounds Analysis and Ensemble Learning Models.” Unpublished manuscript,
last edited November 27. PDF file. https://osf.io/preprints/socarxiv/pzx3q/download.

Friedman, Jerome H., and Jacqueline J. Meulman. 2003. “Multiple Additive Regression Trees
with Application in Epidemiology.” Statistics in Medicine 22, no. 9 (May): 1365–81.

Grömping, Ulrike. 2009. “Variable Importance Assessment in Regression: Linear Regression
versus Random Forest.” American Statistician 63, no. 4 (November): 308–19.

H2O.ai. Last updated February 21, 2021. “AutoML: Automatic Machine Learning.”
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html.

He, Xin, Kaiyong Zhao, and Xiaowen Chu. 2021. “AutoML: A Survey of the State-of-the-Art.”
Knowledge-Based Systems 212 (January): 1–27.

Healy, John, Leland McInnes, and Colin Weir. 2017. “Bridging the Cyber-Analysis Gap: The
Democratization of Data Science.” Cyber Defense Review 2, no. 1 (winter): 109–18.

Hill Jr., Daniel W., and Zachary M. Jones. 2014. “An Empirical Evaluation of Explanations for
State Repression.” American Political Science Review 108, no. 3 (August): 661–87.

Hutter, Frank, Lars Kotthoff, and Joaquin Vanschoren, ed. 2019. Automated Machine Learning:
Methods, Systems, Challenges. Cham, Switzerland: Springer Nature Switzerland AG.

Jin, Haifeng, Qingquan Song, and Xia Hu. 2019. “Auto-Keras: An Efficient Neural Architecture
Search System.” In KDD ’19: Proceedings of the 25th ACM SIGKDD International

https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/03/amershi-icse-2019_Software_Engineering_for_Machine_Learning.pdf
https://arxiv.org/pdf/1906.02287.pdf
https://osf.io/preprints/socarxiv/pzx3q/download
http://docs.h2o.ai/h2o/latest-stable/h2o-docs/automl.html

 19

Conference on Knowledge Discovery & Data Mining, 1946–56. New York: Association
for Computing Machinery.

Keras (website). n.d. Accessed February 24, 2021. https://keras.io.

Kleinberg, Jon, Jens Ludwig, Sendhil Mullainathan, and Ziad Obermeyer. 2015. “Prediction
Policy Problems.” American Economic Review 105, no. 5 (May): 491–95.

Liu, Zhengying, Adrien Pavao, Zhen Xu, Sergio Escalera, Isabelle Guyon, Julio C. S. Jacques
Junior, Meysam Madadi, and Sebastien Treguer. 2020. “How Far Are We from True
AutoML: Reflection from Winning Solutions and Results of AutoDL Challenge.” Paper
presented at the 7th ICML Workshop on Automated Machine Learning, virtual, July 18.

Lu, Yifeng. 2019. “An End-to-End AutoML Solution for Tabular Data at KaggleDays.” Google
AI Blog. May 9. https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution
-for.html.

Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala Nair,
Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. “From Local
Explanations to Global Understanding with Explainable AI for Trees.” Nature Machine
Intelligence 2 (1): 56–67.

Molnar, Christoph. 2020. Interpretable Machine Learning: A Guide for Making Black Box
Models Explainable. Victoria, British Columbia: Leanpub.

Muchlinski, David, David Siroky, Jingrui He, and Matthew Kocher. 2016. “Comparing Random
Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data.”
Political Analysis 24, no. 1 (winter): 87–103.

Olson, Randal S., and Jason H. Moore. 2016. “TPOT: A Tree-based Pipeline Optimization Tool
for Automating Machine Learning.” Proceedings of Machine Learning Research 64: 66–74.

Pedregosa, Fabian, Gaël Varoquaux, Aalexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, et al. 2011. “Scikit-Learn: Machine Learning in Python.”
Journal of Machine Learning Research 12: 2825–30.

Prasanna, Shashank. 2020. “Machine Learning with AutoGluon, an Open Source AutoML
Library.” AWS Open Source Blog. March 31.

Shang, Zeyuan, Emanuel Zgraggen, Benedetto Buratti, Ferdinand Kossmann, Philipp Eichmann,
Yeounoh Chung, Carsten Binnig, Eli Upfal, and Tim Kraska. 2019. “Democratizing Data
Science through Interactive Curation of ML Pipelines.” In SIGMOD ’19: Proceedings of
the 2019 International Conference on Management of Data, 1171–88. New York:
Association for Computing Machinery.

Thornton, Chris, Frank Hutter, Holger H. Hoos, and Kevin Leyton-Brown. 2013. “Auto-WEKA:
Combined Selection and Hyperparameter Optimization of Classification Algorithms.” In
KDD ’13: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge

https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html
https://ai.googleblog.com/2019/05/an-end-to-end-automl-solution-for.html

 20

Discovery and Data Mining, edited by Rayid Ghani, Ted E. Senator, Paul Bradley, Rajesh
Parekh, and Jingrui He, 847–55. New York: Association for Computing Machinery.

Truong, Anh, Austin Walters, Jeremy Goodsitt, Keegan Hines, C. Bayan Bruss, and Reza
Farivar. 2019. “Towards Automated Machine Learning: Evaluation and Comparison of
AutoML Approaches and Tools.” In 2019 IEEE 31st International Conference on Tools
with Artificial Intelligence (ICTAI), 1471–79. Portland, OR: Institute of Electrical and
Electronics Engineers.

Ulfelder, Jay. 2013. “A Multimodel Ensemble for Forecasting Onsets of State-Sponsored Mass
Killing.” Paper presented at the 2013 APSA Annual Meeting and Exhibition, Chicago, IL,
August 1.

Ward, Michael D., Brian D. Greenhill, and Kristin M. Bakke. 2010. “The Perils of Policy by P-
Value: Predicting Civil Conflicts.” Journal of Peace Research 47 (4): 363–75.

Yang, Qian, Jina Suh, Nan-Chen Chen, and Gonzalo Ramos. 2018. “Grounding Interactive
Machine Learning Tool Design in How Non-Experts Actually Build Models.” In DIS ’18:
Proceedings of the 2018 Designing Interactive Systems Conference, 573–84. New York:
Association for Computing Machinery.

	Introduction
	A Brief Introduction to AutoML Algorithms
	AutoKeras
	H2O AutoML
	TPOT

	AutoML in Practice: Replication
	Conclusion
	References

